SFGO1 Music BIOS

Reference Manual

vli0

December, 26, 1984

Nippon Gakki Co.,
Software Development

December 26, 1984

December 26, 1984

INTRODUCTION

This reference manual is intended to explain the utilization of the "SFG-01"
Control Program version 1.0” which resides within the internal 16Kbyte

ROM of the "SFG-01".

December 26, 1984

TABLE OF CONTENTS
Chapter 1 Outline
1-1 Program Configuration
1-2 Design Concept
1-3 Hardware Configuration
1-4 Interface with MSX BASIC
1-5 Versions
Chapter 11 Basic Functions

Z-1 Keyboard, Queue, Musical Instrument,
Event

2-2 Major parameters by which the FM sound

generator IC creates sounds

Music Keyboard

Creation of Automatic Rhythm Patterns

CSMVocal Synthesis

Voice Library

2=
2-
Z2-
2_
2- Recording, Playback

et [SO, (R N

Chapter 111 M-BIOS Interface

User Interface

Memory Management

Supervisor Call

IRQ Processing

TRAP

Direct Commands by Asscessing MIDB,IDB

(= B N S L

3_
3..
3_
3_
3-
3_

O] W R N

10

11

24
33
34
37
38
40

41

42
43
45
52
55
56

December 26, 1984

Chapter 1V M-BIOS Syntax 57
4-1 [-Call 58
4-2 R-Call 60
4-3 K-Call 79
4-4 P-Call 82
4-5 S-Call 83
4-6 M-Call 105
4-7 TRAP 106
4-8 MIDB 109
4-9 1DB 111
4-10 Voice Data 112
4-11 UVL 116
4-12 Setting up infor mation 117
Chapter Writing Programs 119
5-1 Program Example 120
5-2 Supplementary explanation for recording

and playback programming 129
5-3 supplementary explanation for auto-

rhythm generator 130
5-4 Supplementary infor mation for

CMT handling 131
5-5 M-Monitor usage 132
5-3 Problems and Solutions 133

CHAPTER 1

Qutline

December 26, 1984

December 26, 1984

1-1 Program Configuration

The basic configuration of this program (SFG-01 Control Program)
follows that depicted in Fig. 1.1.

The M-BIOS (Music Bios) controls the hardware of the SFG-01.
As a tool box, it provides the user various basic 1/0 modules
(MBIOS) and utilities required for instrumental sound sysnthesis
and music processing.
With the use of MBIOS modules, parameter handling for sound
synthesis and computer music performance can be carried out
without any necessity for the user to directly access the hardware
of the SFG-01.
Additionally, MBIOS includes several built-in utilities. Il used,
these will provide convenient supplementary services to the user
that would otherwise have 1o be programmed by the user.
These utilities are:

1) Reocording of performance and playback

2) Automatic rhythm generation

3} Loading/saving of voice/automatic performance data

onto CMT(Cassette Magnetic Tape recorder)

MBIOS functions can be invoked by issuing SV-Call (Supervisor
Call) 1o the system.

The M-Monitor (Music Monitor) is a demonstration program that
converts the MSX computer into a synthesizer, and will operaie on
MBIOS. M-Monitor can be invoked from BASIC, by issuing "CALL
MUSIC".

December 26, 1984

USER
SFG-=01
i
!]
Expansion BASIC
{]
| I
M-MONITOR
SUPERVISER CALL
M—-BIOS
|
HARDWARE

Program Configuration (Fig.

1.

1

December 26, 1984

1-2 Design Concept

The MBIOS was designed with the following main concepis in mind.

First, MBIOS users should not have to worry directly about the
hardware. The controls of the built-in FM sound chip, and that of
midi interface, are all carried out by the MBIOS, freeing the user
from this task.

Second, the concept of a virtual instrument should be defined in
the user's program space. By insirument, we mean the processing
system for real-time key-on/key-off requests (events).

MBIOS defines the instrument by using an IDB(Instrument
Definition Block) that is linked to the built-in FM sound generator
IC or MIDI interface as the actual instrumental outputs.

Thus (considering event data being input to the instrument), once
the instrument is defined, the user can control the FM sound
generator IC by manipulating only the event data.

Third, the slot managemeni of the MSX sysiem should be feft up
to user. This enables a multiple number of slots 1o be used
together with the M-BIOS. In other words, the M-BIOS does not
address the slots by itself (with some exceptions). This enables the
user to call out the IRQ processing module of the MBIOS by
swilching the slot to SFG-01 , even when the interrupt is received
at the user's slot.

Fourth, there may be parallel preessing by service calls.

That is, the processes of Keyboard Scanning and Instrument
Performance (PLAY), as well as the real-lime processes such as
event buffer handling for automatic reformance, can run
simultaneously by appropriately issuing MBIOS calls in the user's
main program or in his interrupt routines.

December 26, 1984

1-3 Hardware Configuration

The configuration of the hardware is shown in Fig. 1.2.

The MSX main unit and the SFG-01 are connected together by the
60-pin cartridge bus.

S0 pins out of the 60-pins form the standard MSX bus, and the
remaining 10 pins are not in use in the SFG-01.

Additionally, the right channel of the SFG-01 is equipped with a
low pass filter with a cut-off frequency around 3.5 KHz.

The filter is enabled when CSM vocal synthesis is invoked, for CSM
vocal synthesis is carried out only on the right channel.

Hardware Configuration

MSX main unit

December 26, 1984

Fig. =1..2)

£=840 16kbyte RAM
YDP
PP 1 ! Expansion RAM E
- —— O
GNWWi CﬁITf

5@-p 1
SF&-01

h Cartridge Bus

(MSX Standard)

Expansion 1@-pin

Cartridge Bus

MIDECIN) O
MIDICOUT)CD

16Kbyte ROM

OPM DAC
b R
l
MEKS Vocal Synthesis
J1 Filter
—) 0—0
NKE L R
Music Keyboard E
v
{ i Optional

December 26, 1984

1-4 Interface With MSX-BASIC

This program uses the MSX-BASIC module, HOOK, and MSX main
unit hardware as shown below.

1) During M-BIOS CMT access, two HOOK's are used.
H.KEY1 (FD9Ah)
H. ERRO (FFB1h)

Also one BIOS call is used.
J. STMO (00F3h)

Note that, once a hook is used, MBIOS destroys the previous
contents of hook entries, and will not restore them, even after
completion.

2) The first 16 bytes starting from Address 0000h of MBIOS is a
header to enable the MSX-BASIC to jump to the Music-Monitor of
MBIOS. (The same contents will also appear from Address 4000h
and up due 1o the image caused by address decoding scheme of the
SEG-01).

0000h (ID) "AB"

0002h (INIT) Address of RETURN instruction
0004h (STATEMENT) Address of "CALL MUSIC"
0006h (DEVICE) 0000h

0008h 0000h

000Ah and after 0000h

Interfaces that fall outside the MSX interfacing siandards are as
follows:

3) During CSM vocal synthesis, IRQ from VDP is reset directly.

4)

5)

6)

7)

December 26, 1984

During CMT access, the following BASIC CMT access modules
are referenced:
BLOAD (6FD7h), SRCCAS (70B8h), CSRDON (72E9%h),
BPRMIC(700Bh) and CBLODL(702Fh)

During CMT access, the slots are switched by directly accessing
the BASIC slot registers inside PPI.

VDP and PPI are directly accessed in M-Monitor.

In M-Monitor, the character font table at 1BBFh of the
BASIC ROM is directly referenced.

December 26, 1984

1-§ Versions

This program contains a 9 byte version code from address 0080h.

0080h: "MCHFM0" Program ID code
0086h: 03h ROM serial *
0087h: 00k FM sound chip type
0088h: 03h software version #

For the identification of this program from the application program,
it is only necessary to look for the first 6 byie code "MCHFMO" from

address 0080h.

December 26, 1984

Chapter 11 Basic Functions

December 26, 1984

2-1 Keyboard, Queue, Musical Instrument, and Event

The Keyboard, Queue, and Instrument form the fundamental
structure of M-BI0S.

Fig. 2.1 depicts the relationship of these three main functional
units.

The modules on the lefi side of Fig. 2.1 all deals with keyboard
related functions. That is, keyboards are input Lo the music
processing system. They issue key-on/off requests and associated
velocily inputs. Since the requests are time dependent, they are
called evenis.

MK, a music keyboard attached to SFG-01 unit, is one of the
keyboards.

Any automalic performance process provided by the user could
also be categorized as a keyboard since it issues events Lo the
system as well.

MBIOS not only supporis the "melody” instruments, called general
instruments, but also supports such ‘rhythm” instruments as
Chord, Bass, and Percussion instrumenis.

Any functional modules acting as inputs to these instruments are
calegorized as keyboards, too.

In the middle of Fig. 2.1, Queue’s are depicted.
These functional modules act as processing buffers between input
(events) and the next functional modules, called Instruments.

Instruments are depicted at the rightmost portion of figure 21.
These are the function units to play the events coming from the
Queue, using Instruments that are defined as IDB's.

December 26, 1984

(Keyboard) {Queue) (Instrument)
General Instrument
User QU=0-7 1DB%0
—

1
Musgic Keyboard
J

1
Automstic Be?mducer T IDE®#7

> Automstic
~ Recorder

CHORD Instrument

User QUEC L .| 1DBsC

!
Automstic Rhythm

" Generator
7 CHORD®,

- 1
Uger 4 CHORD-KE
]

TR,
CHORD-IMK _|
I

BASS Instrument

Usger 31 QU%RB IDE®E

~ Automatic Rhythm
Generator

PERCUSSION Instrument

Usgex ,I QU#P o IDE#FQ
,| IDE%*F1
~ Automatic Rhythm
Genexator

Relationship between Kevboard QUEUE & Instrument (Fig-2.1)

December 26, 1984

General Instrument

IDB*0 - 7
Prezet dats
Note ON/OFF
Al11 Note OFF MIDI channel

EVENT i / FM chip
|
|

CHORD, BASS Instrument

IDB*C, IDB*B

o Prezet dats

EVENT
Note ON/OFF / FM chip

All Note OFF

PERCUSSION Instrument

IDB*PQ, IDB*P 1

Frezet dals
e
EVENT / v
Note Status
411 MNote OFF

Instrument Configuration (Fig-2.2)

December 26, 1984

2-1-1 Musical Instrument and Event

In this manual, “instrument” is meant to be an eveni processing
system.

There are 8 "general instruments” and 4 "special instruments”.

The general instrument is meant to be a normal instrument that
plays most of the music, accepting keyboard performance events
(such as melody).

The special instrument is specifically designed for rhythmic
performance. It is possible for the MBIOS user to program these
rhythmic insiruments by using general instruments and
appropriately designing the performance buffer.

However, = MBIOS already provides some useful rhythmic
instruments for the user who does not want to specifically
program the rhythm instruments.

These are: Chord, Bass, Percussion #0, and Percussion®|
mnstruments.

The instruments are defined by the conirol block, called IDB
(Instrument Definition Block).

8 general IDB's are referenced as IDB*#0, IDB#1,IDB*2,..., IDB*7.
Chord, Bass, Percussion are referenced as IDB#C, IDB#B, IDB*PQ,
and IDB#P1 respectively.

Hereafier, depending on the situation, the instrument may be
refered 1o as 1DB.

The CSM vocal synthesizer, to be discussed later, is also defined by
IDB, and is referenced as IDB¥CSM.

IDB#* =0 thru7 IDB#0 to IDB*7
B IDB#*C
9 IDB*B
10 IDB*PO
It IDB*PI

Fig. 2.3 IDB numbers

(14)

December 26, 1984

2-1-1-1 General Instruments

The general instruments (IDB#0 - 1DB#7) are the most commonly
used instruments other than Chord, Bass and Percussion
instruments.

They are defined by the allocation of the channel usage of FM
sound generator IC and MIDI channel, as well as by the preset data
for the FM sound chip.

Input 10 IDB is event daia. It is retrieved and processed by the
P-Call from the single linked Queue to the IDB.

There are three events: Note-on, Note-off, and All-Note- off.
Note-on and Note-off are each comprised of 2 bytes of data.

bit15 87 0
Note-on 1| ke VELOCITY |
Note-off 0] Kc* 0
All-note-off (no dataj

KC#*(Keycode number) indicates an 8-octave range, with the note
name being represented by the lower 4 bits, and the octave by the
upper 3 bits. This KC* format is internal to SFG-01 , and different
from MIDI keycode representation.

bit7 3 0

KC* 0|Octave | Notename |
<Oh> C* <Bh> G
<1h>D 9h: G*
2h> D¥ tAh> A
«3hy - :Bh: -
<4h> E «Ch> A#®

<Sh> F :Dh> B

{ 15)

December 26, 1984

<6h> F# <Eh» C
<7h: - <Fh: -

While the SFG-01 internal KC* looks as shown above, the MIDI KC#
i¢ a linearly arranged number, with 00h being the lowest note
and 7fh the highest note.

Some examples between internal format and that of MIDI are
depicied here:

Note Internal KC# MIDI format KC*
C#-1 00h 0Dh

A4 4Ah 45h

C3 7Eh 6Ch

The SFG-01 internal velocity code covers an 8-bil range between
00h (Minimum) and FFh (Maximum).

Observe that this again is different from MIDI velocity for mat.
MIDI velocity can be derived from internal velocity for mat by
dividing internal code by 2.

When the events are transmitted from MIDI interface, they are
attached with additional information to indicate MIDI destination
channel number, KC# converted 1o MIDI lor mat, and velocity that
is converted to MIDI format as well.

They are as following:

Note-on

100t | MIDI*®
0 MKC#
0 MVelocity

|
" |

Note-off

1000|MIDI*
0 MKC#
01000000

December 26, 1984

All-note-off

101 1[MIDI#
01111110
00000000
101 1] MID]®
01111111
00000000

Where MIDI® is a destination MIDI channel.

MIDI#*#=0 - 15 for midi channel # 1 to 16 respectively.

MKC#¥ and MVelocity stand for KC*¥ and Velocity in MIDI format,
respectively.

In event processing of IDB's, users are advised {0 note the
following consideraiion. MBIOS performes special processing
when channels alloted 1o the IDB are all in use and still there is a
request to the channel of that IDB.

That is, the FM sound generator IC has 8 channels (8 notes), out of
which as many as desired up to the maximum of 8 channels can be
allocaited to IDB. However, when the request for note-on events
exceed the available channels declared in IDB, the processing will
differ depending on whether only one channel is being used, or if
iwo or more channels are being used.

When only one channel is being used, and if the second note-on
request is issued while the first note is still on, then the second
note-on is granted, stopping the first note and pushing it into the
stack.

Then, the note-off of the second key will enable ihe first key to be
popped back and keyed on again(two level stacking system).

When two or more channels are being used, and if the last note-on
request is made while ali 8 channels are used up, the first note will
simply be keyed off, and the last one will be granted.

Stacking will not occur (last note priority system).

December 26, 1984

2-1-1-2 Chord Instrument

The Chord Instrument (IDB*C) is a pre-constructed instrument by
the fixed allocation of the FM sound generator IC channel (fixed to
channel 3 and 4) and by the corresponding preset data.

Events are retrieved fromQU¥C and processed by P-CALL.

Based on the Chord¥® given by the corresponding event, 3 notes (4
notes for a 7th) will be generated simultaneously for the Chord
instrument.

There are 3 events (Note-on, NOte-off, and All-note-off) supplied
with CHORD#.

bit15 8 7 0
NOTE ON 1 0|chord* 00000000
NOTE OFF [0000000000000000
ALL NOTE OFF (no data)

The Chord# is comprised of 4 bits for the name of the rootl note,
and 2 more bits to indicate whether the cord is major/minor and
the existence of the 7th note.

Actual pitch of the root note is set between KC*=35h(octave 3,F)
and KC¥=44h(octave 4 E). This is equivalent 1o the range between
35h and 40h in MIDI key code.

bit> 4 0

Chord#® X X |note name

<XX> <00>Major
<0 I>Minor
<10>Major 7th
<1 1>Minor 7th

December 26, 1984

Once the root name is specified, associated development for a
major chord will be, +386, +700, +1016 cents, and +300, +702,
+1002 for 2 minor chord.

Additionally, Chord insiruments always handle events with
last-event priorily, and single trigger processing.

December 26, 1984

2-1-1-3 Bass Instrument

The Bass Instrument (IDB#B) is made up by the allocation of the
FM sound generator IC channel that is fixed to channel 5, and by
the corresponding set-up data.

The event will be retrieved from QU#B and processed by the
P-CALL.

There are 3 events: Note-on, Note-off and All-note-off.

These are supplied with a Chord* and a Pointer# for the
bass-line pitch offset table.

bit15 8 7 0
Note-on Llo Chord# 0 0 0 0 0|Pointer#
Note-off 00000000[00000000 |
All-note-off {no data)

The Pointer#® is a 3-bit pointer (displacement) to the entry of the
bass-line pitch offsel tables where relative piich offset to the root
note is held.

There are two such tables, one for a major and the other for a
minor chord.

When the Pointer# is specified, the contents of the table addressed
by the Pointer#(pitch offset) are added to the root note indicated
by the Chord¥®. Therefore, by issuing Chord*/Pointer#
information sucsessively with appropriate intervals, it is possible
to produce the bass notes within the chord frame described in the
bass-line pitc offset table.

For a bass instrument, the pitch range of the root note of the
Chord#*

is set between KC#¥=25h(octave 2, F) and KC*=34h(octave3,E).
This is equivalent to the range between 29h and 34h in MIDI key
code.

Additionally, this instrument handles events with last-event
priority, and single trriger mode.

(20)

December 26, 1984

2-1-14 Percussion Instrument

The Percussion Instruments (IDB¥*PO, IDB#*P1) are handled
together in pairs, and are made up by the allocation of the FM
sound generator IC, whose channels are fixed to channel 6 for
IDB#P), and fixed to channel 7 for IDB#Pi, and by the
corresponding preset data. Events are retrieved from QU¥P and
processed by P-CALL.

IDB#P0 provides the functions of hi-hat open (HHO), hi-hat close
(HHC) and hi-iom{HT}).

IDB#P1 provides those of the bass drum (BD), and the low-tom
(LT).

The corresponding events are Nole-status and All-note-off.

bitl5 0

Note-siatus X x| x{x/0|x(00(000000O00O0

bit 15 HHC {irigger)

bit 14 LT (low tom on)

bit 13 BD (bass drum on}
bit 12 HT(high tom on)

bit 10 HHO (hi-hat open on)

All-note-off no data

When Note-status data is issued, it is compared with the previous
Note- status.

For the bits that have changed from 0 to 1, the corresponding
instruments are triggered.

For the bits that have changed from ! to 0, the corresponding
instruments are shut off.

Also HHC and HHO use the same IDB. The availability of each
instrument is mutually exclusive, with HHC receiving priority if
both are requested simultaneously.

December 26, 1984

2-1-2 Queue
This section is illusirated in the middle portion of Fig.2.1.

Queue is a process to handle the queue buffer that is capable of
accepting up 1o a maximum of 16 events.

There are queue's for B general events (QU#0, .. , QU#7) and 3
specialized events (QU#CQU#*B, QU#®P, for Chord, Bass, and
Percussion respectively).

Queue's are named as QU¥x, and refered as.

QU#*x
0 thru7 QU#Q thru QU*7
8 QU*C
9 QU#*B
10 QU#P

Queue's primary function is to buffer the event flows between the
keyboard and the process of playing IDB.

It ensures the asynchronicity of two independent processes
(keyboard handling and playing IDB's) running simulianeously in
the program space. Working as a FIFQ, this effectively increases
the data processing rate without having to miss the note or
seriously delay the performance timing.

The Queue also merges the event data from a multiple number of
keyboards, and disiributes them to a multiple number of IDB's that
are linked to a queue.

The All-note-off event erases presenily queued events from the
queue , and sets the All-note-off flag in the queue.

December 26, 1984

2-1-3 Keyboard
This section is illustrated in the leftmost portion of Fig. 2.1.

The keyboard is, in effect , the event generator.

The external keyboard attached to the SFG-01 (MK) is a music
keyboard.

An automatic performance buffer is ireated as a music keyboard,
1o0.

For "keyboards”, like MK or automatic peformance buffer, events
are then input to QU#0-QU#*7.

The automatic rhythm generator and the user provided rhythm
buffers are considered as special keyboards, whose events are
routed to QU#C, QU#B, and QU¥*P.

The atiached keyboard (MK) has a Chord-sensitive range, from
which CHORD-MK is defined.

CHORD-KB is a special place 1o hold a once-depressed key code
within CHORD-MK (or in user-simulated chord-mk). The purpose
of holding such a key code is to provide the chord® to the rhythm
generator (chord and bass) , and it holds the chord¥ even after the
key-off code is generated.

Note that certain data is routed o the auto-rhythm or the bass line
generator.

There is an SV-call available to change the content of the code
name held in CHORD-KB.

It is used 1o change the chord* in CHORD-KB (providing it 1o
rhythm generators such as chord and bass). CHORD-KB is linked
to QU#C and mainiains the key-off state.

Output of CHORD-MK is ,as explained in section 2-1-1-2, threefold:
Note-on, Note-off, and All-note-off which all affect QU#C.

December 26, 1984

2-2 Major parameters by which the FM sound generator 1C creates
sounds

The simulation of instrumenis by the internal FM sound generator
IC can be set up completely in accordance with the user’'s requests.
This section covers topics relating 1o the setup parameiers for
voicing. To drive the sound generator IC, first of all il is assumed
that the readers of this manual are already familiar with the
hardware specification of FM sound generator IC (OPM).

That is, there are 8 channels available in the FM sound generator
IC, and only one hardware LFO is provided.

For details concerning the tone data, refer to the "YRM-102 FM
Voicing Program Reference Manual™.

Also, the effects and principles of the major voicing/performance
parameters are covered in this section.

In order 1o access the desired paramelers, however, il is necessary
to modify some of the variables in the IDB and MIDB, or to issue
appropriate S-calls to MBIOS. For details , refer to Chapter IV,
MBIQOS syntazx.

2-2-1 Portamento, Trigger, and Sustain Mode

The performance mode is furiher divided into three main modes,
Portamento mode, Trigger mode, and Sustain mode.

The first two modes are effective only for general instruments
with a single tone generator. Sustain mode can is available for all
general instruments.

Poratamento is determined by the Speed and the Mode. The
Portamento Speed determines the rate of pitch shift during the
portamento, with the Speed=0 being equivalent to no poriamento
effect at all.

There are two Portamento Modes, Full Portramento and Fingered
Portamento.

In Full Portamento, the Portamento will take effect for any
Note-on, and in Fingered Portamento, it will take effect only while
kev stacking is taking place. The stacking will take place when
only one channel is assigned to the instrument, and when the first
key still being pressed is pushed onto the stack by the second key-
on, or when ihe first key is popped out of the stack by the release

(24)

December 26, 1984

of the second key.

Though the portamento is normally modified by IDB variables,
since MBIOS executes the portamentio by using Clock-A of the
sound generator IC, changing the CLOCK-A interval value in MIDB
from the initial setting (8000h) will also cause the portamento
speed Lo change.

The trigger type can be determined by using the Trigger Mode.

By irigger, we mean that the envelope is generated from the very
beginning at the key-on request.

A trigger will be generated for every Note-on event during the
MULTI Trigger mode. However, in the case of a single channeled
instrument, it is possible not to generate a irigger during key
stacking, thus continuing the envelope when the second key is on
, and only changing the pitch accordingly. This is called Single
Trigger mode.

Sustain controls the release rate {RR) of the envelope after Note
-off (mostly to lengthen the release time).

When Sustain mode is off, the release rate for each operator will
be computed according to RR of the voice as normal. However, if
Sustain mode is on, MBIOS will output the Sustain rate (RR)
contained in IDB 1o all the operators whose channels are involved
in Note-off events.

Thus , it is possible for the user 1o write his own Sustain handling
routine under the Sustain mode by simply modifying the contents
of Susiain rate of thelDB.

2-2-2 KC Range

It 15 possible 10 set the KC sensitivity range of the IDB, where only
KC#'s within that range are only accepied.

Any deviation from this range in the Note-on event will not be
accepted. However, the Note-off evenis are not limited in this
manner. All-note-off events will be accepied and appropriate
Note-off processing will be carried out.

This function is useful to implement a register sensilive keyboard,
such as split keyboard.

December 26, 1984

2-2-3 Transposition

There are 3 ways to realize transposition; the transposition of the
enlire sysiem, the transposition of an individual IDB, and the
transposition by means of altering voice data.

Transposition of the entire system is obtained by modifying the
Master Transpose variable in MIDB.

Individual insiruments can be iransposed via the Instrument
Transpose variable in the IDB.

Transposition by voice data is a pitch-shift that has been
preprogrammed in the voicing data by use of the YRM102 voicing
program. The primary purpose of this feature is to include the
"pipe” length of the instrument (8°,16°,1 3/5'etc) in the voicing
parameters.

When transposition via IDB is attempted for the IDB that has been
enabled by pitchbend, the transposition will not be accessible by
the user.

This is because the pitch bend function uses the Instrumant
Transpose function to accomplish pitch bend.

Also Piich Bend Depth by IDB is a single parameter used for the
entire system so that it affects all the instruments with the same
amount of piich bend.

The Pitch Bend Depth can be programmed from +/- | half tone to
+/- 1 octave with half-tone resolution.

2-2-4 Yolume, Brilliance

Volume and Brilliance are both OL (Output Level) offsets, with
Volume being the offset for the carrier, and Brilliance that for the
modulator.

Volume is a parameter thal exisis for every instrument, and can
be adjusied for every carrier of the instrument.

However, there is only a single Brilliance parameter within the
entire system, and this is applied 10 only the Brilliance-enabled
modulators.

The range of both Volume and Brilliance offsets against OL's is
between 0 dB (MAX) and -48 dB (MIN).

December 26, 1984

2-2-y LFO

The operation of the LFO is determined by the Speed, Waveform,
AMD and PMD commands.

Speed seis the frequency of the LFO.

AMD sets the output level of the LFO for amplitude modulation,
and PMD sets the output level of the LFO for pitch modulation.

As depicied in the routing of the LFQ, in Fig. 2. 4, LFO oulpuis
adjusted by AMD and PMD are common to all the instruments.
AMS and PMS set the sensitivity to LFO modulation for each
| individual instrument.

The Triggered Sync function initializes the LFO phase to 0{zero) in
synchronization with Nole-on events.

2-2-6 Noise

The OPM has a noise generator which is started when operator 3 of
channel 7 receives a key-on command.

When a Noise Enable is used for the I1DB that uses only channel #7,
noise will be generated at the given Noise Frequency.

Noise Frequency controls the period that quasi-random number
series repeats by itself. Ii should be sel appropriately so as to
obtain sufficiently long series of random number generation.

2-2-7 Velacity

Velocity refers 1o the touch iniensity at Note-on time (Initial
Touch), and affects an offset level for the OL of each operaior.

The central value (80h) of the Velocity is used as the normal
setting.

When the Velocity increases, the volume gets louder if the carrier
is sensitive 10 the velocity, and the sound gets brighter if the
modulator is sensitive to the velocity.

The Velocity Depth covers the effective range of the effect caused
by Velocity. Deptih is adjustable for the carriers over a range of
+-12 dB, and +-6 dB for the modulators.

December 26, 1984

2-2-8 Envelope

The Envelope can be set independenily for each operator.

As shown in Fig. 2. 5, the shape of the Envelope is determined by
AR (Attack Rate), DIR (1st Decay Rate), D2R (2nd Decay Rate), RR
(Release Rate), and by SL (Sustain Level) between the 1st Decay
and 2nd Decay.

OL (Output Level) offsets the standard level of envelope.

The actual OL commanded in the FM sound generator IC is a sum
total of such offsets as OL (original offset), OL Adj (adjusted offset
for algorithm difference), Keyboard Scaling (Keyboard scaled
offset), Velocity(Velocity offset) and Volume/Brilliance(offset due
io volume or brilliance control).

Note that all the offsei amounis are in terms of attenuation from a
0 dB standard.

The offsel range varies depending upon the purpose of usage. For
example, OL (original offset) can be set over a range of 0 dB to
-96dB, while OL Adj can be set over a range of 0 dB to -12 dB.

2-2-9 Keyboard Scaling

There are two types of keyboard scaling.

One is for the rate(ARDIRD2RRR) of the envelope. The keyboard
rate scaling is carried out by hardware internal to the FM sound
generator IC.

The higher the KC¥ the faster the rates. Depth determines the
amount of keyboard rate scaling.

The other type of keyboard scaling is that for level. Unlike
keyboard rate scaling, this is accomplished by MBIOS.

KS selects two types of keyboard scaling curves. (See Fig. 2.6).
When a scaling value corresponding to KC#¥ is taken out of the
curve, it is multiplied by the Depth io vyield the key-scale
dependent offset (adjusted by Depth in effect). Depth serves as a
sensitivity adjusiment for level scaling. (Up to -24 dBJ.

2-2-10 Other Functions

Multiple (Harmonic number, indicated as an F in the FM voicing
program) creates integer muliiples (1/2,1,2,3,..,15) of the keyboard

(28)

December 26, 1984

pitch for each operator.

The ratio between the Multiple of the carrier frequency and ihe
Multiple of the modulator frequency plays an imporiant role in
delermining harmonic structure of the sound.

DT2 (Detune®2/Inharmonic) is used to create inharmonic
multiples of the keyboard pitch.

It is useful to create an inharmonic pitch for sound such as a gong,
bell, etc.

DT1 (Detune®1/Fine) is used to shift the piich of the operaior
slightly out of tune. Detuning is useful to obtain a chorus effect, or
richer sounds.

The Feedback Level adjusts the amount of feedback to the first
operator (from itself) of each channel over 2 maximum range of up
1o 4 *PI radians.

This is useful to enrich the upper harmonic structure of the sound
caused by the 1st operator.

Algorithm determines how the operators are connecied together.
There are 8 ways to connecl the 4 operators in each channel

Stereo L/R s an output-enable function that allows the output to
be routed to either the left, right, or both channels, as desired.

|
| LFO |

channel £0 channel #1

]
operatorf0

operatoril

operator$2

operator#3

Configuration of OPM (Fig.

LI I 2

December 26, 1984

channe|®

2.3

2

LF
AMD J}

December 26, 1984

Wave form
LFQ speed
0
cl) AMS :e‘nable________l
=
PMD nPI S L operator I0
+ 1 } n 1
Channel 3 ;&.MS 9 operator "“‘I
Y '{-} operator ;:2
n 1
L9 operator “"3
=
Channel b PMS
O AMS

Configuration of LFO (Fig. 2.4)

December 26, 1984

EG value
odb

-g6db "
Key ON Key OFF
(trigger)
Envelope (Fig. 2.5)
LOW HIGH KC#&
|

OQutput level

Keyboard Scaling (Fig 2.8

December 26, 1984

2-3 MUSIC KEYBOARD

M-BIOS supports a 49 key keyboard.
It is as shown in Fig. 27. It is used as the mounted keyboard
(MK), while a portion of it can also be used as the mounted chord

keyboard (CHORD - MK).

The MK can be linked with the only general Queue, QU¥0 - QU#7.
If this is done, M-BIOS will register all events registered by MK
into the linked Queue.

CHORD-MK, if invoked, is linked up with Chord-KB.

MK only
Lowest KC# (44 key version) Higheat KC# J
25h {Internai) SEh {Internsl}
29h (MIDI) 54h {MIDI}
| Lowest KC# {49 key version)
1Eh {Internsi)
24h {MI1DI}

MK + CHORD-MK

v

No-effect < *

CHORD-MK MK 38h - SEh (Internal)

37t - 54 (IMIDI)

(Fig-2.7)

(33)

December 26, 1984

2-4 Auto Rhythm Generator

MBIOS provides a ready-made automatic rhythm generator.

The processing is carried out via two types of rhythm buffers,
callied RHB (RHythm Buffer).

One is for auto chord and bass-line-performance.

Another is for percussion insitruments.

MBIOS ca define up to 16 sets of RHB's (2 RHB's per set, one
chord/bass RHB and one percussion RHB).

Of the 16, 6 sets are already used by MBIOS as presetl auto rhythm
patterns.

The palterns are:

0 16 beat (8/4)
1 slow rock (4/4)
2 waltz (374)
3 jazz (8/74)
4 disco (4/74)
5 swing (8/4)

When a user-programmed RHB is to be used, he has to set the
pointer to his RHB in the MIDB prior to its usage.

There are pointer tables for RHB's in the MIDB. MBIOS preset
patterns are pointed to in the first 6 entries of the lables.

RHB is a 96 byte buffer in which 96 events can be programmed.
Each event , or byte, is supposed to last for 1/48 note duration.
Thus the entire RHB will have the maximum length of 96 times
1/48 note duration: that is, 8 quarter notes long.

In the MIDB, the time signature of the rhythm performance should
be specified.

Three kinds of time sighatures are available.

TIME SIGNATURE:
designation lime
0 4/4
1 8/4
2 3/4

December 26, 1984

In the following, the RHB patterns represented in terms of quarter
notes are depicted for each time signature.

| 4/4

1 23412 3 4
874 1 2345678
3/4 1 233123 3

When the RHB is played, performance will be repeated from the
top of the buffer again when the beat marked by ° (hatted beat) is
completed.

Although the pattern remaining in the RHB after the hatted { *)
beal is not played, it is recommended to fill the RHB with the above
patiern entirely. This makes possible the switching of time
signature in the middle of an auto rhythm generation.

The event format to be filled in the RHB is as following:
For chord and bass:

bit 7 0

E p 3 ® * 0 L3 S *

bit0-2 walking bass table pointer disp.
bit4-5 BASS <00> No operation
<10> Note-off
<11> Note-on
bit6-7 CHORD <«00> No operation
<10> Note-off
<11> Note-on

For percussion:

December 26, 1984

bit7 0
* ® 0 k! 0 0
bit2 HHC trigger

bit4 Low tom
bits Bass drum
bité Hi tom
bit7 HHO

When starting the auto rhythm, two options are available.

The "immediate start” will start the auto rhythm immediately upon
issuing of the start auto rhythm command.

When "Sync-start” is specified, MBIOS awaits an event occuring on
either CHORD-MK or MK, and then the auto rhyihm starts.

To keep auto rhythm running, it is also required to provide a
clock to MBIOS, via a clock command.

36)

December 26, 1984

2-5 CSM Vocal Synthesis

The vocal synthesis supported by MBIOS is based upon the
technique called CSM (Composite Sinusoidal Method).

It simulates the spectrum characteristics of the human voice by the
generation of a few sine waves of different frequencies.

In the case of MBIOS, 4 operators (4 sine waves) approximate

the spectrum envelope of the voice.

3
y{t)=) Ai*E(t) *sin(wi*t+¢)
i

Operator #1 of channels®#0 through 3 are used to implement the
above sine waves.

CSM vocal synthesis data is divided into overall data and frame
dependent data. “"Window" is a time frame (approximatety 20
ms) used to analyze CSM parameters , and it will be used as an
interval 10 reconstruct the voice.

The overall dala includes the envelope, E(t).

The frame dependent dala includes the frequency, wi, amplitude,
Ai, and pitch information of the vocal sound. Piich can be
obtained by the interval of reseiting the sine wave generation,
causing the pitch-dependent harmonic components to spread
around the formant frequency wi.

When the CSM driver is aclive, due to heavy IRQ trafficc, MBIOS
suspends all other processes and concenirates on only CSM

synthesis.
The CSM driver also requires presel data to be loaded into the FM
sound generator IC. Hence IDB*CSM is used. The format of

IDB#CSM is identical to that of any other IDB. However, excepl
for voice # 46 in the voice library (and hence can not be modified
) there is no user processable data in the IDB*CSM.

December 26, 1984

2-6 Voice Library

Voice parameters used to simulate an instrumental sound are
handled together and packed into 64 byles of data (48 bytes of
data in the case of the system preset library).

Its map is shown in section 4-10.

The voice library holds these voice parameter sets.

It has a capacity of 48 voices in MBIOS (called SVL, Sysiem Voice
Library), and can be expanded to another 48 voice area in user
RAM called as UVL (User Voice Library).

Voices are refered to by number; 0 - 47 for SVL voices, and 64 to
111 for UVL voices. Voice numbers 48 - 63 are reserved.
Although 11 is possible to address all the voices, MBIOS assumes
the following voices of SVL are special voices dedicated to special
functions.

That is; voices 36 - 39 for IDB#C, voices 40 - 41 for IDB*B, voice
44 for IDB*PO0, voice 45 for IDB#P1, and voice 46 for IDB¥CSM.

MBIOS is equipped with a CMT (cassetie tape) utility to save UVL
and load it back to UVL. In this case , the file name to transfer is
permanently fixed to "VOICE".

The following is a directory of SVL.

0%
1%
2%
3%
1%
S5
G¥
7k
8%
9%
10%
1%
12%
13%
14%
15%

December 26, 1984

Content of SYL{System Voice Library)

BRASS 1
BRASS 2
TRUMPET
STRINGI
STRING2
EP14AND]
EPTANO2
EPIANO3
GUITAR

EBASS 1
EBASS 2
EDORGAN1
EORGANZ
PURGANI
PORGAN2
FLUTE

16%
17%
18%
19%

PICCOLO

OBUE
CLARINE
GLOCKEN

- VIBRPHN

XYLUOPHN
KOTO
ZITAR
CLAV
HARPSIC
BELL
HARP
BEL/BRA
HARMON |
STEELDR
TIMPANI

32k
33%
34%
35%
36
37
38
39
40%
11
42
13
14
45
6%
47

TRAIN
AMBULAN

TWEET
RAINDRP
RM.BRAS
RM.FLUT
RM.GUIT
RM. HORN
RI1.BASS
RZ.BASS
SNAREDR
COWBELL
PERC: 1
PERC 2

CSM
(Undefined)

* Enables the loading of
LFO parameters when used.

39)

December 26, 1984

2-7 Recording and Playback

MBIOS supports the recording of events retrieved from a queue
buffer, or playback of the recorded data.

However, since there is only a single buffer available, it is not
possible to do both functions at the same time.

Prior to calling recording or playback function, the user must
provide a buffer where bulk of event data is stored or retrieved.
The name of this buffer is EVB (Event Buffer). There is a service
call available to tell MBIOS where the EVB is going to be.

Both recording and playback will be automatically finished when
the end of the EVB is reached. Recording will also be terminated
when an ALL-note-off from a corresponding Queue is processed.

MBIOS also provides CMT transfer of the EVB to save or load with a
cassetie recorder.

December 26, 1984

Chapter 111 MBIOS Interface

December 26, 1984

-

3-1 User Interface

MBI0S controt is handled via the SV-call (supervisor call) and TRQC
(IRQ-call).

On the other hand, MBIOS can call the user via AST (Asynchronous Sysiem
Trap) and UISV {User Interrupt Service Vector).

The genral format {o iransfer data between the MBIOS and the user
program is by means of registers and tables (or buffers).

The latter include the MIDB (Master Instrument Definition Block), IDB
(Instrument Definition Block), EVB { Event buffer), RHB (Rhythm Buffer}
and UVL (User Voice Library).

These are the buffers that are accessible in the program by both MBIOS,
and the user program.

There also exist some temporary buffers used in SV-call processing only
during the specific SV-call routine.

[User | SV-call, IRQC MBIOS |

AST, UISV

December 26, 1984

32 Memory management

The management of the cartiridge slot is left up to the user.

For example, assume that 0000h-3FFFh of the BASIC interpreter is
mapped in front, and when an interrupt needing MBI0S service just arrives
to the system. It is then the user’s responsibility to switch the slot so as to
map the MBIOS slot in front, then get IRQC service by MBIOS, and finally
switch back to the original slot in order to exit from that interrupt.

However, as an exception, when loading/saving into the CMT, upon the CMT
service call request, MBIOS switches the slot (assuming the primary
slot®*0 for BASIC only) by itself appropriately to appropriate the CMT
service provided in the BIOS of BASIC interpreter.

The memory allocation under MBIOS control is as shown in FIG. 3.1.

The area from EDOOh to F37Fh is a fixed work space for MBIOS.

The area from ECO00h to ECFFh is for the MIDB.

Other areas such as IDB, EVB, RHB, UVL, and the stack area can be allocated
anywhere between 8000h (or 4000h when CMT routine is not used) and
ECOOh.

December 26, 1984

Memory arrangement (as seen M-BIOS) (Flg.

FFFFh

F380h

EDOOK

ECOOh

C000h

BASIC WORK
M-BIOS WORK
MIDB

1

Stack sector

Temporary sector

J

8000h | e

4000h

24401

Control Program

44

3.

1

December 26, 1984

3-3 Supervisor Call

There are 6 different SV-call's available, as follows:

1-cail (Initialize)

R-call (real time)

K-call (Music keyboard)
P-call (Play)

S-call (Set up)

M-call (Receive MIDI)

Of the above, R, K and § require arguments to be transferred.

Once issued, an SV-call will not return to its call-source until its processing
has been completed.

However, it does not mean that SV-cail's have to be issued one afier

the other , waiting for the previous one io finish.

The above 6 call’s can be issued simultaneously under certain conditions.
This feature enables the parallel processing of music events.

That is, while P and K calls are being processed, R and M calls also can be
issued.
To do this, the system was designed that P-calls and K-calls will function
in either interrupt-enabled or disabled conditions.

The other SV-calls will run properly, only if interruptis are disabled.

December 26, 1984

I-call (Initiatize)

calling sequence:
DI

IM1
CALL 0090h

register conditions:

in out
[A} - *
«{C» - "
[BC] - ;
[DE] - ¥
[HL] - :
[1X/1Y} : =
[alternate R] - 0
where
- contents do not matter
arg arguments associated with function code
* contents will be destroyed
4] contents will be maintained

I-call is an initialization requirement for MBIOS.

It is required to sel the interrupt mode to mode-1 prior to making the
1-call.

Calling address is at 0090h.

Also interupts should be disabled before [-call.

R-call (Real time)

Calling sequence:

CALL 0093h

Registers:
in

[A] func#

{Cs =

[BC] arg

[DE} arg

[HL] arg

(1X/1Y] &

[alternate R] -

R-call is a real time processing call.

December 26, 1984

out

status
error

.
®

¥

0

c

To call it, load the A-register with the desired function code.

Calling entry address is 0093h.

The functions of R-calls involve generation of eventis and clocks. Due to
the real time nature of the processes, they are done very quickly under the

IRQ-disabled conditions.

R-call can be issued during K and P calls.
Run time error, if detected, will be indicated by the <Cs flag.

47)

December 26, 1984

K-Call (Music keyboard)

Calling sequence:

DI (or EI)

CALL 0096h
Registers:

in out

[A] func* 0

O % error

[BC] arg .

|DE] arg .

[HL} arg :

[1x/1Y] -)

[alternate R] - 0

K-call is used for the initialization of MK and CHORD-MK, and for scanning
of MK and CHORD-MK.

The entry address is 0096h.

For function calls with 01h{scan MK) and 02h(repori MK), the interupt can
be either enabled or disabled. However for the funciion call 00h{init
MK) , disable the interrupt before K-call.

«C> indicates error when set upon completion of the call.

The busy condition occurs when a K-call is issued before the previous
K-call has been completed. The second K-call is ignored.

This will be indicated by <C>.

{ 48)

December 26, 1984

P-Call (Play)
Calling sequence:
DI/EI
CALL 0099h
Registiers:
in out
[A] - 0
<« - error
[BCI - .
[DE] queue map *
[HL] = *
[1X/1Y] - 0
[alternate R] - 0

P-call retrieves events from the queue and plays them using the

corresponding IDB. Calling address is at 0099h.

It can be issued whether the interrupts are enabled or disabled.
<C» indicates an error when set upon completion of the call.
The busy condition occurs when P-cali is issued before the previous P-call

has been completed. The second P-call is ignored.

This will be indicated by <C>.

December 26, 1984

Calling sequence:

Call 009Ch

Registers:

n out

[A] func#® error#
<C> - error
[BC] arg *
[DE] arg .
[HL] arg ¥
[1X/1Y] - 0
lalternate R.] - 0

S-call is a request that does not require real time processing.

Calling address is 009Ch.

The interrupt should be disabled prior to issuing an S-call.

S-cail will be ignored if it is issued when K-call or P-call is busy. If that
happens, it will be indicated by «Cs.

<«C: indicates an error when set upon compietion of the cail.

The busy condition occurs when S-call is issued before the previous S-call
has been completed. The second S-call is ignored.

This will be indicated by <«C> and the A-register will be 00h.

For 521,822, 823, 524, and $28-calls, however, the A-register will return
certain error conditions. When <C> is set, and 00h of A-register is not
encountered, it means that an error has been detected. For details, see
Chapter 1V.

December 26, 1984

M-call (Receive MIDI)

Calling sequence:

DI
CALL 00A5h

Registers:
in

[A] -
«(C> o
[BC] -
[DE] -
[HL] -
[1X/1Y] E
[alternate R.] -

M-call scans the MIDI input port.

out

If data is present at the port, it fetches the data in the D registe (interface

status in the E register).
Entry address is 00ASh.

Prior to issuing the M-call, disable the interrupt.
The process will be carried out quickly, and it can be issued even while

K-call or P-call ig busy.

51)

December 26, 1984

3-4 IRQ Processing

MBIOS operates on IRQ mode 1 of the Z80 CPU. IRQ mode 1 should be set
before an I-call is issued.

For MBIOS, there are two sources of interrupts that are generated by the
hardware of SFG-01; ie., Clock-A and clock-B.

When I-call is first issued to initialize MBIOS, clock-A and clock-B are
automatically interrupt enabled.

For applications that require disabling the clocks, refer to section 5-6.

Fig. 3.2 dipicts how the interrupts are handled with regard to MBIOS
processing.

Depending on which siot , MBIOS slot or the user program slot (such as
BASIC interpreter), is mapped in front, two situations can be considered
as an interrupi entry; via SFG-01 or via a user slot.

When the MBIOS slot (SFG-01) receives ihe interrupt directly, it jumps to
the right hand portion of the flow in figure 3.2, (IRQ-call, which is in most
cases a normal control flow).

Al this point though, there is an option provided to route the conirol
entirely to the users own process. This can be accomplished by defining a
UISV (User Interrupt Service Vector) at location M.138H of MIDB.

Throughout the entire control flow of interrupt processing, MBIOS
provides the branching capabilily to the users module at several key
points. This again can be acomplished by pre-defining the user hook
veclors appropriately in MIDB.

Now , shown after IRQ-call entry of Fig. 2.3, are further breakdowns of
interrupl sources.

Once routed into this portion, the interrupt sources are polled with the
scanning priorilty in the order of clock-A, clock-B, and other interrupt
sources (from VDP and others).

Al this time, the sources of clock-A |, and clock-B interrupts are reset, but
other sources of interrrupts are lefi un-reset.

Note thatl in clock-A handling, portamento processing is first carried out
before user hooking is made.

Also ithe registers are restored before the branch to the user is made, so
that the user can just issue <EI><RET> when he exits from the interrupt
routine.

December 26, 1984

Address 009Fh is an entry designated IRQ-call entry. This is actually the
true entry point of the interrupt processing.
If the interrupt is received from a slot other than SFG-01, the user is

supposed to take care of appropriate slot management to bring up MBIOS
in front, and issue an [RQ-call.

December 26, 1984

RRCE: |

[4
ON

).rfl..f

(Lad

[d

2INpoUl I250)

S8]

¢ DSULSP (punrun

S HBmmE 8109593

SISO

194

(2¢€ 8id)

144

1 aInpo 1930

o 581

~
& DIULSP (0T W)
Emﬁmm.ﬁ 210584

m.”ﬁos

mold DYl

¢ pautep (eddr ﬂ.c

Eﬂﬂwﬁ 210159y

I

ouauIe} Jod

|
V101D

[

S191SI381 9ARS

ON

ﬁﬂﬂuos 1950

Rk |

_|
S[NPOW 1950

sal

(U600) 1125~ ONI

(U2£00)

smreidold 1esn Aq

i PAULISD Eé

paAedal OYI

T

(UQt00)
10-94S 4Aq
pPoATEsRT DU

54

December 26, 1984

3-5 AST {Asynchronous System Trap)

AST is a means to transfer the program control from MBIOS to the user
program asynchronously.

This is used when MBIOS wanis 1o let the user know the timing of an error,
or the occurrence of MK or CHORD-MK triggers. The timing of these events
15, by nature, unknown, thus asynchronous.

When an AST is required, the user is required to define the trap veclors in
MIDB prior to the start of real time handling.

If veciors are not defined, ihe trapping will not occur.

There are two trap vectors in MIDB; <M.TRMK> for MK, CHORD-MK and
<M.TRER> for error.

Since AST may be generated right in the middle of an SV-call, issuing
another SV-call or enabling the interrupt is not allowed in the AST
handler.

When returning from the AST routine, issue a <RET>.

Restoring the registers is not necessary.

Register contents when AST is invoked:

[A] irap code
«C> -

[BC] -

[DE] arg

[HL] -

[1X/1Y] -
[alternate R.] -

December 26, 1984

3-6 Direct Access to MIDB and 1DB

The MIDB (Master Instrument Definition Block) occupies a 256 byte fixed
area starting at ECOOh.
The map of MIDB is shown in section 4-8.

Part of the MIDB is used as a work area by MBIOS.

MBIOS maintains various system status bytes and the user can refer to
them to know what is going on (reporting bytes).

Some byles are related to the parameters of synthesizer performance, such
as transposition, clock interval variables, and so on.

It is possible to directly change these to affect the synthesizer perfomance.
There are also vectors for USIV (User service Interrupt Vector), and
AST's.

When using interrupt and trap functions of MBIOS, it is necessary that
these vectors be loaded appropiately by the user.

Finally, some SV-calls require related parameters 1o be set in MIDB before
the call is made.

These calls are related to those for LFO handling, noise, and file name
specification for the CMT handler.

The IDB also can be directly accessed Lo dynamically modify the
instrument parameters.

While the MIDB parameters affect entire system performance, the
parameters in the IDB affect the performance of individual insiruments.
Since the IDB 1s defined by the user program, its address should be known
to the user. In section 4-9, the IDB map is depicted.

December 27, 1984

CHAPTER 1V MBIOS Syntax

December 27, 1984

4-1 I- call
| Initialize MBIOS
Registers:
In Out

[A] - .
Lo * 2
[BC - :
IDE] - *
[HL] - *

Initialization includes the following:

1. Enable clock-A, and clock-B.

2. Initialize the MIDB.

3. Clear AST and USIYV tables.

4_Clear 1DB, UVL, and EVB buffers.

5. Set RHB*0 through RHB*S5 with default patterns.

6. Load Bass-line-note-offset tables with default values.

(58)

December 27, 1984

Summary of default settings in the MIDB and system status during an

I-call-
MIDB:
Clock-A m.clka:
clock-B n.clkb:
Master transposition m.tros:
LFO speed m.Ifo:
LFO waveform m.ctrl:
AMD m.add:
PMD m.pmd:
Noise m.nois:
UISY table m:i38h:
AST table m.trmk:
RHB (for chord and bass) trhyl:
RHB (percussion) trhy2:
Bass-line-note-olfset table
for major chord trhy3:
Bass-line-note-offset table
for minor chord trhy4:

System status:

Auto-rhythm mode
Defauilt RHB pointed
IDB’s

EVB and UYL
Brilliance
Pitchbend

(5)

s i o o S

8000h (enable interrupt)
8000h (enable interrupt)
0000h
00h
Oh
00h
00h
00h
all 00h
all 00h
RHB#0-RHB?*S filled with
default values. Rest cleared.
RHB#0-RHB#) filled with
default values. Rest cleared.

(saw-tooth)

(disabled)

0, +200, +400, +500, +700,
+900, +1000, +1200 cents

0, +200, +300, +500, +700,
+800, +1000, +1200 cents

mode=00h (refer to R-13 call)
RHB#*0

all cleared

all cleared

ffh

00h

December 27, 1984

R - call

R-00 System All-note-off

This issues All-note-off events into all 11 Queues, and
issues a Note-off event to the Chord-KB.

Regisiers:
[Al 00h 00h
© . %
[BC] " »
(DEI - ¥
[HL) - B

(60)

December 27, 1984

R-01 All-note-off

Issues All-note-off event to designated Queue
Registers

[Al Olh 00h

< 0>

[BCI QuU#/- '

[DE] - $

[HL] - .

QU#[B] = 00h - OAh

61

December 27, 1984

R-02 Set Event into Queue
Sets event into designated Queue
Registers:
[A] 02h 00h
> - error
[BC QU#/- *
[DE] Bvent .
[HL] - o

QU#[B] = 00h - OAh
1) An error will be set when the QUEUE is already full, and the

corresponding event will not be registered into the Queue.
2) The event format follows that described in Section 2-1-1.

(62)

December 27, 1984

R-04 Set Event into Chord- KB
Issues event to the Chord-KB.
Registers:
[Al 04h 00h
O . error
[BC -/event o
[DE] = *
[HL - 2
bit7 0
event [C] *10 | chord®
bit0-5 Chord*
bité always 0
bit7 <0> Chord off
<1> Chord on

1) Normally, the event will be registered when CHORD-KB and KB¥#C are

linked.

An error will be set when the Queue is already full.

2) Except for the condition that Chord-KB is chord-off, This updates the

Chord* for auto rhythm.

{

63)

December 27, 1984

R-05 Set Chord* into CHORD- KB

1ssues the Chord* to the Chord-KB

Registers:

[A] 05h 00h

< = error

3] -/event .

[DE] . *

[HL] - b
bit7 0

event|C] *10 | chord®

bit0-5 chord#

bité always 0
bit7 <0> chord off
<1> chord on

1) While the Chord-KB is in the Chord-off, this function will change
the Chord* of the Chord-KB whithout issuing a Chord-on com mand
to the Chord-KB.

2) An error will be set if Queue is full.

(64)

R-08

December 27, 1984

Start Recording

Start recording from the designated general instrument Queue to the

EVB.
Regisiters:
[A] 08h 00h
O - <>
[BC] qu¥#/- *
[DE]) 2
[HL] - *
qu#(B] 11000 0|Qu¥
bit0-2 Qu#
bit3-6 always 0
bit7 always 1

1) This will be ignored when the EVB is undefined, or during
recording/playback.

December 27, 1984

; R-09 Set Recording Clock

This provides the timing clock for recording.

Registers:
[Al 0%9h 00h
<O - <«0>
[BC) - *
[DE] - *
[HL] g =

1) This will be ignored in any mode but recording.

2) To formulate the clock pulse train, this is normally issued
successively (with interrupt clock).

(66)

December 27, 1984

R-0A Stop Recording

This stops the recocding from Queue

Registers:
(Al OAh 00h
< - <>
(BC] = *
[DE] . *
(HL) - *

1) This registers an All-note-off event for a Queue that was being
recorded.
2) This will be ignored in all modes, except for recording.

(67)

December 27, 1984

R- 0B Start Playback

This carries out playback from the EVB for the designated Queue.

Registers:
[A] 0Bh 00h
O - 0>
[BCl qu¥/- &
[DE] - ’
(HL] - '

bit7 0

qu¥ [B] 110000 QU*

bit0-2 Qu*
bit3-6 always 0
bit7 always 1

1) This will be ignored when the EVB is undefined, or during
recording/playback.

(68)

December 27, 1984

R-0C Set Playback Clock

This provides the timing clock for playback.

Registers:
[A) 0Ch 00h
O = <«
[BC] - *
(DE] “ *
(HL] - %

1) This will be ignored during every mode except for playback.

2) To obtain a clock pulse train, this call is normally issued
successively in the clock interrupt routine.

(69)

December 27, 1984

R-0D Stop Playback
This stops the playback.

Registers:
[A] 0Dh 00h
@ - 0>
[BC] - *
[DE] - .
[HL) » ¥

1) This sends an All-note-off event for the Queue that was being
played back.
2) This will be ignored during all modes, except for playback.

(70)

December 27, 1984

R-10 Start Auto Rhythm
This starts the automatic rhythm generator.
Registers:
[A] 10h 00h
O - <«
[BC] -/Mode *
[DE] Division/- "
[HL] 2 *
Mode {C] 0000000"
bit0
<0> Starts immediately.
<1» Starts in synchronization with the Chord
on trigger of Chord-MK
(Sync to MK if Chord-MK is not set)
Division [D]

Inserts a divisor number indicating how many R-11 calls
a 1/48th note are equivalent to.
<00h> is equivalent to 256.

1) If a rhythm pattern is already being used, issuing this call will
start again from the beginning of the RHB.

December 27, 1984

This provides the clock for the automatic rhythm generator.

Registers:
[A] 11h Clock #
© i ©
(BC] - *
[DE} - *
[HL] # *
Clock*

This indicates the present reference position of the RHB (in 96 bytes).
Divided down by 3 when synchronization starts.
During 8/4 time, the CLOCK* is as shown below.

FFh
Chord-MK

FFh /Chord-on 5Eh---Execute event 94

00h---Execute event 0 SFh

O1lh SFh

Olh SFh---Execute event 95

01h---Execute event 1 00h

02h 00h
00h---Excute event 0
0lh

1) This will be ignored during all modes except while playing
the auto rhythm pattern.

|
R-11 Set Auto-Rhythm Clock

December 27, 1984

R-12 Stop Auto-Rhythm

Stops automatic rhythm generator.

Registers:
[A] 12h 00h
O = <0>
(BC} . ¥
(DE] @ .
[HL} - *

1) Regardless of whether the automatic rhythm generator is on
or not, this registers All-note-off events to all Queues that have
been used by the automatic rhythm generator.

(73)

December 27, 1984

R-13 Select Auto-Rhythm Queue

Selects the queue for auto rhythm

Registers:
[A] 13h 00h
<G - <0>
[BC -/Mode s
[DE] o *
[HL] s .

ModelCl [0 0 0 0|=|=[*]7]

bit0
<0> Chord-KB and QU#C are linked.
<1> QU#C and automatic rhythm
generator are linked.
bitl QU#*B automatic rhythm generator
bitz QU®P automatic rhythm generator
bit3 QU#C automatic rhythm generator

1) An All-note-off event will be sent to QU*C when bit 0 and bit 3
have been set.

Or All-note-off event will be sent to QU#B when bit 1 has been set.
Or All-note-off event will be sent to QU#P when bit 2 has been set.

(74)

December 27, 1984

R-14 Select RHB

Selects RHB for automatic rhythm generator.

Registers:
[A] 14h 00h
<O - <0
(BC] -/RHB* 3
(DE] s u
[HL] . *
RHB#[C] = 01015

{951}

December 27, 1984

R-18 Load LFO

Load LFO parameters into the FM sound generator IC.

Registers:
[A] 18h 00h
< - <0
[BC] - %
[DE] - -
[HL] - »

Preset the following LFO parameters into the MIDB prior to
issuing this command.

MIDB entries:
M.LFO Speed
M.AMD amd
M.PMD pmd
M.CTRL wave form
M.NOIS noise

(76)

December 27, 1984

R-19 Load KC

Loads the KC into the FM sound generator IC.

in out
[A] 19h 00h
<C» - 0>
[BC] - d
[DE] . »
[HL] . ¥

1) It is used to load KC dynamically during transposition or portamento
2) Issue this command in synchronization with CLOCK-A , so that
update Liming of the pilch to accomplish poratamento is synchronized
to clock-A.

3) This command does not have to be issued when master transpose,
poratamento, or pitch bend are not being used.

(77)

December 27, 1984

R-21 Send data through MIDI

Outputs a given single byte of data to the MIDI output port.

Registers:
in out
[A) 21h 00h
O . error
(BC -/data *
(DE] - ~
[HL] . "

1) An error will be set if the command is issued while TxRDY is not

ready.

(78)

December 27, 1984

4-3 K-Call

K-00 Init MK

Initializes MK, sets sync-hold for CHORD-MK , sets velocity for MK,
and establishes the link up between the MK and the specified queue.

Registers:
in out
(Al 00h 00h
© . busy
(BCl link/mode *
[DE] velocity/- *
[HL] - s

link[B] [*[0 0 0 0[* = *]

bit0-2 QU* (0-7)
bit7 <«0> No link with queue
<> Link with queue

modelc] (000000 O*

Isb <«0> Use MK only
<1> Use Chord-MK and MK

velmilYlD]llll'll’lj

bit 0-bit7 00h min.
ffh max.

(79)

December 27, 1984

K-01 Scan MK

Scans the MK. Event detecied will be written into (linked) queuve.

Registers:
in out
[Al 0ih 00h
<« - busy
[BC] = *
[DE] 8 *
[HL] = »

1) The output of this command is to write the detected event into the
queue.

2) Normally, to scan the MK, this call needs to be issued successively.

3) If AST vectors for MK or Chord-MK has been specified in the MIDB,
it will cause AST trapping via AST vectors (see 4-7).

(8)

December 27, 1984

K-02 Repori MK status

Scans the MK, and returns the on/off status of the MK.

Registers:
in out
[A] 02h 00h
<0> - busy
(BC] - 5
[DE] buffer *
address
[HL] - ¥

1) The buffer is comprised of 9 bytes as shown below.

msb isb
0: o\c\n A*| o]l A |G*| G higher KC¥
7 0 F'tF E |0 |D*| D |C*

8: 0 c\o 0 0lo o]0 lower KC#

December 27, 1984

4-4 P-cal

P Play

This retrieves events from the designated name, and processes it by
using the IDB.

Registers:
in out
[A] - 00h
<O - busy
(BC] - -
[DE] Queue map .
[HL] - *
15 10 9 87 0
Queu map [DE] .
o000 o0 =|[=[z|c . |t
/ Z_ qo
QU7
QU¥*C
QU*B
QU*P

1) The retrieval of events from the designated Queue is carried out
repeatedly until the Queue becomes empty.

December 27, 1984

| 4-5 S-call

S-00 Define IDB

Either defines or cancels the IDB.

Registfers:.

in out

[A] 00h 00h
<O - busy
[BC] IDB#/- £
(DE] IDB address *
[HL] » .

1) Cancels the IDB when the IDB address (contents of DE) = 0000h.

2) Cancelling the 1DB, while it is still engaged in key-on, should be

avoided.

(83)

December 27, 1984

Initial setting of the IDB parameters:

KC range 00h to 7¢eh
Pitchbend depth 00h
transposition by instrument 00h
poriamento speed 00h
RR(default sustain value) 03h
volume coh

Yoice data cleared

Initial setting of the IDB mode (held in the system):

sustain-off

multi-iriggered

fingered portamento (with 0 speed)
pitchbend enabled (with 0 depth)

* The above setting is equivalent to issuing, mode=0, via an S-12 call.

5-02

Define EVB

December 27, 1984

Either defines or cancels the event buffer (EVB).

Registers:

[A]

[BC]

[DE]

[HL]

02h

out

ooh

busy

1) The EVB is calceled when the address in [DE] is 0000h.

2) When defined, the contents of the EVB will not be cleared.

(85

December 27, 1984

5~03 Define UVL

Either defines or cancels the user voice library (UVL)

Registers:
in out
(Al 03h och
O - busy
{BC - .
IDE} address *
(HL] - ‘

1) The UVL is cancelled when the address in [DE] is 0000h.

2) When defined, the contents of UVL will not be cleared.

December 27, 1984

Initialize EVB

This initializes the event buffer (EVB).

Registers:

(Al

[BC]
(DE]

{HL]

December 27, 1984

S-09 Assign channel

This allocates the channels of the FM sound generator IC for the
requesting IDB.

Registers:
in out
[A] 0%h ooh
<O - busy
[BC] ch*0to3 *
[DE] ch*4107 *
[HL] - :
15 8 7 0
[BC | ch¥o0 ch*l | ch*2 | ch*3
IDB* corresponding to
ch#3

(DE] ch#4 ch¥*3 ch®#6 ch#7

1) The function assigns IDB* between 0 and Ah using 4-bit slot for
each channel number.

2) IDB#*C, IDB*B, IDB#P0, and IDB*P1 use the following fixed
channels:
ch*3 4 for IDB*C, ch*S for IDB*B, ch#6 for IDB*P0, and ch*7 for
IDB#P1. For IDB*P0 and IDB#*PI, use then at the same time.

3) For a single channelled IDB, assign a channel to the IDB whose
number is equivalent to that of channel. (Foe ex., ch#2 for IDB¥*2).

4) Assigning a channel will not alter the previous settings of the LFO.

(88)

December 27, 1984

S-0A Assign IDB to Queue and/or MIDI channel
This assigns the corresponding input Queue and MIDI output channel
to the designated general 1DB.
Registers:
in out

(Al 0Ah och

© % busy

(BC] IDB*/- ®

IDE] Queuelink/MIDIlink *

[HLI - .
valid IDB#* 00h - 07h
Queuelink [D] 1000 0 Qu*
MIDIlink [E] *0 0 0| MIDI#
bit7 <«<1> MIDI is assgined

1) When this call is issued, an All-Note-Off event will be executed
for the corresponding IDB.

2) When linking with MIDI, be sure 1o assign at least one channel of
the FM sound generator IC to the 1DB.

89

S-0B

December 27, 1984

Issue All-Note-Off to IDB

This issues and executes an All-note-off Lo designated IDB.

Registers:

in out
[A] 0Bh ooh
<« - busy
[BC] IDB#/- .
[DE] ¥ s
[HL] - A
Valid UDB# 00h to OBh

(90)

S-0C Initialize MIDI

December 27, 1984

This initializes the MIDI port.

Registers:
in
[A) 0Ch
> =
[BC] -
IDE] .
[HL} %

out

ooh

busy

1) When called, this routine disables both the RxRDY and TxRDY

interrupts of MIDI.

In other words, MBIOS uses MIDI under a non-interrupted

condition.

91

S-10 Set Brilliance

December 27, 1984

This sets the system parameter , Brilliance.

Registers:
in out

[A] 10h ooh

O - busy

[BC] -/Brilliance *

(DE] - '

[HL] - *

Brilliance [C] 00h (dark) - ffh (bright)

1) Since the Brilliance is a sysiem parameter, this affects the whole
system, not merely a single instrument.

(92)

5-11

December 27, 1984

Set pitchbend

This sets the system parameter, pitchbend.

Registers:

in out
[A] 11h och
«© - busy
IBC] -/Pitchbend *
iDE] . *
[HL] = *

Pitchbend [C] 2's complement representation

80h -100%
00h 0%
7fh +100%

1) Asin portamento, 1o realize pitchbend, a R-19 call (updating
KC) should be repeatedly issued in syncronization to the A-clock
intercupts.

December 27, 1984

S-12 Define Play-mode

This sets the performance mode of the designated 1DB (by the FM
sound generator IC).

Registers:

in out
(Al 12h och
O - busy
{BC] IDB*/Mode *
(DE] - 5
(HL] - ’
1DB* [B] 00h to 07h
Mode [C] 0000 ***|*

isb <1> Sustain-On
bitl <1»> Single triggered
<«0> Multi triggered
bit2 <i> Full portamento
<0> Fingered portamento
bit3 <1> Disable pitchbend
<0> Enable pitchbend

S-13 Set Volume

December 27, 1984

This sets the Volume of the designated IDB.

Registers:
in out
(Al 13h ooh
< - busy
[BC] IDB*/Volume *
[DEI - ¥
[HL] - ¥
IDB# [B] 00h to 0Bh
Volume [C] 00h (min) to ffh (max)

%5)

December 27, 1984

S-14 Load Voice

This loads the voicing parameter information of designated 1DB

into the FM sound generator IC.

Registers:

in out

[Al i4h ooh
O - busy
[BC] IDB#*/- ’
[DEI =]
[HL] - .
IDB#* (B] 00h to OCh

5-13 Get Voice

December 27, 1984

This transfers voicing parameter information from the Voice
library to the voicing parameter area of the designated 1DB.

Registers:

in out
[A] 15h ooh
O . busy
[BC] IDB*/Voice* *
(DE} - $
{HL] - ¥
1DB# [B] 00h to OCh
Voice* [C] 00h to 2Fh for SVL

40h to 6Fh for UVL

1) The transfer will be ignored if the UVL has not been defined.

97)

December 27, 1984

S-16 Put Voice

This transfers the voice parameter information from the 1DB to
the UVL.

Registers:
in out
[A] 16h ooh
< - busy
[BC IDB*/Voice# *
[DE] - *
[HL] - 8
IDB* [B] 00h to OCh
Voice®[C] 00h to 2Fh for SVL
40h to 6Fh for UVL

1) The transfer will be ignored if the UVL has not been defined.

December 27, 1984

s - 21 Read UVL

This reads in the UVL from the CMT.

Registers:

in out
[A] 21h error#
<O - error
[BC] 4 ¥
[DE] " '
[HL] = .
Error® [A] 00h Normal end

FFh Size Error

(not enough buffer)

Other non-0# MSX-BASIC error

1) The file name on the tape is assumed to be "VOICE".
Search on the tape will be made until "VOICE" is found.

2) When used, the hook information at HKEYI and H.ERRO of
BASIC working area will be destroyed.

3) If UVL has not been defined, error will be flagged oul as
"size” error.

December 27, 1984

S$-22 Write UVL

This writes the UVL into the CMT.

Registers:

in out

[A] 22h error®

<« - error

(BC] . *

[DE] . .

[HL] - .

Error® [A) 00h Normal end
non-0 MSX-BASIC Error

1) The file name of the data being written is always assumed to
be “"VOICE".

2) When used, the hook information at HKEY] and H ERRO of
the BASIC working area will be destroyed.

3) Prior to issuing the call, the UVL must have been defined.
Omission of the UYL could cause the system to crash.

(100)

December 27, 1984

5-23 Read EVB

This reads in the EVB from the CMT.

Registers:

in out

(Al 23h Error®

O . error

(BC] . *

(DE] = *

[HL} - *

Error® [A] 00h Normal End
FFh Size Error

Other non-0# MSX-BASIC Ercor

1) Prior to this call, a file name must be placed at MEFVB of
MIDB.
The searching of the filename on the tape will be continuously
carried out until the file name is found.

2) When used, the hook information at HKEYI and HERRO of
the BASIC working area will be destroyed.

3) If the EVB has not been defined prior to this call, the error will
be flagged out via size error.

(101)

December 27, 1984

$-24 Write EVB
This writes the EVB into the CMT.
Registers:
in out
[A] 24h Brror®
«© o error
(BC] = s
IDE] . %
(HL] & 1
Error# 00h Normal End
Non-0¥ MSX-BASIC Error

1) Prior to this call, a file name must be placed at M.EFVB of
MIDB.

2) When used, the hook information at HKEYI and H.ERRO of
the BASIC working area will be destroyed.

3) Prior to issuing the call, UVL must have been defined.
Omission of the UVL could cause the system to crash.

(102)

S-28 CSM Voicing

December 27, 1984

This will call the CSM vocal synthesis driver.

Registers:
in out
[A] 28h Error®
<O = error
[BC] % *
[DE] CSM buffer address .
[HL] - ’
Error# 00h Normal End

Oth

Run time error

1) Prior to calling this command, assign all the channels to the
IDB#CSM, with voice®46 linked up to it.

2) In IRQ processing, the control to UISV (user interrupt
service vector) will not be granted at all during the CSM

processing.

(103)

December 27, 1984

CSM data format

CSIM data iz compriged of multiple patterns. which in turn are comprised
of mddtiple frames.

CSH data Pattern format Frame format
00h 00h * | 00000 (L)
Frame intervsi Pitch (K>
Pattern #0 il 0oL #0
#i
Frame #0
#2
83 =
0oh 0 KC #Q
#i
Frame #1
#2
]
Pattern 8N 3
{10Dbytez }
80h _l_l e
Framse 811

Frame interval (clock-B)

7 1}

l I 00h - FFh)
{ 256 -value)+0.286+10 . } He

Pitch {clock-A)

q__7]

| |] 000k - 3FFh b
{{1024-value)+17.88+10 } Hz

0L {amplitude)

| u|] 00k - 7Fh
{-0.75+value} db

KC# {Frequency)
7_6 - O O |
l Dl octaw.-l tone I

(104)

4-6 M - call

December 27, 1984

M Receive MIDI

This scans the input port of the MIDI interface, and return the data

if there is a data.

Registers:
in out
(A - ¥
O i x
[BC] - 0
[DE] - data/staus
{HL] . o
Status [C] 6 0**0o0[*0

(

bitl RxRDY
bit4 Overrun Error
bit5 Framing Error

105)

December 27, 1984

4-7 AST (Asynchronous System Trap)

AST - 01 MK trigger

This is an AST caused by the trigger from the MK (Note-on, Note-off)

Registers:

(Al

[BC]
[DE]

[HL]

out

O0ih

Bvent

1). Event [DE] contains the same event data used in Queue.

2). To receive this AST control, MK scan (K-01) should be issued
elsewhere in the program.
In other words, this AST is invoked during the execution of K-01
routine, if the vector is defined in the MIDB.
Users however don't have to worry about the synchronicity of
both (K-01 call and AST-01 handler) routines.

(

106)

December 27, 1984

AST - 02 Error

This is an AST caused by the error generated by MBIOS.

Registers:
out
A} 02h
<« .
[BC] -
(DE] error®/-
[HL] -
Error#[D] | 0001 Qu* The Qu® has overflowed.
00100000 | EVB is full (end of recording)
(All-note-off issued)
0 0100001 EVB end is encountered
(End of playback)
0011 MIDI* MIDI time-out Error

1) 1xh error will occur during MK processing or automatic rhythm
generation. If detected, issue an All-note-off to correspoding
Queue.

2) When playback/recording is stopped by usual SV-call, AST
{ 20h and 21h) will not occur.

3) 3xh will occur during play processing while MIDI out is specified

aswell. If this occurs, it implies a possible hardware
error.

(107)

December 27, 1984

AST - 03 Chord-MK Trigger

This is an AST caused by the Chord-MK trigger (Chord-on, Chord-off)

i
Registers:
out

[A] 03h

C> .

[BCl -/Bvent

[DE] -

[HL] -
g 4

EventiC] | *|0 | Chord®
bit0-bit5 Chord#

bit7 <1» Chord-on
<0> Chord-off

1). In order to utilize this trap, the same aitention used in AST-01
should be paid.
That is, issue K-01 call elsewhere in the program.

(108)

4-8

MIDB

address

December 27, 1984

purpose
to use comments

Modify directly clock-a interval
[+0] *=+=00 0000 clock=-a (Low?
[+1] #*%%xx *%x%* clock=-a (high)

0000h ===> 18.2 ms {(max)

8000h ==--> 9.1 ms

FFCOh ===> 0.0717 ms (min)

m.clkb

Matrns

m.Lfo

m.amd

m.pmd

mactrl

m.nois

$ECO2

$ECO4

$E£C10

$£C11

$EC12

$2C13

$zC14

linear rate

Modify directly clock=b interval
L+0] ===~ === clock-b (low)
C+1] #%x% x%x%% clock=-b (high)

0000h =-=-=-> 72.8 ms (max)

3000h ===> 36.4 ms]

FFOOh ===> 0.28%5 ms (min)

Modify directly

C+0] **knk *hk%kw

% % ok %

E¥13

SV=call

kkdkadk dedhK

SV=call

Dhdexr *hkn*

SV-call

Ok k Hhkd*k

SV-call

0000 00*w

5V=call

- -

*00-

=00% dEkx%

Linear rate
Transpose(Master)

fraction
KT

* & ¥ %k
2's complement

LFO freguency

ama

pmd

LFD wave form

<1>noise EFnable
noise frequeancy (

109)

f.evb

m.chrd

m.i38h

m.icka
m.ickb
m.iungd

m.trmk
m.trer

m. fevo
t.rhyQ
t.rhyl
t.rhyd
t.rhy3

terhyé4

$ECI1B

3EC23

$ECZO0

$cC32
$EC34
$£C338

$£C3C
SEC3E

%
ry
(o]
=~
£

$EC33
$2CY8
$£C38

$ECUSB

Status

0000 00*-
0000 00=-*

Status

=0kkx kkkk

Vector

Vector
Vector
Vector

Vector
Vector

SV-call
Table

Pointer
Pointer

Table

Table

December 27, 1984

recording, playback status

<g>playback <1>recording
<1>0on executiagon

CHORD=-K3 current status

<0>0ff state <1>0n state
chord#

0038h UISV
(User Interrupt Service Vector)
irg-a UISV
irg=b UISV
irg-undefined UISV

MK,CHORD=-MK trigger trap address
error trap address

Cevb]l file name <6 B>

RHB time sigunature <16 B>
RH3{chord,bass) address <32 8>
RA3(purcussion) address <32 B>
bass—-line-pitch offset table
(major) <8 B>
{minor) <8 B>

(110)

4=9

name

address

purnose
to use

December 27, 1984

comments

i.pcho

i.trns

i.port

i.sust

v.name

502

4
o
(]

$05

$06

$10

Modify directly

L4007 QOndkx hkhkk
C4+1] O%*k*k kkk*

Modify directly

0000 *%x%xx

Modify directly

[+0] #x%x%x *kk*k
[47] #%kkx krkk

Modify directly

ok ek ok ok

Modify directly

D000 *%kkx

SV=-call

(

KC range

KC#* (maximum)
KC¥ (minimum)

pitchbena depth

C0h ===> D cent
81h ==-=-> 100 cent
08h ——==> 1200 cent

Transvose(Instrument)
fraction
KC

2's complement

portamento spesed

00h ===> non-portamento
01h ===> fast

- = .

FFh ===> slow

[RR] in sustain/on mode
(same rate for all operators)

Voice data area

111)

December 27, 1984

1—10 VOICE DATA

0Ch

V. NAME

« TEPE
.LFO
. AMD
. PMD
. SLOT
. CNCT
- PMS
.NOIS
. TRNS

08h

R S SR I = S

10h « EL
. KEL
« K8
. DT1
. AR
. DI1IR
« D2R
. RR

OPERATOR
20

d << <

18n OPERATOR
1

20h OPERATOR
#2

28h OPERATOR
#3

30h
O00h

3Fh

(112)

December 27, 1984

e R R mm W e e S G A S S S WS e G M M R A e e S S R M A M e N A R R e R WM M e s s s e A M S e e mm

v.name $00 voice name

20h (space)

30h=-3%9h , 41h=5Ah

First chr. must be 41h=-5Ah
v.type $07 user id-code
va.lfo $08 LFO fregquency

00h =-=-> .0008Hz(slow)

80h ---> .2134Hz

FFh =-=-=> 52.9Hz(fast)
Logarithmic rate

v.amd $09

LEE N <1>enable load LFO data
=—dkkk Hhkk*k amd
7Fh ===> deep
V.pmd $0A
Ammm == <1>sync LFO in key/trigger
—kkk KkKkk pmd

7Fh ===> deep

veslot $0B

Oxk== =000 operator#3 enable

0=%=- =000 operator#2 enable

0=-=-* =000 operator#1 enable

Q=== %000 operator#0 enable

v.enct $0C

kmmm - <1>stereo/L output enable

RS S <1>stereo/R output enable

_——r_k K= feedback Level
7 ===> 4 paij (deepest)

———— =k algorithm number

V.pms 30D

Ddkk 00=-- pms 0 ===> +/- 0 cent
1 ===> +/= 5 cent
2 ===> +/= 10 cent
3 ===> 4f= 20 cent
4 ===> +/= 50 cent
5 m==> +/=100 cent
6 ===> +/-400 cent
7?7 ===> +/=700 cent

Qu== Q0*x% ams 0 ===> 0db
1 ===> =24db
2 ===> =48db
3 ===> =0Q4db

(113)

December 27, 1984

venois $0E

PR enable noise

—k k= mm—— LFO wave form
00 -=--> sawtoothed
01 ---> rectangler

10 ===> triangler
11 ===> sample & hold
———k kkk* noise freguency

v.trns §0F
dkkk kkkk Transpose(Voice)
2's complement
=12700 cent - 12700 cent
(100 cent)

S S S ————— S A e e R

Ok ks OL(originald
0db - 95.25db (0.75db)

v.vel $01]
k== 0D0~- keyboary level scaling type
<0> Low pass
<1> High pass

-%kk Q00- velocity depth
carrier 0db = +/-10.5db (1.5 db)
index 0Odb - +/-5.25db (0.75db)
—mw= Q0% enable brilliance
v.ks $02

o S keyboard level scaling depth

0db = =22.5db (1.5db)
———— kkkk TL(adjust)

0db - =-11.25db (0.75db)

v.dt1 $03

SRR, DT
k- m——— sign of DT1

0 ===> positivelup)

1 -=-=> negative(down)
——kk m——— data of DT1

3 ===> max
———— ok kkk multiple

0 -=--> %0.5

1 ===> %1

2 ===> %2

15 ===> %15

(114)

December 27, 1984

v.ar $04
*k(Jow =———- keyboard rate scaling
the higher KC#, the faster rate
—=0* *kk% AR 2] ===> fast
v.dlr $05
*00= ===- <0> disable ams (= modulator)
<1> enable ams (= carrier)
~00% *dkk¥k D1R 31 ===3 fasgt
v.d2r $06
Fhkm ———— DT2 0 =-=-=> 0
1 ===> %x1.41
2 ===> %1.57
3 ===> %1.73
———k kkkk D2R 15 ===> fast

v.rr $07 hhkhk =m=m=m- SL turning point to 2nd decay
0 =-=-=> 0db
1 ===> = 3db

13 ===> =394db

14 --=-> =42db
18 ===> =93db
———- kdhk RR 15 =-=--> fast

(115)

December 27, 1984

4-11 UVL

000h
Name
7 characters
007h (alphanumeric characters, space)
O0h
012h } 1 =
7 bits identification code
013h for user
OO0h
020h
VOICE®64
060h
VOICE#65
BEOh
VOICE#111

(116)

4-12

Pitchbend
Pitchbend Enable
Pitchbend Depth

Portamento Mode
Portamento Speed
Trigger Mode
Sustain Mode

Volume
Britliance
Brilliance Enable

Transpose(Master)
Transpose(Instrument)
Transpose(Voice)

LFD Speed
LFO Wave form

AMD
PMD
AMS
PMS

AMS Enable
LFO Trigger Sync

Noise Enable
Noise Frequency

OL(Original)
OLC(Adjust)

SL
AR
D1R
D2R
RR

RR(sustain)

Operator Enable
Velocity Depth
KS(Rate)
KS(Level) Type
KS(Level) Depth
Multiple

DT1
DT2

Feedback Level
Algorithm
Stereo L/R

Setting-up Information

Setting-up Informatian

number of channels
idb#0-7
over 1

000 00 0O o0QO0

o Q0O

Q 0OQOoOoODOOoOO0CG@Q

=}

00000000

©C 000000000000

c o0 Oooo0o0OO0OO0OO

©00000CO0O0CO0O

cooo0OOCQOOOOO

117)

December 27, 1984

¢ fig. 4.1)

(=]

l o 1 o floooocooo 1 looooo0oo0OQ coQ

ocooooDoo |

effective
not effective

[= T = =]

flocoocooco0oo0coo

1 o0 00O0CO0OO

cooo0co0oo0l lolo

idb#p0/p1

looocoooo

{f o0 o000 O0OOD

1o 1o

Ooo0oocoo |

Access Method of Setting-up Information

item

b E T L R e TR e ——— - -

KC Range

Pitchbend
Pitchbend Enable
Pitchbend Depth

Portamento Mode
Portamento Speed
Trigger Mode
Sustain Maode

Volume
Brilliance
Brilliance Enable

Transpose(Master)
Transpose(Instrument)
Transpose(Voice)

LFO Speed

LFO Wave form
AMD

PMD

AMS

PMS

AMS Enable

LFO Trigger Sync

Noise Enable
Noise Frequency

OL¢Original)
OL(Adjust)
SL

AR

DIR

D2R

RR
RR{sustain)

Operator Enable
Velocity Depth
KS(Rate)
KS{Level) Type
KS(Level) Depth
Multiple

DT1

DT2

Feedback Level
Algorithm
Stereo L/R

access method

i.krng C(idb)

s-11
s-12

i.pchb (idb)

5-12

i.port (idb)

s-12
5=12

5-13
$-10
S-14

(v.vel/voice)

m.trns (midb)
i.trns (idb)

S-14

5-18
S-18
5=-18
5-18
5-14
S=14
S=14
S-14

5-18
5-18

S=14
S=14
S-14
S-14
S=14
S-14
S-14

(v.trns/voice)

(m.Lfo /midb)
(m.ctrl/midb)
(m.amd /midb?
(m.pmd /midb)
(v.pms /voice)
(v.pms /voice)
(v.dir fvoice)
(v.pmd /voice)

S-14
S-14
S-14
5-14

L T T Y

(m.nois/midb) ,
(m.nois/midb) ,

/voice)
/voice)
/voice)
(v.ar /voice)
(v.d1r /voice)
(v.d2r /voice)
(vorr /voice)

(v.tl
(v.ks
(vurr

j.sust (idb)

5=14
5-14
$-14
$=14
S-14
3-14
5=14
5=-14
S-164
S-14
5-14

(v.slot/voice)
(v.vel /voice)
(v.ar /[voice)
(v.vel /voice)
(v.ks /[fvoice?
(v.dtl /voice)
{v.dt1 /voice)
(v.d2r /voice)
{v.cnct/voice)
(v.cnct/voice)
(v.cnct/voice)

(118)

December 27, 1984

(fig. 4.2)

(volfo /voice)
(v.nois/voice)
(v.amd /voice)
(v.pmd /voice)

(v.nois/voice)
(venois/voice)

December 27, 1984

CHAPTERV Writing programs

(119)

December 27, 1984

5-1 Program example

The following sample program will demonstrate the following instruments.

manual performance by MK with IDB*0
auto play of IDB¥1
auto rhythm of IDB#PO and IDB*P1

Program explanations will be made in the lollowing sections.

With the example program, it is assumed that the VDP and the PPI of the
MSX system have already been initialized by MSX-BASIC.

(120)

December 27, 1984

5.1.1 Program structure

Lines between 35 and 50 show the [ramework of the sample program.
Here, Lthe IRQ mode is setl to mode-1. Stack area is defined, and SFG-01 is
set to slot 3.

As well as initializing the system, UISV and AST vectors are defined in the
MIDB.

Note the clock-B vector, defined in line 46, routes the control to interrupt
processing entry (lines 195 and 196); then real time rhythm handler
“auto:” (lines 224 to 244) is invoked.

The idea of the program is to use clock-B for the auto-rhythm clock,
handle the events there, and play them in the main loop of the program.

5.1.2 Definition of instruments

In the sample program, IDB#P0, IDB#PI, IDB#0 and IDB#1 are defined in
the line numbers between S9 and [29.

Between lines 141 and 144, the channels of the FM sound generator IC are
assigned to the above IDB's.

Assignment details are;

IDB#0 channels 0,2,3.4.5
IDB*1 channel 1|
IDB*P0 channel 6
IDB*P] channel 7

5.13 Performance of IDB* |

IDB#1 is supposed to play the performance data that is defined in the lines
between 246 and 262.

With the auto-rhythm clock synchronized to IDB®P0/1, the event data is
loaded into queue (QU#1). This is done in the lines between 225 and 244.
This routine "auto:" is of course driven by the interrupt , and the event
requests in the queue are then played by the main loop between line 165
and 178. The playing is carried out by the lines from 166 and 168.

(121)

December 27, 1984

5.1.4 Manual play by MK

MK is initialized in the lines between 136 and 139. Here, CHORD-MK is not
used. Velocily is set to a default value of 80h. MK is linked up with
QU*#0.

With this setting, the lines 169 to 170 in the main loop issue the MK
scanning request. If key actuation is detected, the events are sent into
QU*0, which will be played by a P-call between lines 166 and 168.

In this example, since the MK scan is placed in the main loop, no MK
trapping is used. The method of detecting MK events via MK trap (by
defining AST vector in MIDB) would also be possible.

5.15 Auto-rhythm performance

Between lines 146 and 148, the queue for auto rhythm is selected. Here
only QU#P is chosen.

Then between lines 149 and 151, the RHB (rhythm buffer) to be used is
selected. This determines the rhythm patiern. Here, preset pattern #0 is
chosen.

Clock handling for the rhythm is done in clock-B handler "auto:” between
lines 225 and 244.

Here, with lines 225 and 226, an auto-rhythm clock is issued in
synchronization to the clock-B interrupt.

Actual start of the auto rhythm is specified in the lines between 152 and
155. Inthis case, the rhythm is will begin with the first note-on from
MK.

Note that, as explained before, the IDB#1 performance is supposed to be
synchronized to the auto ryhthm. Therefore in "auto:” routine, line 227
checks if the rhythm has already staried or not (before it loads the event
into QU#1).

(122)

MATIN

= 0 00 SO N B L P e

[R A i e Y
LB R - B e S W PR R T

(oI W VO SO V)
W L P

(SR AW I LN L5]
oo~ O

Lo L L
(AN =]

L bl
Eal]

E o o P PR PN WY R)
= O D0~

LEARE ol o S S ST o o
SOOIV E W N

wown
P o

z80.18080 ass.vr=1.2 9=3EP-34

8000
8000

8001
8002
3004

8007
8009

8008
300E
8011
8014
5017
3014
8010
3020
8023

00%9
00AB

0090
0093
0056
0os9
0o9c

pooo

EC32
EC34
EC3s
EC3E

00

F3
3
3E

cD
21
22
21
s
21
22
21
ez

56
00

03

90
10
32
1B
34
35
3g
BF

E
c

Do

0o
81
EC
81
EC
81
EC
21
EC

;

19:52

PAGE 1

December 27, 1984

;
GHLETLTILTII T EEFET I E bt itariittiittineeiyg

o

;!
Y &
/
/
/

TR TR TR TR

ig.vdp
io.ppa

3

'

icall
rcall
kecall
peall
scall
stack
m.icka
m.ickb
m.iund
m.trer

flag:

F

«=%8000
.byte

idb#0
idb#1
idbAp0/p1

$99
3A8

30090
30093
30094
$0099
$009C

30000
$EC32
$EC34

$EC33
$EC3E

30

mk (5 channels)

auto percussion

!
/
auto-play (6 channels) /
/
/
/

LTI TI TR LTI

LY

LT TR TR

‘

FLLPTLTEELITEE 00T E bbbt et ittt tittrseiirtt

vdp status register
primary slot register

I-call entry
R-call entry
K-call entry
P-call entry
S=-call entry

Stack area
haok (irg-a)
hook (irg-b)

hook (irg-undefined)
hook (trap-error)

queue/full flag

3

GIELTLLL LA T IR E b i it it i it r it il iiiiesdteitidititt
Setup Procedure
FLEETREREPLRER L LR R LR Pttt ritriatrtitititi

]

;

.

s

IRy

(

Initial

di
iml
Ld

Ld
out

call
Ld
Ld
Ld
Ld
Ld
Ld
td
Ld

-Rage

sp,stack

a,303
ioc.ppa

icall
hi,irga
(m.icka),hl
hi,iragb
(m.ickb),hl
hl,irav
(m.iund) , hiL
hl,trap
(m.trer), hl

123)

e

[

We We Wa e Na Ne ma W W

/

disable IRQ
IRG-mode is <mode-1>
define stack area

select 6FG-01 slot
SFG-01=slot#3(primary)

I-call
define "HOOK:®

define 'TRAP*

MAIN

53
54
55
56
57
58
59
60
é1
62
€3
64
65
66
67
68
69
70
71
7e
73
74
73
7é
77
7a
79
80
81
&2
a3
a4
85
86
a7
248
49

December 27, 1984

230.18080 ass.vr-1.2 9-5EP-84 19:52 PAGE 2

4026
3028
802A
802D
8030
8032
3035
8038
803A
803C
B803F
8041
8044

5047
8049
3044
20LE
3051
8053
8056
3059
8058
805D
a060
E0oe
8065

3E
06
11
cD
3E
01
cD
3E
06
cp

01
co

3E
06
11
co
3E
01
cb
3E
06
cD
SE
01
cD

00
08
80
9c
15
20
9c
14
08
9¢
13
FF
gc

EB
00

0A
00
00

04
00

EB
00

0B
00
00

05

GETHLPETELHI 00PN E bbb r i b i ittt iiieitretit
g IDB Setup Procedure /
GHPTILET IR b EEr g bt it idirirrittitititieeeitititttt

’

3 /1! idbRbpQ [//
’
Ld a,%00 ; define idb#p0
Ld b,30A ;
Ld de,$EBOO i
call scall ;
Ld a,315 ; get wvoice
Ld bc,$0A2C 2
call scall »
Ld a,$14 ; load voice
Ld b,%DA H
call scall ;
Ld a,%13 ; set volume-balance
Ld be,$0AFF 3
call scall T
; i1 idbkpl 14
Ld a, 500 ; define idb#p1
Ld b,$08 ;
Ld de ,$EB8O 3
call scall 2
Ld a,%15 ; get vaoice
Ld bec,0B2D ;
call scall 7
Ld a,$14 ; load voice
Ld b, 508 :
call scall H
Ld a,$13 ; set volume-balance
Ld bc,$0BFF 2
call scall 5
-page

(124)

MAIN

90
91
92
g3
94
95
96
97

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
12>
124
125
126
127
1238
129
130
131

z30.18080 ass.vr-1.2 9-SEP-84 19:5

8068
8064
806C
806r
8072
2074
3076
8079
807cC
807E
8031
8084
8046
3088
8088
808D
8090

8093
8095
8097
8094
309D
B09F
B0OAT
3044
8047
30~
30AC
204F
8081
2083
30B&
8088
3088

3E
06
11
cD
3E
06
11
co
E
01
co
3E
06
cD
3E
01
co

0a
01
80
9c
oA
01
00
9C
15
09
sC
14
01
9c
13
co
9C

EA
00

81
00
01
00
00

01
00

EA
0o

80
00
00
00
00

00
00

AT T

(

11/

call
Ld
Ld
Ld
call
Ld
Ld
call
Ld
Ld
call
Ld
Ld
call

.page

125)

2 PAGE

idb#1 77/

a,300
b,%01
de ,SEABQ
scall
a,30A
b,301
de, %3100
scall
a,%15
be,30109
scall
a,314
b,301
scall
a,$13
be,301C0
scall

idb#0 /17

a,s00
b,%00
da ,$EA0D
scall
a,%0A
b,3$00
de ,$8000
scall
a,$15
bc,$50000
scall
a,%14
b,%00
scall
a, %13
be,300FF
scall

December 27, 1984

3

WA Ra NE e N N e % we Ma NE Re N S s e s

Mrowe N NE N e e W ma e % Ba N we e W W

define idb#1

assign idb#1 to qu#1

get voice

load voice

set volume-balance

define idb#0

assiun idb™0 to qu#0

get wvoice

Lload voice

set volume-balance

MAIN

132
133
134
135
1346
137
138
139
140
141
142
143
144
145
146
147
143
149
150
151
1572
133
154
135
156
157
156
159
160

December 27, 1984

z30.i8080 ass.vr=1.2 9-3EP-84 19:52 PAGE ¢

80BE
§0C0
d0C3
g0Co

B0CY
aoce
d0CE
2001

8004
Jooe
8008
3004
3000
30DF
50€2
S0E4
80E%
d0ES3

40LB
s0ED

80F0
20F1
BOF3
S0Fé
BOFG
a0Fd
Z2OFE
3101
a10e
3104
3106
3102
2103
310c

3E
01
11
cb

3E
01
11
cd

3E

co
3E
0E
<D
3t
0E
16
co

3k
32

0o
00
00
96

09
Q0
A
9C

13
o0&
93
14
00
93
10
01
01
93

00
0o

80
80
00

01

00

00

00

00

80

04
00

0o
50

B0

oa

GHTEIPIEEEET R ET G IR E i bttt iirittitireis
= Other Setup /
G HELLELE T IR e da it il it ittt irirettpeiritiillie

’

Ld a,$00 ; define MK
td bc,%3000 > Link MK to gu®0
Ld de,38000 - velocity = 30h
call kcall -
’
Ld a,3n9 ; assign channels
Ld bec, 50100 -
Ld de,500AR 3
call scall .
Ld a,$13 ; select auto-rhythm gueue
Ld c, 504 ;
call rcall ;
Ld a,314 ; select RHB
Ld c,500 ;
call rcall H
Ld a,%10 ; start auto-rhythm
Ld c,301 3
Ld d, 501 :
call rcall 2
Ld a, 500 ; clear gueue/full flag
Ld (flag),a 5

;

UELTLLL IR TR TR B QI EIF i iR et it ittt itsiritiititid
¥ Main Loop /
GEIERLLET TR LTI E i b b Ead it it il rtirtitliris

- N

0%: ei ; Enable IRQ
Ld a,%500 ; P-call
Ld de , 50403 :
call pcall 3
Ld a,%01 ; MK=scan
call kecall ;
Ld a,(flag) ; ctheck gquegue/full flag
and a ;
irz 10% 2
Ld a,$00 ; reset queue/full flag 3
Ld (flag),a ¢
Ld a,300 ; all note off (system)
call rcall ;
ir 10%]
.page

(126)

MAIN

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
213
219
220
221
222
223

z240.18080

8110
3113
4115
3118

8118
311E
3121
3123
8125
8126
8127
8128
8129
4124

8123
812¢C
3120
812€
g812F
5131
8133
8134

8135
8136
8138
3139
8134

co
D
FD
0D
01

ct
F1

£1

FB
co

£3
F5
(o5
05
bb
Fo
ES
c9

ass.vr-1.2 9-5EP-84

28
19
93
21

2B
3B
E1
E1

ES
ES

2y

81

00
31

81
31

19352

PAGE

December 27, 1984

GALNELETELERT R b IR bl td i a il ii i iiieetitititittety

;!

—_— ma N

,
irgb:

regget:

¥

regsav:

R T

rgv:

(

IRG

slretirlr ey

1t

call
Ld
call
jmp

1!

call
call
pop
pop
poo
pop
pop
pop

ret

ex
push
push
push
push
push
push
ret

push
in
pop
ej
ret

-page

127)

Procedure

4

LOLOVTRRI R LTI E it irriririteiitiltsgy

irg=a [/

regsav
a,®19
rcall
regget

irg=b F/

regsav
auto
iy

ix

de

be

af

hi

(sp),h
af
be
de
ix
iy
hi

irg=vdp
af

io.vdp
af

!

/

L

11t

NE e W wa W W % me W Wa T

R T L T

e % W e N

save register
load opm KC

restore register

save register
auto-rhythm & playback
restore register

save register

save register
reset wvdp-irg
restore register

December 27, 1984

MAIN z30.i3080 ass.vr-1.2 9-SEP-84 19:52 PAGE &
226 ;
225 3138 3IE 11 autos Ld a,s11 ; set auto-rhythm clock
226 8130 CD 93 00 call rcall 3
227 8140 FE FF cpi iFF 3 already started ?
228 8142 C8 ret z &
229 8143 16 0O Ld d, 300 ; get event for idb#1
230 8145 5F Ld e,a :
231 al46 21 3F &1 Ld hi,100% ;
232 8149 19 add hi,de 5
233 8144 7E Ld a,(hl) ;
234 314B Eb& FF and 3FF i event exist ?
235 3140 C8 ret z 7
236 314E 06 01 Ld b,301 ; set event into qu#i
237 8150 57 Ld d,a L onfoff, kc#
238 8151 1E 8o td e,$30 ; velocity
239 8153 3£ 02 Ld a,$02 :
240 8155 €D 93 00 call rcall :
241 8158 DO ret nc 3 gqueue#1 full ?
242 8159 3E FF Ld a,SFF ; set queue/full flag
243 8156 32 00 80 Ld (flag),a :
244 815 C9 ret *
245 :
246 815F BE 00 00 00 100%: .byte $BE,300,300,%00,%00,%00
247 8165 00 00 3£ c8 .byte $00,$DO,E3E,$CS,$GD,$GO
243 168 00 00 00 00 .byte IOO,$00,$QU,$OU,$DO,$4B
49 8171 BE 00 00 00 .byte $AE,%00,300,%00,%00,33F
254 317? BE 00 00 00 .byte $BE,$00,300,%00,3%00,300
251 817D 00 20 2E£ CB .byte $00,300,33E,4C8,%500,%00
252 5143 00 00 00 0O .byte $00,%00,5%00,%00,%00,3%43
253 8189 B 00 00 00 «byte $3E,%00,%00,300,%00,3%2€
254 3
255 818F BE 00 00 0O .byte 5BE,$00,%00,%500,300,300
2586 8195 00 00 3 «ca& .byte $00,$00,33€,$C8,3500,300
€57 198 00 00 00 00 byte i00,%00,$00,%00,300,3548
258 8181 3&£ 00 00 00 .byte $8E,%00,%00,%00,300,33E
259 31A7 2E 00 00 00 .byte $BE,$00,%00,300,%00,300
260 31AD 00 00 3E (2 .byte %00,%00,%3E,3C8,300,%00
261 3183 00 00 €0 00 «byte 300,300,$00,$00,$UU,$48
262 B1dYy BE 00 00 00 .byte %HE,$00,%00,$00,300,33F
263 ;
264 ;
263 & /11 trap Cerror) t1/
266 :
267 31BF 7A trap: Ld a,d ; check gueus/full ?
264 21C0 E& FO ani £F0 =
269 21C2 FE 10 cpi 510 ;
270 31C4 C0 ret ne 3
271 81C5 32 00 30 Ld (flag),a ; set queue/full flag
272 31Cg C9 ret %
213 3
274 «&nd

(128)

December 27, 1984

5.2 Supplementary explanation for recording and playback

The lollowing outlines the procedures necessary to carry out recording and
playback.

-Define necessary IDB's and associated queues.
-Define EVB via 5-02 call
-Initialize EVB via 5-04 call

-Use R-0Oc call for time clock for playback

-Use R-09 call for time clock of recording

-Clock can be free running, regardiess of whether recording or playback is
is actually taking place.

-Start recording via R-08 cali

-Bnd recording via R-0a call

-Recording will aiso end when All-note-off is issued into queue, or when
EVB gets filled (Trap by <M.TRER> of the MIDB will also occure if so

defined).

-Start playback via R-0B call

-Bnd playback via R-0D call

-Playback will also end when the end of data in the EVB is encountered
(Trap by <M.TRER> of MIDB will also occure if so defined)

(129)

December 27, 1984

5-3 Supplementary explanation for Auto-rhythm

The following procedures are necessary to carry out the auto-rhythm
performance.

-Define necessary IDB's.
-Define RHB (rhythm buffer) by writing the pointers to RHB in <T RHY1>
(for chord/bass) and <T RHY2> (for percussion) of MIDB.
These are 32 byte tables for each, serving 16 entry pointers each.
0000h means that corrsponding RHB is not defined.
-Specify time signature by writing it into <T_.RHY0> of MIDB.
There are 16 entries for 16 RHB's.

-Use an R-11 call for auto rhythm clock.

-The rhythm clock can be free running.

-An R-11 call will return the current pointer in the RHB, so that it may be
used to synchronize the particular accent of the rhythm to another
processes.

-Use the R-13 call to specify which queues (QU#C, QU*B, QU#P) are to be
used.

-Use the R-04 or R-05 call to send event to the CHORD-KB.

-The CHORD-KB will provide note infor mation to the chord generator and
the walking bass-line genarator, as well as providing events to QU*C
-Use the R-14 call to select the RHB.

-Start auto rhythm via an R-10 call.
_Stop the rhythm via an R-12 call.

(130)

December 27, 1984

5-4 Supplementary information for the CMT usage

-Use the 5-03 call to define the UVL.

-Use the S-21 call to load the UVL into memory (from the CMT).
-Use §-22 call to save the UVL to the CMT
-For the UVL load/save, the file name is fixed to “"VOICE".

-Use the 5-23 call to load the EVB into memory.

-Use the S-24 call to save the EVB to the CMT.
-The file name for the EVB can be specified via <M. FEVB: of the MIDB.

(131)

December 27, 1984

5-5 Monitor usage

Even though M-monitor can be invoked via BASIC's "CALL MUSIC", it can
also be called by an assembler program.

Once called by the user program, depressing the <BSC> key will return the
conirol to the user again.

Calling sequence:

DI
CALL 00AZh

Some points worth noting are:

-M-monitor will use a user supplied stack.
-In calling M-Monitor, the folowing IDB’s must have been assigned at the
shown address.

1DB*0 E900h
IDB*{ E980h
IDB#*C EAOOh
IDB#*B EA80h
IDB*P0 EBOOR
IDB*P1 EB80h

-Define the UVL so that M-monitor can use it.

-Define the EVB so that M-monitor can use it, and this case, be sure to
initialize it (use S-04 call).
For 16K RAM system, reserve at least 4K bytes for the EVB.
For 32K RAM system, reserve at leasi 8K bytes for the EVB.

(132)

December 27, 1984

5-6 Problems and solutions
1. LFO synchronization

To ensure that the LFO functions properly, immediately before the
P-caill, move msbh of V.PMD (internal offset in IDB is 1Ah) to msb of
Y.SYNC (internal offset in IDB is 0Ah).

It is recommended to carry out this procedure each time the P-call is
issued.

. Disabling noise

When shifting from the noise-enabled state to the noise disabled siate,
set noise-disable on <M.NOIS> of MIDB and issue an R-18.

3. Disabling clock-A and clock-B.

-Make sure that address 0087h is 00h.
-Write 15h into address 3FFOh.
-Write 00h into address 3FF1h.

Note that clock-A and clock-B will be enabled again by an I-call.
. Statement call from BASIC

When “extension call” is made to MBIOS from MSX-BASIC, MBIOS
does not retain the original contents of the HL registers.

Because of this, the Muisc Macro program will not run if the cartridge
is inserted in the slot after the SFG-01. The Music Macro program
should always be placed in a lower alot than the SFG-01.

. Ouiput level after I-call
Bven after an I-call has been issued, sometimes the output level may
not necessarily decrease, thereby causing sound to still be heard .

To make sure of complete silence, following an I-call, assign every
channel to the IDB, and issue an All-note-off (S-0B cail) to the IDB.

6. Only a single event will be processed at a time for P-calis corresponding

to QU#*C, QU#B, and QU*P.

(133)

December 27, 1984

7. During the playback processing, the very last event in the EVB will not
be processed.
8. Velocity
If velocity is 00h or odd number (its Isb is on), normal operation may
not be possible during MIDI output.
It is recommended to avoid these values for velocity.
9. The problem of IRQ flag
When R, K, P and S - calls are made under IRQ-enabled mode, the
interrupt status might be reset to the disabled mode when the service is
completed.
After the call, if so desired, it is a good practice 1o set IRQ enable again.
10. Changing the KC (Key code) range

Prior to changing the KC range, make sure to issue All-Note-Off
command to the designated IDB.

(134)

