
AMIGABASIG

MICROSOFT® BASIC FOR THE AMIGA'

AMIGA

u

u

u

LJ

U

u

LJ

LJ

U

U

LJ

U

LJ

LJ

U

LJ

H

H

n

n

n

n

n

n

n

n

n

AMIGA

Amiga Basic

H

n

n

n

n

Amiga Basic was developed by Microsoft Corporation.

Microsoft® BASIC for the Amiga

COPYRIGHT

This manual Copyright • Commodore-Amiga, Inc. and Microsoft Corporation, 1985, All Rights Reserved. This
document may not, in whole or In part, be copied, photocopied, reproduced, translated, or reduced to any electronic
medium or machine readable form without prior consent, In writing, from Commodore-Amiga, Inc.

This software Copyright ® Microsoft Corporation, 1985, All Rights Reserved. The distribution and sale of this
product are intended-for the use of the original purchaser only. Lawful users of this program are hereby licensed only

to read the program, from its medium into memory of a computer, solely for the purpose of executing the program.

Duplicating, copying, selling, or otherwise distributing this product is a violation of the law.

DISCLAIMER

THE PROGRAM IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE PROGRAM IS
ASSUMED BY YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT THE DEVELOPER OR
COMMODORE-AMIGA, INC. OR ITS DEALERS) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION. FURTHER, COMMODORE-AMIGA DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF, THE PROGRAM IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE; AND YOU RELY ON
THE PROGRAM AND THE RESULTS SOLELY AT YOUR OWN RISK. IN NO EVENT WILL COMMODORE-AMIGA,
INC. BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN ADVISED OF THE POSSIBLITY OF SUCH DAMAGES. SOME
LAWS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABLITIES FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Microsoft is a registered trademark of Microsoft Corporation.
Amiga is a trademark of Commodore-Amiga, Inc.
Macintosh is a trademark of Apple Computers.

IBM-PC is a trademark of IBM, Inc.

PRINTED in Hong Kong

CBM Product Number 327273-02 Rev C

Contents

Chapter 1: Introducing Amiga Basic 1-1

Chapter 2: Getting Started 2-1

Chapter 3: Using Amiga Basic 3-1

Chapter 4: Editing and Debugging Your Programs 4-1

Chapter 5: Working with Files and Devices 5-1

Chapter 6: Advanced Topics 6-1

Chapter 7: Creating Animated Images

with the Object Editor 7-1

Chapter 8: BASIC Reference 8-1

Appendices A-l

Index 1-1

Lj

0

U

u

G

u

D

0

u

u

LJ

LJ

Chapter 1

Introducing Amiga Basic

Who uses BASIC? People use the BASIC programming

language for many different reasons. Some of these people

are professional programmers. Others are not programmers

at all, but wish to run BASIC programs they have

purchased. Probably the largest segment of BASIC users is

made up of people who write BASIC programs for their own

use. They may simply enjoy the mental exercise of

programming, or they may have special applications for

which they cannot buy ready-made programs. Many

BASIC users are students who are studying computer

science or using a computer to help with their school work.

Introducing Amiga Basic 1-1

All of these people have one thing in common. They use BASIC because it

is the universal language for small computers. It is easy to learn, readily

available, and highly standardized. It is also a versatile language that has

been used in the writing of business, engineering, and scientific applications,

as well as in the writing of educational software and computer games.

Amiga Basic

Whatever your reason for using BASIC, you will find that Amiga Basic gives

you all the well-known advantages of BASIC, plus the ease of use and fun

you expect from Amiga tools. Amiga Basic puts the full BASIC language on

your Amiga computer, including BASIC statements used to write graphics,

animation, and sound programs. Also, it has all the familiar features of the

Amiga screen. Amiga Basic has a Menu Bar, a Pointer, and windows and

screens, just like other Amiga tools have.

If you are just starting to learn BASIC, either in a class or on your own,

Amiga Basic will fit right in with your course of study. Amiga Basic is based

on Microsoft BASICthe most popular programming language in the world,

which works on every major microcomputer.

If you are an old hand at BASIC programming, you'll want to try some of

the special features of this version of BASIC, such as SOUND and WAVE

for making music and sounds, and GET and PUT for saving and retrieving

graphics by the screenful.

About This Manual

This book describes the Amiga Basic Interpreter. It assumes you have read

Introduction to Amiga, and are familiar with menus, editing text, and using

the mouse.

Chapters 1 through 7 describe how to use Amiga Basic with the Amiga.

They include general instructions on using the interpreter, editing and

debugging your programs, working with files and devices, and using some of

Amiga Basic's advanced features. Chapter 7 is a guide to using the Object

Editor, a program written in Amiga Basic, which lets you create images to

use in animations with your application programs.

1-2 Introducing Amiga Basic

Chapter 8 is a reference for the BASIC language. Use the Amiga Basic

Reference section to read about general characteristics of the language and

to look up the syntax and usage of BASIC statements and functions in the

Statement and Function Directory.

Special Features of Amiga Basic

The Amiga Basic Interpreter is written in assembly language and thus is

small (80K). The core of Amiga Basic has been field tested for three years.

Amiga Basic is a "standard" BASIC in that it will run most programs that

were written in Microsoft BASIC on most other machines.

Ease of Program Development

Like all languages, Amiga Basic is always growing, changing, and improving.

Amiga continues to keep its BASIC interpreter up to date with new features.

Here are some of the latest features you'll find in this version of BASIC. All

of the features are described fully in the reference section of the manual.

Support for Amiga Application Programs

Amiga Basic provides the tools you need to write programs that work like

and look like they were written for the Amiga. These tools are especially

important if you are a software developer who plans to sell application

programs for the Amiga.

It is also true that significant Macintosh MS-BASICtm and IBM-PCtm

BASIC applications can easily be ported over to the Amiga.

Mouse Support

With the MOUSE function, your BASIC program can accept and respond to

mouse input. The MOUSE function returns the coordinates of the mouse

pointer under various conditions (left button up, left button down,

single-click, double-click, and drag).

Introducing Amiga Basic 1-3

MENU Statement

Your programs can display Amiga-style menus created by BASIC'S MENU

statement. This statement opens and closes menus and highlights menu

items. If you want, you can replace BASIC'S menus with your own menus,

to give your program a completely "custom" look.

Powerful Language Features

Amiga Basic provides a number of powerful language features that lend

flexibility to your programs. These features include the following:

Block Statements

IF-THEN ELSE statements let your program make decisions during

program execution. You can now include multiple statements on one or

more lines after THEN.

Subprograms

Amiga Basic allows subprograms that have their own local variables. Using

subprograms, you can build a library of BASIC routines that can be used

with different programs. You can do this without concern about duplicating

variable names in the main program.

SHARED Statement

The SHARED Statement allows variables to be shared between the main

program and its subprograms.

Integer Support

Amiga Basic includes both 16 and 32 bit integer support.

1-4 Introducing Amiga Basic

Floating Point Support

The Amiga version includes both 32 and 64 bit floating point support.

No Line Numbers Required

Program lines do not require line numbers. Assigning labels to functional

blocks lets you quickly see the control points in your program.

Alphanumeric Labels

Alphanumeric line labels beginning with an alphabetical character allow the

use of mnemonic labels to make your programs easier to read and maintain.

Sequential and Random Access File Support

Both sequential and random access files can be created. Sequential files are

easy to create, while random access files are flexible and quick in locating

data.

Device Independent I/O Support of RS232 and Parallel Ports

Using Amiga Basic's traditional disk file-handling statements, a program can

direct both input and output from the screen, keyboard, line printer, and

RS232 and parallel ports. You can open the line printer or screen for output

as easily as you open a disk file.

Features that Show Off the Amiga

A number of features of Amiga Basic enhance Amiga's color, graphics,

animation, and sound capabilities:

• Four-voice synchronized musical reproduction through the

SOUND and WAVE statements

Introducing Amiga Basic 1-5

• Creation of audible speech through the SAY and

TRANSLATES statements

• The ability to save and redisplay screen images through the GET

and PUT statements

• Full complement of graphic statements, such as LINE, CIRCLE,

PAINT, AREA, and AREAFILL

• Extensive animation support through the OBJECT statements,

the Object Editor, and the COLLISION function.

• The ability to call subroutines written in machine language

through the LIBRARY and DECLARE statements

• Multiple screens and windows through the SCREEN and

WINDOW statements

• Pull-down Menus from BASIC and the application programs

All of these functions are described in detail under the related commands in

Chapter 8; the Object Editor is described in Chapter 7. Some of the

functions are summarized below.

SOUND and WAVE

Amiga Basic programs can produce high quality sound for games, music

applications, or user alerts. The SOUND statement emits a tone of specified

frequency, duration, and volume. As an option, the tone can also have one

of four user-defined "voices." The WAVE statement lets you assign your

own complex waveforms to each of the voices. SOUND and WAVE can

provide your programs with a rich variety of musical sounds, from the

complexity of a string quartet to the simplicity of a whistled tune.

LINE and CIRCLE

LINE and CIRCLE are versatile commands for drawing precise graphics.

The LINE statement draws a line between two points. The points can be

expressed as relative or absolute locations. By adding the B option to the

1-6 Introducing Amiga Basic

LINE statement, you can draw a box. Another option, BF, fills in the box

with any color.

The CIRCLE statement draws a circle, arc, or ellipse according to a given

center and radius. A color option can be used to draw the circle in any

color. Another option, aspect, determines how the radius is measured, so

you can adjust it to create a variety of ellipses.

GET, PUT, and SCROLL

The GET statement saves groups of points from the screen in an array, so

you can store a "picture" of a graphic image in memory. The PUT

statement calls the array back and puts it on the screen. The SCROLL

statement lets you define an area of the screen and how much and which

way you would like it to move.

The Object Editor

Amiga Basic offers the Object Editor, a program written in BASIC, that

helps you create images of objects to use for animations with your Amiga

Basic applications programs. See Chapter 7 for details on the Object Editor.

Learning More About BASIC and the Amiga

This manual provides complete instructions for using the Amiga Basic

Interpreter. However, little training material for BASIC programming is

included. If you are new to BASIC or need help in learning to program, we

suggest you read one of the following:

Dwyer, Thomas A., and Critchfield, Margot. BASIC and the Personal

Computer. Reading, Mass.: Addison-Wesley Publishing Co., 1978.

Knecht, Ken. Microsoft BASIC. Beaverton, Ore.: Dilithium Press, 1982.

Boisgontier, Jacques, and Ropiequet, Suzanne. Microsoft BASIC and Its

Files. Beaverton, Ore.: Dilithium Press, 1983.

Introducing Amiga Basic 1-7

LJ

U

LJ

U

U

n Getting Started

n

Chapter 2

To use Amiga Basic, you need:

• An Amiga computer, properly set up and

connected.

• The Amiga Extras disk.

Getting Started 2-1

You should also make two backup copies of your Extras disk on your own

blank disks. To start Amiga Basic:

• Turn on the Amiga power switch. If the Amiga prompts you for

a kickstart diskette, then insert it in the internal drive.

• Once the Workbench diskette prompt appears, put the

Workbench diskette into the disk drive. Wait until the

Workbench icon appears and disk activity has ceased.

• Put the Amiga Extras disk into any 3 1/2" Amiga disk drive.

• Open the Extras disk icon. Then open the Amiga Basic icon.

In a few seconds, you'll see the Amiga Basic screen.

Note: This tutorial assumes that the Amiga Basic screen is using the original

Workbench colors (blue for background, white for foreground, orange, and

black).

At this point, the cursor (an orange vertical bar) appears in the List window,

and you can either type in a new program or retrieve an existing program

and modify it, as you'll see in the next section. Notice that the Title Bar in

the List window is displayed distinctively to indicate that it is selected, while

the Title Bar in the Amiga Basic window is ghosted or displayed less

distinctively to indicate that it is not selected.

The Output window in Amiga Basic not only lets you see the results of a

program, it also allows you to type in commands directly. Any time you

would prefer to type in commands directly in the Output window, click in

the Output window (entitled BASIC). This process is called selecting the

Output window. Notice that Amiga Basic responds with the Ok prompt.

To display the menu titles in the Menu bar, click in the Output window then

press and hold down the mouse Menu button.

2-2 Getting Started

Practice Session with Amiga Basic

Time Required: Fifteen Minutes

Now you are ready to begin using Amiga Basic.

To display the contents of the Extras disk in the Output window,

• select the Output window.

When the Ok prompt appears in the window,

• Type

files

• Press the RETURN key.

Getting Started 2-3

u
You now see the filenames and directory names being listed in the Output

window. When the window fills, the names scroll upwards to make room for I I

more names at the bottom of the window. To halt scrolling, press the right

Amiga key (on the righthand side of the keyboard) and the S key; to resume

scrolling, press any key. I]

To see the files in one of the directories, type the word files followed by the .

desired directory name enclosed in quotes. If the disk is in the external I I
drive, type the word files followed by the drive number in quotes. For

example, if the Extras disk is in drive 1, the following command lists all files » i

in the subdirectory BasicDemos: 1 I

files "dflibasicdemos" i I

Loading Picture | |

Start by loading the program called Picture, which is a demonstration I I

program written in Amiga Basic that comes on your Extras disk. Picture is

in the BasicDemos drawer (or subdirectory).

LJ
• Press the mouse Menu button and point at the Project menu

title in the Menu Bar. The menu items that appear are New,

Open, Save, Save As, and Quit. | |

• Choose the Open item. (,

u

u

u

u

LJ
2-4 Getting Started

u

H

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

A requester appears on the Output window.

• Click the mouse Selection button in the Title Gadget labeled

"Name of program to load".

• Type

basicdemos/picture

• Click the OK Gadget or press the RETURN key.

Note: For more information on specifying directory names and filenames,

see "File Naming Conventions" in Chapter 5, and the AmigaDOS User's

Manual.

The Program Listing for Picture

A listing of the Picture program appears in the List window. The name of

the Output window changes from BASIC to BasicDemos/Picture.

You may have expected to see a line number at the beginning of each line.

In Amiga Basic, line numbers are optional. To refer to a particular line, give

that line a label or a line number. For example, the Picture program has no

line numbers. However, it has two labels: CheckMouse and MovePicture.

Getting Started 2-5

DEFINT P-Z
DIM F(2588)
CLS

LINE(8l8)-(i2Bii28).JBF
ASPECT z .1

WHILE ASPECK28

■.■CIRCLE(68f6B).55,8,.,ASPECT
ASPECT - ASPECT*}.3

- HEND -::■■".> -r

GET (B/8}-C127/127},P ■ v
CheckHous'e: " r; ,;
- IF M0USE(8)r8 tfeN CheckMouse
IF ABSCX-MOUS£CU) > 2 THEN Hove

; IF ABSjCy-M0USEC3)V <-Z'-im Chec
MovePicture; ■■■■■■% '■"-■-■■■" ■■i:-..:-"■

■ XxMOUSEU): YrM0ilSE(2)
■■■■"PiiT'(x,y),p

GOTO CheckHouse

-Labels

Labels and line numbers identify subroutine or subprogram entry points, and

routines called from GOTO statements executed in other parts of the

program. To list a program line, use the LIST command and the line's

label. For example, to list the part of the Picture program beginning with

CheckMouse:

• Select the Output window, then type

LIST CheckMouse

• Press the RETURN key.

Notice that the List window scrolls to the CheckMouse label. However, if

you wish to edit in the List window, you must first select it.

Uppercase Reserved Words: On the Amiga screen, Amiga Basic program

listings are very easy to read because Amiga Basic's reserved words are

automatically converted to uppercase as you move from line to line.

2-6 Getting Started

U

U

u

u

0

u

u

□

0

u

u

0

u

u

u

D

u

Amiga Basic reserved words

are in uppercase

Other words appear as

entered by user

Note that when you type a program line, the reserved word doesn't appear

in uppercase until you move from line to line.

What Picture Does

Now, start the program as follows:

• To open the Output window over the List window, choose Show

Output from the Windows menu.

Getting Started 2-7

• Choose Start from the Run menu.

When the program runs, a picture appears in the Output window. You can

move this Picture around by clicking the mouse Selection button anywhere

in the Output window. Try it.

Output from Picture

2-8 Getting Started

u

u

u

u

u

u

LJ

U

LJ

u

u

u

u

u

u

u

u

n

n

n

n

Stopping the Program

Picture keeps running until you tell it to stop.

• Choose Stop from the Run menu.

Choose Show List from the Windows menu. The List window

comes forward again. To edit the program again in the List

window, you must select the List window.

Moving Through the List Window

To scroll through the List window line by line, click in it and use the up and

down arrow keys located at the lower right corner of the Amiga keyboard to

move up and down.

n

n

n

n

To move right or left one character at a time within a program line, use the

right or left arrow keys.

n
Note: Throughout this manual, whenever you see two keys joined together

_- with a hyphen, such as SHIFT-Up Arrow, this means that you press and

I ! hold down the first key at the same time that you press the second key. So
SHIFT-Up Arrow means to press and hold down the SHIFT key while you

p-1 press the Up Arrow key.

So, to move forward through the program window by window, press

f—"1 SHIFT-Down Arrow. To move backward through the program window by

window, press SHIFT-Up Arrow.

To move to the first line in the program, press ALT-Up Arrow. To move to

the last line in the program, press ALT-Down Arrow.

To move to the right margin of a program line, press ALT-Right Arrow. To

move to the left margin of a program line, press ALT-Left Arrow.

Getting Started 2-9

To move 75 percent through a program line towards the right margin, press

SHIFT-Right Arrow. This is convenient for moving through extremely long

program lines. To move 75 percent through a program line towards the left

margin, press SHIFT-Left Arrow.

If you want to know more about Picture, see Appendix G, "A Sample

Program," for a line-by-line explanation.

Editing an Amiga Basic Program

Editing an Amiga Basic program is similar to editing text with a word

processor. You enter all text in the List window and edit it using the Cut,

Copy, and Paste commands from the Edit menu.

To enter new text, select the insertion point (the thin orange cursor) by

moving the Pointer to the location where you want text and clicking. Then

type in the desired characters.

To delete characters to the left of the insertion point, press the

BACKSPACE key. To delete characters to the right of the insertion point,

press the DEL key.

To select a word, position the pointer over the word and double-click the

mouse Selection button.

To make an extended selection, you can click at the beginning of the

selection, move the mouse to the end of the selection, and shift-click (that

is, press and hold down the SHIFT key on the Amiga while you click the

mouse Selection button. Alternatively, you can set the insertion point and

drag the mouse. You can Cut or Copy the selected blocks of text just as you

would with a word processor.

2-10 Getting Started

To increase the width of the List window in order to view the entire program

listing,

• Press and hold down the mouse Selection button in the Title Bar

and drag the entire List window to the left.

• Release the Selection button and move the pointer to the Sizing

Gadget on the lower right side. Press and hold down the

Selection button over the Sizing Gadget, dragging it to make the

List window wide enough to read the program lines.

• Release the Selection button when you are satisfied with the List

Window width.

Practice Editing with Picture

This is a good opportunity to practice editing an Amiga Basic program on the

Amiga and to learn about some of the graphics statements in Amiga Basic.

Don't worry about losing or altering Picture. There is another program just

like it called Picture2 on this disk.

If you'd like to experiment, go ahead and make your own changes to

Picture. Try the following sequence to change the program to produce the

following output:

Getting Started 2-11

Adding a Line to the Program

Start by adding the line that draws the second sphere:

• Scroll through the Picture listing until you find this line:

CIRCLE(60,60),55,0,,.ASPECT

Find line of code that

draws the first sphere

2-12 Getting Started

u

u

u

u

a

LJ

U

U

LJ

U

u

LJ

U

LJ

LJ

LJ

U

• Click at the end of the line to move the insertion point there.

(Press Alt-Right Arrow if the List window doesn't show the end

of the line.)

• Press the RETURN key to open'a new line.

Now you are ready to type a new line. Note that Amiga Basic automatically

aligns the cursor with the statement directly above it, saving you the bother

of inserting blank spaces.

• Type the following line:

CIRCLE(200,60),55,3,,.ASPECT

Enter this line of code to

draw the second sphere

This statement draws an ellipse with the center located at 200,60. It has a

radius of 55 and an aspect ratio equal to ASPECT. If you're using the

original Workbench colors, the number 0 represents blue, and the number 3

represents orange. Every time the WHILE loop is executed, the statement

draws another ellipse with a different aspect ratio (ASPECT). These ellipses

form the sphere.

• Choose Start to run the program.

Getting Started 2-13

Correcting Errors

You might make errors (also known as "bugs") when you type or edit a

program. When Amiga Basic finds an error, it stops program execution and

displays a requester describing the error. Amiga Basic makes sure the List

window is visible and then scrolls the window so the line containing the error

is visible. The statement that caused the error is enclosed in an orange

rectangle. Then you can edit the incorrect line in the List window and run

the program again. This process is called "debugging."

Replacing a Program Line

Since you changed the program, only the first sphere moves when you click

the Selection button. Let's change the program so that the both spheres

move together.

• If the program is still running,- choose Stop to stop it.

• Choose Show List. Observe that Show List doesn't change the

position of the List window.

• Scroll to the extreme left edge of the GET statement, point

there, and drag the highlighting across to the end of the line.

Note that this selects the entire line, highlighting it in orange.

2-14 Getting Started

H

n

Select the GET Statement

• Choose Cut from the Edit menu to delete the selection.

• On the blank line, type

GET(0,0)-(327,127),p

This new GET statement increases the area that moves when you click the

Selection button.

Now, let's change the DIM statement to create an array of 6000 rather than

2500 elements.

• Move the insertion point to the DIM statement.

• Select the part of the statement that reads 2500 and select Cut

from the Edit menu. (A shortcut is to press the BACKSPACE

key.)

Getting Started 2-15

Type 6000 within the parentheses so that the line now reads

DIM P(6000)

(Alternatively, just highlight the 2500 and type 6000. Anything

you type replaces the portion of the line that is highlighted.)

Amended Statements

• Choose Start to run the program.

Now both spheres move together when you click and drag the mouse.

Reversing Blue and White

Let's change the first sphere so that it appears in white on a blue

background like this:

2-16 Getting Started

H

• If the program is still running, select Stop and show the List

window.

• Find the LINE statement in the program.

• Point to the end of the statement and click, putting the insertion

point directly after BF.

Getting Started 2-17

• Press the BACKSPACE key once to delete the F in BF.

Now the color inside of the box will be blue, not white.

• Find the line

CIRCLE(60,60),55,0,,,ASPECT

• Position the insertion point after the number 0.

• Press the BACKSPACE key once to delete the 0.

• Type 1 to make the color number 1 (white).

Insert 1

Now the ellipse will be drawn in white instead of blue.

• Choose Start to see the new program output.

The changes in the program are now complete.

2-18 Getting Started

U

U

U

U

LJ

U

U

LJ

U

U

U

LJ

U

Li

U

U

U

n

r_ Single-Stepping Through the Program

! I

To get better acquainted with Picture, let's use a common debugging

technique: single-stepping through the program.

• If Picture is still running, choose Stop to stop it.

• Select the Output Window by clicking anywhere in it. Observe

the Ok prompt.

• Type

end

• Press the RETURN key.

• Choose Step from the Run menu. Step executes the first line of

the program and then the program stops.

• Choose Show List from the Windows menu to open and select

the List window on the right side of the screen.

Each statement is outlined in the List window as it executes. The Output

window is selected so that any text you type appears there.

• Choose Step again (or press Right Amiga-T).

The next line executes, and the program stops again. Each statement is

outlined in the List window as it executes. There's no output yet, so not

much is happening.

Continue choosing Step and watch the program execute one program

statement at a time. When the section that draws the ellipses is outlined,

observe how it draws the spheres. Each time the WHILE loop executes, it

adds an ellipse with a different ASPECT (aspect ratio) to each sphere.

Getting Started 2-19

Just for fun, after the first few ellipses have been drawn, type

print aspect

in the Output window.

Press the RETURN key.

2-20 Getting Started

The current value of ASPECT (the aspect ratio for the ellipse) appears in

the Output window.

Even though we're not actually debugging Picture, this illustrates a typical

debugging technique that uses what is known as immediate mode. While

using immediate mode, you can enter and execute a command in the Output

window "on the spot." Amiga Basic executes immediate mode commands

right away, displaying the result if there is one. For more information on

immediate mode, see "Operating Modes" in Chapter 3.

• Continue stepping through Picture. Check other variables if you

like.

• If you'd like to stop stepping through the program and simply

run the rest of it, choose Continue from the Run menu.

Saving the Program

Whenever you enter a new program or make changes to an existing program

and wish to preserve the original version, use the Save As menu item to put

the program on the disk. Once a program is on the disk, you can load and

run it any time you like. To save the program:

• Stop the program if it is still running.

• Choose the Save As item from the Project menu. The following

requestor appears:

Getting Started 2-21

Amiga Basic assumes you want to save the program under its current name,

Picture. It also assumes that you want to save the program in whatever form

it was loaded (usually in compressed format).

You can change the name if you want to, or simply click the OK Gadget.

If you didn't change the program's name, you now have two versions of

Picture on the disk: the original, unchanged, Picture2 and the newly edited

Picture. You could have also decided to rename the program as

"myprogram" or any other legal name. That would have preserved Picture

in the form that you found it before your changes.

Leaving Amiga Basic and Returning to the Workbench

• Choose Quit from the Project menu.

Congratulations! You have just finished the practice session.

2-22 Getting Started

You are now back at the Workbench and ready to begin your next activity

on the Amiga. You've learned a lot about Amiga Basic in just a few

minutes, including how to:

• Load an existing program.

• Edit programs in the List window.

• Work with some Amiga Basic statements and functions.

• Save an Amiga Basic program file.

In the next chapter, you'll learn the fundamentals on how to operate Amiga

Basic, including the Amiga Basic screen. You'll recognize some of the

information from the practice session; other information will be new. While

you practice and learn about Amiga Basic, remember that you can't "harm"

the computer or Amiga Basic through normal typing, mouse pointing, or trial

and error. So don't hesitate to experiment and try out all the features of

the screen.

Brief Summary of Program File Commands

The following is a brief summary of the commands that handle program

files. You can use these commands as alternatives to many of the menu

options. To use the commands, select the Output window and enter the

command you wish to execute. The syntax for each of these commands is

described below.

To load an existing program:

To load an existing program, enter the command:

LOAD "filename"

Getting Started 2-23

To edit the loaded program:

To edit the loaded program or enter a new program, enter the command:

LIST [<label>]

LIST calls Amiga Basic's full screen editor and lists the current program

starting at the first line of the most recently edited portion. If you specify an

existing label, that line will appear on the top line of the display along with

the lines that follow it.

To execute a program in memory:

To run a program in memory, enter the command:

RUN

To stop the program while it is running, press CTRL-C.

To debug the program, you can use immediate mode statements. For

example, you can see the contents of array A with the following statements:

FOR 1=0 TO 19: PRINT A(I): NEXT I

To resume execution of the program, enter the following command:

CONT

To leave Amiga Basic:

To quit the Amiga Basic and return to the Workbench, enter the command:

SYSTEM

2-24 Getting Started

If the program currently in memory has been altered and not saved, the

following message appears to prompt you:

Current program is not saved

Do you want to save it before proceeding?

You can select either yes or no, or select cancel to remain in Amiga Basic.

To save a program currently in memory:

To save a program currently in memory, enter the command:

SAVE ["filename"]

If you omit the file name, a requester appears that allows you to either save

the program under its current name or change the name before saving.

Getting Started 2-25

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Chapter 3

Using Amiga Basic

This chapter describes the fundamentals for using Amiga

Basic, including how to start and quit Amiga Basic, how to

load and save files, and how to use the different operating

modes. It then goes on to describe the various elements of

the Amiga Basic screen.

Using Amiga Basic 3-1

u

Operating Fundamentals r-.

The following section explains how to start and exit Amiga Basic and how to

load and save Amiga Basic programs. I I

Starting Amiga Basic

There are three ways to start Amiga Basic: I—I

1. Open the AmigaBASIC icon on Workbench. i |

2. Type

U
AmigaBasic

on the CLI screen (selected from the System drawer) and press | |

the RETURN key.

3. Double-click on any Amiga Basic program icon in the | I
Workbench. Not only does this invoke Amiga Basic, it also

loads and runs the selected program. ,---.

Exiting Amiga Basic and Returning to the Workbench |^J

There are two ways to exit Amiga Basic and return to the Workbench. i i

1. Select the Quit item from the Menu Bar's Project menu.

u
2. Type

system | |

in the selected Output window and press the 'RETURN key. Or, _

enter SYSTEM as an instruction in an Amiga Basic program. | |

U
3-2 Using Amiga Basic

U

Loading a Program

To run an existing program, you must first load the program into memory.

There are several ways to load a program:

1. When in the Workbench, double-click the icon for an Amiga

Basic program. This loads Amiga Basic and loads and runs the

selected program.

2. If Amiga Basic has already been loaded, you can select the

Open item from the Project menu. This displays a requester

asking you which program you wish to load. Click in the Title

gadget, type in the name of the program, and click in the OK

Gadget (or press the RETURN key).

3. If Amiga Basic has already been loaded, you can type the

LOAD or RUN statements in the Output window. See Chapter

8 for the proper syntax.

4. If an Amiga Basic program is currently running, it can use the

CHAIN statement to load and run another program.

Saving a Program

To save a new program, you can either select the Save As item from the

Project Menu or type the SAVE statement in the Output window. See

SAVE in Chapter 8 for the proper syntax of this statement. To file away a

previously saved and now re-edited program, you can either enter the

SAVE command or select the Save item from the Project menu (see below).

Amiga Basic normally saves all new programs in compressed form. To save

programs in protected form, or in ASCII format for a word processor or a

MERGE command, you must give explicit instructions with the SAVE

command in the Output Window. You must also use the SAVE command

(with no option) to change an ASCII file back to compressed format.

Using Amiga Basic 3-3

u

Operating Modes 11

u

u

When you open Amiga Basic, the Output window appears with the name

BASIC. It is ready to accept commands. At this point, you can use Amiga

Basic in one of three modes: immediate mode, edit mode, or program

execution mode. The List window is selected when Amiga Basic begins

operating.

u
Immediate Mode

In immediate mode, Amiga Basic commands are not stored in memory, but

instead are executed as they are entered in the Output window. Results of

arithmetic and logical operations are displayed immediately (when you j I

request that they be printed) and stored for later use, but the instructions

themselves are lost after execution. Immediate mode is useful for debugging

and for using Amiga Basic as a calculator for quick computations that do not I I

require a complete program.

To begin entering immediate commands, you must first select the Output | |
window by clicking anywhere in it with the Selection button.

Program Execution Mode

u

u
When a program is running, Amiga Basic is in program execution mode.

During program execution, you cannot execute commands in immediate

mode, nor can you enter new lines in the List window. I I

Edit Mode u

You are in edit mode when you are working in the List window. The '—'
commands you enter are not executed until you enter a RUN command or

select Start from the Run menu. I j

U
3-4 Using Amiga Basic

LJ

n

p The Amiga Basic Screen

r—| There are three separate regions of the Amiga Basic screen: the Output

' ' window, the List window, and the Menu Bar.

P You operate the Output and List windows as follows:

• To select a window, you click anywhere inside it.

n
• To resize a window, you drag the Sizing Gadget in the lower

p. right-hand corner.

• To bring the back window to the front, you click the Front

p Gadget.

• To put the front window to the back, you click the Back

P Gadget.

• To close the window, you click the Close Gadget located in the

upper left corner.

• To move the window, you press and hold down the Selection

button and drag the Title Bar. (You can also move the Output

window if you resize it.)

You use the Menu Bar as follows:

• To display the Menu Bar, select the List or Output window,

then press and hold down the Menu button.

• To display the individual menus, point at the desired menu title.

• To choose an individual menu item, first point at the desired

item (to highlight it), then release the Menu button.

Using Amiga Basic 3-5

The following sections describe additional features of each of the screen

areas.

The Output Window

You can use the Output window both to enter statements as immediate mode

commands and to display the output from your programs.

To select the Output window:

• Click inside it, or

• Choose Show Output from the Windows menu (if the Output

window is not visible), and then click inside it.

In the Output window, you can:

• Enter a statement as an immediate mode command. Amiga

Basic executes the command as soon as you press the RETURN

key. Any output from the command appears in the same

Output window.

• Use the BACKSPACE key to delete typing mistakes before you

enter corrections.

• Type CTRL-C to stop a program or cancel a line you've started

to enter.

3-6 Using Amiga Basic

The List Window

You can use the List window to enter, view, edit, and trace the execution of

programs. The List window is automatically selected when you first open

Amiga Basic.

To select the List window:

• Click inside it, or

• Choose Show List from the Windows menu (if the List window

is not visible), and then click inside it.

The List window becomes visible when the program halts due to an error.

Note: If a program has been saved in a protected file (with the SAVE

command in the Output window), you cannot open a List window for the

file. Protected files can neither be listed nor edited.

In the List window, you can:

• Look at a program and scroll through it with a combination of

the arrow keys and the SHIFT and ALT keys.

• Enter or edit a program using all of the features of Amiga Basic,

including selecting text with the mouse and using the options in

the Edit menu. See "List Window Hints" in Chapter 4 for more

details on the List window.

Using Amiga Basic 3-7

The Menu Bar and Menu Keyboard Shortcuts

There are four menus on the Menu Bar: Project, Edit, Run, and Windows.

You cannot always use all of these menus. A menu title may be displayed

less distinctively as a ghost menu item to indicate that the menu is not

relevant to what you are doing at the moment. Similarly, a ghost menu item

may appear when that item cannot be selected.

Some of the menu items show an Amiga key sequence next to them, such as

Amiga-X for Cut. This means you can press the given key combination

(that is, press the "X" key while holding down the right Amiga key) instead

of choosing the item with the mouse, if you want to. All the menu keyboard

shortcuts use the right Amiga key.

The Project Menu

The Project menu contains five items that affect program files. There are no

keyboard shortcuts for the items in the Project Menu.

New gets Amiga Basic ready to accept a new program. It clears the current

program listing from your screen and clears the program from memory, so

you can begin a new program. It behaves the same way as the NEW

statement.

Open tells Amiga Basic that you want to bring in a program that is already

on the disk. To display the names of the programs on the disk, select the

Output window and enter the FILES command. When you choose Open, a

requester appears to ask which program you wish to open. Type in the

name of the desired program, then click the OK Gadget.

Save saves the program under its current name. This means it puts a

program on the disk after you have entered it or made changes to it. Save

saves all new programs in compressed format and saves all revised programs

in whatever format they were loaded in.

3-8 Using Amiga Basic

Save As... is the same as Save, except that Save As allows you to change the

name of the program to be saved. Amiga Basic saves your new programs in

compressed format, and it saves your loaded and revised programs in

whatever form they were loaded in.

To save your program in text or protected format, you must use the SAVE

statement in immediate mode in the Output window. See "Program File

Commands" in Chapter 5 for an explanation of file formats. See SAVE in

Chapter 8 for the syntax of the SAVE statement.

Quit tells Amiga Basic to return to the Workbench. It behaves exactly like

the SYSTEM statement.

The Edit Menu

The Edit menu has three items that are used when entering and editing

programs. Except for immediate mode commands in the Output window,

you enter and edit all program statements in the List window. Each of the

Edit menu commands has a keyboard shortcut.

Cut deletes the current selection from the List window and puts it in the

Clipboard. Pressing Amiga-X is the same as choosing Cut.

Copy puts a copy of the current selection into the Clipboard without deleting

it. Pressing Amiga-C is the same as choosing Copy.

Paste replaces the current selection with the contents of the Clipboard. If

no characters are selected, Paste inserts the contents of the Clipboard to the

right of the insertion point. Pressing Amiga-P is the same as choosing Paste.

The Run Menu

The Run menu has six commands that control program execution. Keyboard

shortcuts are available for four of these commands.

Using Amiga Basic 3-9

Start runs the current program. Entering RUN in the Output window or

pressing Amiga-R are the same as choosing Start. Start is enabled whenever

Amiga Basic is in immediate mode. Pressing Amiga-R is the keyboard

shortcut for running the current program.

Stop stops the program that is running. Stop behaves exactly like the STOP

statement. Amiga-period or CTRL-C are the keyboard shortcuts for

stopping the current program.

Continue starts a stopped or suspended program. Entering CONT in the

Output window is the same as choosing Continue. The Continue menu item

is enabled only when a program has actually been stopped and continuing is

possible. If no program was stopped, or if you changed the program while it

was stopped, a requester appears that says "Can't continue."

Suspend suspends the program that is running until any key other than

Amiga-S is pressed. Pressing Amiga-S or CTRL-S are the same as selecting

Suspend. Suspend is enabled whenever a program is running.

Trace On/Off is a toggle that turns program tracing on and off for

debugging. If the List window is visible, tracing highlights each statement as

it is executed. Turning Trace on works the same as the TRON statement,

where the last statement executed has a trace rectangle drawn around it. If

no statement has been executed, no rectangle is drawn. This lets you

determine where the program is being stopped. Trace Off works the same as

the TROFF statement where tracing no longer highlights each statement as it

executes.

Step executes the program one step at a time. It stops after each statement.

Pressing Amiga-T is the same as choosing Step. When the List window is

made visible, a rectangular box outlines the statement that was just

executed.

3-10 Using Amiga Basic

n

. The Windows Menu
H

The Windows menu has two items that open windows on the Amiga Basic

jj screen.

_. Show List opens the List window on the current program. If a List window

! ! is already opened but covered with the Output window, Show List brings the
List window forward. Pressing Amiga-L is the same as choosing Show List.

To edit a loaded program or to enter a new program, you can also use the

LIST immediate mode command in the Output window.n

p-] Show Output opens the Output window. The List window is put behind the

1 ' Output window. In order to enter immediate mode commands in the Output

window, you must first click in it.

n

n

Using Amiga Basic 3-11

Chapter 4

Editing and Debugging

Your Programs

This chapter describes how to enter text when writing a

program and how to remove errors from programs.

Editing Programs

The List window appears when you start Amiga Basic. Enter

text and use the regular Amiga Edit menu items—Cut,

Copy, and Paste—to edit the program lines in the List

window.

Editing and Debugging 4-1

u

When you first open Amiga Basic, the List window that appears may seem

too narrow to use for long program lines. Text that you enter beyond the | j
right margin forces the window to scroll, keeping the cursor in the visible

part of the List window. To get back to the left margin, press ALT-Left

Arrow. Drag the List window to the left, and then drag the Sizing Gadget to I I
the right to increase the width of the right margin.

U
Typing and Editing Text

u
Editing program lines in the List window is similar to working with regular

text on a word processor. ; -j

Here are some reminders about typing and editing text in the List window.

U
• Insert text by typing it or by pasting it from the Clipboard.

Inserted text appears to the right of the insertion point.

LJ
• Delete text by backspacing over it or by selecting it and then

choosing Cut from the Edit menu. Or, you can delete a < ,

highlighted section of text by pressing the BACKSPACE key. To I—I
replace highlighted text, simply type the replacement text.

• End each program line with a carriage return. You can have

extra carriage returns in your Amiga Basic programs. However,

these only create blank lines that are ignored when the program [j

executes.

• You can indent lines of text by using the TAB key. Indenting

makes your program easier to read. The TAB key advances two

characters to the right. When you press the RETURN key at

the end of a line, the cursor descends one line and goes to the

column where the previous line started. This means if the

previous line started with a tab, the new line starts at the same

tab stop. This indentation does not cost additional memory.

• You can type reserved words in either uppercase or lowercase,

but Amiga Basic always displays them in uppercase.

4-2 Editing and Debugging

• You can type variable names of up to 40 significant characters.

A variable is initially single precision unless you terminate it with

a special character or execute a DEFINT, DEFLNG, DEFDBL,

or DEFSTR statement that affects it. The special characters are

$ for string, 1 for single precision, # for double precision, % for

short integer, and & for long integer.

You can type variable names in either uppercase or lowercase,

but Amiga Basic does not distinguish between them. For

example, alpha, Alpha, and ALPHA all refer to the same

variable.

• You can precede program lines with line numbers; however, line

numbers are not required.

Selecting Text

Here are some pointers on selecting text in the List window.

• Select characters or lines by dragging the highlighting over them

with the mouse.

• The quickest way to select a single line is to point at the far left

edge of the line and drag the highlighting down one line.

• If you drag the highlighting to the edge of the List window and

keep holding down the Selection button, the window

automatically scrolls, selecting as it goes.

• Select individual words in program lines by pointing at them and

double-clicking.

An alternative way to make an extended selection is to click at the beginning

of the selection, move to the end of the selection, and Shift-click (click

while holding down the SHIFT key). This action selects all the text between

the beginning and the end of the selection.

Editing and Debugging 4-3

Scrolling

Here are some pointers on scrolling through text in the List window.

• When you reach the bottom of a List window and continue

entering lines, Amiga Basic automatically scrolls up one line at a

time.

• Amiga Basic automatically scrolls horizontally when you reach

the right edge of a List window and continue typing.

• Use the four arrow keys to move the insertion point one

character to the right or left or one line up or down.

• If you press the right arrow key and the insertion point is

already at the rightmost column of the display, the display

scrolls 75 percent to the right. If the display has already

scrolled as far to the right as possible, Amiga Basic beeps to

indicate it can go no further. The left, up, and down arrows

behave in a similar way.

• If you hold the SHIFT key down while you hold down any

arrow key, the display scrolls in that direction. If it has already

scrolled as far as possible in that direction, Amiga Basic beeps.

To move 75 percent of the way towards the right margin of a

given program line, press SHIFT-Right Arrow. To move 75

percent of the way towards the left margin of a given program

line, press SHIFT-Left Arrow.

• To move forward through a program listing a windowful at a

time, press SHIFT-Down Arrow. To move backwards through

a program listing a windowful at a time, press SHIFT-Up

Arrow.

• To move to the beginning of a program listing, press ALT-Up

Arrow. To move to the end of a program listing, press

ALT-Down Arrow.

4-4 Editing and Debugging

To move to the far right margin of a given program line, press

ALT-Right Arrow. To move to the far left margin of a given

program line, press ALT-Left Arrow.

Opening the List Window at a Specific Line or a Specified Label

To open the List window at a specified line, enter the LIST command in the

Output window and include a label or a line number. The List window

opens with that line as the first line.

For example, LIST MovePicture lists the Picture program, beginning with

the MovePicture routine, in the List window.

Debugging Programs

This section describes the four debugging features that Amiga Basic

provides: error messages, the TRON command, the Step option, and the

Suspend option. You can use these features to save time and effort while

removing program errors.

Error Messages

When a program encounters an error, three things happen: program

execution halts, a requester appears with the error message, and the line

with the error is outlined in the List window. See Appendix B, "Error

Codes and Error Messages," for a complete listing of these codes and

messages with some probable causes and suggestions for recovery.

TRON Command

It is easy to remember the TRON command as TRace ON. You are in Trace

mode whenever you choose the Trace On item from the Run menu, execute

the TRON statement in a program line, or enter TRON in the Output

window.

Editing and Debugging 4-5

If the List window is visible, the statement being executed is framed with an

orange rectangle. As the program executes, statement by statement, each

statement is framed.

To disable TRON, select the Trace Off item from the Run menu, execute

TROFF in a program line, or enter TROFF in the Output window.

If you have isolated the error to a small part of the program, it is easier and

quicker to turn on TRON from within the program, just before the error is

reached.

Step Option

The Step option executes the next statement of the program in memory. If

the program has been executed and stopped, Step executes the first

statement following the STOP statement. The program then returns to

immediate mode. If there is more than one statement on a line, Step

executes each statement individually. You can choose the Step item in the

Run menu or press Right Amiga-T.

If the List window is visible, Step frames the last statement that has been

executed.

You can advance through a program, step by step, testing results at the end

of each line, and interactively testing variable values by using the PRINT

command in the Output window.

To reset Step to start at the beginning of a program, enter the END

statement in the Output window.

Suspend Option

To create a pause in program execution, you can choose Suspend from the

Run menu or press Right Amiga-S. The pause continues until you press any

key (with the Output window selected) except Right Amiga-S, or until you

select Continue from the Run menu. Suspend is enabled whenever a

program is running.

4-6 Editing and Debugging

Continue Option

To resume execution of a program, you can enter the CONT command in

the Output window or choose Continue from the Run menu.

Using CUT, COPY, and PASTE Commands in List Windows

Don't forget that the contents of the Clipboard are replaced with each Cut

and Copy command. However, a Paste command does not change the

contents of the Clipboard, so you can paste the same contents into different

places in a program as many times as you want.

Sometimes you may want to cut something out of the program without

having it overwrite information you have on the Clipboard. You can do this

by highlighting the text you want to eliminate and pressing the BACKSPACE

key. This is also a good technique when you want to avoid generating "Out

of heap space" error messages, which can occur if you delete a very large

block of text.

Using the Output Window for Debugging

Once a program has been suspended, you can use the Output window to

glean useful debugging information in immediate mode. For example, if

your program is causing an error message, and the error occurs somewhere

within a loop, you can find out how many times the program has executed

the loop and all the variable values. You find this out by entering immediate

mode instructions in the Output window to PRINT the variables (for exact

syntax, see "PRINT" in Chapter 8.

Another use of the Output window in debugging is to change the values of

variables with immediate mode LET statements. You can assign a new

value to a variable and use the Continue selection on the Run menu to

resume program execution.

Editing and Debugging 4-7

u

u

LJ

U

U

U

LJ

LJ

U

U

U

U

U

U

LJ

LJ

Chapter 5

Working with Files

and Devices

This chapter discusses how to input and output information

through the system and how Amiga Basic uses files and

drives. In addition, it describes file-handling and gives

some suggestions for transferring data between Amiga Basic

and a word processor.

Working with Files and Devices 5-1

Generalized Device I/O

Amiga Basic supports generalized input and output. This means that you

can access various devices in a manner similar to accessing disk files. The

following devices are supported:

SCRN: Files can be opened to the screen device for output. All

data opened to SCRN: is directed to the current Output

window.

KYBD: Files can be opened to the keyboard device for input. All

data read from a file opened to KYBD: comes from the

Amiga keyboard.

LPT1: Files can be opened to the printer device for output. (This

is the same as the PRT: device.) All data written to a file

opened to LPT1: is directed to the line printer. See the

following discussion entitled "Printer Option" for more

details.

If "LPT1:BIN" is specified, Amiga Basic performs binary

output to the line printer. The binary option does not

expand tabs into spaces or force carriage returns when the

printer's width is exceeded.

COM1: Files can be opened to this device for input or output. Files

opened with COM1: communicate with the Amiga serial

port. Amiga Basic recognizes the following parameters as

part of the "COM1:" filename:

COMl: [baud-rate] [.[parity] [.[data-bits] [.stop-bits]]]]

baud rate the speed at which the Amiga communicates.

Setting this rate overrides the value set in

Preferences. The baud rate is one of the

following values: 110, 150, 300, 600, 1200,

1800, 2400, 3600, 4800, 7200, 9600, or

19200.

5-2 Working with Files and Devices

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

parity a technique for detecting transmission errors.

The default is E. This parameter's value is

either O (for odd), E (for even), or N (for

none).

data-bits the bits in each byte transmitted that are real

data and not overhead (parity bits and stop

bits). This parameter's value is either 5, 6, 7,

or 8.

stop-bits used to mark the end of the transmitted "byte."

When the baud rate is 110, the default for

stop-bits is 2. At all other baud rates, the

default is 1. When 2 stop bits and 5 data bits

are specified, 1.5 stop bits are used. For

example,

OPEN "COM1:3OO,N,7,2" AS #1

Printer Option

The Amiga supports a variety of printers, which are listed in the Preferences

tool. If you want your Amiga Basic output to use features such as margin

setting, italics, and so forth, you must specify special printer codes to do so.

For this reason, the Amiga includes a printer driver program for each

supported printer. Each such program converts standard printer codes into

special character sequences that the corresponding printer can understand.

There are three AmigaDOS printer devices:

PRT:

SER:

PAR:

The PAR: and SER: devices send output to the parallel and serial ports,

respectively. However, they do not convert your printer codes, and their

use is strongly discouraged for normal purposes. For serial applications such

Working with Files and Devices 5-3

u
as terminal emulators or inter-machine data transfers, the COM1: device is

preferable to SER:, as it allows you to directly set baud rate, parity, and (|
other parameters.

The PRT: device is used identically to the LPT1: device described above. I I
LPT1: is a Microsoft device name preserved for portability among different

machines. .—,

When you wish to specially format your program's output, you can include

the appropriate printer codes in the program's PRINT# statements. These I I

"escape sequences," as they are called, consist of the ESC character (ASCII '—'
27) followed by one or more other characters.

Suppose you have a Commodore CBM MPS-1000 printer attached to your

Amiga and wish to print portions of your output with underlines. First select

"CBM MPS1000" from the printers listed in the Preferences tool. Then I I

include the escape sequences for turning underlining on and off as part of

the program's PRINT# statements. The following program is an example: —

UnderON$ = CHR$(27)+" [4m11

UnderOFF$= CHR$(27)+"[24m" —

Textl$ = "Normal text" I |
Text2$ = "Underlined text"

OPEN "LPT1:" FOR OUTPUT AS #2 I I
PRINT #2, Textl$

PRINT #2, UnderON$+Text2$, I

PRINT #2, UnderOFF$+Textl$ I—I
CLOSE #2

0
Appendix I, "Printer-Dependent Source Code," in the Amiga ROM Kernel

Manual contains a table that lists the features that are available for each I I

supported printer. Next to each feature is the exact escape sequence you

should enter to put it into effect. __

U

U

u
5-4 Working with Files and Devices

Q

File Naming Conventions

There are a few filename constraints in Amiga Basic. All files have a

filename preceded by an optional volume (or disk) name and/or one or

more nested subdirectory names. The entire identification is called a

"pathname."

Filenames

Amiga Basic pathnames can be from 1 to 255 characters in length, and can

consist of either uppercase or lowercase alphanumeric characters or a

combination of both. Each file or subdirectory name within a path is limited

to 30 characters. No control characters can be used in filenames. Here are

some examples of valid filenames:

PAYROLL Picture AccountsREC CHECK_REGISTER

To specify a particular drive or volume as part of the pathname, enter its

name followed by a colon in front of the filename. Here are some

examples:

Demos:Picture

DF1:AccountsREC

To specify a subdirectory (the same as a WorkBench drawer) as part of the

pathname, enter a slash in front of the filename. Here are some examples:

BasicDemos/Picture

Mymemos:Notes/scratchfile

DF1:Worknotes/AccountsREC

As the last two examples illustrate, you can enter a volume or disk name in

front of the subdirectory name. See the AmigaDOS Reference Manual for

further information.

Working with Files and Devices 5-5

u

Volume Specifications —

Your Amiga comes with one built-in disk drive. You can connect an

additional disk drive to increase your storage capacity. Even on one-drive » i

systems, some people will have more than one volume. In this case, you '—'
must explain which volume is to be activated for loading or saving files. To

do this, add the relevant volume name to the filename, separating them by a | i

colon. In this manner, the volume name can be used in place of a drive '—'
number in a pathname.

If the program file you wish to load is on another disk, press the eject button '—'
next to the built-in disk drive, and insert the disk with the desired file. After

the disk is inserted, use the FILES command to display the files on the disk. | j

For example:

FILES "mydisk:" M

You can then load the file in the normal way. If the pathname you specify

includes a volume name for a disk that is not currently in the drive, a I I

requester appears that asks you to insert that volume.

For loading program files, it's best to select the Open item on the Project I I

menu. To save program files on another disk, it is best to select the Save As

item on the Project menu.

You can also load a program from another volume with the LOAD,

MERGE, or RUN commands. Enter the volume name and filename,

separated by a colon, in the Output window. However, if that volume has I I

not been previously mounted on the system, an "Unknown volume" error

message is generated. To avoid this, you will first have to eject the disk in

your built-in drive by pressing the eject button. Then you can insert the | |
volume containing the program you wish to load.

Handling Files

This section examines file I/O procedures for the beginning Amiga Basic '—'
user. If you are new to Amiga Basic, or if you are encountering file-related

errors, read through these procedures and program examples to make sure | I

you are using the file statements correctly. '—'

LJ
5-6 Working with Files and Devices

u

Program File Commands

The following is a brief overview of the commands and statements you use to

manipulate program files. More detailed information and rules of syntax are

given in Chapter 8, "Amiga Basic Reference," under the various statement

names.

Opening a Program File

There are three main ways to open a program file. The most common is to

use the LOAD command. When you load a program file, all open data files

are closed, the contents of memory are cleared, and the loaded program is

put into memory.

A second way to load a program file is to attach it to the end of a program

already in memory. Do this with the MERGE command. MERGE is useful

when you are developing a large program and want to test the parts of it

separately. After testing and debugging the parts, you can merge them

together. Note: You must save all files with the A option of the SAVE

command before you can MERGE them with a program currently in

memory.

A third way to open a program file is to transfer control to it during the

execution of another program. Do this with the CHAIN statement. When

you use CHAIN, the program in memory opens another program and brings

it into memory. The first program is no longer in memory. Options to the

CHAIN statement include preserving some or all variable values and

merging the program already in memory with the program to which control is

being transferred.

Putting Away Program Files

The two main ways to store your programs are: (1) to select Save or Save

As on the Project menu, or (2) to type the SAVE command in the Amiga

Basic Output window. For information on the Save and Save As selections,

see "The Menu Bar" in Chapter 3. For full details on the SAVE command,

Working with Files and Devices 5-7

u

see SAVE in Chapter 8. The default format for saved files is binary, or

compressed, format. j |

If you wish to protect a program from being listed or changed, use the , ,

"Protected" (,P) option with the SAVE command. You will almost certainly LJ
want to save an unprotected copy of a program for listing and editing

purposes. I ,

If you wish to save the program in ASCII format, use the ASCII (,A) option.

ASCII files use up more room than binary ones, but word processing i I

programs can read ASCII files, and CHAIN MERGE and MERGE can '—'
successfully work only with programs in this format.

u

Additional File Commands

Two additional file-handling statements are frequently used. The NAME

statement lets you rename existing program and data files. The KILL I I

statement lets you delete a data or program file from a volume. For detailed

information about these two commands, see KILL and NAME in Chapter 8,

"Amiga Basic Reference." j |

Data Files - Sequential and Random Access I/O u

Two types of data files can be created and accessed by an Amiga Basic I I
program: sequential files and random access files. Each type is described

below. I i

Sequential Files | |

Sequential files are easier to create than random access files, but they don't j |

provide as much speed and flexibility in locating data. The data written to a

sequential file is a series of ASCII characters that are stored, one item after

another (sequentially), in the order written. The data is read back J I

sequentially, one item after another.

U
5-8 Working with Files and Devices

u

n
Warning: You can open sequential files in order to write to them or read

[""] from them, but not both at the same time. When you need to add to an
existing sequential file that is already closed, do not open it for output.

Doing so erases the previous contents of the file before the new data is

! j recorded. If you don't want to erase existing data, use append mode (the A
option with the OPEN command) to add information to the end of an

existing file .

Amiga Basic gives you the option of specifying the file buffer size for

sequential file I/O. The default length is 128 bytes. This size can be

specified in the OPEN statement for the sequential file. The size you specify

is independent of the length of any records you are reading from or writing

to the file; it only affects the buffer size. A larger buffer size speeds I/O

operations, but takes memory away from Amiga Basic. A smaller buffer

size conserves memory, but produces lower I/O speed.

The following statements and functions are used with sequential data files:

CLOSE

EOF

INPUT#

INPUTS

USING#

WIDTH

LOC

LOF

OPEN

PRINT#

PRINT

LINE INPUT#

WRITE#

Creating a Sequential Data File

Program 1 is a short program that uses keyboard input to create a sequential

file named DATAFIL.

Working with Files and Devices 5-9

Program 1-Creating a Sequential Data File

OPEN "DATAFIL" FOR OUTPUT AS #1

ENTER:

INPUT "NAME ('DONE' TO QUIT)";N$

IF N$="DONE" THEN GOTO FINISH

INPUT "DEPARTMENT"; DEPT$

INPUT "DATE HIRED"; HIREDATE$

WRITE #1,N$,DEPT$,HIREDATE$

PRINT

GOTO ENTER

FINISH:

CLOSE #1

END

As illustrated in Program 1, the following program steps are required to

create a sequential file and to gain access to the data in it:

1. Open the file in output (that is, output to the file) mode.

2. Write data to the file using the WRITE# or the PRINT#

statements.

3. After you have put all the data in the file, close the file.

A program can write formatted data to the file with the PRINT # USING

statement. For example, you can use the statement

PRINT#1, USING"####.##,";A,B,C,D

to write numeric data to the file with commas separating the variables. The

comma at the end of the format string in PRINT # USING statements

separates the items in the file with commas. It is good programming practice

to use "delimiters" of some kind to separate different items in a file.

5-10 Working with Files and Devices

The PRINT# statement stores data without any delimiters. If you want

commas to appear in the file as delimiters between variable values without

having to specify each comma, use the WRITE # statement. For example,

you can use the statement

WRITE #1,A,B

to write the values of variables A and B to the file, with commas delimiting

them.

Reading Data from a Sequential File

Now let's look at Program 2. It gains access to the file DATAFIL that was

created in Program 1 and displays the names of employees hired in 1981.

Program 2-Accessing a Sequential Data File

OPEN "I",#1,"DATAFIL"

WHILE NOT EOF(l)

INPUT #1,N$,DEPT$,HIREDATE$

IF RIGHT$(HIREDATE$,2)="81"THEN PRINT N$

WEND

Program 2 reads each item in the file sequentially and prints the names of

employees hired in 1981. The WHILE...WEND control structure uses the

EOF function to test for the end-of-file condition and avoids the error of

trying to read past the end of the file.

Adding Data to a Sequential Data File

If you have a sequential file on the disk and want to add more data to the

end, you cannot simply open the file in output mode and start writing data.

As soon as you open a sequential file in output mode, you destroy its current

contents. Instead, use append mode (option A). If the file doesn't already

exist, append mode works exactly as it would if you used output mode.

Working with Files and Devices 5-11

LJ

You can use the following procedure to add data to an existing file called r- ,

"FOLKS." LJ

Program 3-Adding Data to a Sequential Data File

5-12 Working with Files and Devices

u

LJ
OPEN "A",#1,"FOLKS"

REM***Add new entries

NEWENTRY:

INPUT "NAME";N$

IF N$ = ""THEN GOTO FINISH 'Carriage Return exits loop

LINE INPUT "ADDRESS ? ",ADDR$ Ij
LINE INPUT "BIRTHDAY ? ",BIRTHDATE$

PRINT #1, N$

PRINT #1, ADDR$

PRINT #1, BIRTHDATE$

GOTO NEWENTRY

FINISH:

CLOSE #1 | j
END

LJ

The LINE INPUT statement is used for getting ADDR$ because it allows I I
you to enter delimiter characters (commas and quotes).

U
Random Access Files

LJ
Creating and accessing random access files requires more program steps

than creating and accessing sequential files. However, there are advantages f j

to using random access files. One advantage is that random access files '—'
require less room on the disk, since Amiga Basic stores them in a packed

binary format. (A sequential file is stored as a series of ASCII characters.) I 1

The biggest advantage to using random access files is that data can be

accessed randomly; that is, anywhere in the file. It is not necessary to read M

through all the information from the beginning of the file, as with sequential

files. This is possible because the information is stored and accessed in

distinct units called records. Each record is numbered. j)

LJ

LJ

U

n-

p_ The statements and functions that are used with random access files are:

CLOSE LOC OPEN

CVD LOF PUT

CVI LSET RSET

CVL MKD$

CVS MKI$

FIELD MKL$

GET MKS$

Creating a Random Access Data File

Program 4-Creating a Random Data File

OPEN "R",#l,"DATAFIL",32

FIELD #1,20 AS N$,4 AS A$,8 AS P$

START:

INPUT "2-DIGIT RECORD NO. (ENTER -1 TO QUIT)";CODE%

IF CODE%=-1 THEN QUITFILE

INPUT "NAME";PERSONS

INPUT "AMOUNT";AMOUNT

INPUT "PHONE";TELEPHONES

PRINT

LSET N$ =PERSON$

RSET A$ = MKS$(AMOUNT)

LSET P$ = TELEPHONES

PUT #1,CODE%

GOTO START

QUITFILE:

CLOSE #1

As illustrated by program 4, you need to follow these program steps to create

a random access file:

1. OPEN the file for random access (using mode R). If you use

the alternate syntax of the OPEN statement:

OPEN "DATAFIL" AS #1 LEN=32

the absence of an INPUT, OUTPUT, or APPEND parameter

Working with Files and Devices 5-13

specifies a random file. If the record length (LEN=) is not

specified, the default value is 128 bytes.

2. Use the FIELD statement to allocate space in a random buffer

for the data to be written to the random access file. The

random buffer is an area of memory, a holding area, reserved

for transferring data from files to program variables and vice

versa.

Here is an example of using the FIELD statement to create a random access

file:

FIELD #1,20 AS N$, 4 AS ADDR$, 8 AS P$

.3. To move the data into the random access buffer, use LSET or

RSET. You must convert numeric values into strings when

placing them in the buffer. To make these values into strings,

use the "make" functions: MKI$ to make an integer value into

a string, or MKS$ to make a single precision value into a string.

Here is an example of moving data into the random access buffer:

LSET N$ = X$

RSET AMOUNT$=MKS$(AMT)

LSET P$ = TEL$

Notice that the dollar value AMT uses RSET, since money is typically right

justified in a data field.

4. To write the data from the buffer to the disk, use the PUT

statement and specify the record number with an expression, for

example:

PUT #1, CODE%

Program 4 takes information that is input from the keyboard and writes it to

a random access file. Each time the PUT statement is executed, a record is

written to the file. The two-digit record numbers that are input in line 30

should be entered in numeric order.

5-14 Working with Files and Devices

n
Note: Do not use a fielded string variable in an INPUT or LET statement.

Amiga Basic will then redeclare the variable and will no longer associate that

variable with the file buffer, but with the new program variable instead.

Accessing a Random Access Data File

Program 5 gains access to the random access file DATAFIL that was created

in program 4. When you enter a two-digit code at the keyboard, Amiga

Basic reads and displays the information associated with that code from the

file.

Program 5-Accessing a Random Data File

OPEN "R",#l, "DATAFIL",32

FIELD #1,20 AS N$,4 AS A$,8 AS P$

START:

INPUT "2-DIGIT CODE (ENTER -1 TO QUIT)";CODE%

IF CODE%=-1 THEN QUITFILE

GET #1,CODE%

PRINT N$

PRINT USING "$$####.##";CVS(A$)

PRINT P$: PRINT

GOTO START

QUITFILE:

CLOSE #1

Follow these program steps to access a random access file:

1. OPEN the file in random mode.

2. To allocate the space in the random access buffer for the

variables to be read from the file, use the FIELD statement.

(For details on this procedure, see the FIELD statement in

program 4.)

Note: In a program that performs both input and output on the

same random access file, just one OPEN statement and one

FIELD statement will often suffice.

Working with Files and Devices 5-15

3. To move the desired record into the random access buffer, use

the GET statement.

The program can now access the data in the buffer. Numeric values that

were converted to strings by the MKI$ and MKS$ functions must be

converted back to numbers using the "convert" functions: CVI for integers

and CVS for single precision values. The MKI$ and CVI processes mirror

each other: MKI$ converts a number into a format for storage in random

files and CVI converts the random file storage into a format that the

program can use. * r

When used with random access files, the LOC function returns the "current

record number." The current record number is the last record number that

was used in a GET or PUT statement. For example, the following statement

IF LOC(l) > 50 THEN END

ends the program execution if the current record number in file #1 is greater

than 50.

Random File Operations

Program 6 is an inventory program that illustrates random file access.

Program 6 - Inventory

OPEN"INVEN.DAT" AS #1 LEN=39

FIELD #1,1 AS F$,30 AS D$, 2 AS Q$, 2 AS R$, 4 AS P$

FunctionLabel:

CLS:PRINT"Functions:":PRINT

Initialize file"

Create a new entry"

Display inventory for one part"

Add to stock"

Subtract from stock11

Display all items below reorder level"

Done with this program"

PRINT:PRINT:INPUT "Function";FUNCT

IF (FUNCT>0) AND (FUNCT<8) THEN GOTO Start

GOTO FunctionLabel

Start:

5-16 Working with Files and Devices

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

"1

"2

"3

"4

"5

"6

"7

ON FUNCT GOSUB 600,100,200,300,400,500,700

|I IF FUNCT<7 THEN GOTO FunctionLabel
END

100 :

PI GOSUB part

' ! IF ASC(F$)<>255 THEN INPUT "Overwrite";confirm$
IF ASC(F$)<>255 AND UCASE$(COnfirm$)o"Y" THEN RETURN

LSET F$=CHR$(O)

INPUT "Description ";descriptions

LSET D$=description$

INPUT "Quantity in stock ";Quantity%

LSET Q$=MKI$(Quantity%)

INPUT "Reorder Level ";reorder%

LSET R$=MKI$(reorder%)

INPUT "Unit price ";price

LSET P$=MKS$(price)

PUT #l,part%

INPUT "Press RETURN to continue",DUM$

RETURN

200 :

GOSUB part

IF ASC(F$)=255 THEN GOSUB NullEntry:RETURN

PRINT USING "Part Number tf##";part%

PRINT D$

PRINT USING "Quantity on hand #####";CVI(Q$)

PRINT USING "Reorder level #####";CVI(R$)

PRINT USING "Unit price $$##.##";CVS(P$)

INPUT "Press RETURN to continue",DUM$

RETURN

300 :

GOSUB part

IF ASC(F$)=255 THEN GOSUB NullEntry'.RETURN

PRINT D$

PRINT "Current quantity: ";CVI(Q$)

INPUT "Quantity to add";additional

Q%=CVI(Q$)+additional%

LSET Q$=MKI$(Q%)

PUT #l,part%

RETURN

400 :

GOSUB part

IF ASC(F$)=255 THEN GOSUB NullEntry:RETURN

PRINT D$

425 :

INPUT "Quantity to subtract";less%

Q%=CVI(Q$)

IF (Q%-less%)<0 THEN PRINT "Only ";Q%;" in stock":GOTO 425

Q%=Q%-less%

IF Q%<=CVI(R$) THEN PRINT "Quantity now ";Q%

LSET Q$=MKI$(Q%)

Working with Files and Devices 5-17

PUT #l,part%

INPUT "Press RETURN to continue",DUM$

RETURN

500 :

reorder=0

FOR 1=1 TO 100

GET #1,1

IF ASC(F$)=255 GOTO 525

IF CVI(Q$)<CVI(R$) THEN PRINT D$;" Quantity

";CVI(Q$);TAB(30)

IF CVI(Q$)<CVI(R$) THEN PRINT "Reorder level ";CVI(R$)

IF CVI(Q$)<CVI(R$) THEN reorder=(-l)

525 :

NEXT I

IF reorder=0 THEN PRINT "All items well-stocked."

INPUT "Press RETURN to continue",DUM$

RETURN

600 :

INPUT "Are you sure";confirms

IF confirm$o"y" AND confirm$o"Y" THEN RETURN

LSET F$=CHR$(255)

FOR 1=1 TO 100

PUT #1,1

NEXT I

RETURN

part:

Enterno:

INPUT "Part number? ",part%

IF (part%<l) OR (part%>100) THEN PRINT "Bad part number"

IF (part%<l) OR (part%>100) THEN GOTO Enterno

GET #l,part%

RETURN

NullEntry:

PRINT "Null Entry."

INPUT "Please press RETURN",DUM$

RETURN

700 : CLOSE #1

RETURN

5-18 Working with Files and Devices

n .

—. Transferring Data Between Amiga Basic

and a Word Processor

n '
1 ! Remember that word processing programs produce files with more

characters than the visible ones in your text. Many word processors use

|-H special hidden characters to control appearance and format and to control

1 the printer. These characters can ruin your program file.

r"j Most, but not all, word processing programs have a filing option called "text
only," "unformatted," or "non-document." When text is saved with this

option, all the hidden control characters are removed. Only the text is filed.

Also, if you write a program in Amiga Basic and later wish to use a word

processor to edit it, prepare the program first. When you save the Amiga

Basic program, use the ",A" (ASCII) option in the SAVE statement, which

saves the program in a format that can be read by the word processing

program.

Working with Files and Devices 5-19

U

U

u

u

LJ

U

LJ

Chapter 6

Advanced Topics

Amiga Basic supports several advanced programming

features, including subprograms, event trapping, and

memory management. It also provides access to the

Amiga's extensive library of functions. These powerful

features add flexibility to Amiga Basic. They are especially

helpful to programmers who develop programs for other

users. However, it is not necessary for beginners to master

them in order to use Amiga Basic effectively.

Subprograms are modules similar to subroutines but with

major advantages. They are especially helpful when you

wish to write routines that are to be reused in other

programs.

Advanced Topics 6-1

Event trapping allows a program to transfer control to a specific program line

when certain events occur, such as the passage of time, mouse activity, a

user's attempt to stop the program, menu selection, or the collision of

animated objects.

Memory management in Amiga Basic is available through use of the CLEAR

statement and the FRE function. These tools can help you create programs

that would otherwise be too large for the Amiga's memory.

The Amiga library routines are machine language routines that are

automatically loaded into memory when you boot the machine. However, to

use a particular library's routine, you must first open that library. After

calling the routine from within your Amiga Basic program, you must be sure

to close the library.

Subprograms

Subprograms are sets of program statements similar to subroutines. There

are three notable advantages to using subprograms.

First, subprograms use variables that are isolated from the rest of the

program. If you accidentally use the same variable name in a subprogram

and in the main program, the two variables still retain separate values.

Variables within subprograms are called local variables, because their values

cannot be changed by actions outside the subprogram.

The second advantage of subprograms is also related to local variables.

Programmers frequently find themselves producing the same routine over

and over in different programs, rewriting it each time to fit the variable

names and design of a new program. Because you don't need to rewrite a

subprogram to include it in another program, it's simple to produce a

collection of subprograms. Subprograms can then be merged into new

programs with minimal changes.

The third advantage of subprograms is that they can't be executed

accidentally. A subroutine can be executed accidentally if no END or

similar statement is placed before it; program flow simply enters the

6-2 Advanced Topics

subroutine. Subprograms only execute when a specific CALL to the

subprogram is made.

Subprogram Delimiters: The SUB and END SUB Statements

The statements that make up the body of a subprogram are enclosed by the

SUB and END SUB statements. The EXIT SUB statement can be used to

exit a particular subprogram before it reaches the END SUB statement.

Execution of an EXIT SUB or END SUB statement transfers program

control back to the calling routine. The syntax is as follows:

SUB subprogram-name [(formal-parameter-list)] STATIC

[SHARED list-of-variables]

END SUB

The subprogram-name can be any valid identifier up to 40 characters in

length. This name cannot appear in any other SUB statement.

The formal-parameter-list can contain two types of entries: simple variables

and array variables. (If you're planning to use array variables as parameters,

read "Entire Arrays" below.) Entries are separated by commas. The

number of parameters is limited only by the number of characters that can

fit on an Amiga Basic line.

STATIC is a required keyword. It indicates that all the variables within the

subprogram retain their values between invocations of the subprogram.

Static variable values cannot be changed by actions taken outside the

subprogram. STATIC requires that the subprogram be non-recursive; that

is, it does not contain an instruction that calls itself or that calls a

subprogram that in turn calls the original subprogram.

SHARED variables can be altered by parts of the program outside the

subprogram. Those variables you want shared must be explicitly listed in the

list-of-variables following the SHARED command. Any simple variables or

arrays referenced in the subprogram are considered local unless they have

Advanced Topics 6-3

been explicitly declared SHARED variables. See SHARED in Chapter 8 for

a discussion of the SHARED statement.

All Amiga Basic statements can be used within a subprogram, except the

following:

• User-defined function definitions

• A SUB/END SUB block. This means subprograms cannot be

nested.

• COMMON statements

• CLEAR statement

Shared and Static Variables in Subprograms

Shared Variables

The SHARED statement lets you use variables from the main program in a

subprogram (with their current values) without declaring them as arguments

in the CALL statement. The SHARED statement only affects variables

within that subprogram. For example:

A=l: B=5: C=10

DIM P(100),Q(100)

SUB AMIGA STATIC

SHARED A,B,P(),Q()

END SUB

6-4 Advanced Topics

In this example, all main program variables and arrays except C are shared

with the subprogram AMIGA.

Static Variables

The STATIC keyword is required for all subprogram definitions in Amiga

Basic. As already noted, variables and arrays referenced or declared in a

subprogram are considered local to the given subprogram. They are not

changed by statements outside of the subprogram unless they are declared in

a SHARED statement.

Amiga Basic assumes initial values of zero or null strings. If the subprogram

is exited and then reentered, however, variable and array values are those

present when the subprogram was exited.

Referencing Subprograms

The main program references subprograms through the CALL statement

with an argument list. The CALL command is an optional part of the

statement. (See CALL in Chapter 8 for more information.)

In this discussion, you will find references to "formal parameters" and

"arguments." Arguments refer to the program variables that are passed by

the main program in the CALL statement. Formal parameters refer to the

variables used by the subprogram that correspond to the passed arguments.

For example, in the following statement:

CALL FIGURETAX(SUBTOTAL, TAX, TOTAL())

the arguments are the variables SUBTOTAL and TAX, and the array

variable TOTAL.

If the FIGURETAX subprogram was called using the above CALL

statement, the subprogram's first line could appear as:

SUB FIGURETAX(FIGURE, TAXRATE, SUM(l)) STATIC

Advanced Topics 6-5

In this statement, the formal parameters are the variables FIGURE and

TAXRATE, and the array SUM. These parameters correspond to (and

return values to) the main program variables used as arguments:

SUBTOTAL, TAX, and TOTAL().

The parameter values that transfer (in the manner described above)

between the main body of the program and the subprogram are said to be

passed by reference. This means that if the formal parameter is modified by

the subprogram, the argument's value also changes. For example:

CALL AddIt(A,B,C)

SUB AddIt(X,Y,Z) STATIC

Z = X + Y

X = X + 12

Y = Y + 94

END SUB

Suppose that when the program executes the CALL statement, A has a

value of 2 and B equals 3. When control returns to the main program, A

and B will have altered values, because the A variable is tied to X , and B to

Y. If the value of X is changed in the subprogram, the value of A is altered

accordingly. In this example, the value of A is increased by 12 as a result of

the statement X = X + 12. This subtle change happened because the

variable X is an "alias" for the variable A.

When you don't want the values of variables in the main program to change

in the subprogram, put parentheses around the variables. Parentheses cause

these variables to retain their values, regardless of what happens in the

subprogram. For example:

CALL AddIt((A), (B), Result)

The parentheses around the first two arguments force Amiga Basic to treat

them as expressions. This means that their values cannot be changed by

subprograms. You need not use parentheses to pass expressions that are not

simple variables. For example:

6-6 Advanced Topics

CALL Addlt(1+2,3*A,Result)

Note that the type of arguments must match the type of the formal

parameters or a type mismatch error results. For example:

CALL Dolt(l)

SUB Dolt(x) STATIC

won't work, because it tries to pass the integer 1 to the single-precison

parameter x. On the other hand,

CALL Dolt(1.0)

SUB Dolt(x) STATIC

prevents this error.

Passing Parameters to Subprograms

Simple Variables and Array Elements

When simple variables or array elements are passed to an Amiga Basic

rn subprogram, they are passed by reference. The following example shows

how a subprogram is invoked by the CALL statement, and illustrates

call-by-reference argument passing:

n
DIM B(15)

A = 4

II CALL SQUARE(A,B(3))
PRINT A,B(3)

n ""
SUB SQUARE(X,Y) STATIC

— X = X+l

II Y = X*X

END SUB

n

n
Advanced Topics 6-7

n

LJ

This example prints the results 5 and 25. Each reference to Y in

subprogram SQUARE actually resulted in a reference to the third element of [_|
array B, and each reference to X resulted in a reference to A.

u
Entire Arrays

You can give simple variable parameters any valid Amiga Basic name. I—I
However, when you pass an entire array, it must be declared as a parameter

in the following form: |~ I

array-name ([number-of-dimensions])

U
where array-name is any valid Amiga Basic name for a variable and the

optional number-of-dimensions is an integer constant indicating the number __

of dimensions in the array. Note that the actual dimensions are not given [_J
here. For example,

G

CALL MATADD2(X%,Y%,P() ,Q() ,R()) , -,

END I I

SUB MATADD2(N%,M%,A(2),B(2),C(3)) STATIC

END SUB

u

u

In the subprogram's parameter list, N% and M% are integer variables, A II

and B are indicated as two-dimensional arrays, and C is a

three-dimensional array. The corresponding argument list in the main __

program only requires parentheses to indicate which arguments are arrays. I I

Array Bound Functions |~J

You can determine the upper and lower bounds of the dimensions of an

array by using the functions LBOUND and UBOUND. I I

U
6-8 Advanced Topics

o

LBOUND returns the lower bound, either 0 or 1, depending on the setting

of the OPTION BASE statement. The default lower bound is 0. UBOUND

returns the upper bound of the specified dimension.

Each function has two syntaxes: a general syntax and a shortened syntax

that can be used for one-dimensional arrays. The syntaxes are as follows:

LBOUND (array) for 1-dimensional arrays

LBOUND(array,dim) for n-dimensional arrays

UBOUND (array) for 1-dimensional arrays

UBOUND (array, dim) for n-dimensional arrays

The array is a valid Amiga Basic identifier and the dim argument is an

integer constant from 1 to the number of dimensions of the specified

array.

LBOUND and UBOUND are particularly useful for determining the size of

an array passed to a subprogram. See LBOUND in Chapter 8 for examples

of the use of array bound functions.

Expressions

You can also pass expressions as arguments to Amiga Basic subprograms. An

argument expression is considered to be any valid Amiga Basic expression,

except simple variables and array element references. When an expression

is encountered in the argument list in a CALL statement, it is assigned to a

temporary variable of the same type. This variable is then passed by

reference to the subprogram. This is equivalent in effect to the

call-by-value passing in functions, whereby the value itself is passed.

If a simple variable or array element is enclosed in parentheses, it is passed

the same way as an expression (that is, as call-by-value). For example, if

the CALL SQUARE statement in a previous example (see "Simple

Variables and Array Elements") were changed to

CALL SQUARE ((A),B(3))

the results printed would be 4 and 25. In this case (A) is passed as an

expression, and therefore the subprogram cannot change the value of A.

Advanced Topics 6-9

u

Calling Assembly Language Routines , .

As with subprograms, you invoke assembly language routines using the

CALL statement. Your Amiga Basic program must read the routine's binary |_J
file into memory and then CALL a simple variable that identifies the starting

address of the routine. The variable name cannot be an array element.

Parameters are passed by value according to C-language calling conventions.

All parameters must be short or long integer in type, although you can use , ,

VARPTR to pass the address of a single- or double-precision variable. I—I
Similarly, you can use the SADD function to pass the address of a string

variable. For example, i i

CALL Myroutine(VARPTR(ZZ), SADD(A$))

U
passes the addresses of single-precision variable ZZ and string variable A$,

respectively.

u
Note: Arrays should not be passed as parameters to assembly language

procedures using the conventions outlined for subprograms. Instead, the

base element of an array should be passed by reference if the entire array I I
needs to be accessed in the assembly language program. For example:

CALL XREF(VARPTR (A(0,0))) I—>

passes the starting element of a two-dimensional array A to routine XREF. I |

The following program example calls a simple machine language routine that

converts a string of text to uppercase and then prints the result. Preceding | |

the Amiga Basic program is a listing of the machine code, showing how the

stack is handled during the execution of the routine.

U

U

u
6-10 Advanced Topics

u

n

Program 1

48E7

202F

206F

4281

6000

1230

0C01

6D00

0C01

6E00

0230

51C8

4CDF

4E75

C080

0010

0014

001C

0000

0061

0010

007A

0008

OODF

FFE4

0103

- Example Assembly Language

SECTION

MOVEM.L

MOVE.L

MOVE.L

CLR.L

BRA

StartLoop:

MOVE.B

CMP.B

BLT

CMP.B

BGT

0000 AND.B

WhileTest:

DBF

MOVEM.L

RTS

END

CODE

Program

A0/D0-D1, - (SP) ; save registers

16(SP),D0

20(SP),A0

Dl

WhileTest

0(A0,D0),D1

#'a',Dl

WhileTest

#'z',Dl

WhileTest

#($FF-$20),O(AC

DO,StartLoop

(SP)+,AO/DO-D1

; get length

;Get addr 1st byte $

; Clr high bytes Dl

; Go to loop test

■

>.D0)

Get next byte $

If < 'a',

or > 'z'

leave it alone

else remove $20 bit

& replace

Loop while ct > 0

Decrement count

Restore registers

Return to Basic

Parameters used by the routine are pushed onto the stack at the time the

routine is called. The parameters for routine CODE are pushed in the

following order:

Offsets:

string address (addr&) 8 (SP)

string length (length&) 4 (SP)

return address 0 (SP)

(SP = Stack Pointer)

After registers AO, DO, and Dl are pushed, the stack status is as follows:

Offsets:

string address (addr&) 20 (SP)

string length (length&) 16 (SP)

return address 12 (SP)

AO 8 (SP)

Dl 4 (SP)

DO 0 (SP)

Advanced Topics 6-11

Below is a listing of an Amiga Basic program called CAPS, which loads and

calls the machine language routine and prints the converted string.

Program 2 - Calling an Assembly Language Program

DIM code%(27)

FOR i = 0 TO 27

READ code%(i)

NEXT

INPUT "Mixed case string"; S$

Ucase = VARPTR(code%(0))

lengthfc = LEN(S$): addrfc = SADD(S$)

CALL Ucase(lengths, addr&)

PRINT "The converted string is:"

PRINT S$

DATA &H48E7, &HC080, &H202F, &H0010, &H206F, &H0014

DATA &H4281, &H6000, &H001C, &H1230, &H0000, &H0C01

DATA &H0061, &H6D00, &H0010, &H0C01, &H007A, &H6E00

DATA &H0008, &H0230, &HOODF, &H0000, &H51C8, &HFFE4

DATA &H4CDF, &H0103, &H4E75

Program 2 first reads the hexadecimal values that represent the compiled

code of the assembly language routine listed in Program 1. The length of the

data is 56 bytes; thus, the integer array code%() is dimensioned to 27

(4-byte) cells.

An INPUT statement prompts the user for a mixed case string, which

becomes the value of variable S$. The variable Ucase is assigned the

starting address of the array containing the routine. Amiga Basic then

assigns a temporary variable of the same name.

The CALL statement sends control to the routine. Two arguments—the

length and the address of the string to be converted—are passed to the

routine. They are enclosed in parentheses after the routine name in the

6-12 Advanced Topics

CALL statement. This causes them to be pushed onto the stack at the time

the routine executes (address first, then length).

The routine checks for any lowercase letters. If found, lowercase letters are

replaced with their uppercase counterparts in the string. All other

characters are left alone. When the end of the string is reached, the routine

returns control to Amiga Basic. The program then prints the converted

string.

Event Trapping

Event trapping lets your program detect certain "events" and respond to

them by branching to an appropriate routine. The events that can be

trapped are: time passage (ON TIMER), mouse activity (ON MOUSE), the

selection of a custom menu item (ON MENU), a user's attempt to halt the

program (ON BREAK), and the collision of an animated object with another

object or the window (ON COLLISION).

If event trapping is active, Amiga Basic checks after each statement it

executes to see if the specified events have occurred. If an event has

occurred and event trapping is active, Amiga Basic automatically transfers

control to the routine beginning at the specified label.

After servicing the event, the subroutine executes a RETURN statement.

Program execution then resumes at the statement immediately following the

last statement executed before the event trap occurred.

To effect event trapping, you must include two special statements: the first

informs Amiga Basic where to transfer control when an event occurs, and

the second activates the event trap.

Specifying Flow of Control

The general format for the ON...GOSUB statement that specifies flow of

control in event trapping is as follows:

ON <eventspecifier> GOSUB <label>

Advanced Topics 6-13

The eventspecifier must be one of the following event keywords:

TIMER The timer is the Amiga's internal clock. If you use timer

event trapping, you can force an event trap every time a

given number of seconds elapses.

MOUSE Mouse event trapping lets you redirect program flow when

the user clicks the mouse.

MENU Menu event trapping lets you use the selection of custom

menu items to redirect program flow.

BREAK Break event trapping lets you send program control to a

specified subroutine when the user presses Right

Amiga-period (the break keystroke) or CTRL-C.

Note: You should exercise caution when using break event

trapping. If you use the ON BREAK statement in a program

being tested, you can't exit the program before Amiga Basic

executes a program END statement without rebooting the

Amiga. One way to avoid this potential problem is to omit

the BREAK ON statement that activates the ON BREAK

event trap until you complete testing.

COLLISION This routine is invoked whenever an object created by the

OBJECT.SHAPE statement collides with another object or

window border. See Chapter 8 for further details on event

trapping in animation programs.

To disable event trapping for an event, use a label of 0 (zero):

ON <eventspecifier> GOSUB 0

Activating Event Trapping

To activate event trapping for the specified event, use the statement:

<eventspecifier> ON

6-14 Advanced Topics

where eventspecifier is one of the event keywords. An event will not be

trapped by the ON <eventspecifier> GOSUB... statement unless the

corresponding eventspecifier ON statement has been previously executed.

Suspending and Terminating Event Trapping

Other statements that control event trapping are:

<eventspecifier> OFF to turn off trapping

<eventspecifier> STOP to halt trapping temporarily

When the eventspecifier is OFF, no trapping takes place. The event is not

remembered.

When the eventspecifier is STOPped, no trapping takes place. However,

Amiga Basic remembers an event so that an immediate trap takes place as

soon as an eventspecifier ON statement is executed.

When a particular event is detected, the trap automatically causes a STOP

on that eventspecifier, so recursive traps can never occur. A return from the

trap routine automatically reenables the event trap unless an explicit OFF

has been executed inside the trap routine.

Note: Once an error trap takes place, all trapping of a particular event is

automatically disabled until a RESUME statement is executed.

Memory Management

Amiga Basic includes the CLEAR statement to help writers of large

programs manage memory allocation for different purposes. Using the

CLEAR statement, you can control the size of three different areas of

memory:

• The stack

• Amiga Basic's data segment

• The heap

Advanced Topics 6-15

The syntax of the CLEAR statement is:

CLEAR [, [data-segment-size] [, stack-size]]

The data-segment-size argument dictates how many bytes are to be reserved

for Amiga Basic's data segment. The stack-size argument dictates how

many bytes are to be reserved for the stack.

The amount of RAM remaining (Total - (data segment + stack size)) is the

RAM reserved for the heap. Using the CLEAR statement, you can allot the

space your program requires for the three adjustable areas of RAM.

The Stack

The stack keeps "bookmarks" telling where to return to from GOSUBS,

nested subroutine calls, nested FOR...NEXT loops, nested WHILE/WEND

loops, and nested user-defined functions.

Certain Amiga ROM calls require a considerable amount of stack space. The

deeper you nest in your control structures, the more stack space is required

to execute a program. If you specify the stack size in a CLEAR statement,

the value must be at least 1024.

Amiga Basic's Data Segment

Amiga Basic's data segment holds the text of the program currently in

memory. It also contains numeric variables and strings. In addition, the

data segment contains file buffers for opened files.

Amiga Basic automatically gets a data segment size of 25000 bytes. If you

have a small program to run and wish to run other Amiga tasks while your

program executes, simply execute a CLEAR statement with a smaller data

segment size.

On the other hand, if your program is very large or memory intensive—for

example, one using multiple bit-planes and several animated objects—you'll

likely want Amiga Basic to use all the available RAM. The best way to

6-16 Advanced Topics

n

-^ assign the required memory is with a small program that executes a CLEAR

t ! statement specifying the desired RAM allotment and then CHAINs in the

application program.

I—I

' • If your program is tight for memory, there are a number of ways you can

conserve memory. A sequential file buffer has a default size of 128 bytes.

|—1 Thus, one memory conservation technique is to define a smaller sequential

file buffer. A smaller buffer may slow execution of an I/O intensive

program, however. See OPEN in Chapter 8 for details on changing a

f~| sequential file's buffer size.

Additionally, the kind of numeric variables you use will have an effect on

[j data segment space. Integer variables take half the number of bytes of single
precision; single-precision take half the number of bytes of double

precision. Also, chaining several small programs together uses less memory

I | than loading and running a large program that incorporates all the smaller
ones.

n
The System Heap

n
Amiga Basic shares the System Heap with other tasks running on the Amiga.

The LIBRARY, WINDOW, and SCREEN statements all consume memory

pn from the heap.

The system heap also contains the buffer for SOUND and WAVE

information. When used, this buffer takes up 1024 bytes of RAM. Heap

space can be kept smaller by releasing the SOUND/WAVE buffer with a

WAVE 0 statement when it is no longer needed.

Using the FRE Function for Memory Management

While you develop a program, you can keep track of your program's stack

size and data segment size and system heap requirements by using the FRE

function. The FRE function takes the following two forms:

FRE(rc)

FRE(" ")

Advanced Topics 6-17

In the FRE(n) syntax, there are three different functions.

1. If (n) is -1, the function returns the number of free bytes

available in the heap.

2. If (n) is -2, the function returns the number of bytes never used

by the stack. This does not return the number of free bytes

available in the stack. It is used in testing programs to fine-tune

the stack-size parameter of the CLEAR statement.

3. If (n) is any number other than -1 or -2, or if you use the FRE

(" ") function, Amiga Basic returns the number of free bytes

available in Amiga Basic's data segment.

All versions of the FRE function compact string space.

Calling Library Routines

Library routines are special Amiga resource files that are bound to Amiga

Basic dynamically at run time. You use the CALL statement to execute one

of the library routines, in a manner similar to executing your own assembly

language routines. Parameters are passed by value using standard

C-language conventions. To access a library routine, you must first open

the library that contains that routine.

The following discussion briefly steps through a portion of the Library

program contained in the BasicDemos drawer on your Extras disk.

Opening a Library

There are several libraries available for use in your Amiga Basic

applications, each containing a varying number of special routines.

Associated with each routine is a special "how-to" file that describes the

parameters that routine takes and which registers must be used. These

special files are called .fd files. You'll find a complete list of the information

they contain in the Amiga ROM Kernel Manual.

6-18 Advanced Topics

Amiga Basic uses the information in the .fd files in a slightly different format

than the assembler or C languages. Therefore, it requires that each .fd file

be converted to a .bmap file before its associated routine can be accessed

from Amiga Basic. ConvertFD, the utility program that performs this

conversion, is contained on the Extras disk in the BasicDemos drawer

(subdirectory).

The Extras disk contains some of the .bmap files for the libraries. You can

find the complete set of .fd files on the Amiga Macro Assembler disk or the

Amiga C disk. Once the .fd files are on your disk, you must use ConvertFD

to convert them to .bmap files.

See Appendix F for details on the .bmap file format.

You open a library with the LIBRARY statement. Assuming your disk

contains the appropriate .bmap files, the LIBRARY statement puts all of that

library's routines at your program's disposal. As many as five libraries can

be open at one time.

Calling a Function

Once the library is open, its routines can be called in a manner similar to

subprograms or your own machine language routines. If your application

expects a returned function value, however, you must inform Amiga Basic of

the value's type (for example, long integer, denoted by a trailing declaration

character &) in a DECLARE FUNCTION statement.

The following portion of the Library demonstration program illustrates these

statements:

Advanced Topics 6-19

LJ

DECLARE FUNCTION AskSoftStylefc LIBRARY

DECLARE FUNCTION OpenFontfc LIBRARY LJ
LIBRARY "graphics.library"

enable% = AskSoftStyle&(WINDOW(8)) I I
Font "topaz.font",8,0,0

FOR i=0 to 4 II

SetStyle CINT(2Ai) 1—I
NEXT i

: u

SUB SetStyle(mask%) STATIC J~j

SHARED enable% '—'
SetSoftStyle WIND0W(8), mask%, enable%

PRINT "SetSoftStyle (";mask%;")" |]

END SUB

LJ
The DECLARE FUNCTION statements alert Amiga Basic to expect integer

values from the graphics.library functions AskSoftStyle& and OpenFont&.

The LIBRARY statement opens graphics.library. j |

The next statement performs a call to AskSoftStylefc, with the returned . -.

value assigned to the variable enable%. Note that the word CALL is not a I—I
required part of the statement syntax, except under certain circumstances

(noted below). AskSoftStyle& takes one parameter-^the WINDOW r")

function, which identifies the rastport from which the current font '—'
information is extracted. When Amiga Basic performs the call, it sets up a

temporary variable of the same name, AskSoftStyle. (The trailing & is i "(

ignored, other than indicating the type of returned value.) '—'

In this example, the returned value is truncated to a short integer. The |~J
value represents the eight style bits of the current font. The DECLARE

FUNCTION could just as easily use a short integer:

U
DECLARE FUNCTION AskSoftStyle% LIBRARY

u

LJ
6-20 Advanced Topics

u

Without a declaration, however, Amiga Basic would attempt to assign

single-precision and the results would be garbage.

Several other graphics.library routines are also used in the example, each

with a list of the parameters Amiga Basic is passing to it. Each of the library

routines is described in the Amiga ROM Kernel Manual.

Explicit Use of the CALL Keyword

Most library routine calls can be made as in the preceding program example.

However, if the routine call follows ELSE or THEN in a statement, you must

explicitly use the CALL keyword to distinguish the routine from a label.

For example:

IF pFontfc <> 0 THEN CALL CloseFont (pFontfc)

Advanced Topics 6-21

LJ

LJ

U

LJ

LJ

U

U

LJ

LI

LJ

U

U

LJ

LJ

U

LJ

Chapter 7

Creating Animated Images

This chapter describes the Object Editor, a utility program

supplied with Amiga Basic that creates images for

manipulation by Amiga Basic animation routines. The

discussion includes both an overview of the Object Editor

and step-by-step instructions for creating an image.

Creating Animated Images 7-1

Overview

Amiga Basic implements the animation facilities built into the Amiga system

through program statements and the Object Editor. The COLLISION and

OBJECT statements (described in Chapter 8) manipulate images in the

output window. The Object Editor defines these images (or objects, as they

are referred to throughout this book).

With the Object Editor, you can:

• instantly create ovals, rectangles, and lines by moving the mouse

between two points on the Object Editor canvas, which is the

portion of the Output window where you create the object.

• draw free-form across the canvas with the Object Editor pen

• select colors that form the borders of the object you create

• paint the interior of the objects with the border color

• erase and edit the images as required

After creating an object, you save it in a file whose name you specify; the file

contains the static attributes (including the size, shape, and color) of the

object. To animate the object from a program, open the file, read the

contents as a string, and then use the OBJECT.SHAPE to define the object

to your program. For an example of statements that do this, see the

OBJECT.SHAPE description in Chapter 8 of this manual.

Note: The Object Editor assigns attributes to objects to ensure that, during

program execution, they collide both with each other and with the border of

the window. You can change this initial setting using an OBJECT.HIT

statement (described in Chapter 8) in your program.

7-2 Creating Animated Images

The Editor Window

This section explains the layout of the Object Editor window (shown below),

where you create your objects.

The following subsections explain the items in the window.

Menu Bar

Three menus are available: File, Tools, and Enlarge. The File menu lets

you save and retrieve the object files you create. The Tools menu provides

several methods of creating images. The Enlarge menu lets you expand

your object for fine details. These menus are described in the next section.

Canvas

The Canvas, located in the upper lefthand corner, is where you create and

color (as well as erase) objects.

Creating Animated Images 7-3

u

You can increase the size of the canvas by placing the pointer in the Sizing . (

Gadget and—while holding down the mouse Selection button—move the j_j
mouse until the canvas reaches the desired size.

If you are creating a sprite (a sprite is one of two types of objects you can '—'
create, and is described later in this chapter), you cannot increase the width

beyond the size displayed (16 pixels, from 0 to 15); you can, however,

increase the height.

Color Choice Bar

The Color Choice Bar lets you change the paint and border colors for

objects. To change the color, move the pointer over the desired color and

click the Selection button. The characters in the word Color that appear

next to the bar change to the color you select.

The number of color choices in the Choice Bar depends on the depth of the

screen, as determined by the depth parameter in the program's SCREEN

statement (see Chapter 8 for a description of this statement).

To create objects with more than four colors, change the ObjEdit program

(comments are included in the program listing to help you do this). See

"How to Increase Screen Depth," below.

Status Line

To the left are the X and Y coordinates; they indicate the current size (in

pixel coordinates) of the canvas. Next, the current Tools selection item

(Pen, Oval, Line, Rectangle, Paint, or Eraser) appears.

The Editor Menus

The following table summarizes the items in the File menu.

7-4 Creating Animated Images

u

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Item Function

New Erases the screen and restores the canvas to its original

dimensions if they have been changed.

Open Prompts you for the name of an existing file. Specify the

name of any file previously created through the Object

Editor and press RETURN.

Save Saves the file under the same name as it was opened. The

Object Editor prompts you for a file name if you previously

chose New. Enter the name and press RETURN.

Save as Prompts for a file name. Specify a name and press

RETURN.

Quit Causes an exit from the Object Editor and returns you to

Amiga Basic.

The following table summarizes the items in the Tools menu.

Item Function

Pen Allows free-form drawing.

Line Draws a straight line between two points.

Oval Draws an egg-shaped image.

Rectangle Draws a rectangle.

Erase Removes images from the canvas.

Paint Permits coloring the interior of an image with the current

color choice. This option is not available on a 256K

machine.

Creating Animated Images 7-5

The following table summarizes the items in the Enlarge menu.

Item

4x4

lxl

Function

Expands the canvas by a factor of four. The canvas size

must be no larger than 100 pixels across by 31 pixels down.

Restores expanded canvas to normal size.

A Note about Bobs and Sprites

The Amiga system recognizes two types of objects; Amiga terminology refers

to these objects as sprites and bobs. The Object Editor prompts you to

select either a sprite or a bob before you can define the object. Therefore,

you must be aware of the differences between these two object types before

defining one. (If you are already familiar with these differences, skip to the

next section of the chapter.)

bobs:

Bobs

Move slower than sprites.

Size is limited only by memory available.

Full set of colors allowed.

All bobs can be displayed.

u

u

u

u

0

u

u

7-6 Creating Animated Images

jrence between sprites and

Sprites

Move faster than bobs.

Width must be 16.

Only 3 colors allowed.

Only four sprites with

different colors can be

shown on the same line at

the same time.

U

LJ

Q

U

D

u

u

u

0

Any screen depth is allowed Screen depth must be 2.

The depth corresponds to

the value specified for the

depth parameter of the

SCREEN statement; see

SCREEN in Chapter 8 for

details.

For details on bobs and sprites, see the Graphics Animation Routines

chapter in the Amiga ROM Kernel Manual.

How to Create Objects

The Object Editor resides on the Extras disk in the BasicDemos drawer

under the name ObjEdit. You open the editor and start operations just as

you would any other Amiga Basic program. (Chapter 2 gives the steps to

achieve this.) Then, follow the steps listed below.

Note: If you use a 256K machine, drag the Object Editor icon out of the

BasicDemos window. Then close all windows and click on the Object Editor

icon. This frees a maximum amount of memory for using the Object Editor.

If you wish to load the Objedit program from within Basic, use the file

name "basicdemos/objedit". Also, change the line with the LIBRARY

statement from LIBRARY "graphics.library" to LIBRARY

" :basicdemos/graphics.library".

1. Once you've opened the Object Editor, the following prompt

appears:

Enter 1 if you want to edit sprites

Enter 0 if you want to edit bobs >

Make the desired selection and press RETURN.

Note: Do not attempt to send the Object Editor window to the

back of other windows.

Creating Animated Images 7-7

u

2. Next, the Object Editor window appears. From the Files --

menu, select New (to create a new object) or Open (to modify |_l
an existing object).

3. From the Tools menu, choose how you want to create the LJ
image: drawing free-form with the pointer, or by drawing an

oval, rectangle, or line. Choose Erase to remove any part of the

object.

Move the pointer to the starting position on the canvas, press

the Selection button and hold it down, move the pointer to the

end position, and then release the button. The drawing or

erasure stops when the pointer moves outside the frame and

resumes when it returns.

Note that when you're creating an oval, a rectangle appears on

the canvas; upon release of the button, an oval replaces this

rectangle.

4. To change colors, move the pointer to the color choice bar at

the bottom of the screen, and then click the Selection button.

The Object Editor then outlines each new image created on the

screen with this color.

5. To paint the interior of an image, choose the desired color from

the choice bar; then choose Paint from the Tools menu, move

the pointer to the region you want to paint, and press the mouse

button.

The area you paint should be entirely surrounded by an outline

of the same color. Otherwise, or if a broken border exists, the

color "leaks" out into the surrounding area.

6. To make the canvas bigger, place the pointer in the Sizing

Gadget, hold down the Selection button, and move the mouse

until the canvas reaches the desired size.

Amiga Basic treats the canvas as one object, regardless of the

number of distinct images drawn on it. Multiple objects must be

drawn on separate canvases and saved in distinct files.

7-8 Creating Animated Images

7. After completing the object, choose Save As (when creating a

new object) or Save (when editing an existing object). Note:

You should save your work often, so that you can undo

mistakes.

How to Use Images from Other Editing Sources

You can use output from other graphic editing sources with the Amiga Basic

OBJECT statements if you wish. Below is a description of the file format for

objects saved by ObjEdit (and, therefore, that expected by the OBJECT

statements that control animation).

Word#

0,1

2,3

(32-bit)

unused

depth

unused

width

4,5

(16-bit)

height A B

6,7 datal ...

data2 ... data3

last

Creating Animated Images 7-9

A -

B -

C -

datal

data2 -

data3 -

D -

bit 0: 1 if vSprite, 0 if bob

bit 1: flag—is collision plane included in file? (unused in

ObjEdit)

bit 2: flag—is image shadow included in file? (unused in

ObjEdit)

bit 3: saveback (as described in the Amiga ROM Kernel

Manual)

bit 4: overlay (as described in the Amiga ROM Kernel Manual)

bit 5: savebob (if set, use image as a "paintbrush"; see the

Amiga ROM Kernel Manual)

Plane pick (as described in the Amiga ROM Kernel Manual)

Plane on/off (as described in the Amiga ROM Kernel Manual)

Sequential byte values of image: upper-left to lower-right of

plane 1, upper-left to lower-right of plane 2, ...upper-left to

lower-right of plane n in depth of n

Image-shadow bit plane (unused unless bit 2 of word A is set)

Collision bit-plane (unused unless bit 1 of word A is set)

Six bytes for sprite colors if bit 0 of word A is set. (Only first

four bytes are used)

How to Increase Screen Depth

The ObjEdit program uses a screen depth of 2, allowing you a choice of only

the background color and three other colors. If your program's memory

requirements allow, you can create animation objects with a greater color

variation. The animation program that uses these objects must have a

screen depth that matches the depth used in creating the object.

7-10 Creating Animated Images

n
Each time you increase the screen depth by 1, you increase the number of

! I available colors for your object by a power of 2. For example, a depth of 4

means you can use 2A4, or 16, different colors.

r—i

! I In the ObjEdit program, you'll find instructions for increasing the display
depth. The comments include program lines from which you can remove

the apostrophe to make them execute. These are as follows:

n
DEPTH = 3 ' (This assumes you want 8 colors)

I"™1 scrn=l

1 SCREEN scrn,640,200.Depth,2
WINDOW 1,,(0,0)-(WinX,WinY),31,scrn

The above lines set variables DEPTH and scrn, then use these variables to

open a custom screen and a window within that screen. When you activate

these lines and then create an object within the custom screen that results,

your animation object is saved complete with the information about that

screen.

Therefore, it is important to make sure that the program that controls your

animation also creates a screen whose depth is three. Remember that you

can only create bobs, not sprites, in a screen depth greater than two.

Creating Animated Images 7-11

U

LJ

Li

LJ

LJ

u

LJ

U

LJ

U

U

LJ

U

U

Chapter 8

Amiga Basic Reference

The first part of this chapter describes the elements of the

Amiga Basic language and the syntax and grammar that

applies to the language. The second part is the Statement

and Function Directory.

Reference 8-1

Character Set

The Amiga Basic character set is composed of alphabetic, numeric, and

special characters. These are the only characters that Amiga Basic

recognizes. There are many other characters that can be displayed or

printed, but they have no special meaning to Amiga Basic.

The Amiga Basic alphabetic characters include all the uppercase and

lowercase letters of the American English alphabet. Numeric characters are

the digits 0 through 9. The following list shows the special characters that

are recognized by Amiga Basic.

Character

#

$

&

Name or Function

Blank

Equal sign or assignment symbol

Plus sign

Minus sign

Asterisk or multiplication symbol

Slash or division symbol

Up arrow or exponential symbol

Left parenthesis

Right parenthesis

Percent sign

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)

Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol

8-2 Reference

LJ

U

U

Li

U

LJ

LJ

LJ

LJ

LJ

U

U

LJ

U

u

u

u

Character

RETURN

Name or Function

At-sign

Underscore

Terminates input of a line

Double quotation mark

The following list shows the Amiga-key characters that are used in Amiga

Basic.

Key Combination

Amiga-period (.)

Amiga-S

Amiga-T

Amiga-C

Amiga-P

Amiga-X

Amiga-R

Amiga-L

Function

Interrupts program execution and returns to Amiga

Basic command level.

Suspends program execution.

Executes the next statement of the program.

Executes the "Copy" edit function.

Executes the "Paste" edit function.

Executes the "Cut" edit function.

Executes the "Start" run function.

Executes the "Show" List window function.

The Amiga Basic Line

Amiga Basic program lines have the following format:

[nnnnn] statement [.statement...] [comment]<return>

or

[alpha-num-label:]statement1 [:statement2...] [comment]<return>

The nnnnn (which specifies the line number) must be an integer between 0

and 65529.

Reference 8-3

LJ

The alpha-num-label is any combination of letters, digits, and periods that

starts with a letter and is followed (with no intervening spaces) by a colon j_j

(:)•

A comment is a non-executing statement or characters that you may put in LJ
your programs to help clarify the program's operation and purpose.

As you can see, Amiga Basic program lines can begin with a line number, an '—'
alphanumeric label, neither, or both, and must end with a carriage return. A

program line can contain a maximum of 255 characters. More than one I j

Amiga Basic statement can be placed on a line, but each must be separated

from the last by a colon. Program lines are entered into a program by

pressing the Return key. This carriage return is an invisible part of the line I I

format.

Line numbers and labels are pointers used to document the program (make j |
it more easily understood) or to redirect program flow, as with the GOSUB

statement. -

If, for example, you want a specific part of a program to run only when a

certain condition is met, you could write the following program: i j

IF Account$<>"" THEN GOSUB Design

The interpreter searches for a line with the label Design: and executes the '—'
subroutine beginning with that line. Note that no colon is needed for Design

in the GOSUB statement. j "i

Note: Amiga Basic executes each line you enter sequentially regardless of

the line number you assign. You should be aware of this if you are j j
accustomed to using another BASIC that sorts the lines sequentially before

execution.

u

u

u

u
8-4 Reference

u

Label Definitions

Alphanumeric line labels can contain from 1 to 40 letters, digits, or periods.

They must begin with an alphabetical character. This allows the use of

mnemonic labels to make your programs easier to read and maintain.

For example, the following line numbers and alphanumeric labels are valid:

Line Numbers Alphanumeric Labels

100 ALPHA:

65000 A16:

SCREEN.SUB:

Restrictions

In order to distinguish alphanumeric labels from variables, each

alphanumeric label definition must have a colon (:) following it. A legal

label cannot have a space between the name and the colon. When you refer

to a label in a GOSUB or GOTO or other control statement, do not include

the colon as part of the label name. You cannot use any Amiga Basic

reserved word as an alphanumeric label.

While the line number 0 is not restricted from use in a program,

error-trapping routines use line number 0 to mean that error trapping is to

be disabled. Thus,

ON ERROR GOTO 0

does not branch to line number 0 if an error occurs. Instead, error trapping

is disabled by this statement.

Warning: Line numbers are used only as labels. Amiga Basic does not sort

them or remove duplicates.

Reference 8-5

Format

A label, a line number, or both a label and a line number can appear on any

line. The line number, when present, must always begin in the leftmost

column. A label must begin with the first non-blank character following the

line number (if present) and end with a colon; a blank cannot exist between

the label and the colon.

Alphanumeric labels and line numbers can be intermixed in the same

program.

Constants

Constants are the actual values Amiga Basic uses during program execution.

There are two types of constants: string and numeric. A string constant is a

sequence of alphanumeric characters enclosed in double quotation marks.

String constants may be up to 32,767 characters in length.

Numeric constants are positive or negative numbers. There are five types of

numeric constants:

Short Integer Whole numbers between -32768 and +32767.

Short integer constants do not contain decimal

points.

Long Integer Whole numbers between -2147483648 and

2147483647. Long integer constants do not

contain decimal points.

Fixed-point Positive or negative real numbers; that is,

number constants that contain decimal points.

8-6 Reference

n

Floating-point Positive or negative numbers represented in

exponential form (similar to scientific notation).

A floating-point constant consists of an

optionally signed integer or fixed-point number

(the mantissa) followed by the letter E and an

optionally signed integer (the exponent).

(Double precision floating-point constants are

denoted by the letter D instead of E.)

Hex constants Hexadecimal numbers with the prefix &H.

Octal constants Octal numbers with the prefix &O or &.

Fixed-point and floating-point constants can be either single-precision or

double-precision numbers. Single-precision numeric constants are stored

with 7 digits of precision (plus the exponent) and printed with up to 7 digits

of precision. Double-precision numbers are stored with 16 digits of

precision and printed with up to 16 digits of precision. (See Appendix D,

Internal Representation of Numbers, for details on the internal format of

numbers. A single-precision constant is any numeric constant that has one

of the following properties:

• Seven or fewer digits

• Exponential form denoted by E

• A trailing exclamation point (!)

A double-precision constant is any numeric constant that has one of the

following properties:

• Eight or more digits

• Exponential form denoted by D

• A trailing declaration character (#)

Reference 8-7

The following are examples of numeric constants:

Single Precision Double Precision

46.8

-1.09E-6

3489.0

22.5!

345692811

-1.09432D-06

3489.0#

7654321.1234

Numeric constants in Amiga Basic cannot contain commas.

Variables

Variables represent values that are used in a program. As with constants,

there are two types of variables: numeric and string. A numeric variable can

only be assigned a value that is a number. A string variable can only be

assigned a character string value. You can assign a value to a variable, or it

can be assigned as the result of calculations in the program. Before a

variable is assigned a value, its value is zero (numeric variables) or null

(string variables).

Variable Names

A variable name can contain as many as 40 characters. The characters

allowed in a variable name are letters, numbers, and the decimal point. The

first character in a variable name must be a letter. Special type declaration

characters are also allowed (see "Declaring Variable Types" in this section).

Variable names are not case-sensitive. That means that variables with the

names ALPHA, alpha, and AlPhA are the same variable.

If a variable begins with FN, Amiga Basic assumes it to be a call to a

user-defined function. (See "DEF FN" in the Statement and Function

Directory that follows for more information on user-defined functions.)

8-8 Reference

n

, , Reserved Words

Reserved words are words that have special meaning in Amiga Basic. They

include the names of all Amiga Basic commands, statements, functions, and

operators. Examples include GOTO, PRINT, and TAN. Always separate

reserved words from data or other elements of an Amiga Basic statement

with spaces. Reserved words cannot be used as variable names. Reserved

words can be entered in either uppercase or lowercase. A complete list of

reserved words is given in Appendix C, "Amiga Basic Reserved Words."

While a variable name cannot be a reserved word, a reserved word

embedded in a variable name is allowed.

Declaring Variable Types

Variable names can be declared either as numeric values or as string values.

String variable names can be written with a dollar sign ($) as the last

character. For example:

LET A$ = "SALES REPORT"

The dollar sign is a variable type declaration character; that is, it "declares"

that the variable will represent a String.

You can assign a numeric value certain properties by appending a trailing

declaration character to its variable name. You can declare the value to be

a short integer or a long integer a with single-precision or double-precision

value. Computations with double-precision variables are more accurate

than single-precision variables. However, double-precision variables take

up more memory space than single-precision precision variables.

The default type for a numeric variable is single precision.

The trailing declaration characters for numeric variables and the memory

requirements (in bytes) for storing each variable type are as follows:

Reference 8-9

% SHORT Integer 2

& LONG Integer 4

! Single precision 4

Double precision 8

$ String 5 bytes plus the contents of the

string.

Instead of using the trailing declaration characters, you can include

DEFINT, DEFLNG, DEFSTR, DEFDBL, and DEFSNG statements in a

program to relate the starting letter of a variable name to a variable type.

Each time you declare a variable name beginning with the specified letter,

Amiga Basic assumes the variable type you specified in the DEFtype

statement. (These statements are described in the DEFINT section later in

this chapter.)

Array Variables

An array is a group of values of the same type, referenced by a single

variable name. The individual values in an array are called elements. Array

elements are variables also. They can be used in any Amiga Basic statement

or function that uses variables. Declaring the name and type of an array and

setting the number of elements in the array is known as dimensioning the

array.

Each element in an array is referenced by an array variable that is

subscripted with an integer or an integer expression. An array variable

name has as many subscripts as there are dimensions in the array. For

example, V(10) would reference a value in a one-dimension array, T(l,4)

would reference a value in a two-dimension array, and so on. Note that the

array variable T(n) and the "simple" variable T are not the same variable.

The maximum number of dimensions for an array is 255. The maximum

number of elements per dimension is 32,768.

Individual elements of string arrays need not be the same length.

Array elements, like numeric variables, require a certain amount of memory

space, depending on the variable type. The memory requirements for

storing arrays are the same as for variables, each element of the array

requiring as much as the same type of "simple" variable.

8-10 Reference

n

Type Conversion

When necessary, Amiga Basic will convert a numeric constant from one type

to another. Keep the following rules in mind.

If a numeric constant of one type is assigned to a numeric variable of a

different type, the numeric constant is stored as the type declared in the

variable name. (If a string variable is assigned to a numeric value or vice

versa, a "Type mismatch" error message is generated.)

During expression evaluation, all of the operands in an arithmetic or

relational operation are converted to the same degree of precision; that is,

the degree of the most precise operand. Also, the result of an arithmetic

operation is returned to this degree of precision.

Logical operators convert their operands to integers and return an integer

result. The operand must be in the range applicable to the short integer or

long integer specified.

When a floating-point value is converted to an integer, the fractional portion

is rounded.

Expressions and Operators

An expression is a combination of constants, variables, and other

expressions with operators. Expressions are "evaluated" by the interpreter

to produce a string or numeric value. Operators perform mathematical or

logical operations on values. The operators provided by Amiga Basic can be

divided into four categories:

• Arithmetic

• Relational

• Logical

• Functional

Reference 8-11

Hierarchy of Operations

The Amiga Basic operators have an order of precedence; that is, when

several operations take place within the same program statement, certain

operations are executed before others. If the operations are of the same

level, the leftmost one is executed first, the rightmost last. The following is

the order in which operations are executed:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Exponentiation

Unary Negation

Multiplication and Floating-Point Division

Integer Division

Modulo Arithmetic

Addition and Subtraction

Relational Operators

NOT

AND

OR and XOR

EQV

IMP

Arithmetic Operators

The Amiga Basic arithmetic operators are listed in the following table in

order of operational precedence:

Operator

-

*

/

\

MOD

+, -

Operation

Exponentiation

Unary Negation

Multiplication

Floating-Point Division

Integer Division

Modulo Arithmetic

Addition, Subtraction

Sample E;

XAY

-X

X*Y

X/Y

X\Y

Y MOD Z

X+Y, X-Y

8-12 Reference

To change the order in which the operations are performed, use

parentheses. Operations within parentheses are performed first. Inside

parentheses, the usual order of operation is maintained.

Amiga Basic expressions look somewhat different from their algebraic

equivalents. Here are some sample algebraic expressions and their Amiga

Basic counterparts:

Algebraic Expression Amiga Basic Expresssion

X - Z

Y (X - Z) / Y

XY

Z X * Y / Z

X + Y

Z

(X2)Y

Yz

XY

X(-Y)

(X

(X'

X'

X*

+ Y) / Z

>2)«Y

(YAZ)

(-Y)

Integer Division

Integer division is denoted by the backslash (\) instead of the slash (/); the

slash indicates floating-point division. The operands of integer division are

rounded to integers (for short integers, in the range -32768 to +32767 and

for long integers, from -2147483648 to 2147483647) before the division is

performed, and the quotient is truncated to an integer.

Reference 8-13

For example:

X=10/4

Y=25.68\6.99

PRINT X,Y

Modulo Arithmetic

Modulo arithmetic is denoted by the operator MOD. Modulo arithmetic

provides the integer remainder of an integer division.

For example:

10.4 MOD 4=2 (10\4=2 with a remainder of 2)

25.68 MOD 6.99=5 (26\7=3 with a remainder of 5)

Note that Amiga Basic rounds both the divisor and the dividend to integers

for the MOD operation.

Overflow and Division by Zero

If a division by zero is encountered during the evaluation of an expression,

the "Division by zero" error message is also displayed, machine infinity (the

highest number Amiga Basic can produce) with the sign of the numerator is

supplied as the result of the division, and execution continues. If the

evaluation of an exponentiation results in zero being raised to a negative

power, the "Division by zero" error message is displayed, positive machine

infinity is supplied as the result of the exponentiation, and execution

continues. If overflow occurs, the "Overflow" error message is displayed,

plus or minus infinity is supplied as a result, and execution continues.

Relational Operators

Relational operators are used to compare two values. The result of the

comparison is either "true" (-1) or "false" (0). This result can then be used

to make a decision regarding program flow (see the "IF...THEN" statement

8-14 Reference

in the Statement and Function Directory). The following table lists the

relational operators:

Operator

=

o

<

>

<=

>=

Relation Tested

Equality

Inequality

Less than

Greater than

Less than or equal to

Greater than or equal to

Expression

X

X

X

X

X

X

= Y

o Y

< Y

> Y

<= Y

>= Y

(The equal sign is also used to assign a value to a variable. See "LET" in

the Statement and Function Directory.) When arithmetic and relational

operators are combined in one expression, the arithmetic operation is always

performed first.

Logical Operators

Logical operators perform bit manipulation, Boolean operations, or tests on

multiple relations. Like relational operators, logical operators can be used

to make decisions regarding program flow.

A logical operator returns a result from the combination of true-false

operands. The result (in bits) is either "true" (-1) or "false" (0). The

true-false combinations and the results of a logical operation are known as

truth tables. There are six logical operators in Amiga Basic. They are:

NOT (logical complement), AND (conjunction), OR (disjunction), XOR

(exclusive or), IMP (implication), and EQV (equivalence). Each operator

returns results as indicated in the following table. A "T" indicates a true

value and an "F" indicates a false value. Operators are listed in order of

operational precedence.

Reference 8-15

Operation

NOT

AND

OR

XOR

IMP

EQV

Value

X

T

F

X

T

T

F

F

X

T

T

F

F

X

T

T

F

F

X

T

T

F

F

X

T

T

F

F

Value

Y

T

F

T

F

Y

T

F

T

F

Y

T

F

T

F

Y

T

F

T

F

Y

T

F

T

F

Result

NOT X

F

T

X AND Y

T

F

F

F

X OR Y

T

T

T

F

X XOR Y

F

T

T

F

X IMP Y

T

F

T

T

X EQV Y

T

F

F

T

In an expression, logical operations are performed after arithmetic and

relational operations. Logical operators convert their operands to signed,

two's complement integers in the range applicable to the long integer or

short integer specified.

8-16 Reference

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

If both operands are supplied as 0 or -1, logical operators return 0 or -1,

respectively. The given operation is performed on these integers in bits; that

is, each bit of the result is determined by the corresponding bits in the two

operands. Thus, it is possible to use logical operators to test bytes for a

particular bit pattern. For instance, the AND operator can be used to

"mask" all but one of the bits of a status byte. The OR operator can be used

to "merge" two bytes to create a particular binary value. The following

examples illustrate how the logical operators work:

63 AND 16 = 16 63 = binary 111111 and 16 = binary 010000, so 63

AND 16 = 16.

15 AND 14 = 14

-1 AND 8 = 8

4 OR 2 = 6

-1 OR -2 = -1

NOT X = -(X+l)

15 = binary 1111 and 14 = binary 1110, so 15 AND

14 = 14 (binary 1110).

-1 = binary 1111111111111111 and 8 = binary

1000, so -1 AND 8 = 8.

4 = binary 100 and 2 = binary 10, so 4 OR 2 = 6

(binary 110).

-1 = binary 1111111111111111 and -2 = binary

1111111111111110, so -1 OR -2 = -1. The binary

complement of 16 zeroes is sixteen ones, which is

the two's complement representation of -1.

The two's complement of any integer is the bit

complement plus one.

Functions and Functional Operators

When a function is used in an expression, it calls a predetermined operation

that is to be performed on its operands. Amiga Basic has two types of

functions: "intrinsic" functions, such as SQR (square root) or SIN (sine),

which reside in the system, and user-defined functions that are written by

the programmer.

Reference 8-17

u

See the Statement and Function Directory starting on page 8-19 for exact

description of individual intrinsic functions and DEF FN. 1 I

u
Using Operators with Strings

A string expression consists of string constants, string variables, and other

string expressions combined by operators. There are three classes of

operations with strings: concatenation, relational, and functional. | |

Concatenation

Combining two strings together is called concatenation. The plus symbol (+) | |
is the concatenation operator. Here is an example of the use of the

operator:

LET A$ = "File" : LET B$ = "name"

PRINT A$ + B$

PRINT "New " + A$ + B$ ||
END

These statements display the following on the screen: I I

Filename

UNew Filename

This example combines the string variables A$ and B$ to produce the value

"Filename." |_|

Relational Operators M

Strings can also be compared using the same relational operators that are

used with numbers: I |

.<><><.>. u

u
8-18 Reference

u

Using operators with strings is similar to using them with numbers, except

that the operands are strings rather than numeric values. String comparisons

are made by taking one character at a time from each string and comparing

the ASCII codes. The ASCII code system assigns a number value to each

character produced by the computer. (See Appendix A, "ASCII Character

Codes.") If all the ASCII codes are the same, the strings are equal. If the

ASCII codes differ, the lower code number precedes the higher. If during

string comparison the end of one string is reached, the shorter string is said

to be smaller if they are equal to that point. Leading and trailing blanks are

significant.

Here are some examples of true expressions:

11AA" < "BB"

"FILENAME" = "FILENAME"

"X&" >= "X#"

"CL " <> "CL"

"KG" <= "kg"

"SMYTH" < "SMYTHE"

Thus, string comparisons can be used to test string values or to alphabetize

strings. All string constants used in comparison expressions must be

enclosed in quotation marks.

Statement and Function Directory

The Statement and Function directory describes each Amiga Basic

command or function, including the appropriate syntax for each statement.

Many descriptions include a programming example. The syntax conventions

are outlined below, followed by a description of each Amiga Basic command

and function, listed alphabetically.

Syntax Conventions

Amiga Basic is a powerful programming language with over 130 statements

and functions. These are presented in alphabetical order on the following

pages.

The correct syntax for each statement or function is given after the name.

There are two kinds of syntax: one for statements and one for functions. All

Reference 8-19

u

functions return a value of a particular type and can be used wherever an

expression can be used. Unlike functions, statements can appear alone on I |
an Amiga Basic program line or they can be entered in immediate mode

where they are considered commands. ,

Following the name and syntax is a summary of what the statement or

function does, descriptions of arguments and options, and an explanation of] I

how to use the statement or function. '—'

Cross-references to related statements and functions (if any) along with II

notes and warnings are provided following the example program using the

statement or function.

U
The following syntax notation is used in this section:

U
CAPS Items in capital letters must be input as shown.

italics Items in italics are to be supplied by the user. '—'

[] Items inside square brackets are optional. The brackets are I I

not a part of the statement syntax.

Items followed by ellipses may be repeated any number of | |
times.

{ } Braces indicate that the user has a choice between two or I—I
more items. One of these items must be chosen unless the

entries are also enclosed in square brackets. The braces are

not a part of the statement syntax. U

| Vertical bars separate the items enclosed in braces discussed I I

above.

() Items in parentheses are to be supplied by the user. | |

All punctuation including commas, parentheses, semicolons, hyphens, and I I
equal signs must be included where shown.

U
8-20 Reference

u

ABS ABS(X)

Returns the absolute value of the expression X.

Example:

The following example shows the results ABS returns for a positive and a

negative number.

LET X = 987 : LET Y = -987

PRINT ABS (X), ABS(Y)

The results displayed on the screen are as follows:

987 987

AREA AREA [STEP](X,Y)

Defines a point of a polygon to be drawn with the AREAFILL statement.

The parameters x and y specify one of several points that Amiga Basic is to

connect in forming a polygon with an AREAFILL statement. The

AREAFILL statement ignores all AREA statements in excess of 20.

If STEP is included, x and y are offsets from the current graphics pen

position. Otherwise, they are absolute values specifying a location in the

current window.

See also: AREAFILL

AREAFILL areafill [mode]

Alters the interior of a polygon defined by two or more preceding AREA

statements.

Reference 8-21

ASC

The mode parameter determines the format of the polygon as shown in the

following table.

0 Fills the area with the area pattern established by the PATTERN

statement. This is the default mode.

1 Inverts the area.

Example:

The following statements draw a triangle and fill its interior:

AREA (10,10)

AREA STEP (0,40)

AREA STEP (40,-40)

AREAFILL

See also: AREA, PATTERN, and COLOR

Returns a numerical value that is the ASCII code for the first character of

the string X$.

The Amiga Basic character set includes the entire ASCII set, but also

contains additional characters. These non-ASCII characters, as well as the

standard ASCII characters, may be tested with the ASC function (see

Appendix A, "ASCII Character Codes").

See also: CHR$

Example:

The following demonstrates the use of the ASC function:

8-22 Reference

LET OBJECTS = "T"

PRINT ASC(OBJECTS)

END

This statement prints out the following value:

84

ATN ATN(X)

Returns the arc tangent of X, where X is in radians. The result is in the

range -pi/2 to pi/2 radians.

The evaluation of this function is performed in single precision when the

argument is in single precision and in double precision when the argument is

in double precision.

Examples:

In the following example, ATN is used in a program that converts numbers

to their respective arc tangents.

'Arctangent request program

newnumber:

INPUT "Enter a number •■, NUMBER

PRINT "Arc tangent of " NUMBER " is " ATN(NUMBER)

INPUT "If you have another number, enter y ", YORN$

IF YORN$ = "y" GOTO newnumber

END

The following example shows the results produced by this program:

Enter a number 33

Arc tangent of 33 is 1.540503

If you have another number, enter y y

Enter a number 2

Arc tangent of 2 is 1.107149

If you have another number, enter y n

Reference 8-23

LJ

BEEP BEEP j-j

Sounds the speaker and flashes the display.

The BEEP statement causes a momentary sound. The statement is useful

for alerting the user.

Example:

IF MemLeftfc < 100 THEN

BEEP

LOCATE 17,1

PRINT "OUT OF MEMORY: decrease picture size";

END IF

BREAK ON BREAK ON

BREAK OFF break off

BREAK STOP break stop

Enables, disables, or suspends event trapping based on the user trying to

stop program execution.

The BREAK ON statement enables event trapping of user attempts to halt

the program (by pressing Amiga-period or selecting the Stop option on the

Run menu).

The BREAK OFF statement disables ON BREAK event trapping. Event

trapping stops until a subsequent BREAK ON statement is executed. The

BREAK STOP statement suspends BREAK event trapping. Event trapping

continues, but Amiga Basic does not execute the ON BREAK...GOSUB

statement for an event until a subsequent BREAK ON statement is executed.

See also: ON BREAK

8-24 Reference

Example:

This program fragment illustrates the use of ON BREAK.

BREAK ON

ON BREAK GOSUB DIRECTUSER

DIM PAYTIME(99),HRS(99),GROSS(99),FIT(99),FICA(99),STATE(99),NET(99)

LET TOTALEMPLOYEES =99

OPEN "0",#l,"EmployeePay"

FOR 1=1 TO TOTALEMPLOYEES

WRITE#1,PAYTIME(I),HRS(I),GROSS(I),FIT(I),FICA(I),STATE(I),NET(I)

NEXT I

CLOSE #1 .'BREAK OFF

INPUT "Do you wish to print the payroll now (Y/N)?", ANSWERS

IF ANSWERS = "Y" THEN BREAK ON: GOSUB PRINTCHECKS

END

DIRECTUSER:

CLS:BEEP:PRINT "You can't exit program until file is updated."

RETURN

CALL CALL name [(argument-list)]

name [argument -list]

(1) Calls an Amiga Basic subprogram as defined by the SUB statement; (2)

calls a machine language routine at a fixed address; or (3) calls a machine

language LIBRARY routine.

The CALL keyword optional. If CALL is omitted, the parentheses

surrounding argument-list are also omitted. See Chapter 6 for further

details.

Calling Amiga Basic Subprograms Defined by the SUB Statement

You can call subprograms using the SUB statement. Variables are passed by

reference. Expressions are passed by value. For example,

SUB ALPHA (x,y) STATIC

END SUB

CALL ALPHA (a,b)

Reference 8-25

See the SUB statement in this chapter and also in Chapter 6 for more

information on calling subprograms.

Calling Machine Language Subprograms

The CALL statement is the only way to transfer program flow to an external

subroutine. The name identifies a simple variable that contains an address

that is the starting point in memory of the subroutine. The name cannot be

an array element.

The argument list contains the arguments that are passed to the subroutine.

Parameters are passed by value using the standard C-language calling

conventions. All parameters must be short integer or long integer, or Amiga

Basic issues a "Type mismatch" message. The address of a single or double

precision variable can be passed as follows:

CALL Routine(VARPTR(x))

The address of a string can be passed as follows:

CALL Routine(SADD(x$))

In the following example, the variable that holds the address of the routine is

a short integer (&). (Use a long integer if the address length is 24 bits; a

short integer or a single-precision number can't hold a 24-bit address.)

a=0: b=0

DIM Code%(100)

FOR 1=0 TO 90

READ Code%(I)

NEXT I

CodeAdr& = VARPTR(Code%(0))

CALL CodeAdr&(a,b)

Calling a Machine Language Subroutine from a LIBRARY

Library routines are machine language routines that are bound to Amiga

Basic dynamically at runtime.

Library files are special Amiga resource files.

8-26 Reference

H

p—| Parameters are passed by value using standard C-language conventions.
! !

Example:

LIBRARY "graphics.library"

CALL Draw(50,60)

In the above example, Amiga Basic creates a variable by the name of Draw.

It then stores information about where the machine language routine resides

in this variable. For this reason, the variable cannot be a short integer.

For example, the following call would generate a "Type mismatch" error

DEFINT A-Z

CALL Draw(50,60)

but the following call would be acceptable:

DEFINT A-Z

CALL Draw*(50,60)

Note that Amiga Basic ignores the trailing declaration character (#)

following the routine name when searching the libraries for the routine. So,

in the above example, it would search for "Draw," and not "Draw#."

Warning

Because the word CALL can be omitted, a CALL can be executed with the

syntax

name argument-list

Such a CALL statement may resemble an alphanumeric label.

Consider the statement

ALPHA: Let A = 5

Reference 8-27

It is not visually clear whether the statement is calling a subprogram named

ALPHA with no argument list, or the statement LET A = 5 is on a line with

the label ALPHA:. In such a case, ALPHA: is assumed to be a line label

and not a subprogram call with no arguments.

After a THEN or ELSE keyword, CALL is required to distinguish the

identifier from a label.

CDBL CDBL(X)

Converts X to a double-precision number.

Example:

The following example shows the product of two single-precision numbers

displayed in single-precision, and then converted to double precision and

displayed.

A! = 6666 : B! = 100000!

PRINT A!*B!, "(result printed in single precision)"

PRINT CDBL(A!*B!), "(result printed in double precision)"

The following is displayed on the screen:

6.66E+08 (result printed in single precision)

66660000 (result printed in double precision)

CHAIN CHAIN [MERGE] filespe^[expression] [,[ALL] [.DELETE range]]]

Executes another program and passes variables to it from the current

program.

The filespec is the specification of the program that is called.

The expression is a line number, or an expression that evaluates to a legal

line number, in the called program. It is the starting point for execution of

8-28 Reference

the called program. If it is omitted, execution begins at the first line. An

alphanumeric label cannot be used as a starting point.

The MERGE option allows a subroutine to be brought into the Amiga Basic

program as an overlay. That is, the current program and the called program

are merged, with the called program being appended to the end of the

calling program. The called program must be an ASCII file if it is to be

merged.

With the ALL option, every variable, except variables which are local to a

subprogram in the current program, is passed to the called program. If the

ALL option is omitted, the current program must contain a COMMON

statement to list the variables that are passed.

If the ALL option is used and the expression is not, a comma must hold the

place of the expression.

CHAIN leaves files opened.

After an overlay is used, it is usually desirable to delete it so that a new

overlay may be brought in. To do this, use the DELETE option.

Note: The CHAIN statement with the MERGE option preserves the current

OPTION BASE setting.

If the MERGE option is omitted,CHAIN does not preserve variable types or

user-defined functions for use by the chained program. That is, any

DEFINT, DEFLNG, DEFSNG, DEFSTR, DEFDBL, or DEF FN statements

must be restated in the chained program. Also, CHAIN turns off all event

trapping. If event trapping is still desired, each event trap must be turned on

again after the chain has executed.

When using the MERGE option, user-defined functions should be placed

before the range deleted by the CHAIN statement in the program.

Otherwise, the user-defined functions are undefined after the merge is

complete.

Reference 8-29

The DELETE range consists of a line number or label, a hyphen, and

another line number or label. All the lines between the two specified lines,

inclusive, are deleted from the program chained from.

See also: COMMON, MERGE

Example:

This program illustrates the use of the CHAIN and COMMON statements.

COMMON ACCT,BALANCE!.CHARGES(), DISCOUNT!, CONTACTS

CHAIN "Receivables"

CHDIR CHDIR string

Changes the current directory.The string is an expression that identifies the

new directory that becomes the current directory.

Example:

CHDIR "dfl:" ' Change to the current directory on Device 1

CHDIR "dfO:c" ' Change to Directory C on Device 0

CHDIR "/" ' Change to parent directory

CHR$ CHR$(7)

Returns a string whose one character has the ASCII value given by I (see

Appendix A, "ASCII Character Codes").

CHR$ is commonly used to send a special character to the screen or a

device. For instance, the ASCII code for the bell character (CHR$(7)) can

be printed to cause the same effect as the BEEP statement, or the form feed

character (CHR$(12)) can be sent to clear the Output window and return

the cursor to the home position.

8-30 Reference

Example:

In the following example, CHR$ converts the ASCII codes 65 through 90 to

their respective ASCII character representation.

CLS

FOR I = 65 TO 90

PRINT CHR$(I); SPC(l);

NEXT I

The following is displayed on the screen:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

CINT CINT(X)

Converts X to an integer by rounding the fractional portion.

If X is not in the range -32768 to 32767, an "Overflow" error message is

generated. Related to CINT are the CDBL and CSNG functions which

convert numbers to the double precision and single precision data types,

respectively.

Note: For a decimal portion that is exactly .5, if the integer portion of X is

even, the function rounds down. If it is odd, the function rounds up.

Example:

The following example displays three non-integer numbers, and then

displays each number after conversion with CINT.

PRINT CINT(-3.5)

PRINT CINT(-3.2)

FOR I = 1 TO 3

X = RND*10

PRINT X, "= random number generated by RND, times 10"

PRINT CINT(X), "= integer portion of the same number"

NEXT I

Reference 8-31

The following is displayed on the screen:

-4

-3

1.213501 = random number generated by RND, times 10

1 = integer portion of the same number

6.518611 = random number generated by RND, times 10

7 = integer portion of the same number

8.686811 = random number generated by RND, times 10

9 = integer portion of the same number

See also: CLNG, CDBL, CSNG, FIX, INT

CIRCLE CIRCLE [STEP](x,y),radius [,color-id [,start,end [.aspect]}]

Draws a circle or an ellipse with the specified center and radius.

The x parameter is the x coordinate for the center of the circle.

The y parameter is the y coordinate for the center of the circle.

The STEP option indicates the x and y coordinates are relative to the

current coordinates of the pen. For example, if the most recent point

referenced were (10,10), CIRCLE STEP(20,15) would reference a point 30

for x and 25 for y.

The radius is the radius of the circle in pixels. The color-id specifies the

color to be used; it corresponds to the color-id in a PALETTE statement.

The default color is the current foreground color as set by the COLOR

statement.

The start and end parameters are the start and end angles in radians. The

range is -2*(Pi) through 2*(Pi). These angles allow the user to specify

where a circle or ellipse begins and ends. If the start or end angle is

negative, the circle or ellipse is connected to the center point with a line,

and the angles are treated as if they were positive. The start angle may be

less than the end angle.

The aspect is the aspect ratio, which is the ratio of the width to the height of

one pixel. The aspect ratio used by manufacturers of monitors varies.

8-32 Reference

CIRCLE draws a perfect circle if aspect is set to the aspect ratio of the

monitor; otherwise, CIRCLE draws an ellipse.

The aspect ratio for the standard Amiga monitor (using high resolution and

the 640 by 200 screen) is 2.25:1 or approximately .44 (1/2.25), which is the

default for aspect. If you specify .44 for aspect, or omit a specification, a

perfect circle is drawn on the Amiga monitor.

Example:

CIRCLE (60,60),55

The above example draws a circle with a radius of 55 pixels; the center of

the circle is located at x coordinate 60 and y coordinate 60.

ASPECT = .1

WHILE ASPECT<20

CIRCLE(6O,6O),55,0,,.ASPECT

ASPECT = ASPECT*1.4

WEND

'Initialize aspect ratio

'Draw an ellipse

'Change aspect ratio

The above example draws a series of ellipses of varying aspect ratios. The 0

parameter specifies the color; here, the Amiga system background color of

blue would apply unless overridden by a PALETTE statement.

CLEAR CLEAR [,basicData] [.stack]

Sets all numeric variables to zero and all string variables to " " and allocates

memory to the Amiga Basic data area and to the system stack. Closes all

files and resets all DEF FN, DEFINT, DEFLNG, DEFSNG, DEFDBL, and

DEFSTR statements.

basicData is a numeric expression that specifies the amount of memory to

be allocated to Amiga Basic program text, variables, string, and file data

blocks; the numeric expression must be 1024 bytes or greater. If this

parameter is omitted, Amiga Basic allocates the current value.

Reference 8-33

stack is a numeric expression that specifies the amount of memory to be

allocated to the system stack; the numeric expression must be 1024 bytes or

greater. If this parameter is omitted, Amiga Basic allocates the current

value.

See also: FRE

Examples:

CLEAR

CLEAR ,130000

CLEAR ,,2000

CLEAR ,20000,2048

CLNG CLNG {numeric expression)

Converts a numeric expression to long-integer format, rounding off any

fractional part.

Note: For a decimal portion that is exactly .5, if the integer portion of X is

even, the function rounds down. If it is odd, the function rounds up.

CLOSE CLOSE [[#]filenumber[y[tt]filenumber ...]]

Concludes I/O to a file. The CLOSE statement complements the OPEN

statement.

The filenumber is the number with which the file was opened. A CLOSE

with no arguments closes all open files. The association between a particular

file and the filenumber terminates upon execution of a CLOSE statement.

The file may then be reopened using the same or a different filenumber;

likewise, that filenumber can be reused to open any file.

A CLOSE for a sequential output file writes the final buffer of output. When

Amiga Basic performs sequential file I/O, it uses a holding area, called a

$-34 Reference

buffer, to build a worthwhile load before transferring data. If the buffer is

not yet full, the CLOSE statement assures that the partial load is transferred.

The END, SYSTEM, and CLEAR statements and the NEW command

always close all disk files automatically. (STOP does not close disk files.)

See also: CLEAR, END, NEW, OPEN, STOP, SYSTEM

Example:

This is a fragment of a program that opens an existing file, gets data from it,

updates it, and returns it.

OPEN "Payables" AS #2 LEN = 80

FIELD #2, 30 AS FIRMS, 30 AS ADDR$, 10 AS 0WE$, 10 AS DAY$

GET #2, ACCOUNT

LET DEBT! = CVS(0WE$)

LET DEBT! = DEBT! + CHARGES! - PAID)

LSET OWES = MKS$(DEBT!)

PUT #2 ACCOUNT

CLOSE #2

PRINT "Account #"; ACCOUNT; •• updated"

CLS cls

Erases the contents of the current Output window and sets the pen position

to the upper left-hand corner of the Output window.

The CLS statement clears the current Output window only and not other

Output windows.

Example:

CLS

Reference 8-35

COLLISION collision (object-id)

Amiga Basic maintains a queue of collisions that have occurred and have not

yet been reported to the program. Amiga Basic can remember only 16

collisions at one time. After the sixteenth collision, it discards any new

collision information. Each call of COLLISION removes one item from this

queue of collisions.

The object-Id corresponds to the object-id in an OBJECT.SHAPE

statement; it identifies the object being tested. The number can range from

1 to n. If object-Id is 0, the function returns the identification number of an

object that collides with another object without removing any information

from the collision queue. If object-Id is -1, the function returns the

identification number of the window in which the collision identified by

COLLISION(O) occurred.

If object-Id is non-zero, the function returns the identification number of

an object that collided with object-id, and removes the information from the

collision queue.

If the function returns a negative number from -1 through -4, the object-Id

collided with one of the four window borders, as indicated below.

-1

-2

-3

-4

See also:

Top border

Left border

Bottom border

Right border

OBJECT.SHAPl

COLLISION ON COLLISION ON

COLLISION OFF collision off

COLLISION STOP collision stop

Enables, disables, or suspends COLLISION event trapping. A COLLISION

occurs when an object defined by the OBJECT.SHAPE statement collides

8-36 Reference

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

with another object or the window border. Use the COLLISION function to

determine which object collided.

The COLLISION ON statement enables COLLISION event trapping by the

ON COLLISION...GOSUB statement.

The COLLISION OFF statement stops event trapping by the ON

COLLISION...GOSUB statement; Amiga Basic does not record any

collision until a subsequent COLLISION ON statement is executed. The

COLLISION STOP statement suspends COLLISION event trapping. Event

trapping continues, but Amiga Basic does not execute the ON

COLLISION...GOSUB for an event until a subsequent COLLISION ON

statement is executed.

See also: COLLISION, "Event Trapping" in Chapter 6, "Advanced

Topics." See OBJECT.SHAPE for an example.

COLOR COLOR \foreground-color-id] [, background-color-id]

Indicates foreground and background colors to be used.

Amiga Basic uses the foreground-color-id specification to determine the

color for drawing points, lines, area fill and text, and the

background-color-id to determine area surrounding these items.

The foreground-color-id and background-color-id each correspond to the

color-id defined in a PALETTE statement or to the default color-ids of the

Amiga system (see the PALETTE statement for more information on the

default color-ids).

If a COLOR statement is not specified, and a PALETTE statement doesn't

override the system color-ids, Amiga Basic uses the system colors. These

colors are initially white in the foreground and blue in the background, or

the colors as specified by the user with the Preferences Tool from the

Workbench.

Reference 8-37

u

Example: I I

PALETTE 1,RND,RND,RND

PALETTE 2,

COLOR 1,2

PALETTE 2,RND,RND,RND \ " I

LJ
COMMON COMMON variable-list

Passes variables to a chained program. LJ

The COMMON statement is used in conjunction with the CHAIN I I

statement. COMMON statements may appear anywhere in a program,

though it is recommended that they appear at the beginning. This technique

decreases the likelihood that program control will branch before the I I

COMMON statements execute, passing the desired values to the chained

program.

U
The same variable cannot appear in more than one COMMON statement.

Array variables are specified by appending parentheses (that is "()") to the —

variable name. If all variables are to be passed, use CHAIN with the ALL | |
option and omit the COMMON statement.

Some versions of Amiga Basic allow the number of dimensions in the array I—'
to be included in the COMMON statement. This implementation accepts

that syntax, but ignores the numeric expression itself. i i

Example: I I

This program illustrates the use of the CHAIN and COMMON statements.

COMMON ACCT,BALANCE!, CHARGES(), DISCOUNT!, CONTACTS

CHAIN "Receivables"

u

u

u

8-38 Reference _

u

CONT cont

Continues program execution after an Amiga-period has been typed or a

STOP statement has been executed. It can also be used to continue

execution after single stepping.

Execution resumes at the point where the break occurred. If the break

occurred after a prompt from an INPUT statement, execution continues

with the reprinting of the "?" prompt or the prompt string).

CONT is usually used with STOP for debugging. When execution is

stopped, intermediate values may be examined and changed using

immediate mode statements. Execution may be resumed with CONT or an

immediate mode GOTO, which resumes execution at a specified line

number. CONT may be used to continue execution after an error has

occurred.

CONT is invalid if the program has been edited during the break.

Example:

This example illustrates the use of the CONT and STOP statements.

CHECK! =25: DEBIT! =9.89

PRINT CHECK!.DEBIT!

STOP

LET BALANCE! = CHECK! - DEBIT!

PRINT BALANCE!

END

COS cos(x)

Returns the cosine of X, where X is in radians.

The evaluation of this function is performed in single precision when the

argument is in single precision and in double precision when the argument is

in double precision.

Reference 8-39

u

Example: f I

The following example returns the cosine of 1, 100, and 1000.

LJ
PRINT "COSINE OF 1 IS " COS(l)

PRINT "COSINE OF 100 IS " COS(100)

PRINT "COSINE OF 1000 IS " COS(1000) I I

The following is displayed on the screen:

U
COSINE OF 1 IS .5403023

COSINE OF 100 IS .8623189

COSINE OF 1000 IS .5623791 I I

CSNG CSNG(X) LJ

Converts X to a single-precision number. | I

Example: I I

In the following example, the product of two double-precision numbers is

displayed in double-precision, then converted to single precision and | I
displayed.

A# = 6666 : B# = 100000 I I
PRINT A#*B#, "(result printed in double precision)"

PRINT CSNG(A#*B#), "(result printed in single precision)"

u
The following is displayed on the screen:

666600000 (result printed in double precision) LJ
6.666E+08 (result printed in single precision)

See also: CDBL, CINT [_]

.. ' LJ

LJ

8-40 Reference

u

CSRLIN csrlin

Returns the approximate line number (relative to the top border of the

current Output window) of the pen.

The value returned is always equal to or greater than 1.

In determining the line number, CSRLIN uses the height and width of the

character "0" as determined by the font of the current Output window. This

value is always greater than, or equal to, 1.

CSRLIN is the opposite of the LOCATE statement, which positions the pen.

Example:

The following example records the current line and row numbers, moves the

cursor to the bottom of the screen, and prints a message; it then restores the

cursor to its original position and prints a message.

Y = CSRLIN ' GET CURRENT CURSOR LINE NUMBER (VERTICAL POSITION)

X = POS(O) ' GET CURRENT CURSOR COLUMN NUMBER (HORIZONTAL POSITION)

LOCATE 20,1 ' PLACE CURSOR ON LINE 20, COLUMN 1 (BOTTOM OF SCREEN)

PRINT "THIS PRINTS AT LOCATION 20,1 (BOTTOM OF PAGE)"

LOCATE Y,X ' PLACE CURSOR IN ORIGINAL LOCATION

PRINT "THIS PRINTS AT ORIGINAL LOCATION OF CURSOR"

See also: POS, LOCATE

CVI CVI {2-byte string)

CVL CVL(4-byte string)

CVS CVS (4-byte string)

CVD CVD (8-byte string)

Converts random file numeric string values to numeric values. CVI converts

a 2-byte string to a short integer. CVL converts a 4-byte string to a long

integer. CVS converts a 4-byte string to a single-precision number, and

CVD converts an 8-byte string to a double-precision number.

Reference 8-41

CVI, CVL, CVS, and CVD can be used with FIELD and GET statements to

convert numeric values that are read from a random disk file, from strings

into numbers. Use the VAL function instead of CVI, CVL, or CVS to

return the numerical value of a string.

Example:

OPEN FileName$ FOR INPUT AS 1

ColorSet=CVL(INPUT$(4,l))

DataSet=CVL(INPUT$(4,l))

See also: MKI$, MKL$, MKS$, MKD$, VAL

DATA DATA constant-list

Stores the numeric and string constants that are accessed by the READ

statement.

DATA statements are nonexecutable and may be placed anywhere in the

program. A DATA statement may contain as many constants as will fit on a

line (separated by commas). Any number of DATA statements may be

used in a program. READ statements access DATA statements in order

(from the top of the program to the bottom). The data contained in a

DATA line may be thought of as one continuous list of items, regardless of

how many items are on a line or where the lines are placed in the program.

The constant-list parameter may contain numeric constants in any format,

that is, fixed-point, floating-point, or integer. (No numeric expressions are

allowed in the list.) String constants in DATA statements must be

surrounded by double quotation marks only if they contain commas, colons,

or significant leading or trailing spaces. Otherwise, quotation marks are not

needed.

The variable type (numeric or string) given in the READ statement must

agree with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the

RESTORE statement.

8-42 Reference

n

Example:

DIM PatternO%(3)

nDIM Patternl%(3)

DIM Pattern2%(3)

FOR 1=0 TO 3

_ READ PatternO%(I)

II READ Patternl%(I)
READ Pattern2%(I)

NEXT I

nDATA &HAAAA, &H3333, &HFFFF

DATA &H5555, &H3333, &HFFFF

DATA &HAAAA, &H3333, &HFFFF

DATA &H5555, &H3333, &HFFFF

n
See also: READ, RESTORE

n
DATE$ DATES

n
Retrieves the current date.

I ' The DATES function returns a ten-character string in the form

mm-dd-yyyy.

n
Example:

n
10 PRINT DATE$ 'PRINT SYSTEM DATE

I [The following is displayed on the screen:

n

!"""] DECLARE FUNCTION declare function id [(param-list)] library

(—I Causes Amiga Basic to search all libraries opened with the LIBRARY

i i statement for the machine language function id in any expression within the

program.

Reference 8-43

08-10-1985

See LIBRARY statement for details on opened libraries.

The id is any valid Amiga Basic identifier and can optionally contain one of

the following trailing declaration characters: (%, &, !, #). The id identifies

the name of the machine language function and the type of value it returns.

The param-list is a list of parameters for the function. This list is ignored by

Amiga Basic, but it is useful for documentation purposes.

If the function is found, Amiga Basic passes all parameters (if any) to the

function. The trailing declaration character (if any) of the id indicates the

type returned by the function. If the id doesn't have a trailing declaration

character, the standard type identifier rules apply. (See DEFINT for

standard type rules.) For example, ALPHA# returns a double-precision

result, BETA% returns an integer result, and so on.

See the CALL statement for a description of the conventions for passing

parameters.

Example:

DECLARE FUNCTION ViewPortAddress&() LIBRARY

LIBRARY "intuition.library"

VPA& = ViewPortAddress&(WIND0W(7))

This sets the variable VPA& to the value returned by the library function

ViewPortAddress&.

See also: CSNG, DEFINT, DEFSNG, LIBRARY, CALL

DEF FN DEF FN name[(parameter-list)]=function-definition

Defines a user-written function.

The name parameter must be a legal variable name with no spaces between

it and DEF FN. When specified in a program, name invokes the function

being defined.

8-44 Reference

n

The parameter-list contains the variable names in the function definition

that are to be replaced when the program invokes the function. Each name

must be separated by a comma. These variables contain the values specified

in the corresponding argument variables passed from the program function

call.

The function-definition is an expression, limited to one line, that performs

the operation of the function. Variable names that appear in the expression

do not affect program variables with the same name.

When a function is invoked, a variable name specified in both the

function-definition and the parameter-list contain the same values.

Otherwise, the current value of the function-definition variable is used.

The DEF FN statement can define either numeric or string functions. The

function always returns the type specified in the calling statement. However,

Amiga Basic issues a "Type mismatch" message if the data type specified in

the calling statement does not match the data type specified in the DEF FN

statement.

Note: If you specify the same DEF FN name twice, Amiga Basic uses the

last definition.

The DEF FN statement must be executed before the function it defines is

called. Otherwise, Amiga Basic issues an "Undefined user function"

message. You cannot specify a DEF FN statement in either immediate

mode or within a subprogram.

DEF FN statements apply only to the program in which they are defined. If

a program passes control to a new program with a CHAIN statement, a DEF

FN statement in the old program does not apply to the new program.

Example:

DEF FNPERCENT(A,B) = (A/B)*100

INPUT "ENTER PORTION OF TOTAL AMOUNT ", PORTION

INPUT "ENTER THE TOTAL ", TOTAL

RESULT = FNPERCENT(PORTION,TOTAL)

PRINT "PERCENTAGE IS ";RESULT;"%"

Reference 8-45

The following is an example of input and output when these statements are

executed.

ENTER PORTION OF TOTAL AMOUNT 276

ENTER THE TOTAL 1000

PERCENTAGE IS 27.6 %

DEFDBL DEFDBL letter-range

DEFINT DEFINT letter-range

DEFLNG DEFLNG letter-range

DEFSNG DEFSNG letter-range

DEFSTR DEFSTR letter-range

Relates the beginning letter of a variable name to a variable type (short

integer, long integer, single precision, double precision, or string).

Amiga Basic assumes that any variable name beginning with a letter specified

in letter-range to be one of the variable types shown below.

Statement Declaration

Variable Type Character

DEFDBL Double precision #

DEFINT Short integer %

DEFLNG Long integer &

DEFSNG Single precision (default) !

DEFSTR String, $

A variable name with a trailing declaration character (%, &,!,$, or #) takes

precedence over these statements. (See "Declaring Variable Types" earlier

in this chapter for more information on trailing declaration characters.)

DEF type declarations apply only to the program in which they are declared;

they are reset upon exit from the program.

8-46 Reference

f""l Example:

(mmm^ DEFLNG a-p,w

This statement causes any name beginning with any letter from a through p

and the letter w to be treated as long integers.

DELETE DELETE [line][-line]

Deletes program lines.

The DELETE statement works with both line numbers and alphanumeric

labels. If line does not exist, an "Illegal function call" error message is

generated.

DIM DIM [SHARED] variable-list

Specifies the maximum values for array variable subscripts, and allocates

storage accordingly.

Use the DIM statement when the value of an array's subscript(s) must be

greater than 10; otherwise Amiga Basic issues a "Subscript out of range"

error message. The minimum value for a subscript is always 0, unless

otherwise specified with the OPTION BASE statement.

The DIM statement sets all the elements of the specified arrays to an initial

value of zero. The maximum number of dimensions allowed in a DIM

statement is 255; the number you can actually specify depends on the

amount of memory available.

Specify SHARED to make the variables globally accessible to the main

program and to all subprograms. The DIM SHARED statement must be

specified only in the main program. Using a DIM SHARED statement lets

you avoid duplicating the same SHARED statements among several

subprograms.

Reference 8-47

If the array has already been dimensioned or referenced and that variable is

later encountered in a DIM statement, Amiga Basic issues a

"Redimensioned array" error message. To avoid this error condition, place

DIM statements at the top of a program so that they execute before

references to the dimensioned variable are made.

Example:

DIM SHARED A,B,C(10,2)

DIM CF(19)

FOR 1=1 TO 19

READ CF(I)

PRINT CF(I)

NEXT I

DATA 0,2,4,5,7,9,11,0,1,-1, 0,0,0,0,0,0, -12,12,0

See also: SHARED

END END

Terminates program execution, closes all files, and returns to previous

mode.

END statements may be placed anywhere in the program to terminate

execution. An END statement at the end of a program is optional.

EOF EOF (filenumber)

Tests for the end-of-file condition.

Returns -1 (true) if the end of a sequential input file has been reached. Use

EOF to test for end-of-file while reading in data with an INPUT statement,

to avoid "Input past end" error messages.

When EOF is used with a random access file, it returns true if the last GET

statement was unable to read an entire record. It is true because it was an

attempt to read beyond the end of the file.

8-48 Reference

Example:

This program demonstrates a use of the EOF function.

OPEN "I",#1,"INFO"

LINE INPUT #1, LONG$

PRINT LONG$

CLOSE #1

OPEN "I",#l,"INFO"

WHILE NOT EOF(l)

PRINT ASC(INPUT$(1,#1));

LET C=C+l: IF C = 10 THEN PRINT: LET C = 0

WEND

CLOSE #1

END

ERASE ERASE array-variable-list

Eliminates arrays from memory.

Arrays may be redimensioned after they are erased, or the previously

allocated array space in memory may be used for other purposes. If an

attempt is made to redimension an array without first erasing it, an error

message is generated.

Example:

ERASE BobArray

ERR ERR

ERL ERL

Returns the error number and the line on which the error occurred.

When an error-handling routine is entered by way of an ON ERROR

statement, the function ERR returns the error code for the error, and the

function ERL returns the line number of the line in which the error was

detected.

Reference 8-49

If the line with the detected error has no line number, ERL will return the

number of the first numbered line preceding the line with the error. ERL

will not return line labels. The ERR and ERL functions are usually used in

IF...THEN statements to direct program flow in an error-handling routine.

With the Amiga Basic Interpreter, if the statement that caused the error was

an immediate mode statement, ERL will return 65535.

See Appendix B, "Error Codes and Error Messages," for a list of the Amiga

Basic error codes.

Example:

ON ERROR GOTO errorfix

errorfix:

IF (ERR=55) AND (ERL=90) THEN CLOSE*1:RESUME

ERROR ERROR integer-expression

Simulates the occurrence of an Amiga Basic error, or allows error codes to

be defined by the user.

ERROR can be used as a statement (part of a program source line) or as a

command (in immediate mode).

The value of the integer-expression must be greater than 0 and less than

256. If the value of the integer-expression equals an error code already in

use by Amiga Basic (see Appendix B, "Error Codes and Error Messages"),

the ERROR statement causes the error message for the Amiga Basic error to

be printed (unless errors are being trapped).

To define your own error code, use a value that is greater than the highest

value used by an Amiga Basic error code. Use the highest values possible to

avoid conflicting with duplicate codes in future versions of Amiga Basic. You

can write an error handling routine to process the error you define.

8-50 Reference

If an ERROR statement specifies a code for which no error message has

been defined, Amiga Basic responds with an "Unprintable error" error

message. Execution of an ERROR statement for which there is no

error-handling routine causes an error message to be generated and

execution to halt.

Example:

This example shows how ERROR is used in direct mode:

ERROR 15

String too long

EXP EXP(X)

Returns e (base of natural logarithms) to the power of X; that is,

2.7182818284590AX.

If X is greater than 88 (for single-precision numbers) or 709 (for

double-precision numbers), an "Overflow" error message is displayed,

machine infinity with the appropriate sign is supplied as the result, and

execution continues. The evaluation of this function is performed in single

precision when the argument is in single precision and in double precision

when the argument is in double precision.

Example:

The following example returns e to the power of 0, 1, 2, and 3.

FOR I = 0 TO 3

PRINT EXP(I)

NEXT I

The following is displayed on the screen:

l

2.718282

7.389056

20.08554

Reference 8-51

FIELD FIELD [#]filenumber, fieldwidth AS string-variable...

Allocates space for variables in a random file buffer.

It is good programming practice to have a FIELD statement follow as closely

as possible the statement that opens the file it is defining.

The filenumber parameter corresponds to the number specified in OPEN

when the file was created. The fieldwidth is the number of characters to be

allocated to the string-variable.

The total number of bytes allocated in a FIELD statement must not exceed

the record length that was specified when the file was created with OPEN.

Otherwise, a "Field overflow" error message is generated. (The default

record length is 128 bytes.)

Any number of FIELD statements may be executed for the same file. All

FIELD statements that have been executed will remain in effect at the same

time.

Note

Do not use a fielded variable name in an INPUT or LET statement. Once a

variable name is fielded, it points to the correct place in the random file

buffer. If a subsequent INPUT or LET statement with that variable name is

executed, the variable's pointer no longer refers to the random record

buffer, but to string space.

See also: GET, LSET, OPEN, PUT, RSET

Example:

This is a fragment of a program that opens an existing file and fields it for

three variables.

OPEN "Payables" AS #2

FIELD #2, 20 AS N$, 14 AS A$, 4 AS X$

8-52 Reference

See page 5-13 for a complete programming example that uses the FIELD

command.

FILES FILES [string]

Lists all files in a given directory.

If you omit string, the statement lists all files in the current directory. If

string contains a directory name, all files in that directory are listed. If

string contains a filename, it is listed if the file exists.

If string specifies a drive number, the statement lists all files in the current

directory of the disk on that drive. See the AmigaDOS User's Manual for

details on specifying files and their pathnames.

Example:

FILES "dfl:M

FILES "c"

FIX FIX(X)

Returns the truncated integer part of X.

FIX(X) is equivalent to SGN(X)*INT(ABS(X)). The difference between

FIX and INT is that FIX does not round off negative numbers to their next

lower number (see the example below).

Example:

The following example shows the operation of FIX and INT on the same

negative, non-integer number.

30 PRINT FIX(-58.75)

40 PRINT INT(-58.75)

Reference 8-53

The following is displayed on the screen:

-58

-59

See also: CINT, INT

FOR...NEXT FOR variables TO y [STEP z]

NEXT [variable][^variable...]

Performs a series of instructions in a loop a given number of times.

The FOR statement uses x, y, and z as numeric expressions, and variable as

a counter. The expression x is the initial value of the counter. The

expression y is the final value of the counter.

The program lines following the FOR statement are executed until the

NEXT statement is encountered. Then the counter variable is adjusted by

the amount specified by STEP. A check is performed to see if the value of

the counter is now greater than the final value of y. If it is not greater,

Amiga Basic branches back to the statement after the FOR statement and

the process is repeated. If it is greater, execution continues with the

statement following the NEXT statement. This is called a FOR...NEXT

loop.

If STEP is not specified, the increment is assumed to be one (+1). If STEP

is negative, the counter is decreased each time through the loop. The loop

is executed until the counter is less than the final value.

A FOR statement without a corresponding NEXT statement will generate a

"FOR without NEXT" error message. A NEXT statement without a

corresponding FOR statement will generate a "NEXT without FOR" error

message.

Nested Loops

FOR...NEXT loops may be nested; that is, a FOR...NEXT loop may be

placed within the context of another FOR..NEXT loop. When loops are

8-54 Reference

nested, each loop must have a unique variable name as its counter. The

NEXT statement for the inside loop must appear before that for the outside

loop.

The variable in the NEXT statement may be omitted, in which case the

NEXT statement matches the most recent FOR statement. If a NEXT

statement is encountered before its corresponding FOR statement, a "NEXT

without FOR" error message is generated and execution is terminated.

Example:

In the following example, the FOR statement produces a loop of 11

repetitions, each printing out the current value of I.

FOR I = 0 TO 100 STEP 10

PRINT I;

NEXT I

The following is displayed on the screen:

0 10 20 30 40 50 60 70 80 90 100

FRE FRE(-l)

FRE(-2)

FRE(X)

Returns numbers of free bytes in specified areas.

FRE(-l) returns the total number of free bytes in the system. FRE (-2)

returns the number of bytes of stack space that has never been used.

FRE(x) where x is not -1 or -2 returns the number of free bytes in Amiga

Basic's data segment.

Example:

DEF FNMemoryLeftfc = FRE(0)-INT((BobRight+16)/16)*2*(BobBottom+1)*5-6

See also: CLEAR

Reference 8-55

GET GET [#]\filenumber\[,recordnumber]

GET (xl tyl)-(x2,y2) ,array-name [(index[9index...,index])]

Reads a record from a random disk file into a random buffer.

Gets an array of bits from the screen.

The two syntaxes shown above correspond to two different uses of the GET

statement. These are called a random file GET and a screen GET,

respectively.

Random File GET

In the first form of the statement, the filenumber is the number under which

the file was created with OPEN. If the recordnumber is omitted, the next

record (after the last GET) is read into the buffer. The largest possible

record number is 16,777,215.

After a GET statement has been executed, the data in recordnumber may be

accessed directly using fielded variables. (See "Random Access Files" in

Chapter 5, "Working With Files and Devices," for details on random file

operations.) INPUT# and LINE INPUT# also may be executed to read

characters from the random file buffer.

EOF(filenumber) may be used after a GET statement to check if the GET

statement was beyond the end-of-file.

Screen GET

The second form of the GET statement is used for transferring graphic

images. GET obtains an array of bits from the screen, and its counterpart,

PUT, places an array of bits on the screen.

The arguments to GET include specification of a rectangular area on the

display screen with (xltyl)-(x2,y2). The two points specify the upper

left-hand corner of the rectangle and the lower right-hand corner of the

rectangle, respectively.

8-56 Reference

The array-name is the name assigned to the place that will hold the image.

The array can be any type except string, and the dimension must be large

enough to hold the entire image.

The multiple index parameters for an array permit multiple objects in a

multidimensional graphic array. This allows looping through different views

of an object in rapid succession.

Unless the array is of type integer, the contents of the array after a GET is

meaningless when interpreted directly (see below).

The required size of the array, in bytes, is:

6+((y2-yl+l)*2*INT((x2-xl+16)/16)*D

where x and y are the lengths of the horizontal and vertical sides of the

rectangle. D is the depth of the screen, for which 2 is the default.

The bytes per element of an array are:

2 bytes for integer

4 bytes for single precision

8 bytes for double precision

For example, assume you want to GET (10,20)-(30,40),ARRAY%. The

number of bytes required is 6+(40-20+l)*2*(INT((30-10)+16)/16))*2 or

174 bytes. Therefore, you would need an integer array with at least 87

elements.

It is possible to examine the x and y dimensions and even the data itself if an

integer array is used. The width, height, an depth of the rectangle can be

found in elements 0, 1, and 2 of the array, respectively.

The GET and PUT statements are used together to transfer graphic images

to and from the screen. The GET statement transfers the screen image

bounded by the rectangle described by the specified points into the array.

The PUT statement transfers the image stored in the array onto the screen.

Reference 8-57

Example:

GET (0,0)-(127,127),P

See also: PUT

GOSUB...RETURN GOSUB line

RETURN [line]

Branches to and returns from a subroutine.

The line in the GOSUB statement is the line number or label of the first line

of a subroutine. Program control branches to the line after a GOSUB

statement executes. A RETURN within the GOSUB will return control back

to the statement just following the GOSUB statement in the program text.

A subroutine may be called any number of times in a program. A

subroutine also may be called from within another subroutine. Such nesting

of subroutines is limited only by available memory.

RETURN statements in a subroutine cause Amiga Basic to branch back to

the statement following the most recent GOSUB statement.

A subroutine may contain more than one RETURN statement, should logic

dictate a return at different points in the subroutine.

The line option may be included in the RETURN statement to return to a

specific line number or label from the subroutine. This type of return should

be used with care, however, because any other GOSUB, WHILE, or FOR

statements that were active at the time of the GOSUB will remain active, and

error messages such as "FOR without NEXT" may be generated.

Subroutines may appear anywhere in the program, but it is recommended

that the subroutine be readily distinguishable from the main program. To

prevent inadvertent entry into the subroutine, precede it with a STOP, END,

or GOTO statement that directs program control around the subroutine.

8-58 Reference

GOSUB InitGraphics

InitGraphics:

iDraw = 30

iErase = 0

RETURN

GOTO GOTO line

Branches to a specified line.

If the program statement with the number or label line is an executable

statement, that statement and those following are executed.

If it is a nonexecutable statement, such as a REM or DATA statement,

execution proceeds at the first executable statement encountered after line.

It is advisable to use control structures (IF...THEN...ELSE,WHILE

...WEND, and ON...GOTO) in lieu of GOTO statements as a way of

branching, because a program with many GOTO statements can be difficult

to read and debug.

Example:

CheckMouse:

IF MOUSE(0)=0 THEN CheckMouse

IF ABS(X-MOUSE(1)) > 2 THEN MovePicture

IF ABS(Y-MOUSE(2)) < 3 THEN CheckMouse

MovePicture:

PUT(X.Y),P

X=MOUSE(1): Y=MOUSE(2)

PUT(X.Y),P

GOTO CheckMouse

HEX$ HEX$(X)

Returns a string that represents the hexadecimal value of the decimal

argument.

Reference 8-59

X is rounded to an integer before HEX$(X) is evaluated.

Example:

The following example prints the decimal and hexadecimal values of 10

through 16.

FOR A = 10 TO 16

PRINT A ; HEX$(A)

NEXT A

The following is displayed on the screen:

10 A

11 B

12 C

13 D

14 E

15 F

16 10

IF...GOTO IF expression GOTO /me[ELSE else-clause]

IF...THEN...ELSE IF expression THEN then-clause[ELSE else-clause]

IF...THEN...ELSE Block if expression then

statementBlock

ELSEIF expression THEN

statementBlock

ELSE

statementBlock

END IF

Makes a decision regarding program flow based on the result returned by an

expression.

The following rules apply to syntax 1 and 2 IF...GOTO and

IF..THEN...ELSE statements:

8-60 Reference

n

• If the result of the expression is true, the then-clause or GOTO

I I statement is executed.

n
• If the result of the expression is false, the then-clause or GOTO

statement is ignored and the else-clause, if present, is executed.

|—| • The then-clause and the else-clause, can be nested; that is,

they can contain multiple Amiga Basic statements and functions.

However, for Syntax 1 and Syntax 2, the clauses must not

|~| exceed one line.

• THEN may be followed by either an Amiga Basic statement, a

[] function, or a label or line number.

_ • GOTO is always followed by a label or line number.

• If the statement does not contain the same number of ELSE

and THEN clauses

unmatched THEN.

rn and THEN clauses, each ELSE is matched with the closest

• If an IF...THEN statement is followed by a line number or label

in immediate mode, an "Undefined line number" error message

is generated, unless a statement with the specified line number

or label had previously been entered in program edit mode.

The rules that apply to Syntax 1 and 2 also apply to Syntax 3. However,

Syntax 3 differs in the following respects:

• The statementBlock can contain nested IF-THEN-ELSE

blocks. Amiga Basic does not limit nested statements to only

one line; statementBlock can contain one or more Amiga Basic

statements entered on different lines.

• If an expression is true, the corresponding THEN

statementBlock is executed, and program execution resumes at

the first statement following the END IF statement.

Reference 8-61

u

• If no expressions are true, either (1) program execution

resumes at the first statement following the END IF statement or [_|
(2) the ELSE statementBlock (if present) is executed and

program execution resumes at the first statement following the

END IF statement. |)

• The ELSE-IF block is optional; Amiga Basic doesn't limit the . —.

number you can specify. I—I

• The ELSE block is optional. | " i

• If anything other than a remark follows on the same line as

THEN, Amiga Basic considers it a single-line IF-THEN-ELSE |^J

statement.

• In a line containing a block ELSE, ELSE IF, or END IF | |
statement, only a label can precede the statement; otherwise,

Amiga Basic issues an error message. .—

A block IF statement does not have to be the first statement on the line. i i

Example: , -,

INPUT a,b

IF a = 1 THEN

IF b = 1 THEN L_J
PRINT "a and b are 1"

ELSE

PRINT "a = l,b <> 1" ||

END IF I I
ELSEIF a > 0 THEN

IF b > 0 THEN PRINT "both a and b > 0"

END IF

REM above line is single-line-IF, not Block-IF I I
PRINT "a > 0" ' '
IE

PRINT "a <= 0" , —.

PRINT "we know nothing about b" | |

u

u
3-62 Reference

U

INKEY$ INKEY$

Returns either a one-character string containing a character read from the

keyboard or a nullstring if no character is pending at the keyboard.

No characters are echoed. All characters are passed through to the program

except for Amiga-period, which terminates the program.

Note that if an Output window is not active while the program is running,

and the user presses a key, the key is ignored and a BEEP will occur, since

keystrokes on the Amiga are only directed to the selected window.

Example:

GetAKey:

a$=INKEY$

IF a$<>"" THEN

a$=UCASE$(a$)

IF a$="Y" THEN Response=l

IF a$=MN" THEN Response=2

IF a$="C" THEN Response=3

IF Response=0 THEN BEEP

END IF

IF Response = 0 THEN GOTO GetAKey

PRINT Response

See also: SLEEP

INPUT INPUT[;] [prompt-string;]variable-list

Allows input from the keyboard during program execution.

When an INPUT statement is encountered, program execution pauses and a

question mark is printed to indicate the program is waiting for data. If the

prompt-string is included, the string is printed before the question mark.

The required data is then entered at the keyboard.

A comma may be used instead of a semicolon after the prompt string to

suppress the question mark. For example, the statement INPUT "ENTER

BIRTHDATE",B$ will print the prompt with no question mark.

Reference 8-63

The data that is entered is assigned to the variables given in the

variable-list. The number of data items supplied must be the same as the

number of variables in the list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names

(including subscripted variables). The type of each data item that is input

must agree with the type specified by the variable name. (Strings input to an

INPUT statement need not be surrounded by quotation marks.)

Responding to INPUT with too many or too few items or with the wrong type

of value (string instead of numeric, etc.) causes the prompt message "?Redo

from start" to be generated. No assignment of input values is made until an

acceptable response is given.

Example:

The following example shows the use of INPUT to prompt a user to enter

values for a conversion program.

THIS PROGRAM CONVERTS DECIMAL VALUES TO HEXADECIMAL

ANSWER$="Y"

WHILE (ANSWER$="Y")

INPUT "ENTER DECIMAL NUMBER ■■, DECIMAL

PRINT "HEX VALUE OF " DECIMAL "IS " HEX$(DECIMAL)

PRINT "OCTAL VALUE OF " DECIMAL "IS " OCT$(DECIMAL)

INPUT "DO YOU WANT TO CONVERT ANOTHER NUMBER? ", ANSWERS

ANSWERS = UCASE$(ANSWERS)

WEND

END

The following shows an example of some of the results displayed when a user

interacts with this program.

ENTER DECIMAL NUMBER 16

HEX VALUE OF 16 IS 10

OCTAL VALUE OF 16 IS 20

DO YOU WANT TO CONVERT ANOTHER NUMBER? Y

ENTER DECIMAL NUMBER 31

HEX VALUE OF 31 IS IF

OCTAL VALUE OF 31 IS 37

DO YOU WANT TO CONVERT ANOTHER NUMBER? N

8-64 Reference

n

H

n

INPUTS INPUTS (X[, [#]filenumber])

_ Returns a string of X characters, and reads from filenumber. If the

I I filenumber is not specified, the characters are read from the keyboard.

r—| If the keyboard is used for input, no characters are echoed on the screen.

1 All control characters are passed through except Ctrl-C, which is used to

interrupt the execution of the INPUTS function.

objAttributes$ = INPUT$(LOF(1),1)

OBJECT.SHAPE 1,objAttributes$

n
INPUT# IKP\JT#filenumber,variable-list

Reads items from a sequential file and assigns them to program variables.

The filenumber corresponds to the number specified when the file was

created with OPEN. The variable-list contains the variable names to be

rn assigned to the items in the file; the data type specified for the variable

names must match the data type of the corresponding items in the file.

P The data items in the file should appear just as they would if data were being
typed in response to an INPUT statement. Amiga Basic ignores leading

spaces, carriage returns, and linefeeds; it processes any other character as

the first digit of a number. For numeric items, the next space, carriage

return, linefeed, or comma delimits the last digit of the number from the

next item.

For string items, if the first character of a string is a quotation mark ("), a

second quotation mark delimits the end of the string (such a string cannot

contain an embedded quotation mark). If a quotation mark is not the first

character, then a comma, carriage return, linefeed, or the 255th character

of the string delimits the end of the string item.

Reference 8-65

INSTR INSTR([/f]X«,W)

Searches for the first occurrence of string Y$ in X$, and returns the position

at which the match is found. Optional offset I sets the position for starting

the search.

If I is greater than the number of characters in X$ (LEN(X$)), or if X$ is

null or Y$ cannot be found, INSTR returns 0. If Y$ is null, INSTR returns I

or 1. X$ and Y$ may be string variables, string expressions, or string literals.

Example:

The following statements locate a specific field within a string and then

replace it with a new string; INSTR determines the byte location of the field.

'THIS ROUTINE CHANGES THE ADDRESS FIELD IN RECORDS

RECORDS =un:JOHN JONES adr:3633 6TH ST WACO, TX

PRINT "RECORDS = " RECORDS

OFFSET = INSTR(RECORDS,"adr:") 'FIND START OF ADDRESS adr:

MIDS(RECORDS,OFFSET,40) = "adr:222 ELM ST. WAXAHACHIE, TX

PRINT "MODIFIED RECORDS = " RECORDS

The following is displayed on the screen:

RECORDS = n:JOHN JONES adr:3633 6TH ST WACO, TX

MODIFIED RECORDS = n:JOHN JONES adr:222 ELM ST. WAXAHACHIE, TX

INT INT(X)

Returns the largest integer less than or equal to X.

Example:

PRINT INT(3.4)

X = INT(37.98)

PRINT INT(X)

Y = INT(-32.3)

PRINT INT(Y)

8-66 Reference

The following integers would be printed:

3

37

-33

See also: CINT, FIX

KILL KILL filespec

Deletes a file from disk.

If a KILL command is given for a file that is currently OPEN, a "File

already open" error message is generated. The filespec argument is any

legal Amiga filename.

Example:

This deletes the file named MailLabels:

KILL "MailLabels"

LBOUND LBOUND {array-name [.dimension])

UBOUND UBOUND {array-name [.dimension])

Returns the lower or upper bounds of the dimensions of an array.

The array-name is the name of the array variable to be tested.

The dimension parameter is an optional number used when the array is

multi-dimensional, and specifies the dimensions of the array being bounded.

The optional dimension parameter specifies for which dimension to find the

bound. The default value is 1.

The lower bounds are the smallest indices for the specified dimension of the

array. LBOUND returns 0 or 1 depending on whether the OPTION BASE

is 0 or 1.

Reference 8-67

Example:

LBOUND and UBOUND are particularly useful for determining the size of

an array passed to a subprogram. For example, a subprogram could be

changed to use these functions rather than explicitly passing upper bounds to

the routine:

CALL INCREMENT (ARRAYl(O), ARRAY2Q, TOTAL())

SUB INCREMENT (A(2), B(2), C(2)) STATIC

FOR I = LBOUND(A,1) TO UBOUND (A,l)

FOR J = LBOUND(A,2) TO UBOUND(A,2)

C(I,J) = A(I,J) + B(I,J)

NEXT J

NEXT I

END SUB

LEFT$ LEFTS (X$,I)

Returns a string containing the leftmost I characters of X$.

/ must be in the range 0 to 32767. If / is greater than the number of

characters in X$ (LEN(X$)), the entire string (X$) is returned. If / = 0, a

null string of length zero is returned.See also: MID$, RIGHTS

LEN LEN(A3)

Returns the number of characters in X$. Nonprinting characters and blanks

are counted.

Example:

The following routines shows the use of LEN in determining the offset of a

field within a string.

8-68 Reference

n

p-1

'THIS ROUTINE EXTRACTS THE ADDRESS a: FROM STRING RECORDS

RECORDS = "n:JOHN JONES ss:5349 12 99 a:3633 6TH ST WACO.TX"

•_. LENGTH = LEN(RECORDS) 'DETERMINE LENGTH OF RECORD

II OFFSET = INSTR(RECORDS,"a:") 'FIND START OF ADDRESS a:
RIGHTCHAR = LENGTH - OFFSET - 1

ADDRESSS = RIGHTS(RECORDS,RIGHTCHAR) 'EXTRACT ADDRESS FROM RECORDS

!—j PRINT ADDRESSS

The following is displayed on the screen:

3633 6TH ST WACO,TX

n
LET [LET] variable-expression

r—i

Assigns the value of an expression to a variable.

|""1 Notice that the word LET is optional. The equal sign by itself is sufficient
for assigning an expression to a variable name.

n
Example:

I ! The following example shows the optional nature of LET in variable
assignments; lines 10 and 20 perform the same function, even though LET is

not specified in line 20.

10 LET A = 1 : LET B = 2 : LET C = 3

20 D = 1 : E = 2: F = 3

30 PRINT A B C D E F

The following is displayed on the screen:

12 3 12 3

Reference 8-69

LIBRARY LIBRARY "filename"

LIBRARY CLOSE

LIBRARY opens a library of machine language subprograms and functions

to Amiga Basic. LIBRARY CLOSE closes all libraries that have been

opened by the LIBRARY statement.

The filename is a string expression designating the file where Amiga Basic is

to look for machine language functions and subprograms. The LIBRARY

statement lets you attach up to five library files to Amiga Basic at a time.

Amiga Basic continues to look for subprograms in these libraries until a

NEW, RUN, or LIBRARY CLOSE statement is executed. See Appendix F

for more information on these statements.

The LIBRARY statement can generate the, "File not found" and the "Out

of memory" error messages.

To use the LIBRARY statement, you must create a .bmap file on disk; the

file describes the routines in the specified library. See Appendix F for a

description of how to create this file.

Example:

LIBRARY "graphics.library"

CALL SetDrMdfc (WINDOW(8),3)

LINE LINE [[STEP] (xl,yl)] - [STEP] (x2,y2), [color-id] [,b\f\]

Draws a line or box in the current Output window.

The coordinate for the starting point of the line is (xl,yl); the coordinate

for the end point of the line is (x2,y2).

The color-id specifies the color to be used; it corresponds to the color-id

parameter in a PALETTE statement.

8-70 Reference

n

j] With the " ,b" option, a box is drawn in the foreground, with the points (xl,
yl) and (x2,y2) as opposite corners.

I] The ",bf" option fills the interior of the box. When out-of-range
coordinates are given, the coordinate that is out of range is given the closest

_-. legal value. Boxes are drawn and filled in the color given by color-id.

With STEP, relative rather than absolute coordinates can be given. For

r—i example, assume that the most recent point referenced was (10,10). The

' ' statement LINE STEP (10,5) would specify a point at (20,15), offset 10
from xl; and offset 5 from yl.

H
If the STEP option is used for the second coordinate in a LINE statement, it

is relative to the first coordinate in the statement.

n
Example:

n
LINE(0,0)-(120,120),,BF

[I The above statement draws a box and fills it in with the foreground color
specified by either the COLOR statement or the Amiga system default.

LINE INPUT LINE INPUT [;][''prompt-string"'^string-variable

Reads an entire line from the keyboard during program execution and places

it in a string variable without using delimiters.

The "prompt-string" is a literal that Amiga Basic prints to the screen before

input is accepted. Amiga Basic prints question marks only when they the

are part of prompt-string. All input from the end of the prompt-string to

the carriage return is assigned to the string-variable.

If LINE INPUT is immediately followed by a semicolon, the carriage return

typed by the user to end the line does not echo a carriage return/linefeed

sequence on the screeen.

Reference 8-71

To terminate a LINE INPUT statement, press the AMIGA key on the

righthand side of the keyboard and a period.

Example:

This example demonstrates the use of LINE INPUT and LINE INPUT#.

OPEN M0",#2, "INFO"

LINE INPUT "Customer Data?";CUSTOMERS

PRINT #2.CUSTOMERS

CLOSE #2

OPEN "I",#2,"INFO"

LINE INPUT #2,CLIENTS

PRINT CLIENTS

END

When you run this program, the following is displayed on the screen:

Customer Data? Clarissa Dalloway $10.17 Penknife

Clarissa Dalloway $10.17 Penknife

LINE INPTJT# LINE INPUT# filenumber;string-variable

Reads an entire line from a sequential file during program execution and

places it in a string variable without using delimiters.

The filenumber corresponds to the number assigned to the file when it was

created with OPEN. The string-variable is the variable name to which

Amiga Basic assigns the line.

The carriage-return character delimits each line in the file. LINE INPUT#

reads only the characters preceding the carriage-return character, and then

skips this character and the linefeed character before reading the next line.

This statement is useful if each line in a data file is broken into fields, or if

an Amiga Basic program saved in ASCII format is being read as data by

another program.

See also: LINE INPUT, SAVE

8-72 Reference

Example:

See the example for LINE INPUT.

LIST LIST [line]

LIST [line][-[line]]9 "filename"

Lists the program currently in memory to a List window, a file, or a device.

The line may be a line number or an alphanumeric label. When a LIST

command is given, the specified lines appear in the List window.

The second syntax allows the following options:

• If only the first line is specified, that line and all following lines

are listed.

• If only the second line is specified, all lines from the beginning

of the program through the specified line are listed.

• If both line arguments are specified, the entire range is listed.

• If a filename is given in a string expression such as SCRN: or

LPT1:, the listed range is printed on the given device.

See also: "List Window Hints" in Chapter 4, "Editing and Debugging Your

Programs."

Example:

This example produces a List Window and lists the program:

LIST

Reference 8-73

LLIST LLIST [line][-[line]]

Sends a listing of all or part of the program currently in memory to the

printer (PRT:).

The options for LLIST are the same as for LIST, except that there is no

optional output device parameter; output is always to the printer (PRT:).

See also: LIST

LOAD LOAD \filespec[,R]]

Loads a file from disk into memory. See SAVE for a description of file

specification that includes different drives or libraries.

If the filespec is not included, a requester appears to prompt the user for the

correct name of the file to load.

The filespec must include the filename that was used when the file was

saved.

The R option automatically runs the program after it has been loaded.

LOAD closes all open files and deletes all variables and program lines

currently residing in memory before it loads the designated program.

However, if the R option is used with LOAD, the program is run after it is

loaded, and all open data files are kept open. Thus, LOAD with the R

option may be used to chain several programs (or segments of the same

program). Information may be passed between the programs using their

disk data files.

See also: CHAIN, MERGE, SAVE

8-74 Reference

LOC LOC (filenumber)

For random disk files, LOC returns the record number of the last record

read or written.

For sequential disk files, LOC returns a different number, the increment.

The increment is the number of bytes written to or read from the sequential

file, divided either by the number of bytes in the default record size for

sequential files (128 bytes) or the record size specified in the OPEN

statement for that file. Mathematically, this can be expressed as shown

below.

Number of Bytes Read or Written I OPEN statement Record Size

= # Returned by LOC(filenumber)

For files opened to KYBD: or COM1, LOC returns the value 1 if any

characters are ready to be read from the file. Otherwise, it returns 0.

When a file is opened for sequential input, Amiga Basic reads the first

record of the file, so LOC returns 1 even before any input from the file

occurs. LOC assumes the filenumber is the number under which the file was

opened.

LOCATE LOCATE [line] [tcolumn]

Positions the pen at a specified column and line in the current Output

window.

The value of the column and line parameters must be equal to or greater

than 1; the location they specify is relative to the upper-left corner of the

current Output window. If you omit these parameters, Amiga Basic uses the

current location of the pen.

In determining the column and line position, LOCATE uses the height and

width of the character "0" in the font of the current Output window.

Reference 8-75

Example:

The following example records the current line and row numbers, moves the

cursor to the bottom of the screen, and prints a message; it then restores the

cursor to its original position and prints a message.

Y = CSRLIN ' GET CURRENT CURSOR LINE NUMBER (VERTICAL POSITION)

X = POS(O) ' GET CURRENT CURSOR COLUMN NUMBER (HORIZONTAL POSITION)

LOCATE 20,1 ' PLACE CURSOR ON LINE 24, ROW 1 (BOTTOM OF SCREEN)

PRINT "THIS PRINTS AT LOCATION 20,1 (BOTTOM OF PAGE)"

LOCATE Y,X ' PLACE CURSOR IN ORIGINAL LOCATION

PRINT "THIS PRINTS AT ORIGINAL LOCATION OF CURSOR"

LOF LOF (filenumber)

Returns the length of the file in bytes.

Files opened to SCRN:, KYBD:, or LPT1: always return the value 0.

Example:

entireFile$ = INPUTS(LOF(1),1)

LOG LOGpO

Returns the natural (base e) logarithm of X. X must be greater than zero.

The evaluation of this function is performed in single precision when the

argument is in single precision and in double precision when the argument is

in double precision.

Example:

The following statements generate the five sets of results by means of the

LOG function.

8-76 Reference

10 FOR I = 1 TO 2 STEP .2

20 PRINT "LOG OF ";I "= ";LOG(I)

30 NEXT I

40 END

The following is displayed on the screen:

LOG OF 1 = 0

LOG OF 1.2 = .1823216

LOG OF 1.4 = .3364723

LOG OF 1.6 = .4700037

LOG OF 1.8 = .5877868

LPOS lpos(x)

Returns the current position of the line printer's print head within the line

printer buffer.

X is a dummy argument. LPOS does not necessarily give the physical

position of the print head.

Example:

IF LPOS(X) > 60 THEN PRINT CHR$(13)

LPRINT LPRINT [expression-list]

LPRINT USING LPRINT USING string-expression;expression-list

Prints data on the line printer.

LPRINT and LPRINT USING are the same as PRINT and PRINT USING

except that output goes to the line printer instead of to the screen.

Example:

See the examples in PRINT and PRINT USING.

Reference 8-77

LSET LSET string-variable-string-expression

Moves data from memory to a random file buffer in preparation for a PUT

statement.

If the string-expression parameter requires fewer bytes than were fielded to

the string-variable, LSET left-justifies the string in the field, and RSET

right-justifies the string. (Spaces are used to pad the extra positions.) If

the string is too long for the field, characters are dropped from the right.

Numeric values must be converted to strings with MKI$, MKL$, MKS$, or

MKD$ before they are used with LSET or RSET.

Note

LSET and RSET may also be used with a nonfielded string variable to

left-justify or right-justify a string in a given field.

MENU MENU menu-id, item-id, state [,title-string]

MENU RESET

MENU (0)

MENU (1)

The statements create custom Menu Bar options and items underneath

them, or restore the default Menu Bar.

The functions return the number of the last Menu Bar or menu item

selection made.

The menu-id is the number assigned to the Menu Bar selection. It can be a

value from 1 to 10.

The item-id is the number assigned to the menu item underneath the Menu

Bar. It can be a value from 0 to 19. If item-id is between 1 and 19, it

specifies an item in the menu. If item-id is 0, it specifies the entire menu.

For the state argument, use 0 to disable the menu or menu item, 1 to enable

it, or 2 to enable the item and place a check mark by it. If the item-id is 0,

8-78 Reference

the state takes effect for the entire menu. When you compose a menu item

which is to be checkmarked, you must leave two blank spaces ahead of the

item for the checkmark to be rendered.

The title-string is a string assigned to be the title of a custom Menu Bar

selection or an item underneath one.

Depending on the state, the MENU statement enables or disables menu

item item in MENU menu-id. If the title-string argument appears, the item

name on the Menu Bar is changed to title-string.

The MENU RESET statement restores Amiga Basic's default Menu Bar.

The function syntax MENU(O) returns a number which corresponds to the

number of the last Menu Bar selection made. MENU(O) is reset to 0 every

time it executes, so the Menu Bar can be polled just like INKEY$.

The function syntax MENU(l) returns a number which corresponds to the

number of the last menu item selected.

This set of MENU statements and functions gives you the tools to build

custom menus and menu items in the Menu Bar at the top of the screen. If

a MENU ON statement is executed, the user's selection of custom menu

items can be trapped with the ON MENU GOSUB statement.

You can override the existing Amiga Basic menu items with the MENU

statement.

Example:

The following are examples of menu statements.

MENU 1,0,1,"Transactions:"

MENU 1,1,1,"Deposits"

MENU 1,2,1,"Withdrawals"

MENU 1,3,1,"Automatic Payment"

MENU 1,5,1,"Credit Card Purchases"

Reference 8-79

The following are examples of MENU functions.

MenuId=MENU(O)

MenuItem=MENU(l)

See also: MENU ON, ON MENU, SLEEP

MENU ON menu on

MENU OFF MENU OFF

MENU STOP menu stop

Enables, disables, or suspends trapping MENU events; a MENU event

occurs when the user selects a menu item defined by the MENU statement.

The MENU function can be used to determine which menu item was

selected.

The MENU ON statement enables event trapping.

The MENU OFF statement disables ON MENU event trapping. Event

trapping stops until a subsequent MENU ON statement is executed. The

MENU STOP statement suspends MENU event trapping. Event trapping

continues, but Amiga Basic does not execute the ON MENU...GOSUB

statement for an event until a subsequent MENU ON statement is executed.

Example:

ON MENU GOSUB CheckMenu

ON MOUSE GOSUB CheckMouse

MENU ON

MOUSE ON

See also: MENU, ON MENU, "Event Trapping" in Chapter 6, "Advanced

Topics."

MERGE merge filespec

Appends a specified disk file to the program currently in memory.

8-80 Reference

n

rn The filespec must include the filename used when the file was saved. That

' I file must have been saved in ASCII format to be merged. You can put a file
in ASCII format by using the A option to the SAVE command. If it was not

r™1 saved in ASCII format, a "Bad file mode" error message is generated.

n

n

n

n

n

n

Amiga Basic returns to command level after executing a MERGE command.

Example:

n
MERGE "SortRoutine"

MID$ MID$(string-expl tn [,m])=string-exp2

MID$(X$,n [,m])

The statement replaces a portion of one string with another string.

n

The function returns a string of length m characters from X$, beginning with

the nth character.

In the statement syntax, n and m are integer expressions, and string-expl

PI and string-expl are string expressions. The characters in string-expl,

beginning at position n, are replaced by the characters in string-expl. If n is

greater than the number of characters in X$ (that is, LEN(X$)),MID$

Fn returns a null string.

The optional m refers to the number of characters from string-expl that are

I I used in the replacement. If m is omitted, all of string-expl is used. The
replacement of characters never exceeds the original length of string-expl.

In the function syntax, the values n and m must be in the range 1 to 32767.

If m is omitted or if there are fewer than m characters to the right of the nth

character, all rightmost characters, beginning with the nth character, are

returned.

In the function syntax, the values n and m must be in the range 1 to 32767.

|—| If m is omitted or if there are fewer than m characters to the right of the n

character, all rightmost characters, beginning with the nth character, are

returned. If n is greater than the number of characters in X$ (that is,

PI LEN(X$)), MID$ returns a null string.

Reference 8-81

u

Example: i i

The following statements locate a specific field within a string and then

replace it with a new string. I I

THIS ROUTINE CHANGES THE ADDRESS FIELD IN RECORDS

RECORDS ="n:JOHN JONES adr:3633 6TH ST WACO, TX " ' '
PRINT "RECORDS = ■■ RECORDS

OFFSET = INSTR(RECORDS,"adr:") 'FIND START OF ADDRESS adr: ,

MID$(RECORDS,OFFSET,40) = "adr:222 ELM ST. WAXAHACHIE, TX " | |
PRINT "MODIFIED RECORDS = " RECORDS

The following is displayed on the screen: | |

RECORDS = n:JOHN JONES adr:3633 6TH ST WACO, TX

MODIFIED RECORDS = n:JOHN JONES adr:222 ELM ST. WAXAHACHIE, TX | |

MKI$ MKI $ (short-integer-expression)

MKL$ MKL$ (long-integer-expression)

MKS$ MKS$ (single-precision-expression) I I

MKD$ MKD$ (double-precision-expression)

Puts numeric values into string variables for insertion into random file

buffers.

U
MKI$ converts a short integer to a 2-byte string.

MKL$ converts a long integer to a 4-byte string. I—I

MKS$ converts a single-precision number to a 4-byte string. I"" I

MKD$ converts a double-precision number to a 8-byte string.

U
You must convert numeric variables to string variables before placing them

in a random file. Use MKI$, MKL$, MKD$, and MKS$ for this purpose.

Then move the variable to the random file buffer using either LSET or | |
RSET, and write the buffer to the file using PUT#.

U

8-82 Reference ,-—,

n

n

n

n

n

n

n

n

n

n

H

n

n

Instead of converting the binary value to its string representation, like the

STR$ function, MK$ moves the binary value into a string of the proper

length. This greatly reduces the amount of storage required for storing

numbers in a file.

Example:

PRINT #1, MKI$(Flags);

The following example illustrates the use of MKI$, MKS$, and MKD$ with

random files.

OPEN "AccountInfo" AS #2 LEN = 14

FIELD #2,8 AS ACCT$,4 AS CHECK$,2 AS DEPOSITS

LET ACCOUNTNO# = 9876543325560

LET CHECKING! = 123456!

LET SAVINGS% = 2500

LSET ACCT$ = MKD$(ACC0UNTN0#)

LSET CHECKS = MKS$(CHECKING!)

LSET DEPOSITS = MKI$(SAVINGS%)

PUT #2,1

CLOSE #2

END

See also: CVI, CVS, CVL, CVD, LSET, RSET, Chapter 5, "Working with

Files and Devices."

MOUSE MOUSE (n)

The MOUSE function returns information about the left mouse button and

the location of the mouse's cursor within the active window. MOUSE does

not monitor the right button, which is used to control the menu (see the

MENU function for information on monitoring menu selections).

|| MOUSE performs seven functions; specify any value from 0 through 6 as the
n parameter to select the desired function. The functions are described in

__ the sections that follow.

n

n

n
Reference 8-83

MOUSE(O): Mouse Button Position

MOUSE(0) gives the status of the left mouse button. After executing

MOUSE(0), Amiga Basic retains the start and end positions of the mouse

until a subsequent MOUSE(0) is executed. Therefore, after detecting the

movement of the mouse through MOUSE(0), a program should then use

MOUSE(3), MOUSE(4), MOUSE(5), and MOUSE(6) to determine the

starting and ending positions.

The following table explains the values returned by MOUSE(0).

Value

Returned Explanation

0 The left MOUSE button is not currently down, and it has not gone

down since the last MOUSE(0) function call.

1 The left MOUSE button is not currently down, but the operator

clicked the left button once since the since the last call to MOUSE

(0). To determine the start and end points of the selection, use

MOUSE(3), MOUSE(4), MOUSE(5), and MOUSE(6).

2 The left MOUSE button is not currently down, but the operator

clicked the left button twice since the last call to MOUSE (0). To

determine the start and end points of the selection, use

MOUSE(3), MOUSE(4), MOUSE(5), and MOUSE(6). (Similarly,

a value of 3 indicates the button was clicked three times.)

-1 The operator is holding down the left mouse button after clicking it

once. The return of this value usually signifies that the mouse is

moving.

-2 The operator is holding down the left mouse button after clicking it

twice. The return of this value usually signifies that the mouse is

moving. (Similarly, a value of -3 indicates the button was clicked

three times.)

8-84 Reference

MOUSE(1): Current X Coordinate

MOUSE(l) returns the horizontal (X) coordinate of the mouse cursor the

last time the MOUSE(0) function was invoked, regardless of whether the

left button is down.

MOUSE(2): Current Y Coordinate

MOUSE(2) returns the vertical (Y) coordinate of the mouse cursor the last

time the MOUSE(0) function was invoked, regardless of whether the left

button was down.

MOUSE(3): Starting X Coordinate

MOUSE(3) returns the horizontal (X) coordinate of the mouse cursor the

last time the left button was pressed before MOUSE(0) was called. Use

MOUSE(3) in combination with MOUSE(4) to determine the starting point

of a mouse movement.

MOUSE(4): Starting Y Coordinate

MOUSE(4) returns the vertical (Y) coordinate of the mouse cursor the last

time the left button was pressed before MOUSE(0) was called.

MOUSE(5): Ending X Coordinate

If the left button was down the last time MOUSE(0) was called, MOUSE(5)

returns the horizontal (X) coordinate where the mouse cursor was when

MOUSE(0) was called. If the left button was up the last time MOUSE(0)

was called, MOUSE(5) returns the horizontal (X) coordinate where the

mouse cursor was when the left button was released. Use MOUSE(5) to

track the mouse as the operator moves it and to determine the coordinate

where movement stops.

Reference 8-85

M0USE(6): Ending Y Coordinate

MOUSE(6) works the same way as MOUSE(5), except it returns the

vertical (Y) coordinate.

Mouse Example

The following routine checks the movement of the mouse. As the mouse

moves, the routine moves a graphic image in array P to the new X and Y

positions.

CheckMouse:

IF MOUSE(0)=0 THEN CheckMouse

IF ABS(X-MOUSE(1)) > 2 THEN MovePicture

IF ABS(Y-MOUSE(2)) < 3 THEN CheckMouse

MovePicture:

PUT(X,Y),P

X=MOUSE(1): Y=MOUSE(2)

PUT(X.Y),P

GOTO CheckMouse

MOUSE ON mouse on

MOUSE OFF mouse off

MOUSE STOP mouse stop

Enables, disables, or suspends event trapping based on the pressing of the

mouse button.

The MOUSE ON statement enables event trapping based on a user's

pressing the mouse button.

The MOUSE OFF statement disables ON MOUSE event trapping. Event

trapping stops until a subsequent MOUSE ON statement is executed. The

MOUSE STOP statement suspends MOUSE event trapping. Event trapping

continues, but Amiga Basic does not execute the ON MOUSE...GOSUB

statement until a subsequent MOUSE ON statement is executed.

See also: MOUSE, ON MOUSE, "Event Trapping" in Chapter 6,

"Advanced Topics."

8-86 Reference

n

j~] NAME NAME "old-filename" AS "new-filename"

j—m Changes the name of a disk file.

Both parameters are string expressions. The old-filename must exist and

r"| the new-filename must not exist. Otherwise, an error results.

i—■| Example:

In this example, the file that was formerly named Accounts becomes

|~] LEDGER.

NAME "Accounts" AS "LEDGER"

n

pn NEW new

Deletes the program currently in memory and clears all variables and the

List window.

NEW is entered in immediate mode or selected from the Project menu to

clear memory before entering a new program. If there is a program

currently in memory, and that program has been changed since it was

loaded, a requester will automatically appear to allow saving of that program.

If executed from within a program, NEW causes Amiga Basic to return to

edit mode.

NEW closes all files and turns off tracing mode. When you execute NEW,

the windows retain their sizes and locations.

NEXT NEXT [variable[,variable...]]

Allows a series of instructions to be performed in a loop a given number of

times.

See "FOR...NEXT" for a discussion of NEXT usage.

Reference 8-87

OBJECT.AX OBJECT.AX object-id, value

OBJECT.AY OBJECT.AY object-id, value

Define the acceleration of an object in the x and y directions.

The object-id corresponds to the object-id in an OBJECT.SHAPE

statement; it identifies the object whose acceleration is to be defined.

The value specifies the acceleration rate in number of pixels per second per

second.

OBJECT.CLIP OBJECT. CLIP (xlfyl)-(x2,y2)

Defines a rectangle and instructs Amiga Basic not to draw objects outside

this area.

The xl and x2 parameters define the left and right boundaries of the

rectangle on the x axis, and yl and y2 define the top and bottom boundaries

on the y axis. The default value of the CLIP rectangle is the border of the

current Output window.

Note: If you change the size of the window using the Sizing Gadget, the

boundaries you have defined using OBJECT.CLIP aren't automatically

updated. That is, if you enlarge the window, the object remains within the

current bounds defined with the last OBJECT.CLIP executed.

OBJECT.CLOSE object.CLOSE [object-id [,object-id...]]

The OBJECT.CLOSE statement releases all memory held by one or more

objects when the object is no longer needed.

The object-id corresponds to the object-id in an OBJECT.SHAPE

statement; it identifies the one or more objects in the current Output window

that OBJECT.CLOSE will release.

8-88 Reference

P"l If object-id is not specified, all objects in the current Output window are

released.

n
OBJECT.HIT OBJECT.HIT object-id, [MeMask] [,HitMask]

n

Determines collision objects for object-id.

The object-id corresponds to the object-id in an OBJECT.SHAPE

statement.

!"""| By default, all objects collide with each other and the border. This
statement can be used to allow some objects to pass through each other

without causing a collision.

n
MeMask is a 16-bit mask that describes object-id. HitMask is a 16-bit

nmaskthat describes the object that object-id is to collide with. If the least

significant bit of Hitmask is set, object-id collides with the border. If the

MeMask of one object, when logically ANDed to the HitMask of another

j—| object, produces a non-zero result, object-id collides with any object

I ' described by HitMask and a COLLISION event occurs.

f—| For more information on defining MeMask and HitMask, see the Using

HitMask and MeMask section of the "Graphics Animation Routines"

chapter in the Amiga ROM Kernel Manual for details.

R -
Example:

r-i

(1
OBJECT.SHAPE l,Asteroid$

OBJECT.SHAPE 2,Ship$

OBJECT.SHAPE 3,Missle$

OBJECT.HIT 1,8,7 'collides with border, ship, missile

OBJECT.HIT 2,2,9 'collides with border, asteroid

OBJECT.HIT 3,4,9 'collides with border, asteroid

OBJECT.ON OBJECT.ON [object-id [,object-id...]]

OBJECT.OFF OBJECT.OFF [object-id [,object-id...]]

These two statements make one or more objects visible or invisible.

Reference 8-89

The object-id corresponds to the object-id in an OBJECT.SHAPE

statement; it identifies an object within the current Output window that

OBJECT.ON or OBJECT.OFF will respectively make visible or invisible.

In OBJECT.ON, if object-id is not specified, all objects within the current

Output window are made visible. If the object was previously started with an

OBJECT.START statement, it moves again.

In OBJECT.OFF, if object-id is not specified, all objects within the current

Output window are made invisible. This statement halts the object if it was

started with OBJECT.START, and prevents future collisions.

Example:

See OBJECT.SHAPE for an example of OBJECT.ON.

See also: OBJECT.START and OBJECT.STOP

OBJECT.PLANES OBJECT.PLANES object-id [,plane-pick][,plane-on-off\

Sets the bob's planePICK and place-on-off masks. For details see the

Amiga ROM Kernel Manual.

The object-id corresponds to the object-id in an OBJECT.SHAPE

statement; it identifies an object in the current Output window.

The plane-pick and plane-on-off can be an integer from 0 to 255. It

defaults to the value established by the Object Editor.

OBJECT.PRIORTTY object . priority object-id, value

Sets a priority that determines when an object is drawn in relation to other

objects with higher or lower priorities. This statement affects only bobs; it

has no effect on sprites.

Two objects assigned the same priority are drawn in random order.

8-90 Reference

The object-id corresponds to the object-id in an OBJECT.SHAPE

statement; it identifies the object to be drawn.

The value is a number from -32768 to 32767 indicating the priority; the

higher the value specified, the higher the priority. For example, an object

with a priority of 8 is displayed "in front of" objects with a priority of 0

through 7.

OBJECT.SHAPE

Statement Syntax 1 OBJECT.SHAPE object-id, definition

Syntax 1 of the OBJECT.SHAPE statement defines the shape, colors,

location, and other attributes of an object that can be moved around the

current Output window. This includes blitter-objects (bobs) and VSprites as

discussed in the "Graphic Animation Routines" chapter of the Amiga ROM

Kernel Manual.

The object-id identifies the object and is referred to by other OBJECT

statements; object-id can range from 1 to n, where n is only limited by

memory available.

The definition is a string expression that describes the static attributes

(including size, shape, and color) of the object. The Object Editor utility

program, written in Amiga Basic and supplied with the system, builds this

string expression. See Chapter 7 for information on using this program.

Statement Syntax 2 OBJECT.SHAPE object-idlt object-idl

Syntax 2 of the OBJECT.SHAPE statement copies the shape of object-idl

to object-idl, creating a new object. Both objects share a significant

amount of memory; thus memory requirements for multiple objects is

reduced when they are created with Syntax 2.

Even though object-idl and object-idl share memory, you can specify

different attributes to each using other OBJECT statements. Amiga Basic

initializes the values assigned to OBJECT.X, OBJECT.Y, OBJECT.VX,

OBJECT.VY, OBJECT.AX, and OBJECT.AY to 0 for this purpose.

Reference 8-91

Example:

OPEN "ball" FOR INPUT AS 1

OBJECT.SHAPE 1,INPUT$(LOF(1),1)

In the above example, the static attributes of the object (including the size,

shape, and color) are in the file ball earlier created by the user with the

Object Editor program (see Chapter 7).

The following gives an example of an Amiga Basic routine that starts up and

handles collisions of the objects defined in ball. Refer to the other sections

of this chapter for an explanation of the COLLISION statement and the

other OBJECT statements.

WINDOW 4,"Animation",(310,95)-(580,170),15

ON COLLISION GOSUB BounceOff

COLLISION ON

OPEN "ball" FOR INPUT AS 1 'file created by the Object Editor

OBJECT.SHAPE 1,INPUTS(LOF(1),1)

CLOSE 1

OBJECT.X 1,10

OBJECT.Y 1,50

OBJECT.VX 1,30

OBJECT.VY 1,30

OBJECT.ON

OBJECT.START

WHILE 1

SLEEP

WEND

BounceOff:

saveld = WINDOW(l)

WINDOW 4

i=COLLISION(0)

IF i=0 THEN RETURN

j=COLLISION(i)

IF j=-2 OR j=-4 THEN

'object bounced off left or right border

OBJECT VX i,-OBJECT VX(i)

ELSE

'object bounced off top or bottom border

OBJECT.VY i,-OBJECT.VY(i)

END IF

OBJECT.START

WINDOW saveld

RETURN

8-92 Reference

n

OBJECT.START object.start [object-id [,object-id...]]

OBJECT.STOP OBJECT.STOP [object-id [,object-id...]]

The OBJECT.START statement sets one or more objects into motion.

The OBJECT.STOP statement freezes the motion of one or more objects.

The object-id corresponds to the object-id in an OBJECT.SHAPE

statement; it identifies one or more objects in the current Output window

that OBJECT.START or OBJECT.STOP, respectively, sets into motion or

freezes.

In OBJECT.START, if object-id is not specified, all objects in the current

Output window are set in motion.

In OBJECT.STOP, if object-id is not specified, all objects in the current

Output window are frozen.

When two objects collide, Amiga Basic does an OBJECT.STOP on both

objects. When one object collides with the border, Ajniga Basic does an

OBJECT.STOP on the object.

Example:

See OBJECT.SHAPE for an example of the OBJECT.START statement.

OBJECT.VX

OBJECT.VY

Statement Syntax OBJECT.VX object-id, value

OBJECT.VY object-id, value

Function Syntax OBJECT.VX(object-id)

OBJECT. VY(object-id)

The statement defines the velocity of an object in the x and y directions.

The function returns the velocity of an object in the x and y directions.

Reference 8-93

The object-id corresponds to the object-id in an OBJECT.SHAPE

statement; it identifies the object to which the velocity applies.

The value in the statement defines the velocity in number of pixels per

second. The function returns the same value.

Example:

OBJECT.VX 1,30

OBJECT.VY 1,30

See also: OBJECT.AX, and OBJECT.AY, and OBJECT.SHAPE for an

example of the use of this statement with other OBJECT statements.

OBJECT.X

OBJECT.Y

Statement Syntax OBJECT.X object-id, value

OBJECT.Y object-id, value

Function Syntax OBJECT.X(object-id)

OBJECT. Y(object-id)

The statements place the object at a specified position in the Output

window, which is the starting point for animation. The functions return the

current X and Y coordinates of the upper left-hand corner of the object's

rectangle.

The object-id corresponds to the object-id in an OBJECT.SHAPE

statement, it identifies the object whose upper left corner is to be defined.

The value defines the X or Y coordinate; it can be a numeric expression

ranging from -32768 to 32767.

You can use the statement to establish an initial starting point for animation,

or to relocate-the object in the Output window during execution; animation

then resumes at the new starting point.

8-94 Reference

The OBJECT.X and OBJECT.Y functions return, respectively, the current

X and Y coordinates of the upper left corner of the object's rectangle.

Example:

OBJECT.X 1,10

OBJECT.Y 1,50

See OBJECT.SHAPE for an example of the use of this statement with other

OBJECT statements.

OCT$ 0CT$(X)

Returns a string that represents the octal value of the decimal argument. X

is rounded to an integer before OCT$(X) is evaluated.

Example:

The following example shows the use of 0CT$ in a decimal conversion

program.

THIS PROGRAM CONVERTS DECIMAL VALUES TO OCTAL

ANSWER$="Y"

WHILE (ANSWER$="YU)

INPUT "ENTER DECIMAL NUMBER ", DECIMAL

PRINT "OCTAL VALUE OF " DECIMAL "IS " 0CT$(DECIMAL)

INPUT "DO YOU WANT TO CONVERT ANOTHER NUMBER? ", ANSWERS

WEND

END

The following shows an example of some of the results displayed when a user

interacts with this program.

ENTER DECIMAL NUMBER 16

OCTAL VALUE OF 16 IS 20

See also: HEX$

Reference 8-95

ON BREAK on break gosub label

ON BREAK GOSUB 0

Tells Amiga Basic to call the specified routine when the user presses

CTRL-C or selects Stop from the Run menu.

The label is a label or a line number in the subroutine that receives control

when the user tries to stop the program.

Example:

ON BREAK GOSUB 100

BREAK ON

10 GOTO 10

100 PRINT "Sorry, this program can't be stopped"

RETURN

See also: BREAK ON, Chapter 6 "Event Trapping."

ON COLLISION on collision gosub label

ON COLLISION GOSUB 0

Tells Amiga Basic to call the specified routine when the COLLISION

function returns a non-zero value (that is, when an object collides with the

border or another object).

The label is a label or a line number in the subroutine that receives control.

GOSUB 0 disables the COLLISION event. The ON COLLISION statement

has no effect until the event has been enabled by the COLLISION ON

statement.

See also: "Event Trapping" in Chapter 6, COLLISION, and

OBJECT.SHAPE for an example.

8-96 Reference

ON ERROR GOTO on error goto line

Sends program control to an error-handling routine.

After enabling error handling, all errors detected cause a jump to the

specified error-handling routine starting at the specified label or line

number, line. If line doesn't exist, Amiga Basic displays an "Undefined

line" error message. The RESUME statement is required to continue

program execution.

To disable error handling, execute an ON ERROR GOTO 0. Subsequent

errors generate an error message and halt execution. An ON ERROR

GOTO 0 statement that appears in an error-handling routine causes Amiga

Basic to stop and print the error message for the error that caused the trap.

It is recommended that all error-handling routines execute an ON ERROR

GOTO 0 if an error is encountered for which there is no recovery action.

See also RESUME.

Example:

10 ON ERROR GOTO 900

900 IF (ERR = 230) AND (ERL = 90) THEN PRINT "try again" : RESUME 80

ON...GOSUB ON expression GOSUB line-list

ON...GOTO ON expression GOTO line-list

Branches to one of several specified line numbers or labels, depending on

the value returned when an expression is evaluated. This is called a

"computed GOSUB" or "computed GOTO."

The value of expression determines which line number in the line-list is

used for branching. If the value is a noninteger, the fractional portion is

rounded.

The line-list is a series of line numbers or labels to which program control

will be routed depending on the value of the expression. For example, if the

value of the expression is three, the third item in the line-list is the

destination of the branch.

Reference 8-97

In the ON...GOSUB statement, each line named in the list must be the first

line of a subroutine.

If the value of the expression is zero, or greater than the number of items in

the list (but less than or equal to 255), Amiga Basic continues with the next

executable statement, if the value of the expression is negative or greater

than 255, an "illegal function call" error message is generated.

Example:

'This program illustrates the use of the

'ON...GOSUB Statement

START:

INPUT "Enter your choice number (1...3) ? ",CHOICE%

IF CHOICER < 1 OR CHOICE% >3 THEN GOTO START:

ON CHOICE% GOSUB SUB1,SUB2,SUB3

END

SUBl:

PRINT "SUBROUTINE ONE"

RETURN

SUB2:

PRINT "SUBROUTINE TWO"

RETURN

SUB3:

PRINT "SUBROUTINE THREE"

RETURN

ON MENU ON MENU GOSUB label

ON MENU GOSUB 0

Tells Amiga Basic to call the specified routine whenever the MENU(O)

function would return a non-zero value (that is, whenever the user selects a

menu item).

The label is a label or a line number of a subroutine to which control is

passed when the MENU(O) function returns a non-zero value. GOSUB 0

disables the MENU event. The ON MENU statement has no effect until the

event has been enabled by the MENU ON statement.

See also: "Event Trapping" in Chapter 6, MENU statement.

8-98 Reference

ON MOUSE ON MOUSE GOSUB label

ON MOUSE GOSUB 0

Tells Amiga Basic to call the specified routine whenever the user presses the

left mouse button.

The label is a label or line number of a subroutine to which control is passed

when the user presses the left mouse button. GOSUB 0 disables the

MOUSE event. The ON MOUSE statement has no effect until the event

has been enabled by the MOUSE ON statement.

See also: "Event Trapping" in Chapter 6, MOUSE function, MOUSE

statement.

ON TIMER ON TlMER(n) GOSUB label

ON TIMER GOSUB 0

Tells Amiga Basic to call the specified routine whenever a given time interval

has elapsed.

The statement causes an event trap every n seconds. The label is a label or

line number of a subroutine to which control is passed when the time

interval n elapses; n must be greater than zero and less than 86400 (the

number of seconds in 24 hours). GOSUB 0 disables the TIMER event.

The ON TIMER statement has no effect until the event has been enabled by

the TIMER ON statement.

See also: TIMER, "Event Trapping" in Chapter 6, "Advanced Topics"

Reference 8-99

OPEN

Statement Syntax 1 OPEN mode,[#]filenumber,filespec[,file-buffer-size]

Statement Syntax 2

OPEN filespeclFOR mode] AS [#] filenumber [LEH=file-buffer-size]

Allows input or output to a disk file or device.

OPEN associates a filenumber with a filename.

A file must be opened before any I/O operation can be performed on that

file. OPEN allocates a buffer for I/O to the disk file or device and

determines the mode of access that is used with the file.

The filenumber is an integer expression whose value is in the range 1 to 255.

The number is associated with the file for as long as it is open, and is used

to refer other I/O statements to the file.

The filespec is a string expression containing the name of the file, optionally

preceded by the name of a volume or device.

The file-buffer-size cannot exceed 32767 bytes. If the file-buffer-size

option is not used, the default length is 128 bytes for random and sequential

files. For random files, the file-buffer-size should be the record length

(number of characters in one record) of the file to be opened.

For sequential files, the file-buff'er-size specification need not correspond to

an individual record size, since a sequential file may have records of

different sizes. When used to open a sequential file, the file-buffer-size

specifies the number of characters to be loaded to the buffer before it is

written to or read from the disk. The larger the buffer, the more room is

taken from Amiga Basic, but the faster the file I/O runs.

Syntax 1

For the first syntax, the mode is a string expression whose first character is

one of the following:

8-100 Reference

n

O Specifies sequential output mode.

I j I Specifies sequential input mode.

R Specifies random input/output mode.

A Specifies sequential append mode.

n
Syntax 2

n
For the second syntax, the mode is one of the following keywords:

[j OUTPUT Specifies sequential output mode.

_ INPUT Specifies sequential input mode.

APPEND Specifies sequential output mode and sets the

i—j file pointer to the end of the file. A PRINT# or

I ' WRITE# statement then adds a record to
the end of the file.

If the mode is omitted in the second syntax, the default, random access

mode, is assumed.

n
Example:

n

n

OPEN "ball" FOR INPUT AS 1

OPEN FileNameA$ AS 2

OPEN FileNameB$ FOR OUTPUT AS 3

[""] OPTION BASE option base n

— Declares the minimum value for array subscripts.

This statement determines the minimum value that array subscripts may

nhave. If n is 1, then 1 is the lowest value possible; if n is 0, then 0 is the

lowest value possible. The default base is 0. Specifying an OPTION BASE

other than 1 or 0 will result in a syntax error.

The OPTION BASE statement must be executed before arrays are defined

or used.

n
Reference 8-101

n

u
Example:

u
If the following statement is executed, the lowest value an array subscript

can have is 1. —-

OPTION BASE 1

LJ
PAINT PAINT [STEP](;oO [,paintColor-id [,borderColor-id]]

Paints an enclosed area the specified color.

The x and y are coordinates of any point within an area in the window '—'
containing a border—for example, any point within a circle, ellipse, or

polygon. P|

When specified, STEP indicates that the x and y coordinates specify a pixel

location relative to the last location referenced. When omitted, the x and y I I

coordinates specify an absolute location.

The paintColor-id identifies the color the region is to be painted. If you | |
omit this parameter, Amiga Basic uses the foreground color as set by the

COLOR statement. —

The borderColor-id identifies the color of the edge of the region to be

painted. If you omit this parameter, Amiga Basic uses the color specified by i~~ i

paintColor-id. I—I

The paintColor-id and borderColor-id are values that correspond to the I I

color-id parameters in a PALETTE statements. —'

Note: You must specify a type of 16 through 31 in the WINDOW statement | |
that created the window containing the region to be painted.

u

o

0
8-102 Reference

o

Example:

radius =50: x = 100: y = 100

hue = RND*3

CIRCLE (x,y).radius,hue

PAINT (x,y),hue

See also: PATTERN, AREA, AREAFILL

PALETTE PALETTE color-id, red, green, blue

Defines a "paint can" and the color it holds for reference by other Amiga

Basic statements.

The color-id is a value from 0 to 31 used in other Amiga Basic statements to

define a "paint can." The depth parameter of the SCREEN statement

determines the maximum number of colors you can use, limiting the

maximum value you can assign to color-id.

Note: The Amiga system uses color-id 0, 1, 2 and 3; any color assigned to

these numbers through a PALETTE statement overrides the system

assignments. The Amiga system initially defines color identification numbers

0, 1, 2, and 3 as follows:

0

1

2

3

blue

white

black

orange

You can reference these numbers in Amiga Basic statements requiring a

color-id, keeping in mind that the user can reassign colors to these numbers

using the Preference Tool from the Workbench.

The red, green, and blue parameters each contain a value from 0.00

through 1.00 indicating a decimal percentage of red, green, and blue.

Combined, these parameters define a color. The table below shows the

specifications you make for red, green, and blue to obtain the colors

indicated in the left-hand column.

Reference 8-103

aqua

black

blue (dark)

blue (sky)

brown

gray

green

green (lime)

orange

purple

red (cherry)

red (fire engine)

tan

violet

white

yellow

0.00

0.00

0.40

0.47

0.80

0.73

0.33

0.73

1.00

0.80

1.00

0.93

1.00

1.00

1.00

1.00

0.93

0.00

0.60

0.87

0.60

0.73

0.87

1.00

0.73

0.00

0.60

0.20

0.87

0.13

1.00

1.00

0.87

0.00

1.00

1.00

0.53

0.73

0.00

0.00

0.00

0.93

0.67

0.00

0.73

0.93

1.00

0.13

Li
Colors Red Green Blue

U

u

u

u

u

u

u
The color you specify may override previous color assignments made by the

Amiga system.

Example:

U
PALETTE l.RND.RND.RND

PALETTE 2,RND,RND,RND

COLOR 1,2 j j

PATTERN PATTERN [line-pattern] [,area-pattern] [_|

Indicates the texture of text, lines, and the interior of polygons.

The line-pattern is an integer expression that defines a 16-bit mask to be

used for line drawing. i i

The are- pattern is the name of an integer array containing the pattern. The

array defines a 16-bit wide by N-bit high mask to be used for polygon fill. In I I

this mask, N is the number of elements in the integer array. N must be a

power of two.

U
8-104 Reference

U

The values you specify for line-pattern and area-pattern determine the

appearance of the pattern. For more information on how the values relate

to the pattern drawn, see the Patterns section in the "Graphics Support

Routines" chapter of the Amiga Rom Kernel Manual.

Example:

DIM AREA.PAT%(3)

AREA.PAT%(0) = &H5555

AREA.PAT%(1) = &HAAAA

AREA.PAT%(2) = &H5555

AREA.PAT%(3) = &HAAAA

PATTERN &HFFF,AREA.PAT%

See also: AREA and COLOR statements.

PEEK PEE¥L(address)

Returns a one-byte integer from memory location address.

The returned value is an integer in the range 0 to 255. The address must be

in the range 0 to 16777215.

See also the POKE statement, which writes a one-byte integer to a specified

memory location.

PEEKL PEEKL (address)

Returns the long-integer word read from memory location address.

The address is a numeric expression in the range from 0 to 16777216; it

represents the address of the memory location. The numeric expression

must be an even number; otherwise Amiga Basic displays an error message.

The function returns the 32-bit value stored at address.

Reference 8-105

u
See also the POKEL statement, which writes a long-integer word to a

specified memory location. M

PEEKW FEEMHaddress)

Returns the short-integer word from memory location address. |)

The address is a numeric expression in the range from 0 to 16777216; it . i

represents the address of the memory location. The numeric expression LJ
must be an even number; otherwise Amiga Basic displays an error message.

The function returns the 16-bit value stored at address.

See also the POKEW statement, which writes a short-integer word to a II

specified memory location.

LJ
POINT POINT (x,y)

u
Returns the color-id of a point in the current Output window.

The arguments x and y are the coordinates in the current Output window of LJ
the pixel to be referenced. The function returns a number that corresponds

to the color-id in a PALETTE statement. . j

Coordinates (0,0) define the upper left-hand corner of the current Output

window. j 1

Coordinate values outside of the current Output window return the value -1.

LJ

POKE poke /, / Q

Writes a byte into a memory location.

LJ
8-106 Reference

U

I and J are integer expressions. The expression I represents the address of

the memory location, and J is the data byte in the range 0 to 255. I must be

in the range 0 to 16777215.

See also the PEEK statement, which returns a one-byte integer from a

specified memory location.

Warning

Use POKE carefully. Altering system memory can corrupt the system. If

this happens, reboot the Amiga.

See also: PEEK, VARPTR

POKEL POKEL address, value

Writes a long-integer word into memory location address.

The address is a numeric expression in the range from 0 to 16777216. The

numeric expression must be an even number; otherwise Amiga Basic

displays an error message.

The value is a numeric expression from -2147483648 to 2147483647 stored

at the specified address.

See also the PEEKL statement, which returns a long-integer word from a

specified memory location.

Warning

Use POKEL carefully. Altering system memory can corrupt the system. If

this happens, reboot the Amiga.

Reference 8-107

POKEW POKEW address, value

Writes short-integer word into memory location address.

The address is a numeric expression in the range from 0 to 16777216. The

numeric expression must be an even number; otherwise Amiga Basic

displays an error message.

The value is a numeric expression from -65536 to 65535; numeric

expressions outside this range are truncated to 16 bits and stored at the

specified address.

See also the PEEKW statement, which returns a short-integer word from a

specified memory location.

Warning

Use POKEW carefully. Altering system memory can corrupt the systerh. If

this happens, reboot the Amiga.

POS POS (x)

Returns the approximate column number of pen in current Output window.

The line number returned by POS is based on the width and height of the

character "O" in the Output window's current font.

This value is always greater than or equal to 1. The horizontal argument of

the LOCATE statement is the inverse of the POS function.

Example:

The following example records the current line and row numbers, moves the

cursor to the bottom of the screen, and prints a message; it then restores the

cursor to its original position and prints a message.

8-108 Reference

Y = CSRLIN ' GET CURRENT CURSOR LINE NUMBER (VERTICAL POSITION)

X = POS(O) ' GET CURRENT CURSOR COLUMN NUMBER (HORIZONTAL POSITION)

LOCATE 20,1 ' PLACE CURSOR ON LINE 20, ROW 1 (BOTTOM OF SCREEN)

PRINT "THIS PRINTS AT LOCATION 20,1 (BOTTOM OF PAGE)"

LOCATE Y,X• ' PLACE CURSOR IN ORIGINAL LOCATION

PRINT "THIS PRINTS AT ORIGINAL LOCATION OF CURSOR"

PRESET ■ preset [STEP] (x,y) I color-id]

Sets a specified point in the current Output window.

PRESET works exactly like PSET, except that if you omit color-id, the

specified point is set to the background color.

The x and y coordinates specify the pixel to be colored.

When specified, STEP indicates that the x and y coordinates specify a pixel

location relative to the last location referenced. When omitted, the x and y

coordinates specify an absolute location.

The color-id specifies the color to be used; it corresponds to the color-id

parameter in a PALETTE statement.

If an out-of-range coordinate is given, no action is taken, and no error

message is given,

The syntax of the STEP option is:

siE?(xoffset,yoffset)

For example, if the most recently referenced point is (10,10), then STEP

(10,0) would reference a point at an offset of 10 from x and 0 from y; that

is, (20,10).

PRINT PRINT [expression-list]

Displays data to the screen in the current Output window. (See LPRINT for

information on printing data on a printer.)

Reference 8-109

u
If the expression-list is omitted, a blank line is printed. If the

expression-list is included, the values of the expressions are printed in the [_J
Output window. The expressions in the list may be numeric or string

expressions. (String constants must be enclosed in quotation marks.)

Print Positions

U
The position of each printed item is determined by the punctuation used to

separate the items in the list. In the list of expressions, a comma causes the . -

next value to be printed at the beginning of the next comma stop, as set by | |
the WIDTH statement. A semicolon causes the next value to be printed

immediately adjacent to the last value. Typing one or more spaces between , —

expressions has the same effect as typing a semicolon. I I

LJ
If a comma or a semicolon terminates the list of expressions, the next

PRINT statement begins printing on the same line, spacing accordingly. If

the list of expressions terminates without a comma or a semicolon, a carriage

return is printed at the end of the line. If the printed line is longer than the j j

line width as set by the WIDTH statement, Amiga Basic goes to the next '—'
physical line and continues printing.

U
Printed numbers are always followed by a space. Positive numbers are

preceded by a space. Negative numbers are preceded by a minus sign.

Single-precision numbers that can be represented with 7 or fewer digits in j |

the unsealed format as accurately as they can be represented in the scaled

format are output using the unsealed format. For example, 1E-7 is output

as .0000001 and IE-8 is output as 1E-08. Double-precision numbers that Lj

can be represented with 16 or fewer digits in the unsealed format as

accurately as they can be represented in the scaled format are output using

the unsealed format. For example, 1D-15 is output as .000000000000001 | |
and 1D-17 is output as 1D-17.

Note: You can use a question mark in place of the word PRINT in a PRINT I—I
statement: This can be a time-saving shorthand tool, especially when

entering long programs with many consecutive PRINT statements. \~\

U

LJ
8-110 Reference

U

PRINT USING PRINT USING string-exp;expression-list

Prints on the screen strings or numbers in a format you specify. (See

LPRINT USING for information on printing data on a printer.)

The string-exp is a string literal (or variable) composed of special formatting

characters. These formatting characters determine the field and the format

of the printed strings or numbers. You can include literal characters in the

string-exp. Precede with an underscore (_) each format symbol (!, &, #,

etc., described later in this section) you wish to use as a literal character.

The expression-list contains the string expressions or numeric expressions

that are to be printed; each expression must be separated by a semicolon or

a comma.

String Fields

You can specify !. \\ , and & to perform special formatting function on

string fields that are to be printed.

! The ! character specifies that only the first character

in the string is to be printed.

\nspaces\ \nspaces\ represent any number of blank

characters between two slashes; this specifies that 2

+ n characters from the string are to be printed;

Amiga Basic ignores any other characters in the

field. If you specify

\\ two characters are printed, regardless of the

number of characters in the field. For each

space you insert between the brackets, an

additional character is printed. For

example,

Reference 8-111

n

\ \ causes three characters to be printed. If

you specify more spaces than are in the

field, Amiga Basic left-justifies the field

and pads the extra spaces to the right. If

you specify fewer spaces than are in the

field, Amiga Basic ignores the extra

characters in the field.

& Specify & for string fields of variable length. Amiga

Basic always prints the entire string.

Numeric Fields

Amiga Basic allows the following special characters to define the format of

numeric expressions, as summarized below.

Character Effect on Printed Output

Specifies the number of digit positions.

Inserts a decimal point.

+ Inserts a plus or minus sign, as applicable

Inserts a trailing minus sign for negative numbers.

** Fills leading spaces with asterisks.

$$ Prints a dollar sign to the immediate left of a number.

**$ Fills leading spaces with asterisks and inserts a dollar sign.

, Prints commas where required to the left of the decimal point.

AAAA Specifies exponential format.

_ Specifies a literal character follows.

These characters are described in detail in the sections that follow. Amiga

Basic treats any other character in the format string as literal output. For

example,

PRINT USING "BALANCE = $$####.##";balance

8-112 Reference

#

The # character specifies the positions that must be filled with a number

when the expression is printed. If the number has fewer positions than the #

positions specify, Amiga Basic justifies the number to the right and precedes

it with spaces.

You can insert a decimal point within a # field; Amiga Basic prints the #

digits specified on both sides of the decimal point. Amiga Basic precedes

the decimal point with a zero if necessary.

The following examples show decimal point specifications:

PRINT USING "##.##";.78

PRINT USING "##.##";10.2,5.3,.234

The following numbers are displayed:

0.78

10.20 5.30 0.23

A plus sign at the beginning or end of the format string causes the sign of the

number (plus or minus) to be printed before or after the number.

A minus sign at the end of the format field causes negative numbers to be

printed with a trailing minus sign. The following examples show use of the

plus and minus signs:

PRINT USING "+##.##";-68.95, 2.4, -9

PRINT USING "##.##-"; -68.95, 22.449, -7

These statements generate the following:

-68.95+2.40-9.00

68.95-22.457.00-

Reference 8-113

A double asterisk at the beginning of the format string causes leading spaces

in the numeric field to be filled with asterisks. The second asterisk also

specifies positions for two or more digits. The statement

PRINT USING "**#.##"; 12.39, -0.9, 765.1

prints the following:

12.39-0.90765.10

$$

A double dollar sign causes a dollar sign to be printed to the immediate left

of the formatted number. The $$ specifies two more digit positions, one of

which is the dollar sign. The exponential format cannot be used with $$.

Negative numbers cannot be used unless the minus sign trails to the right.

The statement

PRINT USING "$$###.##"; 456.78, 9.3

prints the following:

$456.78 $9.30

The double asterisk dollar sign (**$) at the beginning of a format string

combines the effects of the two symbols. Leading spaces are filled with

asterisks and a dollar sign is printed before the number. * * $ specifies three

more digit positions,one of which is the dollar sign.

Do not use the exponential format with **$. In negative numbers, minus

signs appear immediately to the left of the dollar sign. The example

PRINT USING "**$##.##"; 2.34, 999.9

prints the following:

***$2.34*$999.90

8-114 Reference

If you place a comma to the left of the decimal point in a format string,

Amiga Basic prints a comma to the left of every third digit. (This has no

effect on the portion of the number to the right of the decimal point.) If you

place a comma at the end of the format string, Amiga Basic prints it as part

of the string. A comma specifies another digit position; it has no effect if

specified with exponential (AAAA) expressions. The example

PRINT USING "####,.##»; 1234.5

PRINT USING "####.##,»; 1234.5

prints the following:

1,234.50

1234.50,

Place an underscore (_) to print the character as a literal, as shown below.

PRINT USING "_!##.##_!";12.34

PRINT USING "__?##.##_?"; 12. 34

These statements display the following:

112.34!

712.34?

Place four carets (AAAA) after the digit position characters to specify

exponential format. The four carets allow space for E+ to be printed. You

can also specify a decimal point position. Amiga Basic justifies the

significant digits to the left, adjusting the exponent; unless you specify a

leading + or trailing + or -, Amiga Basic prints a space or minus sign to the

left of the decimal point. The following examples show the exponential

format:

Reference 8-115

PRINT USING "##.## ";234.56

PRINT USING ".#### ";888888

PRINT USING "+.## ";123

These statements display the following:

2.35E+02

.8889E+O6

+.12E+O3

Overflow Indicator

If a number is too large to fit within a field, Amiga Basic prints a % character

in the result to indicate an overflow, as shown in the next example.

PRINT USING "##.##";987.654

These statement display the following:

%987.65

If the number of digits specified exceeds 24, Amiga Basic issues the "Illegal

function call" message.

PRINT#

PRINTS USING PRINT# filenumber, [USING string-exp;] expression-list

Writes data to a sequential file.

The filenumber corresponds to the number specified when the file was

opened for output. The string-exp can consist of any of the formatting

characters described under "PRINT USING." The expression-list items are

numeric or string expressions to be written to the file.

PRINT# does not compress data, but rather writes it to the file just as PRINT

displays it on a screen. Therefore, be sure to delimit the data to ensure

writing only the data you require in the correct format.

8-116 Reference

Delimit numeric expressions in expression-list as shown in the following

example:

PRINT #1,A;B;C;X;Y;Z

(Commas used as delimiters cause extra blanks to be written to the file.)

Delimit string expressions with semicolons and special delimiters (instead of

semicolons alone) so that they can be processed separately when a program

reads them in from the file using INPUT#. Here is what happens when

strings are delimited with semicolons only:

A$ = "CAMERA"

B$ = "93604 - 1"

PRINT* 1,A$;B$

Both A$ and B$ appear as one contiguous string in the record:

CAMERA93804-1

This can be corrected by specifying a comma as a special delimiter as

follows:

PRINT# 1,A$;",";B$

which writes the following to the file:

CAMERA,93604-1

A program can process this format as two separate variables.

Surround each string that contains commas, semicolons, leading blanks, or

carriage returns, with explicit quotation marks, using CHR$(34). (See the

explanation of CHR$ in this chapter for information on how this function

works.)

For example, the following statements

Reference 8-117

A$ = "CAMERA, AUTOMATIC"

B$ = "93604-1"

PRINT #1,A$;B$

write the following image to a file:

CAMERA, AUTOMATIC93604-1

If you read this file with the following statement

INPUT #1,A$,B$

note that the original input is now reassigned differently:

A$ = "CAMERA"

B$ = "AUTOMATIC936O4-1"

To write the data correctly to the file, use CHR$(34) to specify double

quotation marks as follows:

PRINT #1,CHR$(34);A$;CHR$(34);",",CHR$(34);B$;CHR$(34)

Then, the statement

INPUT #1, A$,B$

assigns the variables to the correct string as follows:

A$ = "CAMERA, AUTOMATIC"

B$ = "93604-1"

You can also use the PRINT# statement with the USING option to control

the format of the file, as shown below.

PRINT#1,USING"$$###.##,";J;K;L

See also: WRITE

8-118 Reference

PSET PSET [STEP] (x,y) [,color-id]

Sets a point in the current Output window.

The x and y coordinates specify the pixel that is to be colored.

When specified, STEP indicates that the x and y coordinates specify a pixel

location relative to the last location referenced. When omitted, the x and y

coordinates specify an absolute location.

The color-id specifies the color to be used; it corresponds to the color-id

parameter in a PALETTE statement.

Example:

'Draw a thousand stars in random locations

FOR I = 1 TO 1000

x = INT(RND*620)

y = INT(RND*200)

PSET(x.y)

NEXT I

See also: PRESET and COLOR

PTAB PTAB(X)

Moves the print position to pixel X.

PTAB is similar to TAB, except that PTAB indicates the pixel position

rather than the character position to advance to. If the current print

position is already beyond pixel X, PTAB retreats to that pixel on the same

line. Pixel 0 is the leftmost position. I must be in the range 0 to 32767.

PTAB may only be used in PRINT statements.

A semicolon (;) is assumed to follow the PTAB (I) function, which means

PRINT does not force a carriage return.

Reference 8-119

PUT PUT [#] filenumber [,record-number]

PUT [STEP] (x,y),array [(index[,index...])][,action-verb]

Writes a record from a random buffer to a random access file.

Draws a screen graphics image obtained in a GET statement.

The two syntaxes shown above correspond to two different uses of the PUT

statement. These are called a random file PUT and a screen PUT,

respectively.

Random File PUT

For the first syntax, the filenumber is the number under which the file was

opened. If the record-number is omitted, Amiga Basic will assume the next

record number (after the last PUT). The largest possible record number is

16777215; the smallest is 1.

PRINT#, PRINT# USING, and WRITE# may be used to put characters in

the random file buffer before executing a PUT statement, but most often,

the buffer is filled by FIELD and LSET or RSET statements.

In the case of WRITE#, Amiga Basic pads the buffer with spaces up to the

carriage return. Any attempt to read or write past the end of the buffer

causes a "Field overflow" error message to be generated.

Screen PUT

In the second syntax, PUT uses(xi, yl) as the pair of coordinates specifying

the upper left-hand corner of the rectangular image to be placed on the

screen in the current Output window.

The array is the name assigned to the array that holds the image. (See

"GET" for a discussion of array name issues.)

The index allows you to PUT multiple objects in each array. This technique

can be used to loop rapidly through different views of an object in

succession.

8-120 Reference

The action-verb is one of the following: PSET, PRESET, AND, OR, XOR.

If the action-verb is omitted, it defaults to XOR.

The action-verb performs the interaction between the stored image and the

one already on the screen.

Example:

PUT (0,0).BobArray,PSET

See also: GET, PRESET, PSET, PRINT, WRITE, FIELD, LSET, RSET

RANDOMIZE RANDOMIZE [expression] | [TIMER]

Reseeds the random number generator.

This statement reseeds the random number generator with the expression, if

given, where the expression is either an integer between -32768 and 32767,

inclusive, or where the expression is TIMER. If the expression is omitted,

Amiga Basic suspends program execution and asks for a value before

randomizing, by printing:

Random Number Seed (-32768 to 32767)?

If the random number generator is not reseeded, the RND function returns

the same sequence of random numbers each time the program is run. To

change the sequence of random numbers every time the program is run,

place a RANDOMIZE statement at the beginning of the program and

change the argument with each run.

The simplest way to change a random sequence of numbers with each

program run is to use RANDOMIZE TIMER. In this case, the random

number seed is the number of seconds that have passed since midnight.

See also: RND

Reference 8-121

READ READ variable-list

Reads values from DATA statements and assigns them to variables.

A READ statement must always be used in conjunction with a DATA

statement. READ statements assign DATA statement values to variables on

a one-to-one basis. READ statement variables may be numeric or string,

and the values read must agree with the variable types specified. If they do

not agree, Amiga Basic issues the "Syntax error" message.

A single READ statement may access one or more DATA statements (they

are accessed in order), or several READ statements may access the same

DATA statement. If the number of variables in the variable-list exceeds

the number of elements in the DATA statements, Amiga Basic issues an

"Out of data" error message. If the number of variables specified is fewer

than the number of elements in the DATA statements, later READ

statements begin reading data at the first unread element. If there are no

subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement.

DIM CF(19)

FOR 1=1 TO 19

READ CF(I)

PRINT CF(I)

NEXT I

DATA 0,2,4,5,7,9,11,0,1,-1, 0,0,0,0,0,0, -12,12,0

See also: DATA, RESTORE

REM REM remark

Allows explanatory remarks to be inserted in a program.

REM statements are not executed but appear exactly as entered when the

program is listed.

REM statements may be branched into from a GOTO or GOSUB statement.

Execution continues with the first executable statement after the REM

statement.

8-122 Reference

Note: You can use an apostrophe (') in place of the word REM in a

comment. This can be a time-saving shorthand tool, especially when

entering long programs with many consecutive REMark statements.

Warning: The DATA statement treats REM as valid data, so don't specify

it in a DATA statement unless you want it considered as data.

RESTORE restore [line]

Allows DATA statements to be reread from a specified line.

After a RESTORE statement with no specified label or line number is

executed, the next READ statement accesses the first item in the first DATA

statement in the program. If the line is specified, the next READ statement

accesses the first item in the specified DATA statement.

MainLoop:

SOUND RESUME

RESTORE Song

GOSUB PlaySong

GOTO MainLoop

Song:

DATA 1,3,3,3

DATA I2g>ge, I2p2de, I2p2l6g3f#g3a, I6p6gab>dcced

RESUME RESUME

RESUME 0

RESUME NEXT

RESUME line

Continues program execution after an error recovery procedure has been

performed.

Any one of the four syntaxes shown above may be used, depending upon

where execution is to resume:

Reference 8-123

u

RESUME or RESUME 0 Execution resumes at the ,

statement that caused the error. | I

u

u

RESUME NEXT Execution resumes at the

statement immediately following

the one that caused the error.

RESUME line Execution resumes at the label or

line number line.

u

A RESUME statement that is not in an error-handling routine causes a

"RESUME without error" error message to be generated. | |

U
RETURN return [line]

Returns execution control from a subroutine. I I

The line in the RETURN statement acts as with a GOTO. If no line is given,

execution begins wit

GOSUB statement.

execution begins with the statement immediately following the last executed '—'

Amiga Basic includes the RETURN line enhancement that lets processing

resume at a line that has a number or label. Normally, the program returns

to the statement immediately following the GOSUB statement when the I I

RETURN statement is encountered. However, RETURN line enables the

user to specify another line. This permits you more flexibility in program

design. This versatile feature, however, can cause problems for untidy | j
programmers. Assume, for example, that your program contains these

fragments of a program:

U

U

u
8-124 Reference

u

15 MOUSE ON

10 ON MOUSE GOSUB 1000

20 FOR I = 1 TO 10

30 PRINT I

40 NEXT I

50 REM NEXT PROGRAM LINE

200 REM PROGRAM RESUMES HERE

1000 'FIRST LINE OF SUBROUTINE

1050 RETURN 200

If mouse activity takes place while the FOR...NEXT loop is executing, the

subroutine is performed, but program control returns to line 200 instead of

completing the FOR...NEXT loop. The original GOSUB entry is canceled

by the RETURN statement, and any other GOSUB, WHILE, or FOR that

was active at the time of the trap remains active. Using a RETURN from

within a FOR loop is not good programming practice and should be

discouraged.

See also: GOSUB

RIGHTS RIGHTS (X$,I)

Returns the rightmost I characters of string X$.

If I is greater than or equal to the number of characters in X$, it returns X$.

If I = 0, the null string (length zero) is returned. I can range from 0 to

32767.

Reference 8-125

Example:

The following routines show the use of RIGHTS in extracting a field from

within a string containing several fields.

'THIS ROUTINE EXTRACTS THE ADDRESS a: FROM STRING RECORDS

RECORDS = "n:JOHN JONES ss:5349 12 99 a:3633 6TH ST WACO.TX"

LENGTH = LEN(RECORDS) 'DETERMINE LENGTH OF RECORD

OFFSET = INSTR(RECORDS, "a: '•) 'FIND START OF ADDRESS a:

RIGHTCHAR = LENGTH - OFFSET - 1

ADDRESSS = RIGHTS(RECORDS,RIGHTCHAR) 'EXTRACT ADDRESS FROM RECORDS

PRINT ADDRESSS

The following is displayed on the screen:

3633 6TH ST WACO,TX

See also: LEFTS, MIDS

RND RND[(X)]

Returns a random number between 0 and 1.

RND issues the same sequence of random numbers each time a program is

run unless you specify a RANDOMIZE statement.

• X < 0 always restarts the same sequence for any given X.

• X > 0 or X omitted generates the next random number in the

sequence.

• X = 0 repeats the last number generated.

Example:

In the following example, RND produces random dimensions and screen

locations for graphics images.

8-126 Reference

FOR I = 1 TO 40

X = INT(RND*620) 'SET HORIZONTAL LOCATION OF CENTER

Y = INT(RND*200) 'SET VERTICAL LOCATION OF ENTER

RADIUS = 40*RND 'SET A RANDOM RADIUS

CIRCLE (X,Y),RADIUS 'DRAW A CIRCLE

NEXT I

See also: RANDOMIZE

RSET RSET string-variable=string-expression

Moves data from memory to a random file buffer in preparation for a PUT

statement.

See "LSET" for a discussion of both LSET and RSET.

RUN RUN [line]

RUN filename [,R]

Executes the program currently in memory.

If the line is specified, execution begins on that line. Otherwise, execution

begins at the first line of the program.

With the second form of the syntax, the named file is loaded from disk into

memory and run. If there is a program in memory when the command

executes, a requester appears permitting the program to be saved.

In the second syntax, the filename must be that used when the file was

saved.

RUN closes all open files and deletes the current contents of memory before

loading the designated program. However, with the R option, all data files

remain open.

Reference 8-127

SADD SADD (string expression)

Returns the address of the first byte of data in the specified string

expression.

This value is only dependable until another string allocation occurs because

subsequent string allocations may cause existing strings to move in memory.

SADD is typically used to pass the address of a string to a machine language

program.

Avoid using VARPTR (string$) since the format of string descriptors may

change in the future.

Example:

CALL Prompt(SADD("How many"+CHR$(O)))

See also: VARPTR

SAVE SAVE \filename[,A]]

SAVE [filename[,P]]

SAVE [filename[,B]]

Saves a program file.

The filename is a quoted string. If a filename already exists, Amiga Basic

overwrites the file. If you don't specify filename, Amiga Basic prompts you

for the name of the file to save.

The A option saves the file in ASCII format. If the A option is not

specified, Amiga Basic saves the file in a compressed binary format that can

also be specified with the B option. ASCII format takes more space on the

disk, but some programs require that files be in ASCII format. For instance,

the MERGE command requires an ASCII format file. Application programs

may also require ASCII format in order to read the file.

8-128 Reference

n

The P option protects the file by saving it in an encoded binary format.

I When a protected file is later RUN (or loaded with LOAD), any attempt to

list or edit it will fail.

|—"1 Once a file is MERGEd, its format is in ASCII. To save the file in

compressed format, use the SAVE command with no option or with option

B.

I I The filename can include a drive number or library name. For example, to
save file "test" to drive 1, enter:

' SAVE "dfl:test"

-— To save the same file to a library named "datafils," enter:

i I

SAVE "datafils/test"

P™1 For further information on file specification, see Chapter 5.

SAY SAY "string" [,mode-array]

Translates a list of codes you specify into a voice delivering audible speech

of any language.

The string contains a list of phoneme codes. (Phonemes are units of speech

composed of the syllables and words of a spoken language.) The

mode-array, if present, is an integer array of at least 9 elements. The

specifications you make in the elements define the characteristics of the

voice that is speaking. If mode-array, is not an integer, a type mismatch

error occurs.

You can construct phoneme codes using the TRANSLATES function or by

following the directions given in Appendix H.

The following table gives the values you can specify in mode-array to

describe the characteristics of the voice that is to speak. If you don't specify

mode-array (it is optional), the default values indicated in the table are in

Reference 8-129

Argument Element # Description

pitch o

inflection

rate

voice

tuning

volume

channel

Base pitch for the voice, in hertz. Specify a

value between 65 and 320. The default is

110 (normal male speaking voice).

Modulation. Choose one of two values:

0 Inflections and emphasis of syllables

(default).

1 Monotone (robot-like).

Speaking rate for the voice, in words per

minute. Specify a value between 40 and

400. The default is 150.

Gender. Choose one of two values:

0 Male voice (the default)

1 Female voice

The sampling frequency, in hertz. This

element controls the changes in vocal

quality. Specify a value in the range of

5000 (low and nimbly) to 28000 (high and

squeaky). The default is 22200.

Volume. Specify a value between 0 (no

sound) and 64 (loudest). The default is 64.

Channel assignment for voice output.

Channels 0 and 3 go to the left audio

output, and channels 1 and 2 go to the right

audio output. Specify one of the code

numbers from the Channel Assignment

Code table that follows this table.

The default code is 10, which assigns any

available left/right pair of channels.

8-130 Reference

Argument Element # Description

mode 7 Synchronization mode. Specify either 0 or

1, as described below.

0 Synchronous speech output. Amiga

Basic waits for the completion of the

current execution of SAY before

processing further commands. This is

the default value.

1 Asynchronous speech output. Amiga

Basic begins executing the current SAY

statement and then immediately

resumes processing subsequent

commands.

control 8 Narrator device control mode. This

parameter intructs Amiga Basic how to

process multiple SAY statements during

asynchronous speech output; that is, when

Array(7)=1. Specify one of the following

integers:

0 Process normally. Amiga Basic finishes

executing the first SAY statement and

then executes the second one. This is

the default mode.

1 Stop speech processing. Amiga Basic

cancels the previous statement.

2 Override processing. Amiga Basic

immediately interrupts the first SAY

statement and executes the second one.

Reference 8-131

Channel Assignment Codes

Value Channel (s)

0 0

1 1

2 2

3 3

4 0 and 1

5 0 and 2

6 3 and 1

7 3 and 2

8 either available left channel

9 either available right channel

10 either available left/right pair of channels (the default)

11 any available single channel

Example:

FOR J = 0 to 8: READ HOW%(J): NEXT J

TEXT$ = "DHIHS IHZ YOHR (AHMIY5GAH PER5SINUL KUMPYUW5TER) SPIY4KIHNX.

SAY TEXT$,HOW%

SAY TRANSLATES ("Hi there, how are you?")

DATA 110,0,250,0,22200,64,10,0,0

See also: TRANSLATES

SCREEN

SCREEN CLOSE SCREEN screen-id , width, height, depth, mode

SCREEN CLOSE screen-id

The SCREEN statement defines the dimensions of a new screen, the

number of colors it can hold, and the screen resolution. SCREEN CLOSE

closes the screen.

In creating the screen, SCREEN allocates private memory for a bit map.

8-132 Reference

The SCREEN CLOSE statement releases memory allocated to the screen

identified by screen-id.

The screen-id is a number from 1 to 4 which identifies the screen;

WINDOW statements include a corresponding screen-id that identifies the

screen in which a window is to appear.

The width is the width of the screen in pixels. Specify a value from 1

through 640.

The height is the height of the screen in pixels. Specify a value from 1

through 400.

The depth is the number of bit planes associated with the screen. The value

you specify (1, 2, 3, 4, or 5) determines the number of colors that can be

displayed on the screen, as shown in the following table.

Value

1

2

3

4

5

Number of

Colors

2

4

8

16

32

The mode determines the pixel width of the screen (320 pixels per

horizontal line for low resolution and 640 pixels for high resolution) and

whether the screen is to be interlaced. Normally, you specify low resolution

for home television screens, and high resolution for high-resolution

monochrome and RGB monitors.

An interlaced screen doubles the number of horizontal lines appearing on

the screen. For example, in interlaced mode, 400 lines normally fill the

screen; in non-interlaced mode, 200 lines.

Reference 8-133

The table below shows the values you can specify for mode, and the resulting

screen produced.

Mode Screen Produced

1 Low resolution, non-interlaced.

2 High resolution, non-interlaced.

3 Low resolution, interlaced.

4 High resolution, interlaced.

Example:

SCREEN 1,320,200,5,1

WINDOW 2,"Lines",(10,10)-(270,170),15,1

SCROLL SCROLL rectangle, delta-x, delta-y

Scrolls a defined area in the current Output window.

The rectangle has the form (xl,yl)-(x2,y2), which specifies the bounds of

the rectangle in the current Output window that is scrolled.

The delta-x parameter indicates the number of pixels to scroll right. If the

parameter is a negative number, the rectangle scrolls left.

The delta-y parameter indicates the number of pixels the rectangle will

scroll down. A negative value will scroll the rectangle up.

The SCROLL statement is most effective when the image to be scrolled is

smaller than the defined rectangle, and the areas being affected have no

background.

8-134 Reference

H

r-i SGN SGN(X)
! I

Indicates the value of X, relative to zero.

If X>0, SGN(X) returns 1.

If X=0, SGN(X) returns 0.

If X<0, SGN(X) returns -1.

Example:

In the following example, SGN evaluates a negative, zero, and positive value

respectively.

PRINT SGN(-299)

PRINT SGN (499 - 499)

PRINT SGN (8722)

The following is displayed on the screen:

-l

o

l

SHARED SHARED variable-list

Makes specified variables within a subprogram common to variables of the

same name in the main program.

The variable-list is a list of variables, separated by commas, that are shared

by the subprogram and the main program. If the variable to be shared is an

array, its name must be followed by parentheses. If the value of the variable

is altered within the subprogram, the value is changed for that variable in the

main program, and vice versa.

Reference 8-135

The SHARED statement can only be used within a subprogram. A

subprogram can have several SHARED statements for different variables,

just like a program can have several DIM statements for different variables.

It is advisable to group all of one subprogram's SHARED statements at the

top of the subprogram.

See also: DIM SHARED

SIN sin(X)

Returns the sine of X, where X is in radians.

The evaluation of this function is performed in single precision when the

argument is in single precision and in double precision when the argument is

in double precision.

Example:

PRINT "SINE OF 1 IS " SIN(l)

PRINT "SINE OF 100 IS " SIN(IOO)

PRINT "SINE OF 1000 IS " SIN(IOOO)

The following is displayed on the screen:

SINE OF 1 IS .841471

SINE OF 100 IS -.5063657

SINE OF 1000 IS .8268796

See also: COS, TAN

SLEEP SLEEP

Causes a Amiga Basic program to temporarily suspend execution until an

event occurs that Amiga Basic is interested in, such as a mouse click, key

press, object collision, menu select, or a timer event.

8-136 Reference

n

Example:

n

n

n

LOOP:

1$ = INKEY$

IF 1$ = "X" THEN STOP

SLEEP

GOTO LOOP

|—| SOUND SOUND frequency, duration [, [volume][, voice]]

' I SOUND WAIT
SOUND RESUME

n
Produces a sound from the speaker, builds a queue of sounds, and plays a

r_ queue of sounds.

i I

The SOUND WAIT statement causes all subsequent SOUND statements to

be queued until a SOUND RESUME statement is executed. This can be

used to synchronize the sounds coming from the four audio channels on the

Amiga (known as voices). The queue has a finite limit, so if too many

SOUND statements are queued without a SOUND RESUME statement,

Amiga Basic generates an out-of-memory error.

The frequency can be an integer or fixed point constant of single or double

precision. The minimum frequency you can specify is 20 hertz, and the

maximum is 15000 hertz. If you specify a frequency of less than 20 hertz,

Amiga Basic produces a 20-hertz sound; if you specify more than 15000

hertz, Amiga Basic produces a 15000-hertz sound.

The following table shows four octaves of notes and their corresponding

frequencies. Note that doubling the frequency produces a note one octave

higher.

Note

C

D

E

F

Frequency

130.81

146.83

164.81

174.61

Note

C*

D

E

F

Frequency

523.25

587.33

659.26

701.00

Reference 8-137

Note

G

A

B

C

D

E

F

G

A

B

•Middle C

Frequency

196.00

220.00

246.94

261.63

293.66

329.63

349.23

392.00

440.00

493.88

Note

G

A

B

C

D

E

F

G

A

B

Frequency

783.99

880.00

993.00

1046.50

1174.70

1318.50

1396.90

1568.00

1760.00

1975.50

The duration can be any numeric expression from 0 to 77. It determines

how long the sound will last. One second is represented by a duration of

18.2. Therefore, the number 18.2 as a duration argument would produce a

tone that lasts one second. The maximum argument of 77 would produce a

sound that lasts about 4.25 seconds.

The following table relates tempo to duration.

Tempo

very slow

slow

Larghissimo

Largo

Larghetto

Grave

Lento

Adagio

Adagietto

Andante

Beats Per Minute

40-60

60-66

66-76

76-108

Duration

28.13-18.75

18,75-17.05

17.05-14.8

14.8-10.42

8-138 Reference

Tempo Beats Per Minute Duration

108-120 10.42-9.38

120-168 9.38-6.7

medium

fast

Andantino

Moderato

Allegretto

Allegro

Vivace

Veloce

Presto

very fast Prestissimo 168-208 6.7-5.41

A SOUND statement isn't played until the complete duration of a previous

SOUND statement.

The volume can range from 0 (lowest volume) to 255 (highest volume). The

default volume is 127.

The voice indicates which of four Amiga audio channels the sound will come

from. Specify 0 or 3 for the audio channel to the left speaker and 1 or 2 for

the right speaker. The default is 0.

Example:

SOUND 440,20,100,0

See also: WAVE

SPACES spaces (X)

Returns a string of spaces of length X.

The expression X is rounded to an integer and must be in the range 0 to

32767.

Reference 8-139

Example:

In the following example, SPACES creates two indention variables

containing blanks; the variables force text to the appropriate indented

columns when displayed with PRINT.

INDENT5$ = SPACES(5)

INDENT10$ = SPACE$(1O)

PRINT "Level 1 Outline Heading"

PRINT INDENT5$ "Level 2 Heading"

PRINT INDENT5$ "Level 2 Heading"

PRINT INDENT10$ "Level 3 Heading

PRINT INDENT10$ "Level 3 Heading"

PRINT "Level 1 Heading"

END

The following is displayed on the screen:

Level 1 Outline Heading

Level 2 Heading

Level 2 Heading

Level 3 Heading

Level 3 Heading

Level 1 Heading

See also: SPC

SPC SPC(X)

Generates spaces in a PRINT statement. X is the number of spaces to be

skipped.

SPC can be used only with PRINT and LPRINT statements. X must be in

the range 0 to 255. A semicolon (;) is assumed to follow the SPC(X)

function.

8-140 Reference

Example:

FOR I = 1 TO 5

PRINT SPC(I) "I AM 1 COLUMN TO THE RIGHT OF THE ABOVE LINE"

NEXT I

The following is displayed on the screen:

I AM 1 COLUMN TO THE RIGHT OF THE ABOVE LINE

I AM 1 COLUMN TO THE RIGHT OF THE ABOVE LINE

I AM 1 COLUMN TO THE RIGHT OF THE ABOVE LINE

I AM 1 COLUMN TO THE RIGHT OF THE ABOVE LINE

See also: PTAB, SPACES, TAB

SQR SQR(X)

Returns the square root of X.

X must be >= 0.

The evaluation of this function is performed in single precision when the

argument is in single precision and in double precision when the argument is

in double precision.

Example:

PRINT "VALUE

FOR I = 1 TO 10

PRINT I,SQR(I)

NEXT I

END

SQUARE ROOT"

Reference 8-141

u
The following is displayed on the screen:

U

u

u

u

u

STICK STICK(n)

Returns the direction of joysticks. Joystick A refers to a stick in mouse port

1; joystick B refers to a stick in mouse port 2. , ,

The n value determines which of two joysticks (A or B) you want direction

information and on which coordinate (X or Y), as follows:

VALUE

1

2

3

4

5

6

7

8

9

10

SQUARE ROOT

1

1.414214

1.732051

2

2.236068

2.44949

2.645751

2.828427

3

3.162278

n Value Information Returned

Value Meaning

U

u

0 Joystick A in X direction

1 Joystick A in Y direction | |
2 Joystick B in X direction

3 Joystick B in Y direction

STICK returns one of the following values to indicate direction, as follows: i i

u
1 Movement is upward or to the right.

0 The stick is not engaged. | |

-1 Movement is downward or to the left.

u
8-142 Reference

u

STOP stop

Terminates program execution and returns to immediate mode.

STOP statements can be used anywhere in a program to terminate

execution. STOP is often used for debugging.

The STOP statement does not close files.

Execution can be resumed by issuing a CONT command.

See also: CONT

STRIG STRIG(n)

Returns the current status of a joystick. Joystick A refers to a stick in

mouse port 1; joystick B refers to a stick in mouse port 2.

This function returns the information shown in the table below depending on

what you specify for n.

n Value Information Returned

STRIG(O) Returns 1 if the button on joystick A was pressed

since the last time STRIG(O) was invoked.

Otherwise, returns 0.

STRIG(l) Returns 1 if the button on joystick A is currently

pressed. Otherwise, returns 0.

STRIG(2) Returns -1 if joystick B was pressed since the last

time STRIG(2) was invoked. Otherwise, returns 0.

STRIG(3) Returns -1 if the button on joystick B is currently

pressed. Otherwise, returns 0.

Reference 8-143

STR$ STR$(X)

Returns a string representation of the value of X.

The string returned includes a leading space for positive numbers and a

leading minus sign for negative numbers.

STR$ is not used to convert numbers into strings for random file operations.

For that purpose, use the MKI$, MKS$, and MKD$ functions.

See also: VAL

STRINGS STRINGS (7,7)

STRINGS (l,X$)

The first syntax returns a string of length I whose characters all have ASCII

code J.

The second syntax returns a string of length I whose characters are all the

first character of X$.

Example:

PRINT STRING$(10,"C")

PRINT STRINGS(10,"#")

PRINT STRINGS(10,37)

The following is displayed on the screen:

CCCCCCCCCC

8-144 Reference

n

_ SUB SUB subprogram-name[(formal-parameter-list)]STATIC

M END SUB end sub
EXIT SUB exit sub

n
Starts, ends, and exits from a subprogram.

I I The subprogram-name can be any valid Amiga Basic identifier up to 30
characters in length. This name cannot appear in any other SUB statement.

' ' The formal-parameter-list can contain two types of entries: simple variables
and array variables. The optional subscript number that follows array

variables should contain the number of dimensions in the array, not the

actual dimensions of the array. Entries are separated by commas. The

number of parameters is limited only by the number of characters that can

fit on one logical Amiga Basic line.

n

STATIC means that all the variables within the subprogram retain their

[I values from the time control leaves the subprogram until it returns.

_l The body of the subprogram, the statements that make it up, occurs between

I I the SUB and END SUB statements.

[—| The END SUB statement marks the end of a subprogram. When the

I I program executes END SUB, control returns to the statement following the
statement that called the subprogram.

The EXIT SUB statement routes control out of the subprogram and back to

the statement following the CALL subprogram statement.

n

n

n

n

n

n
Reference 8-145

u
Before Amiga Basic starts executing a program, it checks all

subprogram-related statements. If any errors are found, the program M

doesn't execute. The mistakes are not trappable with ON ERROR, nor do

they have error codes. The following messages can appear in an error

requester when the corresponding mistake is made: | J

Tried to declare a SUB within a SUB. —-

SUB already defined.

Missing STATIC in SUB statement. | |

EXIT SUB outside of a subprogram. ,

END SUB outside of a subprogram.

SUB without an END SUB. | |

SHARED outside of a subprogram. ,--.

A thorough discussion of the use and advantages of subprograms can be -

found in Chapter 6, "Advanced Topics." I I

Example: | |

SUB NextLine(win) STATIC , ,

SHARED iDraw.iErase | (
WINDOW OUTPUT win

DrawLine iDraw.l

DrawLine iErase,0 I I

END SUB I 1

See also: CALL, SHARED j i

u

u

u
8-146 Reference

u

SWAP SWAP variable .variable

Exchanges the values of two variables.

Any type variable may be swapped (integer, single precision, double

precision, string), but the two variables must be of the same type or Amiga

Basic issues a "Type mismatch" error message.

If the second variable is not already defined when SWAP is executed,

Amiga Basic issues an "Illegal function call" error message.

Example:

FIRSTS = "FRED"

LAST$ = "JONES"

PRINT FIRSTS SPC(l) LASTS

SWAP FIRSTS,LASTS

PRINT FIRSTS SPC(l) LASTS

The following is displayed on the screen:

FRED JONES

JONES FRED

SYSTEM SYSTEM

Closes all open files and returns control to the Workbench.

When a SYSTEM command is executed, all open files are closed.

The same result can be achieved by selecting the Quit item from the Project

menu.

When SYSTEM is executed in the program or in the Output window or from

the Quit selection on the Project menu, the interpreter checks to see if the

program in memory has been saved. If it hasn't been, a requester appears

to prompt the user to save the program.

Reference 8-147

TAB TAB(X)

Moves the print position to X.

If the current print position is already beyond space X, TAB goes to that

position on the next line. Space 1 is the leftmost position, and the rightmost

position is the width minus one. X must be in the range 1 to 155. TAB may

only be used in PRINT and LPRINT statements. A semicolon (;) is

assumed to precede and to follow the TAB(X) function.

Example:

PRINT " Name" ;TAB (16) ;"Amount Due"

PRINT TAB (2) ;•• ";TAB(16) ;" "

FOR 1% = 1 to 6

READ A$,B

PRINT " ";A$;TAB(18);B

NEXT 1%

DATA "G. T. Jones",25,"T. Bear'M

DATA "B. Charlton",33,"B.Moore"99

DATA "G. Best", 100, "N. Styles",13.50

These statements display the following:

Name Amount Due

G.T. Jones 25

T. Bear 1

B. Charlton 33

B. Moore 99

G. Best 100

N. Styles 13.5

TAN TAN(X) ^

Returns the tangent of X where X is in radians. |_J

The evaluation of this function is performed in single precision when the ,- ,

argument is in single precision and in double precision when the argument is I—I
in double precision.

U
8-148 Reference

u

Example:

'Tangent request program

START:

INPUT "Enter a number ", NUMBER

PRINT "Tangent of " NUMBER " is " TAN(NUMBER)

INPUT "If you have another number, enter y ", YORN$

IF YORN$ = "y" GOTO START

END

The following is an example of the results produced by these statements:

Enter a number 1.777

Tangent of 1.777 is -4.780646

If you have another number, enter y n

See also: COS, SIN

TIMES . times

The function retrieves the current time.

The TIMES function returns an eight-character string in the form

hh:mm:ss, where hh is the hour (00 through 23), mm is minutes (00 through

59), and ss is seconds (00 through 59).

Example:

The following example shows the use of TIMES in displaying the time of

day.

PRINT TIMES 'PRINT CURRENT TIME IN COMPUTER

Here is an example of the output produced by these statement.

08:00:40

Reference 8-149

TIMER ON TIMER ON

TIMER OFF TIMER OFF

TIMER STOP TIMER STOP

TIMER

The statements enable, disable, and suspend event trapping based on time.

The function retrieves the number of seconds that have elapsed since

midnight.

The TIMER ON statement enables event trapping based on time. This

allows you to alter the flow of the program based on the reading of the timer

by using the ON TIMER...GOSUB statement.

The TIMER OFF statement disables ON TIMER event trapping. Event

trapping stops until a subsequent TIMER ON statement is executed. The

TIMER STOP statement suspends TIMER event trapping. Event trapping

continues, but Amiga Basic does not execute the ON TIMER...GOSUB

statement for an event until a subsequent TIMER ON statement is executed.

The TIMER function can be used to generate a random number for the

RANDOMIZE statement. It can also be used to time programs or parts of

programs.

See also: ON TIMER, and "Event Trapping" in Chapter 6, "Advanced

Topics."

Example:

ON TIMER(2) GOSUB TimeSlice 'Invoke TimeSlice every 2 seconds

TIMER ON

TRANSLATES variable = TRANSLATES ("string")

Translates English words into phonemes, from which the SAY statement can

produce audible speech on the Amiga.

8-150 Reference

n

_ The string contains the words that are to be translated and, after execution,

I ! the variable contains the phoneme string. The result returned to variable
cannot exceed 32767 characters.

n
Example:

II A$ = TRANSLATES ("There's no place like home.11)

SAY(A$)

fl See also: SAY

TRON TRON

TROFF TROFF

Traces the execution of program statements.

The Trace On option in the Run menu is the same as the TRON statement.

As an aid in debugging, the TRON statement (executed in either immediate

or program execution mode or selected from the Run menu) enables a trace

flag. The currently executing statement is highlighted with a rectangle in the

List window, if a List window is visible.

If there is more than one statement on a line, each statement is run and

highlighted separately. The trace flag is disabled with the TROFF statement,

the Trace Off menu option, or when a NEW command is executed.

UBOUND UBOUND (array-name[,dimension])

Returns the upper bounds of the dimensions of an array.

See "LBOUND" for a discussion of both LBOUND and UBOUND.

Reference 8-151

UCASE$ UCASE$ {string-expression)

Returns a string with all alphabetic characters in upper case.

This function makes a copy of the string-expression, converting any

lowercase letters to the corresponding uppercase letter.

The UCASE$ function provides you with a way to compare and sort strings

that have been entered with different uppercase and lowercase formats. For

example, if you had a program line,

INPUT "Do you want to continue" .ANSWERS,

the user might enter, "YES", "Yes", "yes", "Y", or "y". You could route

program control in the next statement by testing the first letter of the

UCASE$ of the ANSWERS against "Y". Thia makes different affirmative

responses of different users work in the program. Another use of the

UCASES function is when you have a form entry program.

The person or people putting in form data may not consistently use

uppercase format. For example, a user might enter the names "atlanta",

"AUSTIN", and "Buffalo". If a normal Amiga Basic program to

alphabetize names sorted these three, they would be ordered "AUSTIN",

"Buffalo", and finally, "atlanta", because when strings are sorted they are

compared based on their ASCII character numbers. The ASCII character

number for "A" is lower than that for "B", but all uppercase letters come

before the lowercase letters, so the character "B" comes before the

character "a". If you sort based on the UCASE$ representation of the

strings, the results are alphabetically ordered.

Example:

a$=UCASE$(a$)

IF a$="Y" THEN Response=l

IF a$="N" THEN Response=2

IF a$="C" THEN Response=3

8-152 Reference

...x Here is another example:
I !
j 1

A$ = "AUSTIN"

B$ = "atlanta"

["""! C$ = "WaXAhachlE"
1 PRINT A$,B$,C$

PRINT UCASE$(A$)tUCASE$(B$),UCASE$(C$)

Notice the difference in output, shown below, between the two PRINT

statements:

AUSTIN atlanta WaXAhachlE

AUSTIN ATLANTA WAXAHACHIE

VAL VAL(Xj?)

Returns the numeric value of string X$. The VAL function also strips

leading blanks, tabs, and linefeeds from the argument string.

VAL is not used to convert random file strings into numbers. For that

purpose, use the CVI, CVL, CVS, and CVD functions.

See also: STR$

VARPTR VARPTR(variable-name)

Returns the address of the first byte of data identified with the

variable-name. A value must be assigned to the variable-name before

execution of VARPTR. Otherwise, Amiga Basic issues an "Illegal function

call" error message. Any type variable name may be used (numeric, string,

array). For string variables, the address of the first byte of the string

descriptor is returned. The address returned is a number in the range 0 to

16777215. For further information, see Appendix D, "Internal

Representation of Numbers."

Reference 8-153

Use VARPTR to obtain the address of a variable or array to be passed to an

assembly language subroutine. A function call of the form VARPTR(A(0))

is usually specified when passing an array, so that the lowest-addressed

element of the array is returned.

Note

Use the SADD function to obtain the address of a string.

All simple variables should be assigned before calling VARPTR for an array

element, because the addresses of the arrays change whenever a new simple

variable is assigned.

PEEK, POKE, SADD, LEN

Example:

' FILL ARRAY WITH MACHINE LANGUAGE PROGRAM

DIM CODE%(50)

1 = 0

INF0L00P:

READ A : IF A = -1 THEN MACHINEPROG:

C0DE%(I) = A: I =1+1: GOTO INF0L00P:

MACHINEPROG:

X% = 10: Y% = 0

SETYTOX=VARPTR(CODE%(0))

CALL SETYTOX(X%,VARPTR(Y%))

PRINT Y%

END

DATA &H4E56,&H0000,&H206E,&H0008,&H30AE,&H000C,&H4E5E

DATA &H4E75,-1

WAVE WAVE voice, wave-definition

Defines the shape of a sound wave for a specified audio channel.

The WAVE statement adds versatility to the SOUND statement. By using a

number array to define the shape of a sound wave to be played through the

speaker, you can produce more specific types of sound. You specify a

8-154 Reference

_ height number in each element of the array. The height numbers, when put

I I together, define a curve; that curve is the shape of the wave.

n
The voice indicates from which of four Amiga audio channels the sound will

come from. Specify 0 or 3 for the audio channel to the left speaker and 1 or

2 for the right speaker.

The wave-definition defines the shape sound wave for voice. The

wave-definition can be SIN or the name of an array of integers with at least

256 elements. Each element in the array must be in the range of -128 to

127.

To save space, use the ERASE statement to delete the wave-definition array

after the WAVE statement is executed.

Example:

DEFINT A-Z

DIM Timbre(255)

FOR 1=0 TO 255

READ Timbre(I)

NEXT I

WAVE 0,SIN

WAVE 1,Timbre

WAVE 2,Timbre

WAVE 3,Timbre

WHILE,..WEND WHILE expression [statements] WEND

Executes a series of statements in a loop as long as a given condition is true.

If the expression is true (that is, it evaluates to a non-zero value), then

statements are executed until the WEND statement is encountered. Amiga

Basic then returns to the WHILE statement and re-evaluates the expression

If it is still true, the process is repeated. If it is not true, execution resumes

with the statement following the WEND statement.

Reference 8-155

WHILE...WEND loops may be nested to any level. Each WEND matches

the most recent previous WHILE that has not been completed with an

intervening WEND. An unmatched WHILE statement causes a "WHILE

without WEND" error message to be generated, and an unmatched WEND

statement causes a "WEND without WHILE" error message to be

generated.

Warning

Do not direct program flow into a WHILE...WEND loop without entering

through the WHILE statement, as this will confuse Amiga Basic's program

flow control.

Example:

' THIS PROGRAM CONVERTS DECIMAL VALUES TO HEXADECIMAL

ANSWER$="Y"

WHILE (ANSWER$="Y")

INPUT "ENTER DECIMAL NUMBER ", DECIMAL

PRINT "HEX VALUE OF " DECIMAL "IS " HEX$(DECIMAL)

PRINT "OCTAL VALUE OF " DECIMAL "IS " OCT$(DECIMAL)

INPUT "DO YOU WANT TO CONVERT ANOTHER NUMBER? ", ANSWER$

ANSWERS = UCASE$(ANSWERS)

WEND

END

WIDTH WIDTH output-device, [size] [.print-zone]

WIDTH #filenumbert [size] [.print-zone]

WIDTH [size] [,print-zone]

WIDTH LPRINT [size] [.print-zone]

The statement sets the printed line width and print zone width in the number

of standard characters for any output device.

The output-device may be "SCRN:", "COM1:", or "LPT1:", and if not

specified is assumed to be "SCRN:".

8-156 Reference

n

_ The integer size is the number of standard characters that the named output

! I device line may contain. However, the position of the pointer or the print
head, as given by the POS or LPOS function, returns to zero after position

n255. In Amiga's proportionally spaced fonts, the standard width for screen

characters is the equivalent of the width of any of the numerals 0 through 9.

The default line width for the screen is 255.

If the size is 255, the line width is "infinite"; that is, Amiga Basic never

inserts a carriage return character.

n
The filenumber is a numeric expression that is the number of the file that is

mmmm to have a new width assignment.

n
The print-zone argument is the value, in standard characters, to be assigned

r-^ for print zone width. Print zones are similar to tab stops, and they are

i I forced by comma delimiters in the PRINT and LPRINT statements.

If the device is specified as "SCRN:", the line width is set at the screen.

Because of proportionally spaced fonts, lines with the same number of

characters may not have the same length.

If the output device is specified "LPT1:", the line width is set for the line

printer. The WIDTH LPRINT syntax is an alternative way to set the printer

width.

When files are first opened, they take the device width as their default

width. The width of opened files may be altered by using the second

WIDTH statement syntax shown above.

For detailed information on generalized device I/O, see Chapter 5,

"Working With Files and Devices."

See also: LPOS, LPRINT, POS, PRINT

Reference 8-157

WINDOW WINDOW window-id [, [title] [, [rectangle] [, [type] [,screen-id]]]]

WINDOW CLOSE window-id

WINDOW OUTPUT window-id

WINDOW (n)

The statements create an Output window, close an Output window, or cause

the named window to become the current Output window without making it

the active window (front and highlighted).

The WINDOW function returns information about the current window.

The WINDOW statement performs the following functions:

• Creates and displays a new Output window, and brings it to the

front of the screen.

• Makes the window current. That is, you can use statements

such as PRINT, CIRCLE, and PSET to write text and graphics

to the window.

To make an existing window current, without forcing it to the front of the

screen, use the WINDOW OUTPUT statement.

The window-id is a number from 1 to N that identifies the window. Window

1 is the Output window that appears when Amiga Basic is started, therefore

you should specify 2 or higher if you want to make a new window.

The title is a string expression that is displayed in the window's Title Bar, if it

has a Title Bar. Window 1 displays the name of the current program or

"BASIC" if no program is loaded when Amiga Basic initializes it.

The type determines the options available to the user in manipulating a

window using the mouse. The type also determines whether a window

appears empty or re-displays its contents once it reappears after being

covered by another window.

8-158 Reference

n

The following table shows the values you can use in determining type.

|—1 Value Meaning

1 Window size can be changed using the mouse and Sizing Gadget

|—1 in the lower right-hand side of the window.

2 Window can be moved about using the Title Bar.

4 Window can be moved from front to back of other windows

using the mouse and the Back Gadget in the upper right-hand

I ! corner of the window.

|—■i 8 Window can be closed using the mouse and Close Gadget in the

n

upper left-hand corner of the window.

16 Contents of window reappear after the window has temporarily

been covered by another window. Amiga Basic reserves enough

memory to remember the contents of the window.

n

Indicate type by adding two or more of the values in the above table; for

I example, specify 5 to indicate that the user can move the window by the
Title Bar and change its size through the Sizing Gadget in the lower

_ right-hand corner of the window. Any number from 0 through 31 is a valid

I | type specification.

Note: If you specify Type 1 and Type 16 (for a total of 17) Amiga Basic

reserves enough memory for the window to grow to the full size of the

screen. Otherwise, Amiga Basic reserves only enough memory for the

window size you specify; this specification consumes a large amount of

memory. If the memory available to your program is limited, avoid

specifying this combination in the type specification.

Reference 8-159

The rectangle specifies the physical screen boundary coordinates of the

created window. It has the form (xl,yl)-(x2,y2) where (xl,yl) is the

upper-left coordinate and (x2,y2) the lower-right coordinate (relative to the

screen). If no coordinates are specified, the window appears at the current

default for that window (the window-id's current values). The initial

defaults are for a full screen.

The screen-id refers to a screen created with the SCREEN statement.

Specify any value from 1 through 4; the default (-1) is the Workbench

screen.

WINDOW CLOSE window-id makes the named window invisible. If the

current Output window is closed, the window that was most recently the

current output and is still visible becomes the new Output window.

WINDOW OUTPUT window-id makes the named existing window the

current output window without forcing it to the front of the screen.

Statements like PRINT, CIRCLE, and PSET affect this window. This allows

direct output (like text, graphics, and so forth) to a background window

without changing the front window.

Programs using multiple Output windows require information about the

status and size of an Output window in order to respond to different

situations. The WINDOW(n) function (where n is a value from 0 through

8) provides this information; the information returned n is shown in the

table below.

n Argument Information returned

0 The window-id of the selected Output window.

1 The window-id of the current Output window. This is

the window to which PRINT or other graphics

statements send their output.

8-160 Reference

n Argument

2

3

4

Example:

Information returned

The width of the currrent Output window.

The height of the current Output window.

The x coordinate in the current Output window where

the next character is drawn.

The y coordinate in the current Output window where

the next character is drawn.

The maximum legal color for the current Output

window.

A pointer to the INTUITION WINDOW (see the

manual Intuition: The Amiga User Interface) record for

the current Output window.

A pointer to the RASTPORT (see the manual Intuition:

The Amiga User Interface) record for the current

Output window.

WINDOW 1,"Lines",(10,10)-(270,70),15

WINDOW 2,"Polygons",(310,10)-(580,70),15

WINDOW 3,"Circles",(10,95)-(270,170),15

WINDOW OUTPUT 1

Note: In the above example, WINDOW 1 ("Lines") covers the Amiga

Basic Output window.

Reference 8-161

WRITE WRITE [expression-list]

Outputs data to the screen.

If the expression-list is omitted, a blank line is output. If the expression-list

is included, the values of the expressions are output to the screen. The

expressions in the list may be numeric or string expressions. They must be

separated by commas.

When the printed items are output, each item is separated from the last by a

comma. Printed strings are delimited by quotation marks. After the last

item in the list is printed, Amiga Basic inserts a carriage return/linefeed

sequence.

WRITE outputs numeric values without the leading spaces PRINT puts on

positive numbers.

Example:

. A = 80 : B = 90 : C$ = "The End"

WRITE A,B,C$

PRINT A,B,C$

END

Note the difference between the WRITE and PRINT output, shown below.

80,90,"The End"

80 90 The End

WRITER WRITE# filenumber, expression-list

Writes data to a sequential file.

The filenumber is the number under which the file was opened with the

OPEN statement. The expressions in expression-list are string or numeric

expressions. They must be separated by commas.

8-162 Reference

The difference between WRITE# and PRINT# is that WRITE# inserts

commas between the items as they are written to the file and delimits strings

with quotation marks. Therefore, it is not necessary to put explicit

delimiters in the list. A carriage return/linefeed sequence is inserted after

the last item in expression-list is written to the file.

See also: OPEN, PRINT#, WRITE

Example:

LET A$ = "32" : LET B = -6 : LET C$ = "Kathleen"

OPEN "O", #1, "INFO"

WRITE #1,A$,B,C$

CLOSE #1

OPEN "I",#1,"INFO"

INPUT #1,A$,B,C$

PRINT A$,B,C$

CLOSE #1

END

This example produces the following output:

32 -6 Kathleen

Reference 8-163

n Appendices
n

n

n

n

n

n

Appendix A: Character Codes

n ASCII Character Codes

n

n

n

n

n

n

Dec

000

001

002

003

004

005

006

007

008

Hex

00H

01H

02H

03H

04H

05H

06H

07H

08H

CHR

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

Dec

043

044

045

046

047

048

049

050

051

Hex

2BH

2CH

2DH

2EH

2FH

30H

31H

32H

33H

CHR

+

»

-

1

0

1

2

3

Dec

086

087

088

089

090

091

092

093

094

Hex

56H

57H

58H

59H

5AH

5BH

5CH

5DH

5EH

Appendices

CH

V

w

X

Y

Z

[
\

]

A-1

u

Dec Hex CHR Dec Hex CHR Dec Hex CH —

u

u

LJ

u

LJ

U

LJ

U

u

u

u

u
Dec=decimal, Hex=hexadecimal(H), CHR=character, LF=LineFeed,

FF=FormFeed, CR=Carriage Return, DEL=Rubout r i

LJ

A-2 Appendices

009

010

Oil

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

09H

OAH

OBH

OCH

ODH

OEH

OFH

10H

11H

12H

13H

14H

15H

16H

17H

18H

19H

1AH

1BH

1CH

1DH

1EH

1FH

20H

21H

22H

23H

24H

25H

26H

27H

28H

29H

2AH

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESCAPE

FS

GS

RS

US

SPACE

!
»»

#

$

%

&
»

(

)
*

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

34H

35H

36H

37H

38H

39H

3AH

3BH

3CH

3DH

3EH

3FH

40H

41H

42H

43H

44H

45H

46H

47H

48H

49H

4AH

4BH

4CH

4DH

4EH

4FH

50H

51H

52H

53H

54H

55H

4

5

6

7

8

9

*

»

<

=

>

?

@

A

B

C

D

E

F

G

H ~

I

J

K

L

M

N

O

P

Q

R

S

T

U

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

5FH

60H

61H

62H

63H

64H

65H

66H

67H

68H

69H

6AH

6BH

6CH

6DH

6EH

6FH

70H

71H

72H

73H

74H

75H

76H

77H

78H

79H

7AH

7BH

7CH

7DH

7EH

7FH

*

a

b

c

d

e

f

g

h

i

j
k

1

m

n

0

P

q

r

s

t

u

V

w

X

y

z

{

1

}
-

DEL

Non-ASCII Character Codes

Dec

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148-

149

150

151

152

153

154

155

156

157

Hex

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

Chr

A

A

q.

E

N

6
u

a

a

a

a

a

o

a

e

e

e

f

i

i

y

n

6

6

6

6

6
#

u

u

Dec

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

111

178

179

180

181

182

183

184

185

186

187

Hex

9E

9F

A0

Al

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

AD

AD

AF

BO

Bl

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

Chr

u

u

t

o

<

§

•

qi

B

®

©
TM

••

A

0
00

£

>

u

d

2

n

71

f
a

Dec

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

Hex

BC

BD

BE

BF

CO

Cl

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

CF

DO

Dl

D2

D3

D4

D5

D6

D7

D8

Chr

o

12

CB

0

6

i

V"
f

A

«

»

•••

SP

A

A

6
CE

oe

-

-

n

u

t

9

O
9

Appendices A-3

Appendix B: Error Codes and Error Messages

Operational Errors

Error

Code Message

NEXT WITHOUT FOR

A variable in a NEXT statement does not correspond to any

previously executed, unmatched FOR variable.

SYNTAX ERROR

A line is encountered that contains some incorrect sequence of

characters (such as an unmatched parenthesis, a misspelled

command or statement, or incorrect punctuation).

RETURN WITHOUT GOSUB

A RETURN statement is encountered for which there is no

previous, unmatched GOSUB statement.

OUT OF DATA

A READ statement is executed when there are no DATA

statements with unread data remaining in the program.

ILLEGAL FUNCTION CALL

A parameter that is out of range is passed to a math or string

function. This error may also occur as the result of a negative or

unreasonably large subscript.

A-4 Appendices

6 OVERFLOW

The result of a calculation is too large to be represented in

Amiga Basic's number format. If underflow occurs, the result is

zero and execution continues without an error.

7 OUT OF MEMORY

A program is too large, has too many FOR loops or GOSUBs, too

many variables, or expressions that are too complicated.

8 UNDEFINED LABEL

A line referenced in a GOTO, GOSUB, IF...THEN [...ELSE], or

DELETE statement does not exist.

9 SUBSCRIPT OUT OF RANGE

Caused by one of three conditions:

1. An array element is referenced with a subscript that is

outside the dimensions of the array.

2. An array element is referenced with the wrong number

of subscripts.

3. A subscript is used on a variable that is not an array.

10 DUPLICATE DEFINITION

Caused by one of three conditions:

1. Two DIM statements are given for the same array.

2. A DIM statement is given for an array after the default

dimension of 10 has been established for that array.

3. An OPTION BASE statement has been encountered

after an array has been dimensioned by either default or

a DIM statement.

Appendices A-5

11 DIVISION BY ZERO

Caused by one of two conditions:

1. A division by zero operation is encountered in an

expression. Machine infinity with the sign of the

numerator is supplied as the result of the division.

2. The operation of raising zero to a negative power

occurs. Positive machine infinity is supplied as the

result of the exponentiation, and execution continues.

12 ILLEGAL DIRECT

A statement that^is illegal in immediate mode is entered as an

immediate mode command. For example, DEF FN.

13 TYPE MISMATCH

A string variable name is assigned a numeric value or vice versa; a

function that expects a numeric argument is given a string

argument or vice versa. This error can also be caused by trying to

SWAP single precision and double precision values.

14 OUT OF HEAP SPACE

The Amiga heap is out of memory. The situation may be

remedied by allocating more space for the heap with the CLEAR

statement. This is described in CLEAR in Chapter 8, "Amiga

Basic Reference."

15 STRING TOO LONG

An attempt was made to create a string that exceeds 32,767

characters.

16 STRING FORMULA TOO COMPLEX

A string expression is too long or too complex.The expression

should be broken into smaller expressions.

A-6 Appendices

n

17 CAN'T CONTINUE

An attempt is made to continue a program that:

f

I 1. Has halted due to an error

2. Has been modified during a break in execution

3. Does not exist

18 UNDEFINED USER FUNCTION

A user-defined function is called before the function definition

(DEF statement) is given.

19 NO RESUME

An error-handling routine is entered, but it contains no RESUME

statement.

20 RESUME WITHOUT ERROR

A RESUME statement is encountered before an error-trapping

routine is entered.

21 UNPRINTABLE ERROR

An error message is not available for the error condition which

exists. This is usually caused by an ERROR statement with an

undefined error code.

22 MISSING OPERAND

An expression contains an operator without a following operand.

23 LINE BUFFER OVERFLOW

An attempt has been made to input a line that has too many

characters.

Appendices A-7

26 FOR WITHOUT NEXT

A FOR statement is encountered without a matching NEXT

statement.

29 WHILE WITHOUT WEND

A WHILE statement is encountered without a matching WEND

statement.

30 WEND WITHOUT WHILE

A WEND statement is encountered without a matching WHILE

statement.

35 UNDEFINED SUBPROGRAM

A subprogram is called that is not in the program.

36 SUBPROGRAM ALREADY IN USE

A subprogram is called that has been previously called, but has not

been ended or exited. Recursive subprograms are not permitted.

37 ARGUMENT COUNT MISMATCH

The number of arguments in a subprogram CALL statement is not

the same as the number in the corresponding SUB statement.

38 UNDEFINED ARRAY

An array was referenced in a SHARED statement before it was

created.

39, 40, 41, 42, 43, 44, 45, 46, 47, 48, and 49 UNPRINTABLE ERROR

There is no error message for the error that exists.

A-8 Appendices

Disk Errors

Error

Code Message

50 FIELD OVERFLOW

A FIELD statement is attempting to allocate more bytes than

were specified for the record length of a random access file.

51 INTERNAL ERROR

An internal malfunction has occurred in Amiga Basic. Report to

Commodore-Amiga the conditions under which the message

appeared.

52 BAD FILE NUMBER

A statement or command references a file with a file number that

is not OPEN or is out of the range of file numbers specified at

initialization.

53 FILE NOT FOUND

A FILES, LOAD, NAME, or KILL command or OPEN

statement references a file that does not exist on the current disk.

54 BAD FILE MODE

An attempt was made to:

1. Use PUT, GET, or LOF with a sequential file.

2. LOAD a random access file.

3. Execute an OPEN statement with a file mode other than

I, O, or R.

Appendices A-9

Errors Reported Before Program Execution Begins

Syntax Error

A line is encountered that contains some incorrect sequence of I—i

characters (such as an unmatched parenthesis, a misspelled

command or statement, or incorrect punctuation).

IF without END IF

ELSE/ ELSE IF /END IF without IF L"i

BLOCK ELSE/END IF must be the first statement on the line

LJ
FOR without NEXT

NEXT without FOR -.'

WHILE without WEND

WEND without WHILE LJ

Tried to declare SUB within a SUB

SUB already defined Lj

Missing STATIC in SUB statement

EXIT SUB outside of a subprogram i—1

SUB without END SUB

SHARED outside of a subprogram ^

Statement illegal within subprogram

LJ
Too many subprograms

LJ

LJ

LJ

LJ

A-12 Appendices

u

Appendix C: Amiga Basic Reserved Words

The following is a list of reserved words used in Amiga Basic. If you use

these words as variable names, a syntax error will be generated.

ABS

ALL

AND

APPEND

AREA

AREAFILL

AS

ASC

ATN

BASE

BEEP

BREAK

CALL

CDBL

CHAIN

CHDIR

CHR$

CINT

CIRCLE

CLEAR

CLNG

CLOSE

CLS

COLLISION

COLOR

COMMON

CONT

COS

CSNG

CSRLIN

CVD

CVI

CVL

CVS

DATA

DATES

DECLARE

DEF

DEFDBL

DEFINT

DEFLNG

DEFSNG

DEFSTR

DELETE

DIM

ELSE

ELSEIF

END

EOF

EQV

ERASE

ERL

ERR

ERROR

EXIT

EXP

FIELD

FILES

FIX

FN

FOR

FRE

FUNCTION

GET

GOSUB

GOTO

HEX$

IF

IMP

INKEY$

INPUT

INPUTS

INSTR

INT

KILL

LBOUND

LEFTS

LEN

LET

LIBRARY

LINE

LIST

LLIST

LOAD

LOC

LOCATE

LOF

LOG

LPOS

LPRINT

LSET

MENU

MERGE

MIDS

MKDS

MKIS

MKLS

MKSS

MOD

MOUSE

NAME

NEW

NEXT

NOT

OBJECT.AX

OBJECT.AY

OBJECT.CLIP

OBJECT.CLOSE

OBJECT.HIT

OBJECT.OFF

Appendices A-13

OBJECT.ON

OBJECT.PLANES

OBJECT.PRIORITY

OBJECT.SHAPE

OBJECT.START

OBJECT.STOP

OBJECT.VX

OBJECT.VY

OBJECT.X

OBJECT.Y

OCT$

OFF

ON

OPEN

OPTION

OR

OUTPUT

PAINT

PALETTE

PATTERN

PEEK

PEEKL

PEEKW

POINT

POKE

POKEL

POKEW

POS

PRESET

PRINT

PSET

PTAB

PUT

RANDOMIZE

READ

REM

RESTORE

RESUME

RETURN

RIGHTS

RND

RSET

RUN

SADD

SAVE

SAY

SCREEN

SCROLL

SGN

SHARED

SIN

SLEEP

SOUND

SPACES

SPC

SQR

STATIC

STEP

STICK

STOP

STRS

STRIG

STRINGS

SUB

SWAP

SYSTEM

TAB

TAN

THEN

TIMES

TIMER

TO

TRANSLATES

TROFF

TRON

UBOUND

UCASES

USING

VAL

VARPTR

WAIT

WAVE

WEND

WHILE

WIDTH

WINDOW

WRITE

XOR

A-14 Appendices

Appendix D: Internal Representation

of Numbers

Amiga Basic uses binary math. In the tables that follow, internal

representation is expressed in hexadecimal numbers.

Integers in Amiga Basic

Integers are represented by a 16-bit 2's complement signed binary number.

External

Representation

-32768

-1

0

1

32767

Binary Math

Internal

Representation

8000

FFFF

0000

0001

7FFF

With the binary math pack, the default type for variables is single precision,

and built-in mathematical functions perform in single precision or double

precision. Single precision is much faster but less precise than double

precision.

Double Precision

Eight bytes as follows: One bit sign followed by 11 bits of biased exponent

followed by 53 bits of mantissa (including the implied leading bit which has a

value of 1). If the sign bit is 0, the number is positive. If the sign bit is 1,

the number is negative. The unbiased exponent (biased exponent -3FF hex

or -1023 decimal) is the power of 2 by which the mantissa is to be

Appendices A-15

u

multiplied. The mantissa represents a number greater than or equal to 1

and less than two. Positive numbers may be represented up to but not

including 1.79 * 10 A308. The smallest representable number is 2.23 * 10

A-308. Binary double precision numbers are represented with up to 15.9

digits of precision.

External

Representation

1

-1

0

10

0.1

Single Precision

Internal

Representation

3FF0000000000000

BFF0000000000000

00Oxxxxxxxxxxxxx

4024000000000000

3FB9999999999999

Four bytes as follows: One bit sign followed by 8 bits of biased exponent

followed by 24 bits of mantissa (including the implied leading bit which has a

value of 1). If the sign bit is 0, the number is positive. If the sign bit is 1, the

number is negative. The unbiased exponent (biased exponent -7F hex,

-127 decimal) is the power of 2 by which the mantissa is to be multiplied.

The mantissa represents a number greater than or equal to 1 and less than 2.

Positive numbers may be represented up to but not including 3.4 * 10 A38.

The smallest representable number is 1.18 * 10A -38. Binary single

precision numbers are represented with up to 7.2 digits of precision.

External Internal

Representation Representation

1 3F800000

-1 BF800000

0 OOyxxxxx

10 41200000

0.1 3DCCCCCD

A-16 Appendices

Appendix E: Mathematical Functions

The derived functions that are not intrinsic to Amiga Basic can be calculated

as follows.

Mathematical

Function

SECANT

COSECANT

COTANGENT

INVERSE

SINE

INVERSE

COSINE

INVERSE

SECANT

INVERSE

COSECANT

INVERSE

COTANGENT

HYPERBOLIC

SINE

HYPERBOLIC

COSINE

HYPERBOLIC

TANGENT

Amiga

Basic Equivalent

SEC(X)=1/COS(X)

CSC(X)=1/SIN(X)

COT(X)=1/TAN(X)

ARCSIN(X)=ATN(X/SQR(-X*X+1))

ARCCOS(X)=-ATN(X/SQR(-X*X+1))

+1.5708

ARCSEC(X)=ATN(X/SQR(X*X-1))

+SGN(SGN(X)-1) * 1.5708

ARCCSC(X)=ATN(X/SQR(X*X-1))

+(SGN(X)-1)* 1.5708

ARCCOT(X)=ATN(X)+1.5708

SINH(X)=(EXP(X)-EXP(-X))/2

COSH(X)=(EXP(X)+EXP(-X))/2

TANH(X)=(EXP(-X)/EXP(X)

+EXP(-X))*2+1

Appendices A-17

Mathematical

Function

HYPERBOLIC

SECANT

HYPERBOLIC

COSECANT

HYPERBOLIC

COTANGENT

INVERSE

HYPERBOLIC SINE

INVERSE

HYPERBOLIC COSINE

INVERSE

HYPERBOLIC TANGENT

INVERSE

HYPERBOLIC SECANT

INVERSE

HYPERBOLIC COSECANT

INVERSE

HYPERBOLIC COTANGENT

Amiga

Basic Equivalent

SECH(X)=2/(EXP(X)+EXP(-X))

CSCH(X)=2/(EXP(X)-EXP(-X))

COTH(X)=EXP(-X)/(EXP(X)

-EXP(-X))*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1))

ARCCOSH(X)=LOG(X+SQR(X*X-1)

ARCTANH(X)=LOG((l+X)/(l-X))/2

ARCSECH(X)=LOG((SQR(-X*X+1)

ARCCSCH(X)

=LOG((SGN(X)*SQR(X*X+1)+1)/X

ARCCOTH(X)=LOG((X+l)/(X-l))/2

A-18 Appendices

Appendix F: LIBRARY FORMAT

This appendix describes the mechanism that Amiga Basic uses to map

routine names to routine offsets in the library's jump table. It is intended

for the experienced programmer who needs this information to build a

LIBRARY of machine language routines for Amiga Basic. Since many

routines in libraries are written in assembly language and take their

arguments in registers, Amiga Basic also requires a way to know the register

calling conventions for each routine.

A special disk file must exist for every library to be attached to Amiga Basic

with the LIBRARY statement. This file must contain the information

described above. If the library is named ":Libs/graphics.library", then this

special file is named ":Libs/graphics.bmap." The .bmap extension indicates

that this is a special file that has been converted from its corresponding .fd

file. The format of a ".bmap" file is as follows:

Routine name: n ASCII characters, 0-byte terminated

Offset into jump table: signed 16-bit integer,

Register parameters: n bytes terminated with a 0 byte as follows:

1 = pass this parameter in register dO

2 = pass this parameter in register dl

3 = pass this parameter in register d2

4 = pass this parameter in register d3

5 = pass this parameter in register d4

6 = pass this parameter in register d5

7 = pass this parameter in register d6

8 = pass this parameter in register d7

9 = pass this parameter in register aO

10 = pass this parameter in register al

11 = pass this parameter in register a2

12 = pass this parameter in register a3

13 = pass this parameter in register a4

Appendices A-19

For routines that follow C calling conventions and take their parameters on

the stack, the Register parameter is empty because Amiga Basic doesn't

need to pass any parameters in registers.

For example, if a library contained the following two routines:

MoveTo(x [dO], y[dl]) - library offset = -24 (decimal)

ClearRast(pRast Port [aO] - library offset = -30 (decimal)

then a hexidecimal dump of the library's "bmap" file would look like this:

4D6F7665546F00FFE8010200436C6561725261737400FFE20900

The utility program "ConvertFd.bas" in the BasicDemos drawer on the

Extras disk produces a .bmap file, given an .fd file as input.

A-20 Appendices

Appendix G: A Sample Program

Here is a closer look at Picture, the program you ran in the practice session.

The bracketed letters are for your reference only. They do not appear in

your listing.

[A] DEFINT P-Z

[B] DIM P(2500)

[C] CLS

[D] LINE (0,0)-(120,120),,BF

[E] ASPECT = .1

[F] WHILE ASPECT<20

[G] CIRCLE(60,60),55,0,,,ASPECT

[H] ASPECT = ASPECT*1.4

[I] WEND

[J] GET (0,0)-(127,127),P

[K] CheckMouse:

[L] IF MOUSE(0)=0 THEN CheckMouse

[M] IF ABS(X-MOUSE(1)) > 2 THEN MovePicture

[N] IF ABS (Y-MOUSE(2)) <3 THEN CheckMouse

[0] MovePicture:

[P] PUT(X,Y),P

[Q] X=M0USE(1): Y=M0USE(2)

[R] PUT(X,Y),P

[S] GOTO CheckMouse

The following section describes line by line exactly what each statement in

Picture does.

[A] Basic will recognize variable names beginning with the letters P

through Z as integers.

[B] Creates an array with a dimension of 2500 elements.

[C] Erases the Output window.

[D] Draws a rectangle defined by points (0,0) and (120,120) and filled.

[E] Sets the variable ASPECT to 0.1.

Appendices A-21

u
[F] Repeats the following as long as ASPECT is <20.

[G] Draws an ellipse with center (60,60), radius 55, color 0 (blue), and I I
an aspect ratio =ASPECT.

[H] Increases the value of ASPECT. I I

[I] Exits this loop when ASPECT > = 20.

[J] Copies the content of this part of the window to an array P. i i

[K] Starts a routine called CheckMouse to check the mouse status.

[L] Waits for the mouse Selection button to be pressed.

[M] If the mouse has moved at least 3 points in the X direction, the '—1
program goes to MovePicture.

[N] If the mouse has moved at least 4 points in the Y direction, the I I

program goes to CheckMouse.

[O] Starts a routine called MovePicture to move the picture stored in

array P. | |

[P] Erases the picture from the old location.

[Q] Sets X and Y to the new coordinates of the mouse. I I

[R] Copies the picture in array P to the new X,Y location.

[S] Goes back to the CheckMouse routine. i i

u

u

LJ

LJ

U

U

U
A-22 Appendices

u

n

I-, Appendix H: Writing Phonetically

for the Say Command

n

I I This appendix describes how to specify phonetic strings to the Narrator
Speech synthesizer (through the SAY command). You don't need any

_ previous experience with phonetics or with computer or foreign languages to

I ! learn this procedure. The only thing you need is a good dictionary, such as
Webster's Third International, to look up the pronunciation of words you

feel uncertain about. The beauty of writing phonetically is that you don't

have to know how a word is spelled, only how it is said. Narrator lets you

write down the English words that come out of your own mouth.

n

n

n

n

n

Narrator works on utterances at the sentence level. Even if you only want to

say only one word, Narrator treats it as a complete sentence. So, Narrator

asks for one of two punctuation marks to appear at the end of every

sentence: the period (.) and the question mark (?). If no punctuation

appears at the end of a string, Narrator automatically appends a period to it.

The period, used for almost all utterances, results in a final fall in pitch at

the end of the sentence.

The question mark, used only at the at the end of yes/no questions, results

in a final fall in pitch. So, the question, "Do you enjoy using your Amiga?"

takes a final question mark because the answer is a yes or a no. On the other

| I hand, the question, "What is your favorite color?" doesn't take a question
mark and is followed by a period. Narrator does recognize other forms of

-. punctuation, discussed later in this appendix.

n

n

H

n
Appendices A-23

n

Spelling Phonetically

Utterances are usually written phonetically with an alphabet of sounds called

the I.P.A. (International Phonetic Alphabet), found at the front of most

good dictionaries. Since these symbols can be hard to learn and are not

available on computer keyboards, the Advanced Research Projects Agency

(ARPA) developed Arpabet, a way of representing each symbol with one or

u

two upper case letters. To specify phonetic sounds, Narrator uses an

expanded version of Arpabet. 1 I

A phonetic sound or a phoneme is a basic speech sound, almost a speech —

atom. You can break sentences into words, words into syllables, and | |
syllables into phonemes. For example, the word "cat" has three letters and

(coincidentally) three phonemes. If you look at the table of phonemes, you .—.

find that three sounds make up the word cat: K, AE, and T, written as I I
KAET. The word "cent" translates as S, EH, N, and T, or SEHNT. Note

that both words begin with c, but because the c says k in cat, the phoneme k r ~i

is used. You may have also noticed that there is no C phoneme. Phonetic I—I
spelling operates on a very inportant concept: Spell it like it sounds—not

like it looks. i i

Choosing the Right Vowel I I

Like letters, phonemes are divided into vowels and consonants. A vowel is a I I
continuous sound made with the vocal cords vibrating and with air exiting

the mouth (rather than the nose). All vowels use a two-letter code. A

consonant is any other sound, such as those made by rushing air (like S or (|
TH) or by interruptions in air flow by the lips and the tongue (like B or T).

Consonants use a one or a two-letter code.

U
Written English uses the five vowels a, e, i, o, and u. On the other hand,

spoken English uses more than 15 vowels, and Narrator provides for most of ."~\

them. To choose a vowel properly, first listen to it. Say the word aloud, I—I
perhaps extending the desired vowel sound. Then compare the sound you

are making to the vowel sounds in the example words to the right of the i i

phoneme list. For example the "a" in apple sounds the same as the "a" in '—'
cat and not like the "a's" in Amiga, talk, or made. Note that some of the

example words in the list don't even use any of the same letters contained in I i

the phoneme code, for example, AA as in hot. '—'

A-24 Appendices

Vowels fall into two categories: those that maintain the same sound I I

throughout their durations and those that change their sounds.

"Diphthongs" are the ones that change. You may remember being taught

that vowel sounds were either long or short. Diphthongs are long vowels, but | J
they are more complex than that. Diphthongs are the last six vowels in the

u

u

table. Say the word "made" aloud very slowly. Note how the a starts out

like the e in bet but ends up like the e in beet. The a is thus a diphthong in

this word and "EY" represents it. Some speech synthesizers make you

specify the changing sounds in diphthongs as separate elements. Narrator

assembles the diphthongal sounds for you.

Choosing the Right Consonant

Phoneticians divide consonants into many categories, but most of them are

not relevant. To pick the correct consonant, you only have to pay attention

to whether it is voiced or unvoiced. You make a voiced consonant with your

vocal cords vibrating and you make an unvoiced one with your vocal cords

silent. Written English sometimes uses the same letter combinations to

represent both. Compare the sound of "th" in thin and then. Note that you

make the "th" sound in thin with air rushing between the tongue and the

upper teeth. In the "th" in then, the vocal cords are also vibrating. The

voiced "th" phoneme is DH, the unvoiced is TH. So, the phonetic spelling

of thin is THIHN whereas then is DHEHN.

A sound that is particularly subject to mistakes is voiced and unvoiced "s."

The phonetic spelling is S or Z. For example, bats ends in S while suds ends

in Z. Always say words aloud to find out whether the s is voiced or

unvoiced.

Another sound that causes confusion is the "r" sound. The Narrator

alphabet contains two r-like phonemes: R under the consonants and ER

under the vowels. If the r sound is the only sound in the syllable, use ER.

Examples of words that take ER are absurd, computer, and flirt. On the

other hand, if the r sound preceds or follows another vowel sound in the

syllable, use R. Examples of words that take R are car, write, or craft.

Using Contractions and Special Symbols

Several of the phoneme combinations that appear in English words are

created by laziness in pronunciation. For example, in the word connector,

the first o is almost swallowed out of existence, so the AA phoneme is not

Appendices A-25

u
used and the AX phoneme is used instead. Since spoken English often

relaxes vowels, AX and IX phonemes occur frequently before 1, m, and n. I I

Narrator provides a shortcut for typing these vowel combinations. Instead of

spelling "personal" PERSIXNAXL, Narrator spells it PERSINUL. Anomaly | |
becomes UNAAMULIY instead of AXNAAMAXLIY and combination

changes from KAAMBIXNEYSHIXN to KAAMBINEYSHIN. To decide , ,

whether to use the AX or IX brand of vowel relaxation, try out both and see LJ
which sounds best.

Narrator uses other special symbols internally and sometimes inserts them '—'
into your input sentence or even substitutes them for part of it. If you wish,

you can type some of these symbols in directly. Probably the most useful is I I

the Q or glottal stop- an interruption of air flow in the glottis. The word

Atlantic contains one between the t and the 1. Narrator already knows there

should be one there and saves you the trouble of typing it. However, you j I

may stick in a Q if Narrator should somehow let a word or a word pair slip

by that would have sounded better with one.

U

Using Stress and Intonation i j

Now that you've learned about telling Narrator what you want said, it's time ,- ,

to learn to tell it how you want it said. You use stress and intonation to alter I I
the meaning of a sentence, to stress important words, and to specify the

proper accents in words with several syllables. All this makes Narrator's

output more intelligible and natural.

A-26 Appendices

u

To specify stress and intonation, you use stress marks made up of the single I j

digits 1-9 followed by a vowel phoneme code. Although stress and

intonation are different things, you specify them with a single number.

Among other things, stress is the elongation of a syllable. So, stress is a II

logical term—either the syllable is stressed or it is not. To indicate stress on

a given syllable, you place a number after the vowel in the syllable. Its

presence indicates that Narrator is to stress the syllable. To indicate the |_J

intonation, you assign a value to the number. Intonation here means the

pitch pattern or contour of an utterance.

u

u

u

The higher the stress marks the higher the potential for an accent in pitch.

The contour of each sentence consists of a quickly rising pitch gesture up to

the first stressed syllable in the sentence, followed by a slowly declining tone

throughout the sentence, and finally a quick fall to the lowest pitch on the

last syllable. Additional stressed syllables cause the pitch to break its slow

declining pattern with rises and falls around each stressed syllable. Narrator

uses a sophisticated procedure to generate natural pitch contours based on

your marking of the stressed syllables.

Using Stress Marks

You place the stress marks directly to the right of the vowel phoneme codes.

For example, the stress mark on the word cat appears after the AE, so the

result is KAE5T. Generally, there is no choice about the location of the

number. Either the number should go after a vowel or it shouldn't. Narrator

does not flag errors such as forgetting to include a stress mark or placing it

after the wrong vowel. It only tells you if a stress mark is in the wrong place,

such as after a consonant. Follow these rules to use stress marks correctly:

1. Place a stress mark in a content word, that is, one that contains

some meaning. Nouns, action verbs, and adjectives are all

content words. Tonsils, remove, and huge are all examples of

words that tell the listener what they're talking about. On the

other hand, words like but, if, is, and the are not content words.

They are, however, needed for the sentence to function and so

are called function words.

2. Always place a stress mark on the accented syllable (s) of

polysyllabic words, whether content or function. A polysylllabic

word has more than one syllable. "Commodore" has its stress

(or accent) on the first syllable and would be spelled

KAA5MAXDOHR. "Computer" is stressed on the second

syllable spelled KUMPYUW5TER. If you aren't sure about

which syllable gets the stress, look the word up in a dictionary.

Appendices A-27

u
3. If more than one syllable in a word receives a stress mark,

indicate the primary and secondary stresses by marking I I

secondary stresses with a value of only 1 or 2. For example, the

word understood has its first and last syllables stressed with

stand getting primary stress and un getting secondary stress. | |
Thus the spelling would be AH1NDERSTAE4ND.

4. Write compound words like baseball or software as one word I I
but think of them as two words when assigning stress marks. So,

spell lunchwagon as LAH5NCHWAE2GIN. Note that lunch .-

gets a higher stress mark than wagon as the first word generally LJ
gets the primary stress.

u

Picking Stress Values , ,

After you've picked the spelling and the stress mark positions correctly, it's

time to decide on stress mark values. They are like parts of speech in II

written English. Use this table to assign stress values:

u

u

u

u

These values only suggest a range. For example, to direct attention to a

given word, you can raise its value; if you want to downplay it, lower its

value. You might even want a function word to be the focus of a sentence. I I

For example, if you assign a value of 9 to the word "to" in the sentence,

u

u
A-28 Appendices

u

Nouns

Pronouns

Verbs

Adjectives

Adverbs

Quantifiers

Exclamations

Articles

Prepositions

Conjunctions

Secondary Stress

5

3

4

5

7

7

9

0 (no stress)

0

0

1, sometimes 2

Please deliver this to Mr. Smith

you'll indicate that the letter should be delivered to Mr. Smith in person.

Using Punctuation

In addition to periods and question marks, Narrator recognizes the dash,

comma, and parentheses. The comma goes where you would normally put it

in a written English sentence and tells Narrator to pause with a slightly rising

pitch, indicating that there is more to come. For example, you may find

that you can add more commas than you use in written English to help set

off clauses from each other

The dash is like the comma except that the pitch does not rise so severely.

Here's a rule of thumb: Use dashes to divide phrases and commas to divide

clauses. Parentheses provide additional information to Narrator's

intonation routine. Put them around noun phrases of two or more content

words, for example "giant yacht." Parentheses can be particularly effective

around large noun phrases like "the silliest guy I ever saw." They help

provide a natural contour.

Hints for Intelligibility

Although this guide should get you off to a good start, the only sure way to

proficiency is to practice. Follow these tricks to inprove the intelligibility of

a sentence:

1. Polysyllabic words are often more recognizable than

monosyllabic ones. So say enormous instead of huge. The

longer version contains information in every syllable and gives

the listener three times the chance to hear it correctly.

Appendices A-29

2. Keep sentences to an optimal length. Write for speaking rather

than for reading. Do not write a sentence that cannot be easily

spoken in one breath. Keep sentences confined to one idea.

3. Stress new terms highly the first time they are heard.

These techniques are but a few of the ways to enhance the performance of

Narra'tor. Undoubtedly, you'll find some of your own. Have fun.

Tables of Phonemes

Vowels

Phoneme

IY

EH

AA

AO

ER

AX

Example

beet

bet

hot

talk

bird

about

s Phoneme Exam]

IH

AE

AH

UH

OH

IX

bit

bat

under

look

border

solid

AX and IX should never be used in stressed syllables

Diphthongs

Phoneme

EY

OY

OW

Example

made

boil

low

Phoneme

AY

AW

UW

Exam

hide

power

crew

A-30 Appendices

u

u

LJ

U

U

LJ

U

U

LJ

U

u

u

D

u

u

D

u

Consonants

Phoneme

R

W

M

NX

S

F

Z

V

CH

/H

B

D

K

Special Symbols

Phoneme

DX (tongue

QX (silent '

Example

red

away

men

sing

sail

fed

has

very

check

hole

but

dog

Phoneme

L

Y

N

SH

TH

ZH

DH

J

/C

P

T

G

Commodore

\ flap)

vowel)

RX (postvocalic R and

XL

M

UN

Example

pity

pause

L) car

IL

IM

= AXN

Example

yellow

yellow

men

rush

thi

pleasure

then

judge

loch

put

toy

guest

Phoneme Example

Q kitt_en (glottal stop)

LX callUL = A

IXLUM = AX

IX

IN = IXN

Digits 1-9

(contractions—see text)

syllabic stress, ranging from secondary through

emphatic

period—sentence final character

question mark—sentence final character

dash—phrase delimiter

comma—clause delimiter

parentheses—noun phrase delimiters (see text)

Appendices A-31

Index
: 8-5

; 8-63, 8-110

, 8-63, 8-110

% 8-10

& 8-10

! 8-10

8-10, 8-116, 8-162
$ 8-10

- 8-12

+ 8-12

* 8-12

/ 8-12

\ 8-12

~ 8-12

= 8-15

< 8-15

> 8-15

0 8-15

<= 8-15

>= 8-15

? 8-110

1 8-123

ABS, 8-21

ALL, 8-28

Amiga command key, 8-3
AND, 8-16

animation,

accelerating objects, 8-88

bobs and sprites, 7-6

COLLISION function, 8-36
creating an object, 7-7

confining to one area, 8-88

defining an object, 8-91

defining velocity, 8-93

detecting collisions, 8-89

increasing screen depth, 7-10

locating object in window, 8-94
making object visible, 8-89

OBJECT statements, 8-89
prioritizing, 8-90

starting and stopping objects, 8-93

using images from other editing sources, 7-9
See also Object Editor

APPEND, 8-101

AREA, 8-21

AREAFILL, 8-21

arrays,

declaring, 8-48

declaring in subprograms, 6-8
passing elements in, 6-7

using LBOUND, UBOUND, 6-8
declaring, 8-48

AS, 8-52, 8-87

ASC, 8-22

aspect ratio,

definition, 8-33

for Amiga monitor, 8-33

use in drawing circles, ellipse, 8-33

assembly language programs,

calling, 6-10, 8-26

using SADD, 8-128

ATN, 8-23

baud rates, Amiga, 5-2

BEEP, 8-24

bobs, defining, 7-6

BREAK,

command. 8-24

in event trapping, 6-13

See also ON BREAK

CALL, command description, 8-25

See also subprograms

calling programs with CHAIN, 8-28

CDBL, 8-28

CHAIN, 8-28

characters, special, 8-2

CHDIR, 8-30

CHR$, 8-30

CINT, 8-31

CIRCLE, 8-32

CLEAR,

command description, 8-33

allocating memory with, 6-16

CLNG, 8-34

CLOSE, 8-34,8-158

CLS, 8-35

COLLISION,

function description, 8-36

Object Editor defaults, 7-2

in event trapping, 6-13

See also on collision
COLLISION ON/OFF/STQP, 8-36
COLOR, 8-37

colors,

creating, 8-103

determining number of, 8-133

See also graphics commands
COM1:, 5-2

command key, Amiga, 8-3

COMMON, 8-38

concatenation, 8-18

constants,

double-precision, 8-7

fixed-point, 8-6

floating-point, 8-7

hexadecimal, 8-7

integers, short and long, 8-6
octal, 8-7

single-precision, 8-7

types supported, 8-6

CONT, 8-39, 8-144

1-1 Index

LJ

U

U

U

LJ

U

U

u

u

u

LJ

LJ

U

u

u

u

u

Continue, 3-10, 4-7

conversion of numeric, 8-10

Copy, 3-9

copy key, 8-3

COS, 8-39

CSNG, 8-40

CSRLIN, 8-41

Cut, 3-9

cut key, 8-3

CVD, 8-41

CVI, 8-41

CVL, 8-41

CVS, 8-41

DATA, 8-42

data files, See files

data segment,

conserving space in, 6-17

definition, 6-17

setting size, 8-33, 6-16

using FRE with, 6-18

DATES, 8-43

debugging programs, 4-5

DECLARE FUNCTION, 8-43

DEF FN, 8-44

DEFDBL,

DEFINT,

DEFLNG,

DEFSNG,

DEFSTR,

DELETE,

8-46

8-46

8-46

8-46

8-46

8-47, 8-28

device names, 5-2

DIM, 8-47

division

by zero,

integer,

8-14

8-13

double-precision constants, 8-7

Edit menu, 3-9

editing a program, how to, 4-1, 2-10

ELSE, 8-60

ELSEIF, 8-60

END, 8-48

END IF, 8-61

END SUB, 8-145

See also subprograms

Enlarge menu, in Object Editor, 7-6

EOF, 8-48

EQV, 8-16

ERASE, 8-49

Erase, in Object Editor Tools menu, 7-6

ERL, 8-49

ERR, 8-49

ERROR, 8-50

error correction, 2-14

event trapping,

activating, 6-12

BREAK, 6-14

COLLISION, 6-14

MENU, 6-14

MOUSE, 6-14

ON..GOSUB, 6-14

overview, 6-13

suspending, 6-15

terminating, 6-15

TIMER, 6-14

EXIT SUB, 8-145

exiting Amiga Basic, 3-2

EXP, 8-51

expressions, 8-11

FIELD, 8-52

filenames, valid, 5-3

FILES, 8-53

files,

modes, 8-101

naming conventions, 5-5

opening, 5-5

saving, 5-5

files, random,

accessing, 5-15

creating, 5-13

example, 5-16

overview, 5-12

files, sequential,

adding data, 5-11

creating, 5-9

overview, 5-8

reading data from, 5-11

FIX, 8-53

fixed-point constants, 8-6

floating-point constants, 8-6

FOR, 8-54

FRE,

description, 8-55

in memory management, 6-18

function keys, Amiga, 8-3

functions, types, 8-17

GET,

description, 8-56

for random files, 8-56

for screen data, 8-56

GOSUB, 8-58

GOTO, 8-59

graphics commands,

AREA 8-21

AREAFILL 8-21

CIRCLE 8-32

COLOR 8-37

LINE 8-70

PAINT 8-102

PALETTE 8-103

SCREEN 8-132

heap, See system heap

HEX$, 8-59

Index 1-2

hexadecimal constants, 8-6

high-resolution, setting, 8-133

IF..GOTO, 8-60

IF.. THEN.. ELSE, 8-60

immediate mode, 3-4

IMP, 8-16

INKEY$, 8-63

INPUT, 8-63, 8-101

INPUT#, 8-65

INPUTS, 8-65

INSTR, 8-66

INT, 8-66

integers,

declaring, 8-9

short and long, 8-6

KILL, 8-67

KYBD:, 5-2

labels, format and rules, 8-5

LBOUND,

description, 8-67

using in arrays, 6-8

LEFTS, 8-68

LEN, 8-68

LET, 8-69

libraries,

opening, 6-19

overview, 6-18

LIBRARY,

description, 8-70

with CALL, 8-26

LINE, 8-70

Line, in Object Editor Tools menu, 7-5

LINE INPUT, 8-71

LINEINPUT#, 8-72

line numbers, 8-3

LIST, 8-73

list key, 8-3

List window, 2-9

List window, selecting, 3-7

LLIST, 8-74

LOAD, 8-74

loading a program, 3-3

LOC, 8-75

LOCATE, 8-75

LOF, 8-76

LOG, 8-76

loops, nested, 8-54

low-resolution, setting, 8-133

LPOS, 8-77

LPRINT, 8-77

LPRINT USING, 8-77

LPT1:, 5-2

LSET, 8-78

machine language programs,

See assembly language programs

memory management, 6-16

MENU,

description, 8-78

in event trapping, 6-14

See also ON MENU

menu bar, displaying, 3-5

MENU ON/OFF/STOP, 8-80

menus,

Edit, 3-9

Project, 3-8

Run, 3-9

Windows, 3-11

MERGE, 8-80, 8-28

MID$, 8-81

MKD$, 8-82

MKI$, 8-82

MKL$, 8-82

MKS$, 8-82

MOD, 8-12, 8-14

mode, screen, 8-134

MOUSE,

description, 8-83

in event trapping, 6-14

See also ON MOUSE

MOUSE ON/OFF/STOP, 8-86

mouse

position, 8-84

status, 8-85

NAME, 8-87

NEW, 8-87

New,

in File menu, 3-8

in Object Editor File menu, 7-5

NEXT, 8-54, 8-87

NOT, 8-16

Object Editor,

purpose, 7-2

how to use, 7-7

menus, 7-4

screen layout, 7-3

OBJECT.AX, 8-88

OBJECT.AY, 8-88

OBJECT.CLIP, 8-88

OBJECT.CLOSE, 8-88

OBJECT.HIT, 8-89

OBJECT.OFF, 8-90

OBJECT.ON, 8-90

OBJECT.PLANES, 8-90

OBJECT.PRIORITY, 8-90

OBJECT.SHAPE, 8-91

OBJECT.START, 8-93

OBJECT.STOP, 8-93

OBJECT.VX, 8-93

OBJECT.VY, 8-93

OBJECT.X, 8-94

1-3 Index

H

H

n-

ri

n

OBJECT.Y, 8-94

objects, how to create, 7-7

OCT$, 8-95

octal constants, 8-6

ON BREAK, 8-96

ON COLLISION, 8-96

ON ERROR GOTO, 8-97

ON..GOSUB

description, 8-97

in event trapping, 6-14

ON..GOTO, 8-97

ON MENU, 8-98

ON MOUSE, 8-99

ON TIMER, 8-99

OPEN, 8-100

Open,

in File menu, 3-8

in Object Editor File menu, 7-5

operations, hierarchy, 8-12

operators,

arithmetic, 8-12

functional, 8-17

logical, 8-15

relational, 8-14, 8-18

OPTION BASE, 8-101

OR, 8-16

OUTPUT, 8-101, 8-158

Output window, 2-7, 3-6
Oval, in Object Editor Tools menu, 7-5

overflow, 8-14

PAINT, 8-1*02

Paint,

in Object Editor Tools menu, 7-5
PALETTE, 8-103

parity, 5-2

Paste, 3-9

paste key, 8-3

PATTERN, 8-104

PEEK, 8-105

PEEKL, 8-105

PEEKW, 8-106

Pen, in Object Editor Tools menu, 7-5

POINT, 8-106

POKE, 8-106

POKEL, 8-107

POKEW, 8-108

POS, 8-108

PRESET, 8-109

PRINT, 8-109

PRINT USING, 8-111

PRINT#, 8-116
PRINT# USING, 8-116

printer device names, 5-3

printers, using, 5-3

program files, 5-7
program execution mode, 3-4

Project menu, 3-8

PSET, 8-119

PTAB, 8-119

PUT,

description, 8-120

for random files, 8-120

for screen data, 8-120

Quit, in File menu, 3-8
Quit, in Object Editor File menu, 7-5

random

files, 5-10 - 5-16

GET, 8-56

PUT, 8-120

RANDOMIZE, 8-121

READ, 8-122
Rectangle, in Object Editor Tools menu, 7-5

resolution, screen, 8-134

REM, 8-122

RESTORE, 8-124

RESUME, 8-124, 8-137

RETURN, 8-124, 8-58

RIGHTS, 8-125

RND, 8-126

RSET, 8-128

RUN, 8-127

Run menu, 3-9

SADD, 8-128

SAVE, 8-128

Save,

in File menu, 3-8

in Object Editor File menu, 7-5

Save As,

in File menu, 3-9
in Object Editor File menu, 7-5

saving a program, 3-3, 2-21

SAY, 8-129

SCREEN,

description, 8-132

using system heap, 6-17
SCREEN CLOSE, 8-132

screen mode, setting, 8-133

SCRN:, 5-2

SCROLL, 8-134

scrolling program listings, 4-4, 2-8

selecting text, 4-3

sequential files, 5-7

SGN, 8-135

SHARED, 8-135, 6-4
Show List, in Windows menu, 3-11
Show Output, in Windows menu, 3-11

SIN, 8-136
single-precision constants, 8-7

SLEEP, 8-136

SOUND,

description, 8-137

using system heap, 6-17

SPACES, 8-139

SPC, 8-140

1-4 Index

speech,

using SAY, 8-129

creating phonetic, A-23

using TRANSLATES, 8-150

sprites, defining in Object Editor, 7-6

SQR, 8-141

stack,

conserving space in, 6-16

definition, 6-16

setting size, 8-33, 6-16

using FRE with, 6-18

Start, 3-10

start run key, 8-3

starting Amiga Basic, 3-2

Statement and Function Directory, 8-19

STATIC, 6-5, 8-145

STEP, 8-54, 8-70

Step option, in debugging programs, 4-6, 3-10

STICK, 8-142

Stop, in Run menu, 3-10

STOP, 8-143

STR$, 8-144

STRIG, 8-143

STRINGS, 8-145

strings, 8-18

SUB, 8-145

See also subprograms

subprograms,

advantages, 6-2

calling, 6-5, 8-25

delimiters, 6-3

referencing arrays in, 6-8

referencing in CALL, 6-5

shared variables in, 6-4

static variables in, 6-5

Suspend, in Run menu, 4-6, 3-10

SWAP, 8-147

syntax conventions, 8-19

SYSTEM, 8-147

system heap,

conserving space in^ 6-17

definition, 6-17

setting size, 8-33, 6-16

using FRE with, 6-18

TAB, 8-148

TAN, 8-148

THEN, 8-60

TIMES, 8-149

TIMER, in event trapping, 6-14

TIMER ON/OFF/STOP, 8-150

Trace Off, 3-10

Trace On, 3-10

TRANSLATES, 8-150

TROFF, 8-151

TRON,

description, 8-151

in debugging programs, 4-5

UBOUND,

description, 8-67, 8-151

using in arrays, 6-8

UCASES, 8-152

VAL, 8-153

variables,

declaring, 8-9

in arrays, 8-10

VARPTR, 8-153

volume specification, 5-6

WAIT, 8-137

WAVE,

description, 8-154

using system heap, 6-17

WEND, 8-155

WHILE..WEND, 8-155

WIDTH, 8-156

WINDOW,

function, 8-158

statement, 8-158

using system heap, 6-17

WINDOW CLOSE/OUTPUT, 8-158

Windows menu, 3-11

word processor, transferring files, 5-19

WRITE, 8-162

WRITE#, 8-162

1-5 Index

H

H

n

n

n

n

n

n

n

n

n

h

n

n

n

n

Q

G

Commodore ""*

