MICROSOFT® BASIC FOR THE AMIGA™

vamica

10 TR T s T K A D N [NS NN S NS R R R

AMIGA

1ga Basic

Am

C CcCcccccc ottt

Amiga Basic was developed by Microsoft Corporation.
Microsoft® BASIC for the Amiga

COPYRIGHT

This manual Copyright ® Commodore-Amiga, Inc. and Microsoft Corporation, 1985, All Rights Reserved. This
document may not, in whole or in part, be copled, photocopied, reproduced, translated, or reduced to any electronic
medium or machine readable form without prior consent, in writing, from Commodore-Amiga, Inc.

This software Copyright ® Microsoft Corporation, 1985, All Rights Reserved. The distribution and sale of this
product are intended. for the use of the original purchaser only. Lawful users of this program are hereby licensed only
to read the program, from its medium into memory of a computer, solely for the purpose of executing the program.
Duplicating, copying, selling, or otherwise distributing this product is a violation of the law.

DISCLAIMER

THE PROGRAM IS PROVIDED “AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE PROGRAM IS
ASSUMED BY YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT THE DEVELOPER OR
COMMODORE-AMIGA, INC. OR ITS DEALERS) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION. FURTHER, COMMODORE-AMIGA DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF, THE PROGRAM IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE; AND YOU RELY ON
THE PROGRAM AND THE RESULTS SOLELY AT YOUR OWN RISK. IN NO EVENT WILL COMMODORE-AMIGA,
INC., BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN ADVISED OF THE POSSIBLITY OF SUCH DAMAGES. SOME
LAWS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABLITIES FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Microsoft Is a registered trademark of Microsoft Corporation.
Amiga is a trademark of Commodore-Amiga, Inc.

Macintosh Is a trademark of Apple Computers.

IBM-PC is a trademark of IBM, Inc.

PRINTED in Hong Kong
CBM Product Number 327273-02 Rev C

OO OO O

! | | } I ! | !

|

L) O

1

1

1 1 1 1 1

1 1

n

11 1]

]

/1 7

Contents

Chapter 1: Introducing Amiga Basic

Chapter 2: Getting Started

Chapter 3: Using Amiga Basic

Chapter 4: Editing and Debugging Your Programs
Chapter 5: Working with Files and Devices
Chapter 6: Advanced Topics

Chapter 7: Creating Animated Images
with the Object Editor

Chapter 8: BASIC Reference
Appendices

Index

1-1

3-1

4-1

5-1

B e e “ - I
T e ‘ ifff:ifff:,:::::: -

!
Tl nun«iu»wy

prgaln nm-nlun.i

Poepitt umn.uun # :

I ..u{nn’.

dvefreanin
frusesy

-mmin.n-H

YT LAkl T

pronei [pnroertss i

soi|ivressgeetany

P s o

]
i A) |
gy seoint e leoni .

B R i RTIU D EEELAN TS AT

denfinna Tesipidingn ligraesditing

Jevain

1
—

riviseieey

el

RTTT] CITTSELI

R N . T e

T o | ;

M mml ” Il ll!‘?ff;ﬁlﬁj .

R T PRI RETCIET FITAY

T INTYI 0] ERLREEAY CEEARRTS LIRESY
u
ST [ESYERE] LECERYS ITET

s |iveanatfony

viainbyaritfinesfonradiioiben

roprafrron vl nno g
srietrks S CSTEETT] EYLRRTE RO SO RN E [YY) IR ER CRRRRERT R)
o]

DR FRRTCTS TYPVUTN (OURPTYY (VYTIPRY FRPPVRY PEVEPRYS ISYRTR ITTCVET] CEEEEEC] CELTALE Shiiy CAMARER] ALEENY i [

Yt SR ITY XYYRER: [NTRTR: EERRER) EATERTES CERCERY AARETT) ‘..,mla-m 101,

]

.

1

/37 1 71 1 1 1 31 3 3 1]

Chapter 1

Introducing Amiga Basic

Who uses BASIC? People use the BASIC programming
language for many different reasons. Some of these people
are professional programmers. Others are not programmers
at all, but wish to run BASIC programs they have
purchased. Probably the largest segment of BASIC users is
made up of people who write BASIC programs for their own
use. They may simply enjoy the mental exercise of
programming, or they may have special applications for
which they cannot buy ready-made programs. Many
BASIC users are students who are studying computer
science or using a computer to help with their school work.

Introducing Amiga Basic 1-1

All of these people have one thing in common. They use BASIC because it
is the universal language for small computers. It is easy to learn, readily
available, and highly standardized. It is also a versatile language that has
been used in the writing of business, engineering, and scientific applications,
as well as in the writing of educational software and computer games.

Amiga Basic

Whatever your reason for using BASIC, you will find that Amiga Basic gives
you all the well-known advantages of BASIC, plus the ease of use and fun
you expect from Amiga tools. Amiga Basic puts the full BASIC language on
your Amiga computer, including BASIC statements used to write graphics,
animation, and sound programs. Also, it has all the familiar features of the
Amiga screen. Amiga Basic has a Menu Bar, a Pointer, and windows and
screens, just like other Amiga tools have.

If you are just starting to learn BASIC, either in a class or on your own,
Amiga Basic will fit right in with your course of study. Amiga Basic is based
on Microsoft BASIC,the most popular programming language in the world,
which works on every major microcomputer.

If you are an old hand at BASIC programming, you’ll want to try some of
the special features of this version of BASIC, such as SOUND and WAVE
for making music and sounds, and GET and PUT for saving and retrieving
graphics by the screenful.

About This Manual

1-2

This book describes the Amiga Basic Interpreter. It assumes you have read
Introduction to Amiga, and are familiar with menus, editing text, and using
the mouse.

Chapters 1 through 7 describe how to use Amiga Basic with the Amiga.
They include general instructions on using the interpreter, editing and
debugging your programs, working with files and devices, and using some of
Amiga Basic’s advanced features. Chapter 7 is a guide to using the Object
Editor, a program written in Amiga Basic, which lets you create images to
use in animations with your application programs.

Introducing Amiga Basic

T I A I I

(N T G S A A NN BN Y

!

1]

1

J 31 1 1

I B B

J 1 1 1 1

n

J

/

Chapter 8 is a reference for the BASIC language. Use the Amiga Basic
Reference section to read about general characteristics of the language and
to look up the syntax and usage of BASIC statements and functions in the
Statement and Function Directory.

Special Features of Amiga Basic

The Amiga Basic Interpreter is written in assembly language and thus is
small (80K). The core of Amiga Basic has been field tested for three years.
Amiga Basic is a “standard” BASIC in that it will run most programs that
were written in Microsoft BASIC on most other machines.

Ease of Program Development

Like all languages, Amiga Basic is always growing, changing, and improving.
Amiga continues to keep its BASIC interpreter up to date with new features.
Here are some of the latest features you'll find in this version of BASIC. All
of the features are described fully in the reference section of the manual.

Support for Amiga Application Programs

Amiga Basic provides the tools you need to write programs that work like
and look like they were written for the Amiga. These tools are especially
important if you are a software developer who plans to sell application
programs for the Amiga.

It is also true that significant Macintosh MS-BASICim and IBM-PCim
BASIC applications can easily be ported over to the Amiga.

Mouse Support

With the MOUSE function, your BASIC program can accept and respond to
mouse input. The MOUSE function returns the coordinates of the mouse
pointer under various conditions (left button up, left button down,
single—click, double-click, and drag).

Introducing Amiga Basic 1-3

MENU Statement

Your programs can display Amiga-style menus created by BASIC’s MENU
statement. This statement opens and closes menus and highlights menu
items. If you want, you can replace BASIC’s menus with your own menus,
to give your program a completely “custom” look.

Powerful Language Features

Amiga Basic provides a number of powerful language features that lend
flexibility to your programs. These features include the following:

Block Statements

IF-THEN ELSE statements let your program make decisions during
program execution. You can now include multiple statements on one or
more lines after THEN.

Subprograms

Amiga Basic allows subprograms that have their own local variables. Using
subprograms, you can build a library of BASIC routines that can be used
with different programs. You can do this without concern about duplicating
variable names in the main program.

SHARED Statement

The SHARED Statement allows variables to be shared between the main
program and its subprograms.

Integer Support

Amiga Basic includes both 16 and 32 bit integer support.

1-4 Introducing Amiga Basic

T I I A U EN T N N O IR PR I

C

i

IR N N

S R B

g0 1 1 1 31 1 3 1 1 1

-

Floating Point Support

The Amiga version includes both 32 and 64 bit floating point support.

No Line Numbers Required

Program lines do not require line numbers. Assigning labels to functional
blocks lets you quickly see the control points in your program.

Alphanumeric Labels

Alphanumeric line labels beginning with an alphabetical character allow the
use of mnemonic labels to make your programs easier to read and maintain.

Sequential and- Random Access File Support

Both sequential and random access files can be created. Sequential files are
easy to create, while random access files are flexible and quick in locating
data.

Device Independent I/O Support of RS232 and Parallel Ports

Using Amiga Basic’s traditional disk file-handling statements, a program can
direct both input and output from the screen, keyboard, line printer, and
RS232 and parallel ports. You can open the line printer or screen for output
as easily as you open a disk file.

Features that Show Off the Amiga

A number of features of Amiga Basic enhance Amiga’s color, graphics,
animation, and sound capabilities:

® Four-voice synchronized musical reproduction through the
SOUND and WAVE statements

Introducing Amiga Basic 1-5

® Creation of audible speech through the SAY and
TRANSLATES statements

® The ability to save and redisplay screen images through the GET
and PUT statements

® Full complement of graphic statements, such as LINE, CIRCLE,
PAINT, AREA, and AREAFILL

® Extensive animation support through the OBJECT statements,
the Object Editor, and the COLLISION function.

® The ability to call subroutines written in machine language
through the LIBRARY and DECLARE statements

® Multiple screens and windows through the SCREEN and
WINDOW statements

® Pull-down Menus from BASIC and the application programs

All of these functions are described in detail under the related commands in
Chapter 8; the Object Editor is described in Chapter 7. Some of the
functions are summarized below.

SOUND and WAVE

LINE

1-6

Amiga Basic programs can produce high quality sound for games, music
applications, or user alerts. The SOUND statement emits a tone of specified
frequency, duration, and volume. As an option, the tone can also have one
of four user-defined “voices.” The WAVE statement lets you assign your
own complex waveforms to each of the voices. SOUND and WAVE can
provide your programs with a rich variety of musical sounds, from the
complexity of a string quartet to the simplicity of a whistled tune.

and CIRCLE

LINE and CIRCLE are versatile commands for drawing precise graphics.
The LINE statement draws a line between two points. The points can be
expressed as relative or absolute locations. By adding the B option to the

Introducing Amiga Basic

L O

. L

[

L O L C O C

I R

a1 1 1]

[[T T S T

1]

/

LINE statement, you can draw a box. Another option, BF, fills in the box
with any color.

The CIRCLE statement draws a circle, arc, or ellipse according to a given
center and radius. A color option can be used to draw the circle in any
color. Another option, aspect, determines how the radius is measured, so
you can adjust it to create a variety of ellipses.

GET, PUT, and SCROLL

The GET statement saves groups of points from the screen in an array, so
you can store a “picture” of a graphic image in memory. The PUT
statement calls the array back and puts it on the screen. The SCROLL
statement lets you define an area of the screen and how much and which
way you would like it to move.

The Object Editor

Amiga Basic offers the Object Editor, a program written in BASIC, that
helps you create images of objects to use for animations with your Amiga
Basic applications programs. See Chapter 7 for details on the Object Editor.

Learning More About BASIC and the Amiga

This manual provides complete instructions for using the Amiga Basic
Interpreter. However, little training material for BASIC programming is
included. If you are new to BASIC or need help in learning to program, we
suggest you read one of the following:

Dwyer, Thomas A., and Critchfield, Margot. BASIC and the Personal
Computer. Reading, Mass.: Addison-Wesley Publishing Co., 1978.

Knecht, Ken. Microsoft BASIC. Beaverton, Ore.: Dilithium Press, 1982.

Boisgdntier, Jacques, and Ropiequet, Suzanne. Microsoft BASIC and Its
Files. Beaverton, Ore.: Dilithium Press, 1983.

Introducing Amiga Basic 1-7

)
f

RN s T I T Ny N e e e e e e e S R R

Chapter 2

Getting Started

To use Amiga Basic, you need:

® An Amiga computer, properly set up and
connected.

® The Amiga Extras disk.

Getting Started 2-1

You should also make two backup copies of your Extras disk on your own
blank disks. To start Amiga Basic:

® Turn on the Amiga power switch. If the Amiga prompts you for
a kickstart diskette, then insert it in the internal drive.

® Once the Workbench diskette prompt appears, put the
Workbench diskette into the disk drive. Wait until the
Workbench icon appears and disk activity has ceased.

® Put the Amiga Extras disk into any 3 1/2” Amiga disk drive.
® Open the Extras disk icon. Then open the Amiga Basic icon.
In a few seconds, you’ll see the Amiga Basic screen.

Note: This tutorial assumes that the Amiga Basic screen is using the original
Workbench colors (blue for background, white for foreground, orange, and
black).

At this point, the cursor (an orange vertical bar) appears in the List window,
and you can either type in a new program or retrieve an existing program
and modify it, as you’ll see in the next section. Notice that the Title Bar in
the List window is displayed distinctively to indicate that it is selected, while
the Title Bar in the Amiga Basic window is ghosted or displayed less
distinctively to indicate that it is not selected.

The Output window in Amiga Basic not only lets you see the results of a
program, it also allows you to type in commands directly. Any time you
would prefer to type in commands directly in the Output window, click in
the Output window (entitled BASIC). This process is called selecting the
Output window. Notice that Amiga Basic responds with the Ok prompt.

To display the menu titles in the Menu bar, click in the Output window then
press and hold down the mouse Menu button.

Getting ‘Started

C CCCCCCCCCCOCrOCrCcCcrorCorC

)

J 3 1 1 31 31 31 31 3 1 1 1 1 31 1]

Practice Session with Amiga Basic

Time Required: Fifteen Minutes

Now you are ready to begin using Amiga Basic.
To display the contents of the Extras disk in the Output window,
® select the Output window.
When the Ok prompt appears in the window,
e Type
files

® Press the RETURN Kkey.

Getting Started

2-3

You now see the filenames and directory names being listed in the Output
window. When the window fills, the names scroll upwards to make room for
more names at the bottom of the window. To halt scrolling, press the right
Amiga key (on the righthand side of the keyboard) and the S key; to resume
scrolling, press any key.

To see the files in one of the directories, type the word files followed by the
desired directory name enclosed in quotes. If the disk is in the external
drive, type the word files followed by the drive number in quotes. For
example, if the Extras disk is in drive 1, the following command lists all files
in the subdirectory BasicDemos:

files "dfl:basicdemos"

Loading Picture

2-4

Start by loading the program called Picture, which is a demonstration
program written in Amiga Basic that comes on your Extras disk. Picture is
in the BasicDemos drawer (or subdirectory).

® Press the mouse Menu button and point at the Project menu
title in the Menu Bar. The menu items that appear are New,
Open, Save, Save As, and Quit.

® Choose the Open item.

Getting Started

I e e e e

o

3 3 3333 32 3 3,0 313 3 1]

B R

A requester appears on the Output window.

® Click the mouse Selection button in the Title Gadget labeled
“Name of program to load”.

® Type
basicdemos/picture
® Click the OK Gadget or press the RETURN key.

Note: For more information on specifying directory names and filenames,
see “File Naming Conventions” in Chapter 5, and the AmigaDOS User’s
Manual.

The Program Listing for Picture

A listing of the Picture program appears in the List window. The name of
‘the Output window changes from BASIC to BasicDemos/Picture.

You may have expected to see a line number at the beginning of each line.
In Amiga Basic, line numbers are optional. To refer to a particular line, give
that line a label or a line number. For example, the Picture program has no
line numbers. However, it has two labels: CheckMouse and MovePicture.

Getting Started 2-5

2-6

vos F Lo tupeg el
DEFINT B-Z
DI¥ F(2588)
CLS
LINE(E, 83~ /1 8, i-""“
ASPECT =
NHILE A“PECT"%
CIRCLE(&@,68),55,8,,
ENASPSCT = ASPECT®L.4

: P,U
X cy
“PUTCX, YD, P

GOTO CheckNousé

Labels and line numbers identify subroutine or subprogram entry points, and
routines called from GOTO statements executed in other parts of the
program. To list a program line, use the LIST command and the line’s
label. For example, to list the part of the Picture program beginning with
CheckMouse:

® Select the Output window, then type
LIST CheckMouse
® Press the RETURN Kkey.

Notice that the List window scrolls to the CheckMouse label. However, if
you wish to edit in the List window, you must first select it.

Uppercase Reserved Words: On the Amiga screen, Amiga Basic program

listings are very easy to read because Amiga Basic’s reserved words are
automatically converted to uppercase as you move from line to line.

Getting Started

I

i
|

L [

L) L O I I I A C I

0 [I (R A N N N

31 1 1 1 1 1

Amiga Basic reserved words
are in uppercase

Other words appear as
entered by user

Note that when you type a program line, the reserved word doesn’t appear
in uppercase until you move from line to line.

What Picture Does

Now, start the program as follows:

® To open the Output window over the List window, choose Show
Output from the Windows menu.

Getting Started 2-7

2-8

® Choose Start from the Run menu.

When the program runs, a picture appears in the Output window. You can
move this Picture around by clicking the mouse Selection button anywhere
in the Output window. Try it.

Output from Picture

Getting Started

. [

L O C *C

L O C O CLCc C ¢ C

.

1 1

1

a2 1 1 1 1

a1 1 1 1 1

)

Stopping the Program

Picture keeps running until you tell it to stop.
® Choose Stop from the Run menu.
® Choose Show List from the Windows menu. The List window

comes forward again. To edit the program again in the List
window, you must select the List window.

Moving Through the List Window

To scroll through the List window line by line, click in it and use the up and
down arrow keys located at the lower right corner of the Amiga keyboard to
move up and down.

To move right or left one character at a time within a program line, use the
right or left arrow keys.

Note: Throughout this manual, whenever you see two keys joined together
with a hyphen, such as SHIFT-Up Arrow, this means that you press and
hold down the first key at the same time that you press the second key. So
SHIFT-Up Arrow means to press and hold down the SHIFT key while you
press the Up Arrow key.

So, to move forward through the program window by window, press
SHIFT-Down Arrow. To move backward through the program window by
window, press SHIFT-Up Arrow.

To move to the first line in the program, press ALT-Up Arrow. To move to
the last line in the program, press ALT-Down Arrow.

To move to the right margin of a program line, press ALT-Right Arrow. To
move to the left margin of a program line, press ALT-Left Arrow.

Getting Started 2-9

To move 75 percent through a program line towards the right margin, press
SHIFT-Right Arrow. This is convenient for moving through extremely long
program lines. To move 75 percent through a program line towards the left
margin, press SHIFT-Left Arrow.

If you want to know more about Picture, see Appendix G, “A Sample
Program,” for a line-by-line explanation.

Editing an Amiga Basic Program

2-10

Editing an Amiga Basic program is similar to editing text with a word
processor. You enter all text in the List window and edit it using the Cut,
Copy, and Paste commands from the Edit menu.

To enter new text, select the insertion point (the thin orange cursor) by
moving the Pointer to the location where you want text and clicking. Then
type in the desired characters.

To delete characters to the left of the insertion point, press the
BACKSPACE key. To delete characters to the right of the insertion point,
press the DEL key.

To select a word, position the pointer over the word and double—click the
mouse Selection button.

To make an extended selection, you can click at the beginning of the
selection, move the mouse to the end of the selection, and shift—click (that
is, press and hold down the SHIFT key on the Amiga while you click the
mouse Selection button. Alternatively, you can set the insertion point and
drag the mouse. You can Cut or Copy the selected blocks of text just as you
would with a word processor.

Getting Started

-

. C C C C C ot ¢ L & L L

I .

[

B [I I R R R A e

1]

11

1

B

To increase the width of the List window in order to view the entire program
listing,

® Press and hold down the mouse Selection button in the Title Bar
and drag the entire List window to the left.

® Release the Selection button and move the pointer to the Sizing
Gadget on the lower right side. Press and hold down the
Selection button over the Sizing Gadget, dragging it to make the
List window wide enough to read the program lines.

® Release the Selection button when you are satisfied with the List
Window width.

Practice Editing with Picture

This is a good opportunity to practice editing an Amiga Basic program on the
Amiga and to learn about some of the graphics statements in Amiga Basic.
Don’t worry about losing or altering Picture. There is another program just
like it called Picture2 on this disk.

If you'd like to experiment, go ahead and make your own changes to
Picture. Try the following sequence to change the program to produce the
following output:

Getting Started 2-11

Adding a Line to the Program

Start by adding the line that draws the second sphere:
® Scroll through the Picture listing until you find this line:

CIRCLE(60,60),55,0,,,ASPECT

Find line of code that
draws the first sphere

2-12 Getting Started

L

.

. C C

[

!

SN I R e

(N I

[

1 1

1

N

N

a1 1 1 1

1

1

1

1

B

e Click at the end of the line to move the insertion point there.
(Press Alt-Right Arrow if the List window doesn’t show the end
of the line.)

® Press the RETURN key to open a new line.

Now you are ready to type a new line. Note that Amiga Basic automatically
aligns the cursor with the statement directly above it, saving you the bother
of inserting blank spaces.

® Type the following line:

CIRCLE(200,60),55,3,,,ASPECT

Enter this line of code to
draw the second sphere

This statement draws an ellipse with the center located at 200,60. It has a
radius of 55 and an aspect ratio equal to ASPECT. If you're using the
original Workbench colors, the number 0 represents blue, and the number 3
represents orange. Every time the WHILE loop is executed, the statement
draws another ellipse with a different aspect ratio (ASPECT). These ellipses
form the sphere.

® Choose Start to run the program.

Getting Started 2-13

Correcting Errors

You might make errors (also known as “bugs”) when you type or edit a
program. When Amiga Basic finds an error, it stops program execution and
displays a requester describing the error. Amiga Basic makes sure the List
window is visible and then scrolls the window so the line containing the error
is visible. The statement that caused the error is enclosed in an orange
rectangle. Then you can edit the incorrect line in the List window and run
the program again. This process is called “debugging.”

Replacing a Program Line

Since you changed the program, only the first sphere moves when you click
the Selection button. Let’s change the program so that the both spheres
move together.

e If the program is still running, choose Stop to stop it.

® Choose Show List. Observe that Show List doesn’t change the
position of the List window.

® Scroll to the extreme left edge of the GET statement, point
there, and drag the highlighting across to the end of the line.
Note that this selects the entire line, highlighting it in orange.

2-14 Getting Started

C C O C ot b

L

.

L

C oL |

!
|
|

R

1

1

41

1 1

1

1

1]

1

1

Select the GET Statement

® Choose Cut from the Edit menu to delete the selection.
® On the blank line, type
GET(0,0)-(327,127),P

This new GET statement increases the area that moves when you click the
Selection button.

Now, let’s change the DIM statement to create an array of 6000 rather than
2500 elements.

® Move the insertion point to the DIM statement.
® Select the part of the statement that reads 2500 and select Cut

from the Edit menu. (A shortcut is to press the BACKSPACE
key.)

Getting Started 2-15

® Type 6000 within the parentheses so that the line now reads
DIM P(6000)

(Alternatively, just highlight the 2500 and type 6000. Anything
you type replaces the portion of the line that is highlighted.)

————Amended Statements

® Choose Start to run the program.

Now both spheres move together when you click and drag the mouse.

Reversing Blue and White

Let’s change the first sphere so that it appears in white on a blue
background like this:

2-16 Getting Started

L

T W N O

I

(T N

NN T S N

N

o1 1 1 1 1 1 3 1 1 1 3 1 °

1

If the program is still running, select Stop and show the List
window.

Find the LINE statement in the program.

Point to the end of the statement and click, putting the insertion
point directly after BF.

Getting Started 2-17

® Press the BACKSPACE key once to delete the F in BF.

Now the color inside of the box will be blue, not white.

® Find the line

CIRCLE(60,60),55,0,,,ASPECT

Position the insertion point after the number 0.

Press the BACKSPACE key once to delete the 0.

e Type 1 to make the color number 1 (white).

Iy

P Y) S
GOTO CheckMouse

Now the ellipse will be drawn in white instead of blue.
® Choose Start to see the new program output.

The changes in the program are now complete.

2-18 Getting Started

. C O o

L L L

. L L

T I IO IR IR B O

B S R R R R I e D e e

1

0 D B

Single-Stepping Through the Program

To get better acquainted with Picture, let’s use a common debugging
technique: single-stepping through the program.

® If Picture is still running, choose Stop to stop it.

® Select the Output Window by clicking anywhere in it. Observe
the Ok prompt.

® Type
end
® Press the RETURN key.

® Choose Step from the Run menu. Step executes the first line of
the program and then the program stops.

® Choose Show List from the Windows menu to open and select
the List window on the right side of the screen.

Each statement is outlined in the List window as it executes. The Output
window is selected so that any text you type appears there.

® Choose Step again (or press Right Amiga-T).

The next line executes, and the program stops again. Each statement is
outlined in the List window as it executes. There’s no output yet, so not
much is happening.

Continue choosing Step and watch the program execute one program
statement at a time. When the section that draws the ellipses is outlined,
observe how it draws the spheres. Each time the WHILE loop executes, it
adds an ellipse with a different ASPECT (aspect ratio) to each sphere.

Getting Started ~ 2-19

2-20

o] BasicDenos/Pictu

® Just for fun, after the first few ellipses have been drawn, type

print aspect

in the Output window.

® Press the RETURN Kkey.

Getting Started

C C O

.

C C °CC L

I I

e T e e

1 1

3 1 1 1

B N R I B

The current value of ASPECT (the aspect ratio for the ellipse) appears in
the Output window.)

Even though we’re not actually debugging Picture, this illustrates a typical
debugging technique that uses what is known as immediate mode. While
using immediate mode, you can enter and execute a command in the Output
window “on the spot.” Amiga Basic executes immediate mode commands
right away, displaying the result if there is one. For more information on
immediate mode, see “Operating Modes” in Chapter 3.

e Continue stepping through Picture. Check other variables if you
like.

e If you’d like to stop stepping through the program and simply
run the rest of it, choose Continue from the Run menu.

Saving the Program

Whenever you enter a new program or make changes to an existing program
and wish to preserve the original version, use the Save As menu item to put
the program on the disk. Once a program is on the disk, you can load and
run it any time you like. To save the program:

® Stop the program if it is still running.

® Choose the Save As item from the Project menu. The following
requestor appears:

Getting Started 2-21

Amiga Basic assumes you want to save the program under its current name,
Picture. It also assumes that you want to save the program in whatever form
it was loaded (usually in compressed formiat).

You can change the name if you want to, or simply click the OK Gadget.

If you didn’t change the program’s name, you now have two versions of
Picture on the disk: the original, unchanged, Picture2 and the newly edited
Picture. You could have also decided to rename the program as
“myprogram” or any other legal name. That would have preserved Picture
in the form that you found it before your changes.

Leaving Amiga Basic and Returning to the Workbench

2-22

® Choose Quit from the Project menu.

Congratulations! You have just finished the practice session.

Getting Started

CCCCcoCCCobECEC

L . ¢ . C

B R N R N R

B’

a1 1 1 1 1 31 1 7

You are now back at the Workbench and ready to begin your next activity
on the Amiga. You've learned a lot about Amiga Basic in just a few
minutes, including how to:

® Load an existing program.

o Edit programs in the List window.

® Work with some Amiga Basic statements and functions.
® Save an Amiga Basic program file.

In the next chapter, you'll learn the fundamentals on how to operate Amiga
Basic, including the Amiga Basic screen. You’ll recognize some of the
information from the practice session; other information will be new. While
you practice and learn about Amiga Basic, remember that you can’t “harm”
the computer or Amiga Basic through normal typing, mouse pointing, or trial
and error. So don't hesitate to experiment and try out all the features of
the screen.

Brief Summary of Program File Commands

The following is a brief summary of the commands that handle program
files. You can use these commands as alternatives to many of the menu
options. To use the commands, select the Output window and enter the
command you wish to execute. The syntax for each of these commands is

described below.

To load an existing program:

To load an existing program, enter the command:

LOAD “filename”

Getting Started 2-23

To edit the loaded program:

To edit the loaded program or enter a new program, enter the command:

LIST [<label>]

LIST calls Amiga Basic’s full screen editor and lists the current program
starting at the first line of the most recently edited portion. If you specify an
existing label, that line will appear on the top line of the display along with
the lines that follow it.

To execute a program in memory:

To run a program in memory, enter the command:
RUN
To stop the program while it is running, press CTRL-C.

To debug the program, you can use immediate mode statements. For
example, you can see the contents of array A with the following statements:

FOR I=0 TO 19: PRINT A(I): NEXT I

To resume execution of the program, enter the following command:

CONT

To leave Amiga Basic:

To quit the Amiga Basic and return to the Workbench, enter the command:

SYSTEM

2-24 Getting Started

o C C CCCCC

C C C CLCCc ot & L

il

[S I R R R R R R R R e R B

If the program currently in memory has been altered and not saved, the
following message appears to prompt you:

Current program is not saved
Do you want to save it before proceeding?

You can select either yes or no, or select cancel to remain in Amiga Basic.

To save a program currently in memory:

To save a program currently in memory, enter the command:
SAVE [“filename”]

If you omit the file name, a requester appears that allows you to either save
the program under its current name or change the name before saving.

Getting Started 2-25

il“

a3 1 1 1 1

31 3 1 3 3 1 1 1

I

Chapter 3

Using Amiga Basic

This chapter describes the fundamentals for using Amiga
Basic, including how to start and quit Amiga Basic, how to
load and save files, and how to use the different operating
modes. It then goes on to describe the various elements of
the Amiga Basic screen.

Using Amiga Basic 3-1

Operating Fundamentals

The following section explains how to start and exit Amiga Basic and how to
load and save Amiga Basic programs.

Starting Amiga Basic

There are three ways to start Amiga Basic:

Open the AmigaBASIC icon on Workbench.
Type
AmigaBasic

on the CLI screen (selected from the System drawer) and press
the RETURN key.

Double-click on any Amiga Basic program icon in the
Workbench. Not only does this invoke Amiga Basic, it also
loads and runs the selected program.

Exiting Amiga Basic and Returning to the Workbench

There are two ways to exit Amiga Basic and return to the Workbench.

1.

Select the Quit item from the Menu Bar’s Project menu.
Type
system

in the selected Output window and press the RETURN key. Or,
enter SYSTEM as an instruction in an Amiga Basic program.

3-2 Using Amiga Basic

- C C C O L

L C L

O C O O o

B

0 1 1 1 2 0 1

a0 1 1 1

11

Loading a Program

To run an existing program, you must first load the program into memory.
There are several ways to load a program: ’

1.

When in the Workbench, double-click the icon for an Amiga
Basic program. This loads Amiga Basic and loads and runs the
selected program.

If Amiga Basic has already been loaded, you can select the
Open item from the Project menu. This displays a requester
asking you which program you wish to load. Click in the Title
gadget, type in the name of the program, and click in the OK
Gadget (or press the RETURN Kkey).

If Amiga Basic has already been loaded, you can type the
LOAD or RUN statements in the Output window. See Chapter
8 for the proper syntax.

If an Amiga Basic program is currently running, it can use the
CHAIN statement to load and run another program.

Saving a Program

To save a new program, you can either select the Save As item from the
Project Menu or type the SAVE statement in the Output window. See
SAVE in Chapter 8 for the proper syntax of this statement. To file away a
previously saved and now re-—edited program, you can either enter the
SAVE command or select the Save item from the Project menu (see below).

Amiga Basic normally saves all new programs in compressed form. To save
programs in protected form, or in ASCII format for a word processor or a
MERGE command, you must give explicit instructions with the SAVE
command in the Output Window. You must also use the SAVE command
(with no option) to change an ASCII file back to compressed format.

Using Amiga Basic 3-3

Operating Modes

When you open Amiga Basic, the Output window appears with the name
BASIC. It is ready to accept commands. At this point, you can use Amiga
Basic in one of three modes: immediate mode, edit mode, or program
execution mode. The List window is selected when Amiga Basic begins
operating.

Immediate Mode .

In immediate mode, Amiga Basic commands are not stored in memory, but
instead are executed as they are entered in the Output window. Results of
arithmetic and logical operations are displayed immediately (when you
request that they be printed) and stored for later use, but the instructions
themselves are lost after execution. Immediate mode is useful for debugging
and for using Amiga Basic as a calculator for quick computations that do not
require a complete program.

To begin entering immediate commands, you must first select the Output
window by clicking anywhere in it with the Selection button.

Program Execution Mode

When a program is running, Amiga Basic is in program execution mode.
During program execution, you cannot execute commands in immediate
mode, nor can you enter new lines in the List window.

Edit Mode

3-4

You are in edit mode when you are working in the List window. The

commands you enter are not executed until you enter a RUN command or
select Start from the Run menu.

Using Amiga Basic

C C

C C CCLCCCc o b

L [[

[

M
M
B
B
B
B
™
M
M
™
™
]

™
ﬂ
B

M
)

The Amiga Basic Screen

There are three separate regions of the Amiga Basic screen: the Output
window, the List window, and the Menu Bar.

You operate the Output and List windows as follows:

To select a window, you click anywhere inside it.

To resize a window, you drag the Sizing Gadget in the lower
right-hand corner.

To bring the back window to the front, you click the Front
Gadget.

To put the front window to the back, you click the Back
Gadget.

To close the window, you click the Close Gadget located in the
upper left corner.

To move the window, you press and hold down the Selection
button and drag the Title Bar. (You can also move the Output
window if you resize it.)

You use the Menu Bar as follows:

To display the Menu Bar, select the List or Output window,
then press and hold down the Menu button.

To display the individual menus, point at the desired menu title.

To choose an individual menu item, first point at the desired
item (to highlight it), then release the Menu button.

Using Amiga Basic 3-5

The following sections describe additional features of each of the screen
areas.

The Output Window

You can use the Output window both to enter statements as immediate mode
commands and to display the output from your programs.

To select the Output window:

® Click inside it, or

® Choose Show Output from the Windows menu (if the Output
window is not visible), and then click inside it.

In the Output window, you can:

e Enter a statement as an immediate mode command. Amiga
Basic executes the command as soon as you press the RETURN
key. Any output from the command appears in the same
Output window.

e Use the BACKSPACE key to delete typing mistakes before you
enter corrections.

e Type CTRL-C to stop a program or cancel a line you’ve started
to enter.

3-6 Using Amiga Basic

L

C C C C O

C C C O L L

.

I I

1 1

n

1

1 1 -

1 1

1 1 1 1

B I

B

]

The List Window

You can use the List window to enter, view, edit, and trace the execution of
programs. The List window is automatically selected when you first open
Amiga Basic.

To select the List window:

® Click inside it, or

® Choose Show List from the Windows menu (if the List window
is not visible), and then click inside it.

The List window becomes visible when the program halts due to an error.

Note: If a program has been saved in a protected file (with the SAVE
command in the Output window), you cannot open a List window for the
file. Protected files can neither be listed nor edited.

In the List window, you can:

® Look at a program and scroll through it with a combination of
the arrow keys and the SHIFT and ALT keys.

® Enter or edit a program using all of the features of Amiga Basic,
including selecting text with the mouse and using the options in
the Edit menu. See “List Window Hints” in Chapter 4 for more
details on the List window.

Using Amiga Basic 3-7

The Menu Bar and Menu Keyboard Shortcuts

There are four menus on the Menu Bar: Project, Edit, Run, and Windows.
You cannot always use all of these menus. A menu title may be displayed
less distinctively as a ghost menu item to indicate that the menu is not
relevant to what you are doing at the moment. Similarly, a ghost menu item
may appear when that item cannot be selected.

Some of the menu items show an Amiga key sequence next to them, such as
Amiga-X for Cut. This means you can press the given key combination
(that is, press the “X” key while holding down the right Amiga key) instead
of choosing the item with the mouse, if you want to. All the menu keyboard
shortcuts use the right Amiga key.

The Project Menu

3-8

The Project menu contains five items that affect program files. There are no
keyboard shortcuts for the items in the Project Menu.

New gets Amiga Basic ready to accept a new program. It clears the current
program listing from your screen and clears the program from memory, so
you can begin a new program. It behaves the same way as the NEW
statement.

Open tells Amiga Basic that you want to bring in a program that is already
on the disk. To display the names of the programs on the disk, select the
Output window and enter the FILES command. When you choose Open, a
requester appears to ask which program you wish to open. Type in the
name of the desired program, then click the OK Gadget.

Save saves the program under its current name. This means it puts a
program on the disk after you have entered it or made changes to it. Save
saves all new programs in compressed format and saves all revised programs
in whatever format they were loaded in.

Using Amiga Basic

I DEER I

L

L . T C

L

I .

RN I I

1

N

1 1 1 1

1 1 1

1 1 1

1 1

N

1

1

Save As... is the same as Save, except that Save As allows you to change the
name of the program to be saved. Amiga Basic saves your new programs in
compressed format, and it saves your loaded and revised programs in
whatever form they were loaded in.

To save your program in text or protected format, you must use the SAVE
statement in immediate mode in the Output window. See “Program File
Commands” in Chapter 5 for an explanation of file formats. See SAVE in
Chapter 8 for the syntax of the SAVE statement.

Quit tells Amiga Basic to return to the Workbench. It behaves exactly like
the SYSTEM statement.

The Edit Menu

The Edit menu has three items that are used when entering and editing
programs. Except for immediate mode commands in the Output window,
you enter and edit all program statements in the List window. Each of the
Edit menu commands has a keyboard shortcut.

Cut deletes the current selection from the List window and puts it in the
Clipboard. Pressing Amiga-X is the same as choosing Cut.

Copy puts a copy of the current selection into the Clipboard without deleting
it. Pressing Amiga-C is the same as choosing Copy.

Paste replaces the current selection with the contents of the Clipboard. If
no characters are selected, Paste inserts the contents of the Clipboard to the
right of the insertion point. Pressing Amiga-P is the same as choosing Paste.

The Run Menu

The Run menu has six commands that control program execution. Keyboard
shortcuts are available for four of these commands.

Using Amiga Basic 3-9

3-10

Start runs the current program. Entering RUN in the Output window or
pressing Amiga-R are the same as choosing Start. Start is enabled whenever
Amiga Basic is in immediate mode. Pressing Amiga-R is the keyboard
shortcut for running the current program.

Stop stops the program that is running. Stop behaves exactly like the STOP
statement. Amiga-period or CTRL-C are the keyboard shortcuts for
stopping the current program.

Continue starts a stopped or suspended program. Entering CONT in the
Output window is the same as choosing Continue. The Continue menu item
is enabled only when a program has actually been stopped and continuing is
possible. If no program was stopped, or if you changed the program whxle it
was stopped, a requester appears that says “Can’t continue.”

Suspend suspends the program that is running until any key other than
Amiga-S is pressed. Pressing Amiga-S or CTRL-S are the same as selecting
Suspend. Suspend is enabled whenever a program is running.

Trace On/Off is a toggle that turns program tracing on and off for
debugging. If the List window is visible, tracing highlights each statement as
it is executed. Turning Trace on works the same as the TRON statement,
where the last statement executed has a trace rectangle drawn around it. If
no statement has been executed, no rectangle is drawn. This lets you
determine where the program is being stopped. Trace Off works the same as
the TROFF statement where tracing no longer highlights each statement as it
executes.

Step executes the program one step at a time. It stops after each statement.
Pressing Amiga-T is the same as choosing Step. When the List window is
made visible, a rectangular box outlines the statement that was just
executed.

Using Amiga Basic

(R N O S D A

CC OO C O CCCoD

L]

1

1

a o

1

1

1

1

1

1 1 1

1

1

T

The Windows Menu

The Windows menu has two items that open windows on the Amiga Basic
screen.

Show List opens the List window on the current program. If a List window
is already opened but covered with the Output window, Show List brings the
List window forward. Pressing Amiga-L is the same as choosing Show List.
To edit a loaded program or to enter a new program, you can also use the
LIST immediate mode command in the Output window.

Show Output opens the Output window. The List window is put behind the
Output window. In order to enter immediate mode commands in the Output
window, you must first click in it.

Using Amiga Basic 3-11

IR

i ”“"“m

R T P
z..;\l\l:,gm‘;.m
‘.!!\’! H

”uh’

"

i mmggi;iiiimliiiig;m:m
} ¥

il

i il
‘mh*""*lemimm“‘!"”'”!«'-‘; 7

.
”\,\'“!i""EHHHsnmumuu‘i”!'“!””

. et
sy

ISITERIOIN
+ AN

T E

)

im

W e

I

a1 3 1 1 1

1 1 1

11 1

1

1 1 1

Chapter 4

Editing and Debugging
Your Programs

This chapter describes how to enter text when writing a
program and how to remove errors from programs.

Editing Programs

The List window appears when you start Amiga Basic. Enter
text and use the regular Amiga Edit menu items--Cut,
Copy, and Paste—-to edit the program lines in the List
window.

Editing and Debugging 4-1

When you first open Amiga Basic, the List window that appears may seem
too narrow to use for long program lines. Text that you enter beyond the
right margin forces the window to scroll, keeping the cursor in the visible
part of the List window. To get back to the left margin, press ALT-Left
Arrow. Drag the List window to the left, and then drag the Sizing Gadget to
the right to increase the width of the right margin.

Typing and Editing Text

4-2

Editing program lines in the List window is similar to working with regular
text on a word processor.

Here are some reminders about typing and editing text in the List window.

Insert text by typing it or by pasting it from the Clipboard.
Inserted text appears to the right of the insertion point.

Delete text by backspacing over it or by selecting it and then
choosing Cut from the Edit menu. Or, you can delete a
highlighted section of text by pressing the BACKSPACE key. To
replace highlighted text, simply type the replacement text.

End each program line with a carriage return. You can have
extra carriage returns in your Amiga Basic programs. However,
these only create blank lines that are ignored when the program
executes.

You can indent lines of text by using the TAB key. Indenting
makes your program easier to read. The TAB key advances two
characters to the right. When you press the RETURN key at
the end of a line, the cursor descends one line and goes to the
column where the previous line started. This means if the
previous line started with a tab, the new line starts at the same
tab stop. This indentation does not cost additional memory.

You can type reserved words in either uppercase or lowercase,
but Amiga Basic always displays them in uppercase.

Editing and Debugging

L L

L L L

I I

(R B

L

L. [

B R B

A I R I R R R R R I R

Selecting Text

You can type variable names of up to 40 significant characters.
A variable is initially single precision unless you terminate it with
a special character or execute a DEFINT, DEFLNG, DEFDBL,
or DEFSTR statement that affects it. The special characters are
$ for string, | for single precision, # for double precision, % for
short integer, and & for long integer.

You can type variable names in either uppercase or lowercase,
but Amiga Basic does not distinguish between them. For
example, alpha, Alpha, and ALPHA all refer to the same
variable.

You can precede program lines with line numbers; however, line
numbers are not required.

Here are some pointers on selecting text in the List window.

Select characters or lines by dragging the highlighting over them
with the mouse.

The quickest way to select a single line is to point at the far left
edge of the line and drag the highlighting down one line.

If you drag the highlighting to the edge of the List window and
keep holding down the Selection button, the window
automatically scrolls, selecting as it goes.

Select individual words in program lines by pointing at them and
double~clicking.

An alternative way to make an extended selection is to click at the beginning
of the selection, move to the end of the selection, and Shift-click (click
while holding down the SHIFT key). This action selects all the text between
the beginning and the end of the selection.

Editing and Debugging 4-3

Scrolling

4-4

Here are some pointers on scrolling through text in the List window.

When you reach the bottom of a List window and continue

entering lines, Amiga Basic automatically scrolls up one line at a
time.

Amiga Basic automatically scrolls horizontally when you reach
the right edge of a List window and continue typing.

Use the four arrow keys to move the insertion point one
character to the right or left or one line up or down.

If you press the right arrow key and the insertion point is
already at the rightmost column of the display, the display
scrolls 75 percent to the right. If the display has already
scrolled as far to the right as possible, Amiga Basic beeps to
indicate it can go no further. The left, up, and down arrows
behave in a similar way.

If you hold the SHIFT key down while you hold down any
arrow key, the display scrolls in that direction. If it has already
scrolled as far as possible in that direction, Amiga Basic beeps.

To move 75 percent of the way towards the right margin of a
given program line, press SHIFT-Right Arrow. To move 75
percent of the way towards the left margin of a given program
line, press SHIFT-Left Arrow.

To move forward through a program listing a windowful at a
time, press SHIFT-Down Arrow. To move backwards through
a program listing a windowful at a time, press SHIFT-Up
Arrow.

To move to the beéinning of a program listing, press ALT-Up
Arrow. To move to the end of a program listing, press
ALT-Down Arrow.

Editing and Debugging

CCC

L .

C O L

C O O .

.

[

J 3 31 31 1 1 1 3 1 1 1 7

1 1

R

e To move to the far right margin of a given program line, press
ALT-Right Arrow. To move to the far left margin of a given
program line, press ALT-Left Arrow.

Opening the List Window at a Specific Line or a Specified Label

To open the List window at a specified line, enter the LIST command in the-
Output window and include a label or a line number. The List window
opens with that line as the first line.

For example, LIST MovePicture lists the Picture program, beginning with
the MovePicture routine, in the List window.

Debugging Programs

This section describes the four debugging features that Amiga Basic
provides: error messages, the TRON command, the Step option, and the
Suspend option. You can use these features to save time and effort while
removing program errors.

Error Messages

When a program encounters an error, three things happen: program
execution halts, a requester appears with the error message, and the line
with the error is outlined in the List window. See Appendix B, “Error
Codes and Error Messages,” for a complete listing of these codes and
messages with some probable causes and suggestions for recovery.

TRON Command

It is easy to remember the TRON command as TRace ON. You are in Trace
mode whenever you choose the Trace On item from the Run menu, execute
the TRON statement in a program line, or enter TRON in the Output
window.

Editing and Debugging 4-5

If the List window is visible, the statement being executed is framed with an

orange rectangle. As the program executes, statement by statement, each
statement is framed.

To disable TRON, select the Trace Off item from the Run menu, execute
TROFF in a program line, or enter TROFF in the Output window.

If you have isolated the error to a small part of the program, it is easier and
quicker to turn on TRON from within the program, just before the error is
reached.

Step Option

The Step option executes the next statement of the program in memory. If
the program has been executed and stopped, Step executes the first
statement following the STOP statement. The program then returns to
immediate mode. If there is more than one statement on a line, Step
executes each statement individually. You can choose the Step item in the
Run menu or press Right Amiga-T.

If the List window is visible, Step frames the last statement that has been
executed.

You can advance through a program, step by step, testing results at the end
of each line, and interactively testing variable values by using the PRINT
command in the Output window.

To reset Step to start at the beginning of a program, enter the END
statement in the Output window.

Suspend Option

4-6

To create a pause in program execution, you can choose Suspend from the
Run menu or press Right Amiga-S. The pause continues until you press any
key (with the Output window selected) except Right Amiga-S, or until you
select Continue from the Run menu. Suspend is enabled whenever a
program is running.

Editing and Debugging

C . L

C L © L

C

CCCC CCC

[

]

B I R R I D e e e e B e

Continue Option

To resume execution of a program, you can enter the CONT command in
the Output window or choose Continue from the Run menu.

Using CUT, COPY, and PASTE Commands in List Windows

Don’t forget that the contents of the Clipboard are replaced with each Cut
and Copy command. However, a Paste command does not change the
contents of the Clipboard, so you can paste the same contents into different
places in a program as many times as you want.

Sometimes you may want to cut something out of the program without
having it overwrite information you have on the Clipboard. You can do this
by highlighting the text you want to eliminate and pressing the BACKSPACE
key. This is also a good technique when you want to avoid generating “Out
of heap space” error messages, which can occur if you delete a very large
block of text.

Using the Output Window for Debugging

Once a program has been suspended, you can use the Output window to
glean useful debugging information in immediate mode. For example, if
your program is causing an error message, and the error occurs somewhere
within a loop, you can find out how many times the program has executed
the loop and all the variable values. You find this out by entering immediate
mode instructions in the Output window to PRINT the variables (for exact
syntax, see “PRINT” in Chapter 8.

Another use of the Output window in debugging is to change the values of
variables with immediate mode LET statements. You can assign a new
value to a variable and use the Continue selection on the Run menu to
resume program execution.

Editing and Debugging 4-7

el I

lH“

/I/I M //////////’////INW b 4

B e e e e e e e

3 1 73 3 7 1 1 1

0 I T I R N B

Chapter 5

Working with Files
and Devices

r

This chapter discusses how to input and output information
through the system and how Amiga Basic uses files and
drives. In addition, it describes file-handling and gives
some suggestions for transferring data between Amiga Basic
and a word processor.

Working with Files and Devices 5-1

Generalized Device I/0

5-2

Amiga Basic supports generalized input and output. This means that you
can access various devices in a manner similar to accessing disk files. The
following devices are supported:

SCRN:

KYBD:

LPT1:

COM1:

Files can be opened to the screen device for output. All
data opened to SCRN: is directed to the current Output
window.

Files can be opened to the keyboard device for input. All
data read from a file opened to KYBD: comes from the
Amiga keyboard.

Files can be opened to the printer device for output. (This
is the same as the PRT: device.) All data written to a file
opened to LPT1: is directed to the line printer. See the
following discussion entitled “Printer Option” for more
details.

If “LPT1:BIN” is specified, Amiga Basic performs binary
output to the line printer. The binary option does not
expand tabs into spaces or force carriage returns when the
printer’s width is exceeded.

Files can be opened to this device for input or output. Files
opened with COM1: communicate with the Amiga serial
port. Amiga Basic recognizes the following parameters as
part of the “COM1:” filename:

COM1: [baud-rate] [,[parity] [,[data-bits] [,stop-bits]i}]

baud rate the speed at which the Amiga communicates.
Setting this rate overrides the value set in
Preferences. The baud rate is one of the
following values: 110, 150, 300, 600, 1200,
1800, 2400, 3600, 4800, 7200, 9600, or
19200.

Working with Files and Devices

C C L CCccoccCcoctb oo bbb

B I

a0 1 1 1 3 3 3 1 0 3

1 1

parity a technique for detecting transmission errors.
The default is E. This parameter’s value is
either O (for odd), E (for even), or N (for
none).

data-bits the bits in each byte transmitted that are real
data and not overhead (parity bits and stop
bits). This parameter’s value is either 5, 6, 7,
or 8.

stop-bits used to mark the end of the transmitted “byte.”
When the baud rate is 110, the default for
stop-bits is 2. At all other baud rates, the
default is 1. When 2 stop bits and 5 data bits
are specified, 1.5 stop bits are used. For
example,

OPEN "COM1:300,N,7,2" AS #1

Printer Option

The Amiga supports a variety of printers, which are listed in the Preferences
tool. If you want your Amiga Basic output to use features such as margin
setting, italics, and so forth, you must specify special printer codes to do so.

For this reason, the Amiga includes a printer driver program for each
supported printer. Each such program converts standard printer codes into
special character sequences that the corresponding printer can understand.

There are three AmigaDOS printer devices:
PRT:
SER:
PAR:
The PAR: and SER: devices send output to the parallel and serial ports,

respectively. However, they do not convert your printer codes, and their
use is strongly discouraged for normal purposes. For serial applications such

Working with Files and Devices 5-3

5-4

as terminal emulators or inter-machine data transfers, the COM1: device is
preferable to SER:, as it allows you to directly set baud rate, parity, and
other parameters.

The PRT: device is used identically to the LPT1: device described above.
LPT1: is a Microsoft device name preserved for portability among different
machines.

When you wish to specially format your program’s output, you can include
the appropriate printer codes in the program’s PRINT# statements. These
“escape sequences,” as they are called, consist of the ESC character (ASCII
27) followed by one or more other characters.

Suppose you have a Commodore CBM MPS-1000 printer attached to your
Amiga and wish to print portions of your output with underlines. First select
“CBM MPS1000” from the printers listed in the Preferences tool. Then
include the escape sequences for turning underlining on and off as part of
the program’s PRINT# statements. The following program is an example:

UnderON$ = CHR$ (27)+" [4m"
UnderOFF$= CHR$ (27)+" [24m"
Textl$ = "Normal text"

Text2$ "Underlined text"

OPEN "LPT1:" FOR OUTPUT AS #2
PRINT #2, Textl$
PRINT #2, UnderON$+Text2$
PRINT #2, UnderOFF$+Textl$
CLOSE #2

Appendix I, “Printer-Dependent Source Code,” in the Amiga ROM Kernel
Manual contains a table that lists the features that are available for each
supported printer. Next to each feature is the exact escape sequence you
should enter to put it into effect.

Working with Files and Devices

B B N

[[

I L

t
'
i

T I I N

31 1 1 31 1 3 3 31 1 1 1 3 1 3 11 7

File Naming Conventions

There are a few filename constraints in Amiga Basic. All files have a
filename preceded by an optional volume (or disk) name and/or one or
more nested subdirectory names. The entire identification is called a
“pathname.”

Filenames

Amiga Basic pathnames can be from 1 to 255 characters in length, and can
consist of either uppercase or lowercase alphanumeric characters or a
combination of both. Each file or subdirectory name within a path is limited
to 30 characters. No control characters can be used in filenames. Here are
some examples of valid filenames:

PAYROLL Picture AccountsREC CHECK_REGISTER

To specify a particular drive or volume as part of the pathname, enter its
name followed by a colon in front of the filename. Here are some
examples:

Demos:Picture
DF1l:AccountsREC

To specify a subdirectory (the same as a WorkBench drawer) as part of the
pathname, enter a slash in front of the filename. Here are some examples:

BasicDemos/Picture
Mymemos:Notes/scratchfile
DF1:Worknotes/AccountsREC

As the last two examples illustrate, you can enter a volume or disk name in

front of the subdirectory name. See the AmigaDOS Reference Manual for
further information.

Working with Files and Devices 5-5

Volume Specifications

Your Amiga comes with one built-in disk drive. You can connect an
additional disk drive to increase your storage capacity. Even on one-drive
systems, some people will have more than one volume. In this case, you
must explain which volume is to be activated for loading or saving files. To
do this, add the relevant volume name to the filename, separating them by a
colon. In this manner, the volume name can be used in place of a drive
number in a pathname.

If the program file you wish to load is on another disk, press the eject button
next to the built-in disk drive, and insert the disk with the desired file. After
the disk is inserted, use the FILES command to display the files on the disk.
For example:

FILES "mydisk:"

You can then load the file in the normal way. If the pathname you specify
includes a volume name for a disk that is not currently in the drive, a
requester appears that asks you to insert that volume.

For loading program files, it’s best to select the Open item on the Project
menu. To save program files on another disk, it is best to select the Save As
item on the Project menu.

You can also load a program from another volume with the LOAD,
MERGE, or RUN commands. Enter the volume name and filename,
separated hy a colon, in the Output window. However, if that volume has
not been previously mounted on the system, an “Unknown volume” error
message is generated. To avoid this, you will first have to eject the disk in
your built-in drive by pressing the eject button. Then you can insert the
volume containing the program you wish to load.

Handling Files

This section examines file I/O procedures for the beginning Amiga Basic
user. If you are new to Amiga Basic, or if you are encountering file-related
errors, read through these procedures and program examples to make sure
you are using the file statements correctly.

Working with Files and Devices

C

1
{
{

C C C C C C C L

. C

R A e A

[I D R R D R R N R R I

I B

1

Program File Commands

The following is a brief overview of the commands and statements you use to
manipulate program files. More detailed information and rules of syntax are
given in Chapter 8, “Amiga Basic Reference,” under the various statement
names.

Opening a Program File

There are three main ways to open a program file. The most common is to
use the LOAD command. When you load a program file, all open data files
are closed, the contents of memory are cleared, and the loaded program is
put into memory.

A second way to load a program file is to attach it to the end of a program
already in memory. Do this with the MERGE command. MERGE is useful
when you are developing a large program and want to test the parts of it
separately. After testing and debugging the parts, you can merge them
together. Note: You must save all files with the A option of the SAVE
command before you can MERGE them with a program currently in
memory.

A third way to open a program file is to transfer control to it during the
execution of another program. Do this with the CHAIN statement. When
you use CHAIN, the program in memory opens another program and brings
it into memory. The first program is no longer in memory. Options to the
CHAIN statement include preserving some or all variable values and
merging the program already in memory with the program to which control is
being transferred.

Putting Away Program Files

The two main ways to store your programs are: (1) to select Save or Save
As on the Project menu, or (2) to type the SAVE command in the Amiga
Basic Output window. For information on the Save and Save As selections,
see “The Menu Bar” in Chapter 3. For full details on the SAVE command,

«

Working with Files and Devices 5-7

see SAVE in Chapter 8. The default format for saved files is binary, or
compressed, format.

If you wish to protect a program from being listed or changed, use the
“Protected” (,P) option with the SAVE command. You will almost certainly
want to save an unprotected copy of a program for listing and editing
purposes.

If you wish to save the program in ASCII format, use the ASCII (,A) option.
ASCII files use up more room than binary ones, but word processing
programs can read ASCII files, and CHAIN MERGE and MERGE can
successfully work only with programs in this format.

Additional File Commands

Two additional file-handling statements are frequently used. The NAME
statement lets you rename existing program and data files. The KILL
statement lets you delete a data or program file from a volume. For detailed
information about these two commands, see KILL and NAME in Chapter 8,
“Amiga Basic Reference.”

Data Files - Sequential and Random Access 1/0

Two types of data files can be created and accessed by an Amiga Basic
program: sequential files and random access files. Each type is described
below.

Sequential Files

5-8

Sequential files are easier to create than random access files, but they don’t
provide as much speed and flexibility in locating data. The data written to a
sequential file is a series of ASCII characters that are stored, one item after
another (sequentially), in the order written. The data is read back
sequentially, one item after another.

Working with Files and Devices

L C CCCCcCcCcCcotocfhobocrob o o h

-

]

1

1

i I I B

N R N B

B I B B

1l

]

Warning: You can open sequential files in order to write to them or read
from them, but not both at the same time. When you need to add to an
existing sequential file that is already closed, do not open it for output.
Doing so erases the previous contents of the file before the new data is
recorded. If you don’t want to erase existing data, use append mode (the A
option with the OPEN command) to add information to the end of an
existing file .

Amiga Basic gives you the option of specifying the file buffer size for
sequential file I/O. The default length is 128 bytes. This size can be
specified in the OPEN statement for the sequential file. The size you specify
is independent of the length of any records you are reading from or writing
to the file; it only affects the buffer size. A larger buffer size speeds I/O
operations, but takes memory away from Amiga Basic. A smaller buffer
size conserves memory, but produces lower 1/O speed.

The following statements and functions are used with sequential data files:

CLOSE LOF

EOF OPEN

INPUT# PRINT#
INPUTS$ PRINT
USING# LINE INPUT#
WIDTH WRITE#

LoC

Creating a Sequential Data File

Program 1 is a short program that uses keyboard input to create a sequential
file named DATAFIL.

Working with Files and Devices 5-9

5-10

Program 1-Creating a Sequential Data File

OPEN "DATAFIL" FOR OUTPUT AS #1

ENTER:
INPUT "NAME (°DONE‘ TO QUIT)";N$
IF N$="DONE" THEN GOTO FINISH
INPUT "DEPARTMENT"; DEPT$
INPUT "DATE HIRED"; HIREDATES$
WRITE #1,N$,DEPT$,HIREDATES$
PRINT

GOTO ENTER

FINISH:
CLOSE #1

END

As illustrated in Program 1, the following program steps are required to
create a sequential file and to gain access to the data in it:

1. Open the file in output (that is, output to the file) mode.

2. Write data to the file using the WRITE# or the PRINT#
statements.

3. After you have put all the data in the file, close the file.

A program can write formatted data to the file with the PRINT # USING
statement. For example, you can use the statement

PRINT#1, USING"####.##,";A,B,C,D

to write numeric data to the file with commas separating the variables. The
comma at the end .of the format string in PRINT # USING statements
separates the items in the file with commas. It is good programming practice
to use “delimiters” of some kind to separate different items in a file.

Working with Files and Devices

C

C C C C C T

L . . . L I D .

N

1

1

1

1 1

1

I R N B

I

1

1

1 1

The PRINT# statement stores data without any delimiters. If you want
commas to appear in the file as delimiters between variable values without
having to specify each comma, use the WRITE # statement. For example,
you can use the statement

WRITE #1,A,B

to write the values of variables A and B to the file, with commas delimiting
them.

Reading Data from a Sequential File

Now let’s look at Program 2. It gains access to the file DATAFIL that was
created in Program 1 and displays the names of employees hired in 1981.

Program 2-Accessing a Sequential Data File

OPEN "I",#1, "DATAFIL"
WHILE NOT EOF (1)

INPUT #1,N$,DEPT$,HIREDATES

IF RIGHT$ (HIREDATES,2)="81"THEN PRINT N$
WEND

Program 2 reads each item in the file sequentially and prints the names of
employees hired in 1981. The WHILE...WEND control structure uses the
EOF function to test for the end-of-file condition and avoids the error of
trying to read past the end of the file.

Adding Data to a Sequential Data File

If you have a sequential file on the disk and want to add more data to the
end, you cannot simply open the file in output mode and start writing data.
As soon as you open a sequential file in output mode, you destroy its current
contents. Instead, use append mode (option A). If the file doesn’t already
exist, append mode works exactly as it would if you used output mode.

Working with Files and Devices 5-11

You can use the following procedure to add data to an existing file called
“FOLKS.”

Program 3-Adding Data to a Sequential Data File

OPEN "A",#1,"FOLKS"
REM***Add new entries

NEWENTRY:
INPUT "NAME";N$
IF N$ = ""THEN GOTO FINISH ‘Carriage Return exits loop

LINE INPUT "ADDRESS ? ",ADDR$
LINE INPUT "BIRTHDAY ? ",BIRTHDATES$
PRINT #1, N$
PRINT #1, ADDR$
PRINT #1, BIRTHDATES$
GOTO NEWENTRY
FINISH:
CLOSE #1
END

The LINE INPUT statement is used for getting ADDRS$ because it allows
you to enter delimiter characters (commas and quotes).

Random Access Files

5-12

Creating and accessing random access files requires more program steps
than creating and accessing sequential files. However, there are advantages
to using random access files. One advantage is that random access files
require less room on the disk, since Amiga Basic stores them in a packed
binary format. (A sequential file is stored as a series of ASCII characters.)

The biggest advantage to using random access files is that data can be
accessed randomly; that is, anywhere in the file. It is not necessary to read
through all the information from the beginning of the file, as with sequential
files. This is possible because the information is stored and accessed in
distinct units called records. Each record is numbered.

Working with Files and Devices

[

L U

L

L L C L

L

l

L

'
|
i

11 a1

1 1

1

1

|

D N N

1

,

1

The statements and functions that are used with random access files are:

CLOSE LOC OPEN
CvD LOF PUT
CvI LSET RSET
CVL MKD$

Cvs MKI$

FIELD MKL$

GET MKS$

Creating a Random Access Data File

Program 4-Creating a Random Data File

OPEN “"R", #1, "DATAFIL", 32
FIELD #1,20 AS N$,4 AS A$,8 AS P$
START:
INPUT "2-DIGIT RECORD NO. (ENTER -1 TO QUIT)";CODE%
IF CODE%=-1 THEN QUITFILE
INPUT "NAME"; PERSON$
INPUT "AMOUNT" ; AMOUNT
INPUT "PHONE";TELEPHONE$
PRINT
LSET N$ =PERSON$
RSET A$ = MKS$ (AMOUNT)
LSET P$ = TELEPHONES$
PUT #1,CODE%
GOTO START
QUITFILE:
CLOSE #1

As illustrated by program 4, you need to follow these program steps to create
a random access file:

1. OPEN the file for random access (using mode R). If you use
the alternate syntax of the OPEN statement:

OPEN "DATAFIL" AS #1 LEN=32

the absence of an INPUT, OUTPUT, or APPEND parameter

Working with Files and Devices 5-13

5-14

specifies a random file. If the record length (LEN=) is not
specified, the default value is 128 bytes.

2. Use the FIELD statement to allocate space in a random buffer
for the data to be written to the random access file. The
random buffer is an area of memory, a holding area, reserved
for transferring data from files to program variables and vice
versa.

Here is an example of using the FIELD statement to create a random access
file:

FIELD #1,20 AS N$, 4 AS ADDR$, 8 AS P$

3. To move the data into the random access buffer, use LSET or
RSET. You must convert numeric values into strings when
placing them in the buffer. To make these values into strings,
use the “make” functions: MKI$ to make an integer value into
a string, or MKS$ to make a single precision value into a string.

Here is an example of moving data into the random access buffer:

LSET N$ = X$
RSET AMOUNT$=MKS$ (AMT)
LSET P$ = TEL$

Notice that the dollar value AMT uses RSET, since money is typically right
justified in a data field.

4. To write the data from the buffer to the disk, use the PUT
statement and specify the record number with an expression, for
example:

PUT #1, CODE%

Program 4 takes information that is input from the keyboard and writes it to
a random access file. Each time the PUT statement is executed, a record is
written to the file. The two-digit record numbers that are input in line 30
should be entered in numeric order.

Working with Files and Devices

L

.

. C

C L

'
)

IR B

L

R I

=

1

N

B D R I B R B

1

.

N

N

Note: Do not use a fielded string variable in an INPUT or LET statement.
Amiga Basic will then redeclare the variable and will no longer associate that
variable with the file buffer, but with the new program variable instead.

Accessing a Random Access Data File

Program $ gains access to the random access file DATAFIL that was created
in program 4. When you enter a two-digit code at the keyboard, Amiga
Basic reads and displays the information associated with that code from the
file.

Program 5-Accessing a Random Data File

OPEN "R",#1, "DATAFIL",32
FIELD #1,20 AS N$,4 AS AS$,8 AS P$
START:
INPUT "2-DIGIT CODE (ENTER -1 TO QUIT) ";CODE%
IF CODE%=-1 THEN QUITFILE
GET #1,CODE%
PRINT N$
PRINT USING "$$####.##";CVS(AS)
PRINT P$: PRINT
GOTO START
QUITFILE:
CLOSE #1

Follow these program steps to access a random access file:
1. OPEN the file in random mode.

2. To allocate the space in the random access buffer for the
variables to be read from the file, use the FIELD statement.
(For details on this procedure, see the FIELD statement in
program 4.)

Note: In a program that performs both input and output on the

same random access file, just one OPEN statement and one
FIELD statement will often suffice.

Working with Files and Devices 5-15

3. To move the desired record into the random access buffer, use
the GET statement.

The program can now access the data in the buffer. Numeric values that
were converted to strings by the MKI$ and MKSS$ functions must be
converted back to numbers using the “convert” functions: CVI for integers
and CVS for single precision values. The MKI$ and CVI processes mirror
each other: MKIS$ converts a number into a format for storage in random
files and CVI converts the random file storage into a format that the
program can use.

When used with random access files, the LOC function returns the “current
record number.” The current record number is the last record number that
was used in a GET or PUT statement. For example, the following statement

IF LOC(1) > 5§50 THEN END

ends the program execution if the current record number in file #1 is greater
than 50.

Random File Operations

5-16

Program 6 is an inventory program that illustrates random file access.
Program 6 - Inventory

OPEN"INVEN.DAT" AS #1 LEN=39

FIELD #1,1 AS F$,30 AS D$, 2 AS Q$, 2 AS R$, 4 AS P$
FunctionLabel:

CLS:PRINT"Functions: ":PRINT

PRINT "1. Initialize file"

PRINT "2. Create a new entry"

PRINT "8. Display inventory for one part"

PRINT "4. Add to stock"

PRINT "5. Subtract from stock"

PRINT "6. Display all items below reorder level"
PRINT "7. Done with this program"
PRINT:PRINT:INPUT “Function" ;FUNCT

IF (FUNCT>O0) AND (FUNCT<8) THEN GOTO Start

GOTO Functionl.abel

Start:

Working with Files and Devices

I

C O

C .

(N IS EN O SRR NS

{:

1

I

1

B

1

]

1

a1 1 1

1

B

n

1

ON FUNCT GOSUB 600,100,200, 300,400,500,700
IF FUNCT<7 THEN GOTO FunctionLabel
END
100 :
GOSUB part
IF ASC(F$)<>255 THEN INPUT "Overwrite";confirm$
IF ASC(F$)<>255 AND UCASES$(confirm$)<>"Y" THEN RETURN
LSET F$=CHR$(0)
INPUT "Description ";description$
LSET D$=description$
INPUT "Quantity in stock ";Quantity%
LSET Q$=MKI$(Quantity%)
INPUT "Reorder Level ";reorder%
LSET R$=MKI$ (reorder%)
INPUT "Unit price ";price
LSET P$=MKS$(price)
PUT #1,part%
INPUT "Press RETURN to continue",DUM$
RETURN
200 :
GOSUB part
IF ASC(F$)=255 THEN GOSUB NullEntry:RETURN
PRINT USING "Part Number ###";part%
PRINT D$
PRINT USING "Quantity on hand #####";CVI(Q$)
PRINT USING "Reorder level #####";CVI(R$)
PRINT USING "Unit price $$##.##";CVS(P$)
INPUT "Press RETURN to continue",DUMS$
RETURN
300 :
GOSUB part
IF ASC(F$)=255 THEN GOSUB NullEntry:RETURN
PRINT D$
PRINT "Current quantity: ";CVI(QS$)
INPUT "Quantity to add";additional%
Q%=CVI (Q$)+additional%
LSET Q$=MKI$ (Q%)
PUT #1,part%
RETURN
400 :
GOSUB part
IF ASC(F$)=255 THEN GOSUB NullEntry:RETURN
PRINT D$
425
INPUT "Quantity to subtract";less%
Q%=CVI (Q$)
IF (Q%-less%)<0 THEN PRINT "Only ";Q%;" in stock":GOTO 425
Q%=Q%-less%
IF Q%<=CVI(R$) THEN PRINT "Quantity now ";Q%
LSET Q$=MKIS$ (Q%)

Working with Files and Devices 5-17

5-18

PUT #1,part%
INPUT "Press RETURN to continue",DUM$
RETURN
500 :
reorder=0
FOR I=1 TO 100
GET #1,1
IF ASC(F$)=255 GOTO 525
IF CVI(Q$)<CVI(R$) THEN PRINT D$;" Quantity
";CVI(Q$) ;TAB(30)
IF CVI(Q$)<CVI(R$) THEN PRINT "Reorder level ";CVI(RS$)
IF CVI(Q$)<CVI(R$) THEN reorder=(-1)
525 :
NEXT I
IF reorder=0 THEN PRINT "All items well-stocked."
INPUT "Press RETURN to continue",DUM$
RETURN
600 :
INPUT "Are you sure";confirm$
IF confirm$<>"y" AND confirm$<>"Y" THEN RETURN
LSET F$=CHR$(255)
FOR I=1 TO 100
PUT #1,1
NEXT I
RETURN
part:
Enterno:
INPUT "Part number? ",part%

IF (part%<1l) OR (part%>100) THEN PRINT "Bad part number"

IF (part%<l) OR (part%>100) THEN GOTO Enterno
GET #1,part%
RETURN
NullEntry:
PRINT "Null Entry."
INPUT "Please press RETURN",DUMS$
RETURN
700 : CLOSE #1
RETURN

Working with Files and Devices

. C o

C L

C ¢ oo o

I N

L

1

I I I Y I B

1

Transferring Data Between Amiga Basic
and a Word Processor

Remember that word processing programs produce files with more
characters than the visible ones in your text. Many word processors use
special hidden characters to control appearance and format and to control
the printer. These characters can ruin your program file.

Most, but not all, word processing programs have a filing option called “text
only,” “unformatted,” or “non-document.” When text is saved with this
option, all the hidden control characters are removed. Only the text is filed.

Also, if you write a program in Amiga Basic and later wish to use a word
processor to edit it, prepare the program first. When you save the Amiga
Basic program, use the “,A” (ASCII) option in the SAVE statement, which
saves the program in a format that can be read by the word processing
program.

Working with Files and Devices 5-19

ol Iuwh
mn&h 5‘“‘"

¥

QO E !i‘ 4
' *mmmu - ,'mﬂwmeu

f?"”"fﬁ”"TTFT&T”' bbbyl
8 'l W}[-
]l mr.
1 e S

B

11

d 3 1 3 3 30 1 7

]

B I R

Chapter 6

Advanced Topics

T

)

‘tlsl

4
ey
!Wl
!.1}!
it

! "'fz-gi“jfm‘*’ii i
M il W» ‘*Ql ‘“l
" s%,; gt

§L“31t

Amiga Basic supports several advanced programming
features, including subprograms, event trapping, and
memory management. It also provides access to the
Amiga’s extensive library of functions. These powerful
features add flexibility to Amiga Basic. They are especially
helpful to programmers who develop programs for other
users. However, it is not necessary for beginners to master
them in order to use Amiga Basic effectively.

Subprograms are modules similar to subroutines but with
major advantages. They are especially helpful when you
wish to write routines that are to be reused in other
programs.

Advanced Topics 6-1

Event trapping allows a program to transfer control to a specific program line
when certain events occur, such as the passage of time, mouse activity, a
user’s attempt to stop the program, menu selection, or the collision of
animated objects.

Memory management in Amiga Basic is available through use of the CLEAR
statement and the FRE function. These tools can help you create programs
that would otherwise be too large for the Amiga’s memory.

The Amiga library routines are machine language routines that are
automatically loaded into memory when you boot the machine. However, to
use a particular library’s routine, you must first open that library. After
calling the routine from within your Amiga Basic program, you must be sure
to close the library. ‘

Subprograms

6-2

Subprograms are sets of program statements similar to subroutines. There
are three notable advantages to using subprograms.

First, subprograms use variables that are isolated from the rest of the
program. If you accidentally use the same variable name in a subprogram
and in the main program, the two variables still retain separate values.
Variables within subprograms are called local variables, because their values
cannot be changed by actions outside the subprogram.

The second advantage of subprograms is also related to local variables.
Programmers frequently find themselves producing the same routine over
and over in different programs, rewriting it each time to fit the variable
names and design of a new program. Because you don’t need to rewrite a
subprogram to include it in another program, it’s simple to produce a
collection of subprograms. Subprograms can then be merged into new
programs with minimal changes.

The third advantage of subprograms is that they can’t be executed
accidentally. A subroutine can be executed accidentally if no END or
similar statement is placed before it; program flow simply enters the

Advanced Topics

C - C CC oot b

[:‘ E l::

L

L L C L

10]

J 1 1 1 1 1 3 1 3 131 1 3 73

subroutine. Subprograms only execute when a specific CALL to the
subprogram is made.

Subprogram Delimiters: The SUB and END SUB Statements

The statements that make up the body of a subprogram are enclosed by the
SUB and END SUB statements. The EXIT SUB statement can be used to
exit a particular subprogram before it reaches the END SUB statement.
Execution of an EXIT SUB or END SUB statement transfers program
control back to the calling routine. The syntax is as follows:

SUB subprogram-name [(formal-parameter-list)] STATIC
[SHARED list-of-variables]

END SUB

The subprogram-name can be any valid identifier up to 40 characters in
length. This name cannot appear in any other SUB statement.

The formal-parameter-list can contain two types of entries: simple variables
and array variables. (If you’'re planning to use array variables as parameters,
read “Entire Arrays” below.) Entries are separated by commas. The
number of parameters is limited only by the number of characters that can
fit on an Amiga Basic line.

STATIC is a required keyword. It indicates that all the variables within the
subprogram retain their values between invocations of the subprogram.
Static variable values cannot be changed by actions taken outside the
subprogram. STATIC requires that the subprogram be non-recursive; that
is, it does not contain an instruction that calls itself or that calls a
subprogram that in turn calls the original subprogram.

SHARED variables can be altered by parts of the program outside the
subprogram. Those variables you want shared must be explicitly listed in the
list-of-variables following the SHARED command. Any simple variables or
arrays referenced in the subprogram are considered local unless they have

Advanced Topics 6-3

been explicitly declared SHARED variables. See SHARED in Chapter 8 for
a discussion of the SHARED statement.

All Amiga Basic statements can be used within a subprogram, except the
following:

® User—defined function definitions

e A SUB/END SUB block. This means subprograms cannot be
nested.

® COMMON statements

® CLEAR statement

Shared and Static Variables in Subprograms

Shared Variables
The SHARED statement lets you use variables from the main program in a
subprogram (with their current values) without declaring them as arguments

in the CALL statement. The SHARED statement only affects variables
within that subprogram. For example:

A=1: B=5: C=10
DIM P(100),Q(100)

SUB AMIGA STATIC
SHARED A,B,P(),Q()

END SUB

6-4 Advanced Topics

L C C CcCCcCccCcoCcoCctbooctotobteo b

J 3 31 3 3 1 1 1 3 1 3 1 3 3 3 3 71

In this example, all main program variables and arrays except C are shared
with the subprogram AMIGA.

Static Variables

The STATIC keyword is required for all subprogram definitions in Amiga
Basic. As already noted, variables and arrays referenced or declared in a
subprogram are considered local to the given subprogram. They are not
changed by statements outside of the subprogram unless they are declared in
a SHARED statement.

Amiga Basic assumes initial values of zero or null strings. If the subprogram

is exited and then reentered, however, variable and array values are those
present when the subprogram was exited.

Referencing Subprograms

The main program references subprograms through the CALL statement
with an argument list. The CALL command is an optional part of the
statement. (See CALL in Chapter 8 for more information.)

In this discussion, you will find references to “formal parameters” and
“arguments.” Arguments refer to the program variables that are passed by

the main program in the CALL statement. Formal parameters refer to the
variables used by the subprogram that correspond to the passed arguments.

For example, in the following statement:
CALL FIGURETAX (SUBTOTAL, TAX, TOTAL())

the arguments are the variables SUBTOTAL and TAX, and the array
variable TOTAL.

If the FIGURETAX subprogram was called using the above CALL
statement, the subprogram’s first line could appear as:

SUB FIGURETAX (FIGURE, TAXRATE, SUM(1l)) STATIC

Advanced Topics 6-5

6-6

In this statement, the formal parameters are the variables FIGURE and
TAXRATE, and the array SUM. These parameters correspond to (and
return values to) the main program variables used as arguments:
SUBTOTAL, TAX, and TOTAL().

The parameter values that transfer (in the manner described above)
between the main body of the program and the subprogram are said to be
passed by reference. This means that if the formal parameter is modified by
the subprogram, the argument’s value also changes. For example:

CALL AddIt(A,B,C)

SUB AddIt(X,Y,Z) STATIC
Z=X+Y
X=X+ 12
Y=Y+ 04

END SUB

Suppose that when the program executes the CALL statement, A has a
value of 2 and B equals 3. When control returns to the main program, A
and B will have altered values, because the A variable is tied to X , and B to
Y. If the value of X is changed in the subprogram, the value of A is altered
accordingly. In this example, the value of A is increased by 12 as a result of
the statement X = X + 12. This subtle change happened because the
variable X is an “alias” for the variable A.

When you don’t want the values of variables in the main program to change
in the subprogram, put parentheses around the variables. Parentheses cause

these variables to retain their values, regardless of what happens in the
subprogram. . For example:

CALL AddIt((A), (B), Result)

The parentheses around the first two arguments force Amiga Basic to treat
them as expressions. This means that their values cannot be changed by
subprograms. You need not use parentheses to pass expressions that are not
simple variables. For example:

Advanced Topics

CCCCCCCCCCoCCobeccocececcrt

1

2 1 1 1 1 1 1 31 71 332 33

I I

CALL AddIt (1+2,3*A,Result)

Note that the type of arguments must match the type of the formal
parameters or a type mismatch error results. For example:

CALL DoIt (1)
SUB Dolt(x) STATIC

won’t work, because it tries to pass the integer 1 to the single-precison
parameter x. On the other hand, '

CALL DoIt(1.0)
SUB DoIt(x) STATIC

prevents this error.

Passing Parameters to Subprograms

Simple Variables and Array Elements

When simple variables or array elements are passed to an Amiga Basic
subprogram, they are passed by reference. The following example shows
how a subprogram is invoked by the CALL statement, and illustrates
call-by-reference argument passing:

DIM B(15)

A =4

CALL SQUARE(A,B(3))
PRINT A,B(3)

END

SUB SQUARE (X,Y) STATIC
X = X+1
Y = X*X

END SUB

Advanced Topics 6-7

This example prints the results 5 and 25. Each reference to Y in
subprogram SQUARE actually resulted in a reference to the third element of
array B, and each reference to X resulted in a reference to A.

Entire Arrays
You can give simple variable parameters any valid Amiga Basic name.
However, when you pass an entire array, it must be declared as a parameter
in the following form:
array-name ([number-of-dimensions])
where array-name is any valid Amiga Basic name for a variable and the
optional number-of-dimensions is an integer constant indicating the number

of dimensions in the array. Note that the actual dimensions are not given
here. For example,

CALL MATADD2 (X%,Y%,P(),Q(),R())
END

SUB MATADD2 (N%,M%,A(2),B(2),C(3)) STATIC

END SUB

In the subprogram’s parameter list, N% and M% are integer variables, A
and B are indicated as two-dimensional arrays, and C is a
three—-dimensional array. The corresponding argument list in the main
program only requires parentheses to indicate which arguments are arrays.

Array Bound Functions

You can determine the upper and lower bounds of the dimensions of an
array by using the functions LBOUND and UBOUND.

6-8 Advanced Topics

C OO

I I N I N O A S I B

I

0 R D I B

1 3 1 0 1 31 1 1 1 1

LBOUND returns the lower bound, either 0 or 1, depending on the setting
of the OPTION BASE statement. The default lower bound is 0. UBOUND
returns the upper bound of the specified dimension.

Each function has two syntaxes: a general syntax and a shortened syntax
that can be used for one-dimensional arrays. The syntaxes are as follows:

LBOUND (array) for 1-dimensional arrays
LBOUND (array,dim) for n-dimensional arrays
UBOUND (array) for 1-dimensional arrays
UBOUND (array ,dim) for n-dimensional arrays

The array is a valid Amiga Basic identifier and the dim argument is an
integer constant from 1 to the number of dimensions of the specified
array.

LBOUND and UBOUND are particularly useful for determining the size of
an array passed to a subprogram. See LBOUND in Chapter 8 for examples
of the use of array bound functions.

Expressions

You can also pass expressions as arguments to Amiga Basic subprograms. An
argument expression is considered to be any valid Amiga Basic expression,
except simple variables and array element references. When an expression
is encountered in the argument list in a CALL statement, it is assigned to a
temporary variable of the same type. This variable is then passed by
reference to the subprogram. This is equivalent in effect to the
call-by-value passing in functions, whereby the value itself is passed.

If a simple variable or array element is enclosed in parentheses, it is passed
the same way as an expression (that is, as call-by-value). For example, if
the CALL SQUARE statement in a previous example (see “Simple
Variables and Array Elements”) were changed to

CALL SQUARE ((A),B(3))

the results printed would be 4 and 25. In this case (A) is passed as an
expression, and therefore the subprogram cannot change the value of A.

Advanced Topics 6-9

Calling Assembly Language Routines

6-10

As with subprograms, you invoke assembly language routines using the
CALL statement. Your Amiga Basic program must read the routine’s binary
file into memory and then CALL a simple variable that identifies the starting
address of the routine. The variable name cannot be an array element.

Parameters are passed by value according to C-language calling conventions.
All parameters must be short or long integer in type, although you can use
VARPTR to pass the address of a single- or double-precision variable.
Similarly, you can use the SADD function to pass the address of a string
variable. For example,

CALL Myroutine (VARPTR(ZZ), SADD(AS))

passes the addresses of single—precision variable ZZ and string variable AS,
respectively.

Note: Arrays should not be passed as parameters to assembly language
procedures using -the conventions outlined for subprograms. Instead, the
base element of an array should be passed by reference if the entire array
needs to be accessed in the assembly language program. For example:

CALL XREF (VARPTR (A(0,0)))
passes the starting element of a two-dimensional array A to routine XREF.

The following program example calls a simple machine language routine that
converts a string of text to uppercase and then prints the result. Preceding
the Amiga Basic program is a listing of the machine code, showing how the
stack is handled during the execution of the routine.

Advanced Topics

[

C C C C C *C *C CC & &

L C C

[

1

1

11 1 1 1 7]

a1 1 1

1 1

il

1

Program 1 - Example Assembly Language Program

48E7
202F
206F
4281
6000

1230
0co1
6D00
0Co1
6E00

0230

51C8

4CDF
4E75

Cco80
0010
0014

001C

0000
0061
0010
007A
0008

OODF

FFE4
0103

SECTION CODE

MOVEM.L AO/DO-D1, -~ (SP)

MOVE.L 16 (SP),DO

MOVE.L 20(SP), A0

CLR.L D1

BRA WhileTest
StartLoop:

MOVE.B 0(A0,DO),D1

CMP.B #°a’,D1

BLT WhileTest

CMP.B #°27,D1

BGT WhileTest
0000 AND.B # ($FF-$20) ,0(A0,DO)
WhileTest:

DBF DO, StartLoop

MOVEM.L (SP)+,A0/DO-D1

RTS

END

; save registers

; get length

;Get addr 1st byte $
; Clr high bytes D1

; Go to loop test

; Get next byte $

; If < ‘a’,

; or > ‘z’

; leave it alone

;else remove $20 bit

; & replace

; Loop while ct > 0O

; Decrement count

; Restore registers

; Return to Basic

Parameters used by the routine are pushed onto the stack at the time the

following order:

Offsets:
string address (addr&) 8 (SP)
string length (length&) 4 (SP)
return address 0 (SP)

(SP = Stack Pointer)

. routine is called. The parameters for routine CODE are pushed in the

After registers A0, D0, and D1 are pushed, the stack status is as follows:

Offsets:
string address (addr&) 20 (SP)
string length (length&) 16 (SP)

return address 12 (SP)
A0 8 (SP)
D1 4 (SP)
DO 0 (SP)

Advanced Topics

6-11

Below is a listing of an Amiga Basic program called CAPS, which loads and
calls the machine language routine and prints the converted string.

Program 2 - Calling an Assembly Language Program

6-12

DIM code%(27)
FOR i = 0 TO 27

READ code% (1)
NEXT

INPUT "Mixed case string"; S$
Ucase = VARPTR(code%(0))
length& = LEN(S$): addr& = SADD(S$)

CALL Ucase(length&, addr&)

PRINT "The converted string is:"
PRINT S$

DATA &H48ET7, &HCO080, &H202F, &HO0010, &H206F, &HOO014
DATA &H4281, &H6000, &HO01C, &H1230, &HOO00O, &HOCO1l
DATA &HO061, &H6DOO, &HO0010, &HOCOl, &HOO7A, &H6EOO
DATA &HO008, &H0230, &HOODF, &HO000, &H51C8, &HFFE4
DATA &H4CDF, &HO0103, &H4ET75

Program 2 first reads the hexadecimal values that represent the compiled
code of the assembly language routine listed in Program 1. The length of the

data is 56 bytes; thus, the integer array code%() is dimensioned to 27
(4-byte) cells.

An INPUT statement prompts the user for a mixed case string, which
becomes the value of variable S$§. The variable Ucase is assigned the
starting address of the array containing the routine. Amiga Basic then
assigns a temporary variable of the same name.

The CALL statement sends control to the routine. Two arguments——the
length and the address of the string to be converted--are passed to the
routine. They are enclosed in parentheses after the routine name in the

Advanced Topics

I I

C . . b b b L O

L C C &

[

1

1

J1 1 1 1 1 3 a3 7

1 1 1

1 1

CALL statement. This causes them to be pushed onto the stack at the time
the routine executes (address first, then length).

The routine checks for any lowercase letters. If found, lowercase letters are
replaced with their uppercase counterparts in the string. All other
characters are left alone. When the end of the string is reached, the routine
returns control to Amiga Basic. The program then prints the converted
string.

Event Trapping

Event trapping lets your program detect certain “events” and respond to
them by branching to an appropriate routine. The events that can be
trapped are: time passage (ON TIMER), mouse activity (ON MOUSE), the
selection of a custom menu item (ON MENU), a user’s attempt to halt the
program (ON BREAK), and the collision of an animated object with another
object or the window (ON COLLISION).

If event trapping is active, Amiga Basic checks after each statement it
executes to see if the specified events have occurred. If an event has
occurred and event trapping is active, Amiga Basic automatically transfers
control to the routine beginning at the specified label.

After servicing the event, the subroutine executes a RETURN statement.
Program execution then resumes at the statement immediately following the
last statement executed before the event trap occurred.

To effect event trapping, you must include two special statements: the first
informs Amiga Basic where to transfer control when an event occurs, and
the second activates the event trap.

Specifying Flow of Control

The general format for the ON...GOSUB statement that specifies flow of
control in event trapping is as follows:

ON <eventspecifier> GOSUB <label>

Advanced Topics 6-13

The eventspecifier must be one of the following event keywords:

TIMER

MOUSE

MENU

BREAK

COLLISION

The timer is the Amiga’s internal clock. If you use timer
event trapping, you can force an event trap every time a
given number of seconds elapses.

Mouse event trapping lets you redirect program flow when
the user clicks the mouse.

Menu event trapping lets you use the selection of custom
menu items to redirect program flow.

Break event trapping lets you send program control to a
specified subroutine when the wuser presses Right
Amiga—-period (the break keystroke) or CTRL-C.

Note: You should exercise caution when using break event
trapping. If you use the ON BREAK statement in a program
being tested, you can’t exit the program before Amiga Basic
executes a program END statement without rebooting the
Amiga. One way to avoid this potential problem is to omit
the BREAK ON statement that activates the ON BREAK
event trap until you complete testing.

This routine is invoked whenever an object created by the
OBJECT.SHAPE statement collides with another object or
window border. See Chapter 8 for further details on event
trapping in animation programs.

To disable event trapping for an event, use a label of 0 (zero):

ON <eventspecifier> GOSUB 0

Activating Event Trapping

6-14

To activate event trapping for the specified event, use the statement:

<eventspecifier> ON

Advanced Topics

C

C C O C

A R B

L O

C C C L

L

A1 31 1 1 1 1

B I

I

11 1 1]

where eventspecifier is one of the event keywords. An event will not be
trapped by the ON <eventspecifier> GOSUB... statement unless the
corresponding eventspecifier ON statement has been previously executed.

Suspending and Terminating Event Trapping

Other statements that control event trapping are:

<eventspecifier> OFF to turn off trapping
<eventspecifier> STOP to halt trapping temporarily

When the eventspecifier is OFF, no trapping takes place. The event is not
remembered.

When the eventspecifier is STOPped, no trapping takes place. However,
Amiga Basic remembers an event so that an immediate trap takes place as
soon as an eventspecifier ON statement is executed.

When a particular event is detected, the trap automatically causes a STOP
on that eventspecifier, so recursive traps can never occur. A return from the
trap routine automatically reenables the event trap unless an explicit OFF
has been executed inside the trap routine.

Note: Once an error trap takes place, all trapping of a particular event is
automatically disabled until a RESUME statement is executed.

Memory Management

Amiga Basic includes the CLEAR statement to help writers of large
programs manage memory allocation for different purposes. Using the
CLEAR statement, you can control the size of three different areas of
memory:

® The stack

® Amiga Basic’s data segment

® The heap

Advanced Topics 6-15

The syntax of the CLEAR statement is:
CLEAR [, [data~-segment-size] [, stack—size]]

The data-segment-size argument dictates how many bytes are to be reserved
for Amiga Basic’s data segment. The stack-size argument dictates how
many bytes are to be reserved for the stack.

The amount of RAM remaining (Total — (data segment + stack size)) is the
RAM reserved for the heap. Using the CLEAR statement, you can allot the
space your program requires for the three adjustable areas of RAM.

The Stack

The stack keeps “bookmarks” telling where to return to from GOSUBS,
nested subroutine calls, nested FOR...NEXT loops, nested WHILE/WEND
loops, and nested user-defined functions.

Certain Amiga ROM calls require a considerable amount of stack space. The
deeper you nest in your control structures, the more stack space is required
to execute a program. If you specify the stack size in a CLEAR statement,
the value must be at least 1024.

Amiga Basic’s Data Segment

6-16

Amiga Basic’s data segment holds the text of the program currently in
memory. It also contains numeric variables and strings. In addition, the
data segment contains file buffers for opened files.

Amiga Basic automatically gets a data segment size of 25000 bytes. If you
have a small program to run and wish to run other Amiga tasks while your
program executes, simply execute a CLEAR statement with a smaller data
segment size.

On the other hand, if your program is very large or memory intensive——for
example, one using multiple bit-planes and several animated objects——you’ll
likely want Amiga Basic to use all the available RAM. The best way to

Advanced Topics

C C C C O C 0ot

CC CCC

L.

L

q

1

B R R

B I

I I

N

1

1

il

]

assign the required memory is with a small program that executes a CLEAR
statement specifying the desired RAM allotment and then CHAINSs in the
application program.

If your program is tight for memory, there are a number of ways you can
conserve memory. A sequential file buffer has a default size of 128 bytes.
Thus, one memory conservation technique is to define a smaller sequential
file buffer. A smaller buffer may slow execution of an I/O intensive
program, however. See OPEN in Chapter 8 for details on changing a
sequential file’s buffer size.

Additionally, the kind of numeric variables you use will have an effect on
data segment space. Integer variables take half the number of bytes of single
precision; single-precision take half the number of bytes of double
precision. Also, chaining several small programs together uses less memory
than loading and running a large program that incorporates all the smaller
ones.

The System Heap

Amiga Basic shares the System Heap with other tasks running on the Amiga.
The LIBRARY, WINDOW, and SCREEN statements all consume memory
from the heap.

The system heap also contains the buffer for SOUND and WAVE
information. When used, this buffer takes up 1024 bytes of RAM. Heap
space can be kept smaller by releasing the SOUND/WAVE buffer with a
WAVE 0 statement when it is no longer needed.

Using the FRE Function for Memory Management

While you develop a program, you can keep track of your program’s stack
size and data segment size and system heap requirements by using the FRE
function. The FRE function takes the following two forms:

FRE (n)
FRE(" ")

Advanced Topics 6-17

In the FRE(n) syntax, there are three different functions.

1. If (n) is -1, the function returns the number of free bytes
available in the heap.

2. If (n) is -2, the function returns the number of bytes never used
by the stack. This does not return the number of free bytes
available in the stack. It is used in testing programs to fine-tune
the stack-size parameter of the CLEAR statement.

3. If (n) is any number other than -1 or -2, or if you use the FRE
(* ") function, Amiga Basic returns the number of free bytes
available in Amiga Basic’s data segment.

All versions of the FRE function compact string space.

Calling Library Routines

Library routines are special Amiga resource files that are bound to Amiga
Basic dynamically at run time. You use the CALL statement to execute one
of the library routines, in a manner similar to executing your own assembly
language routines. Parameters are passed by value using standard
C-language conventions. To access a library routine, you must first open
the library that contains that routine.

The following discussion briefly steps through a portion of the Library
program contained in the BasicDemos drawer on your Extras disk.

Opening a Library

6-18

There are several libraries available for use in your Amiga Basic
applications, each containing a varying number of special routines.
Associated with each routine is a special “how-to” file that describes the
parameters that routine takes and which registers must be used. These
special files are called .fd files. You'll find a complete list of the information
they contain in the Amiga ROM Kernel Manual.

Advanced Topics

L

C CC oot oob oo oo b b

|

O

o1 1 1 1 1 1 1 1

11 1 1

1

1

1

Amiga Basic uses the information in the .fd files in a slightly different format
than the assembler or C languages. Therefore, it requires that each .fd file
be converted to a .bmap file before its associated routine can be accessed
from Amiga Basic. ConvertFD, the utility program that performs this
conversion, is contained on the Extras disk in the BasicDemos drawer
(subdirectory).

The Extras disk contains some of the .bmap files for the libraries. You can
find the complete set of .fd files on the Amiga Macro Assembler disk or the
Amiga C disk. Once the .fd files are on your disk, you must use ConvertFD
to convert them to .bmap files.

See Appendix F for details on the .bmap file format.

You open a library with the LIBRARY statement. Assuming your disk
contains the appropriate .bmap files, the LIBRARY statement puts all of that
library’s routines at your program’s disposal. As many as five libraries can
be open at one time.

Calling a Function

Once the library is open, its routines can be called in a manner similar to
subprograms or your own machine language routines. If your application
expects a returned function value, however, you must inform Amiga Basic of
the value’s type (for example, long integer, denoted by a trailing declaration
character &) in a DECLARE FUNCTION statement.

The following portion of the Library demonstration program illustrates these
statements:

Advanced Topics 6-19

6-20

DECLARE FUNCTION AskSoftStyle& LIBRARY
DECLARE FUNCTION OpenFont& LIBRARY
LIBRARY "graphics.library"

enable% = AskSoftStyle&(WINDOW(S8))
Font "topaz.font",8,0,0
FOR i=0 to 4
SetStyle CINT(2"1)
NEXT i

SUB SetStyle (mask%) STATIC
SHARED enable%
SetSoftStyle WINDOW(8), mask%, enable%
PRINT "SetSoftStyle (";mask%;")"

END SUB

The DECLARE FUNCTION statements alert Amiga Basic to expect integer
values from the graphics.library functions AskSoftStyle& and OpenFont&.
The LIBRARY statement opens graphics.library.

The next statement performs a call to AskSoftStyle&, with the returned
value assigned to the variable enable%. Note that the word CALL is not a
required part of the statement syntax, except under certain circumstances
(noted below). AskSoftStyle& takes one parameter——the WINDOW
function, which identifies the rastport from which the current font
information is extracted. When Amiga Basic performs the call, it sets up a
temporary variable of the same name, AskSoftStyle. (The trailing & is
ignored, other than indicating the type of returned value.)

In this example, the returned value is truncated to a short integer. The
value represents the eight style bits of the current font. The DECLARE
FUNCTION could just as easily use a short integer:

DECLARE FUNCTION AskSoftStyle% LIBRARY

Advanced Topics

T AN N I IR N

L L

o

L

C C

[I D I D R R

B

a4 1 1 1 1 1

n

Without a declaration, however, Amiga Basic would attempt to assign
single-precision and the results would be garbage.

Several other graphics.library routines are also used in the example, each
with a list of the parameters Amiga Basic is passing to it. Each of the library
routines is described in the Amiga ROM Kernel Manual.

Explicit Use of the CALL Keyword

Most library routine calls can be made as in the preceding program example.
However, if the routine call follows ELSE or THEN in a statement, you must
explicitly use the CALL keyword to distinguish the routine from a label.

For example:

IF pFont& <> 0 THEN CALL CloseFont (pFont&)

Advanced Topics 6-21

L

”f} }}J i
| ™

.
-
)
L]
]
_

431 13 31 3 31 1 1 31 1 3 3 3 1 1 1 71

Chapter 7

Creating Animated Images

E I |
all

This chapter describes the Object Editor, a utility program

supplied with Amiga Basic that creates images for

manipulation by Amiga Basic animation routines. The
discussion includes both an overview of the Object Editor
and step-by-step instructions for creating an image.

Creating Animated Images 7-1

Overview

7-2

Amiga Basic implements the animation facilities built into the Amiga system
through program statements and the Object Editor. The COLLISION and
OBJECT statements (described in Chapter 8) manipulate images in the
output window. The Object Editor defines these images (or objects, as they
are referred to throughout this book).

With the Object Editor, you can:

® instantly create ovals, rectangles, and lines by moving the mouse
between two points on the Object Editor canvas, which is the
portion of the Output window where you create the object.

® draw free-form across the canvas with the Object Editor pen
® select colors that form the borders of the object you create
® paint the interior of the objects with the border color

® erase and edit the images as required

After creating an object, you save it in a file whose name you specify; the file
contains the static attributes (including the size, shape, and color) of the
object. To animate the object from a program, open the file, read the
contents as a string, and then use the OBJECT.SHAPE to define the object
to your program. For an example of statements that do this, see the
OBJECT.SHAPE description in Chapter 8 of this manual.

Note: The Object Editor assigns attributes to objects to ensure that, during
program execution, they collide both with each other and with the border of
the window. You can change this initial setting using an OBJECT.HIT
statement (described in Chapter 8) in your program.

Creating Animated Images

C C CcCcCccCctorbC bbb uottbch

L

J 1 1 1 1 1 1 3 1 1

1 1

a1 1 1 1

The Editor Window

This section explains the layout of the Object Editor window (shown below),
where you create your objects.

Status Line

The following subsections explain the items in the window.

Menu Bar

Three menus are available: File, Tools, and Enlarge. The File menu lets
you save and retrieve the object files you create. The Tools menu provides
several methods of creating images. The Enlarge menu lets you expand
your object for fine details. These menus are described in the next section.

Canvas
The Canvas, located in the upper lefthand corner, is where you create and

color (as well as erase) objects.

Creating Animated Images 7-3

You can increase the size of the canvas by placing the pointer in the Sizing
Gadget and--while holding down the mouse Selection button--move the
mouse until the canvas reaches the desired size.

If you are creating a sprite (a sprite is one of two types of objects you can
create, and is described later in this chapter), you cannot increase the width
beyond the size displayed (16 pixels, from 0 to 15); you can, however,
increase the height.

Color Choice Bar

The Color Choice Bar lets you change the paint and border colors for
objects. To change the color, move the pointer over the desired color and
click the Selection button. The characters in the word Color that appear
next to the bar change to the color you select.

The number of color choices in the Choice Bar depends on the depth of the
screen, as determined by the depth parameter in the program’s SCREEN
statement (see Chapter 8 for a description of this statement).

To create objects with more than four colors, change the ObjEdit program
(comments are included in the program listing to help you do this). See
“How to Increase Screen Depth,” below.

Status Line

To the left are the X and Y coordinates; they indicate the current size (in
pixel coordinates) of the canvas. Next, the current Tools selection item
(Pen, Oval, Line, Rectangle, Paint, or Eraser) appears.

The Editor Menus

7-4

The following table summarizes the items in the File menu.

Creating Animated Images

- C C C CC CrCCoCcrCCoOCCoCeCC

33 3 32 32 3 3 3 1 3 1 1 1 1 1

1

Item

New

Open

Save

Save as

Quit

Function

Erases the screen and restores the canvas to its original
dimensions if they have been changed.

Prompts you for the name of an existing file. Specify the
name of any file previously created through the Object
Editor and press RETURN.

Saves the file under the same name as it was opened. The
Object Editor prompts you for a file name if you previously
chose New. Enter the name and press RETURN.

Prompts for a file name. Specify a name and press
RETURN.

Causes an exit from the Object Editor and returns you to
Amiga Basic.

The following table summarizes the items in the Tools menu.

Item

Pen

Line

Oval

Rectangle'

Erase

Paint

Function

Allows free~form drawing.

Draws a straight line between two points.
Draws an egg-shaped image.

Draws a rectangle.

Removes images from the canvas.

Permits coloring the interior of an image with the current
color choice. This option is not available on a 256K
machine.

Creating Animated Images 7-5

The following table summarizes the items in the Enlarge menu.

Item Function

4x4 Expands the canvas by a factor of four. The canvas size
must be no larger than 100 pixels across by 31 pixels down.

1x1 Restores expanded canvas to normal size.

A Note about Bobs and Sprites

7-6

The Amiga system recognizes two types of objects; Amiga terminology refers
to these objects as sprites and bobs. The Object Editor prompts you to
select either a sprite or a bob before you can define the object. Therefore,
you must be aware of the differences between these two object types before
defining one. (If you are already familiar with these differences, skip to the
next section of the chapter.)

The following table summarizes the major difference between sprites and
bobs:

Bobs Sprites

Move slower than sprites. | Move faster than bobs.
Size is limited only by memory available. Width must be 16.

Full set of colors allowed. Only 3 colors allowed.

All bobs can be displayed. Only four sprites with

different colors can be
shown on the same line at
the same time.

Creating Animated Images

U T s U U O O 0 B A

11 1

I I N R R D R R

41

How

Any screen depth is allowed Screen depth must be 2.
The depth corresponds to
the value specified for the
depth parameter of the
SCREEN statement; see
SCREEN in Chapter 8 for
details.

For details on bobs and sprites, see the Graphics Animation Routines
chapter in the Amiga ROM Kernel Manual.

to Create Objects

The Object Editor resides on the Extras disk in the BasicDemos drawer
under the name ObjEdit. You open the editor and start operations just as
you would any other Amiga Basic program. (Chapter 2 gives the steps to
achieve this.) Then, follow the steps listed below.

Note: If you use a 256K machine, drag the Object Editor icon out of the
BasicDemos window. Then close all windows and click on the Object Editor
icon. This frees a maximum amount of memory for using the Object Editor.
If you wish to load the Objedit program from within Basic, use the file
name “basicdemos/objedit”. Also, change the line with the LIBRARY
statement from LIBRARY “graphics.library” to LIBRARY
“:basicdemos/graphics.library”.

1. Once you’ve opened the Object Editor, the following prompt
appears:

Enter 1 if you want to edit sprites
Enter 0 if you want to edit bobs >

Make the desired selection and press RETURN.

Note: Do not attempt to send the Object Editor window to the
back of other windows.

Creating Animated Images 7-7

7-8

Next, the Object Editor window appears. From the Files
menu, select New (to create a new object) or Open (to modify
an existing object).

From the Tools menu, choose how you want to create the
image: drawing free-form with the pointer, or by drawing an
oval, rectangle, or line. Choose Erase to remove any part of the
object.

Move the pointer to the starting position on the canvas, press
the Selection button and hold it down, move the pointer to the
end position, and then release the button. The drawing or
erasure stops when the pointer moves outside the frame and
resumes when it returns.

Note that when you’re creating an oval, a rectangle appears on
the canvas; upon release of the button, an oval replaces this
rectangle.

To change colors, move the pointer to the color choice bar at
the bottom of the screen, and then click the Selection button.
The Object Editor then outlines each new image created on the
screen with this color.

To paint the interior of an image, choose the desired color from
the choice bar; then choose Paint from the Tools menu, move
the pointer to the region you want to paint, and press the mouse
button.

The area you paint should be entirely surrounded by an outline
of the same color. Otherwise, or if a broken border exists, the
color “leaks” out into the surrounding area.

To make the canvas bigger, place the pointer in the Sizing
Gadget, hold down the Selection button, and move the mouse
until the canvas reaches the desired size.

Amiga Basic treats the canvas as one object, regardless of the
number of distinct images drawn on it. Multiple objects must be
drawn on separate canvases and saved in distinct files.

Creating Animated Images

r C C C C CCc bt b k&

C C C O L

D‘

1

A R D N R O R R D I I B

1 1

7. After completing the object, choose Save As (when creating a
new object) or Save (when editing an existing object). Note:
You should save your work often, so that you can undo
mistakes.

How to Use Images from Other Editing Sources

You can use output from other graphic editing sources with the Amiga Basic
OBJECT statements if you wish. Below is a description of the file format for
objects saved by ObjEdit (and, therefore, that expected by the OBJECT
statements that control animation).

Word# (32-bit)
0,1 unused unused
2,3 depth width
(16-bit)
4,5 height A B
6,7 C datal ...

data2 ... data3 ...

last D

Creating Animated Images 7-9

C -

datal -

data2 -

data3 -

bit 0: 1 if vSprite, 0 if bob

bit 1: flag-—is collision plane included in file? (unused in
ObjEdit)

bit 2: flag-—is image shadow included in file? (unused in
ObjEdit)

bit 3: saveback (as described in the Amiga ROM Kernel
Manual)

bit 4: overlay (as described in the Amiga ROM Kernel Manual)

bit 5: savebob (if set, use image as a “paintbrush”; see the
Amiga ROM Kernel Manual)

Plane pick (as described in the Amiga ROM Kernel Manual)
Plane on/off (as described in the Amiga ROM Kernel Manual)
Sequential byte values of image: upper-left to lower-right of

plane 1, upper-left to lower-right of plane 2, ...upper-left to
lower-right of plane n in depth of n

Image-shadow bit plane (unused unless bit 2 of word A is set)
Collision bit-plane (unused unless bit 1 of word A is set)

Six bytes for sprite colors if bit 0 of word A is set. (Only first
four bytes are used)

How to Increase Screen Depth

7-10

The ObjEdit program uses a screen depth of 2, allowing you a choice of only
the background color and three other colors. If your program’s memory
requirements allow, you can create animation objects with a greater color

variation.

The animation program that uses these objects must have a

screen depth that matches the depth used in creating the object.

Creating Animated Images

C

L

L C C C C C ¢ L

C O C

[

1

1

1 1

1

1 1 1

I D R

I R B

Each time you increase the screen depth by 1, you increase the number of
available colors for your object by a power of 2. For example, a depth of 4
means you can use 2°4, or 16, different colors.

In the ObjEdit program, you’ll find instructions for increasing the display
depth. The comments include program lines from which you can remove
the apostrophe to make them execute. These are as follows:

DEPTH = 3 (This assumes you want 8 colors)
scrn=1 .

SCREEN scrn, 640,200,Depth,2

WINDOW 1,, (0,0)—(WinX,WinyY), 31, scrn

The above lines set variables DEPTH and scrn, then use these variables to
open a custom screen and a window within that screen. When you activate
these lines and then create an object within the custom screen that results,
your animation object is saved complete with the information about that
screen.

Therefore, it is important to make sure that the program that controls your

animation also creates a screen whose depth is three. Remember that you
can only create bobs, not sprites, in a screen depth greater than two.

Creating Animated Images 7-11

R e - .

L . L

0 D T e (s (s T s (s A M N [B N N A

Chapter 8

Amiga Basic Reference

................................... T I AR T AL LII T]

U gl

The first part of this chapter describes the elements of the
Amiga Basic language and the syntax and grammar that
applies to the language. The second part is the Statement
and Function Directory.

Reference 8-1

Character Set

The Amiga Basic character set is composed of alphabetic, numeric, and
special characters. These are the only characters that Amiga Basic
recognizes. There are many other characters that can be displayed or
printed, but they have no special meaning to Amiga Basic.

The Amiga Basic alphabetic characters include all the uppercase and
lowercase letters of the American English alphabet. Numeric characters are
the digits 0 through 9. The following list shows the special characters that
are recognized by Amiga Basic.

L

L

(IR N

Character

+

>~ % |

S

. o e

SN A2

Reference

Name or Function

Blank

Equal sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiplication symbol
Slash or division symbol

Up arrow or expgnential symbol
Left parenthesis

Right parenthesis

Percent sign

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)
Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol

L

!
i

L.

L

C

(NI I TN O N O

B

1

il

11 1

1 1 1

N

1

1 1

B N

Character

@

RETURN

“

Name or Function

At-sign

Underscore

Terminates input of a line
Double quotation mark

The following list shows the Amiga-key characters that are used in Amiga

Basic.

Key Combination

Amiga-period(.)

Function

Interrupts program execution and returns to Amiga
Basic command level.

Amiga-S Suspends program execution.

Amiga-T Executes the next statement of the program.

Amiga-C Executes the “Copy” edit function.

Amiga-P Executes the “Paste” edit function.

Amiga-X Executes the “Cut” edit function.

Amiga-R Executes the “Start” run function.

Amiga-L Executes the “Show” List window function.
The Amiga Basic Line A

Amiga Basic program lines have the following format:

[nnnnn} statement [:Statement...] [comment)<RETURN>

or

talpha-num-label: 1statementl [:statement2...][comment]<RETURN>

The nnnnn (which specifies the line number) must be an integer between 0

and 65529.

Reference 8-3

8-4

The alpha-num-label is any combination of letters, digits, and periods that
starts with a letter and is followed (with no intervening spaces) by a colon

¢)-

A comment is a non-executing statement or characters that you may put in
your programs to help clarify the program’s operation and purpose.

As you can see, Amiga Basic program lines can begin with a line number, an
alphanumeric label, neither, or both, and must end with a carriage return. A
program line can contain a maximum of 255 characters. More than one
Amiga Basic statement can be placed on a line, but each must be separated
from the last by a colon. Program lines are entered into a program by
pressing the Return key. This carriage return is an invisible part of the line
format.

Line numbers and labels are pointers used to document the program (make
it more easily understood) or to redirect program flow, as with the GOSUB
statement. :

If, for example, you want a specific part of a program to run only when a
certain condition is met, you could write the following program:

IF Account$<>"" THEN GOSUB Design

The interpreter searches for a line with the label Design: and executes the
subroutine beginning with that line. Note that no colon is needed for Design
in the GOSUB statement.

Note: Amiga Basic executes each line you enter sequentially regardless of
the line number you assign. You should be aware of this if you are
accustomed to using another BASIC that sorts the lines sequentially before
execution.

Reference

C OO L

L O C C ot

L. [

I

l

]

l

——

1 1

a1 1 1

1

B

11 1 1

Label Definitions

Alphanumeric line labels can contain from 1 to 40 letters, digits, or periods.
They must begin with an alphabetical character. This allows the use of
mnemonic labels to make your programs easier to read and maintain.

For example, the following line numbers and alphanumeric labels are valid:

Line Numbers Alphanumeric Labels
100 ALPHA:
65000 Al6:

SCREEN.SUB:

Restrictions

In order to distinguish alphanumeric labels from variables, each
alphanumeric label definition must have a colon (:) following it. A legal
label cannot have a space between the name and the colon. When you refer
to a label in a GOSUB or GOTO or other control statement, do not include
the colon as part of the label name. You cannot use any Amiga Basic
reserved word as an alphanumeric label.

While the line number 0 is not restricted from use in a program,
error-trapping routines use line number 0 to mean that error trapping is to
be disabled. Thus,

ON ERROR GOTO O

does not branch to line number 0 if an error occurs. Instead, error trapping
is disabled by this statement.

Warning: Line numbers are used only as labels. Amiga Basic does not sort
them or remove duplicates.

Reference 8-5

Format

A label, a line number, or both a label and a line number can appear on any
line. The line number, when present, must always begin in the leftmost
column. A label must begin with the first non-blank character following the
line number (if present) and end with a colon; a blank cannot exist between
the label and the colon.

Alphanumeric labels and line numbers can be intermixed in the same
program.

Constants

8-6

Constants are the actual values Amiga Basic uses during program execution.
There are two types of constants: string and numeric. A string constant is a
sequence of alphanumeric characters enclosed in double quotation marks.
String constants may be up to 32,767 characters in length.

Numeric constants are positive or negative numbers. There are five types of
numeric constants:

Short Integer Whole numbers between -32768 and +32767.
Short integer constants do not contain decimal
points.

Long Integer Whole numbers between -2147483648 and

2147483647. Long integer constants do not
contain decimal points.

Fixed-point Positive or negative real numbers; that is,
number constants that contain decimal points.

Reference

C C O L

C L

[

'
i

L [O

T I N

N

N

1

1

11 1]

1

B

1

|

I

l

1

1 1

Floating-point Positive or negative numbers represented in
exponential form (similar to scientific notation).
A floating-point constant consists of an
optionally signed integer or fixed—point number
(the mantissa) followed by the letter E and an
optionally signed integer (the exponent).
(Double precision floating—point constants are
denoted by the letter D instead of E.)

Hex constants Hexadecimal numbers with the prefix &H.
Octal constants Octal numbers with the prefix &O or &.

Fixed-point and floating-point constants can be either single-precision or
double-precision numbers. Single-precision numeric constants are stored
with 7 digits of precision (plus the exponent) and printed with up to 7 digits
of precision. Double-precision numbers are stored with 16 digits of
precision and printed with up to 16 digits of precision. (See Appendix D,
Internal Representation of Numbers, for details on the internal format of
numbers. A single-precision constant is any numeric constant that has one
of the following properties:

® Seven or fewer digits
® Exponential form denoted by E
® A trailing exclamation point (!)

A double-precision constant is any numeric constant that has one of the
following properties:

e Eight or more digits
e Exponential form denoted by D
® A trailing declaration character (#)

Reference 8-7

The following are examples of numeric constants:

Single Precision Double Precision
46.8 345692811
-1.09E-6 -1.09432D-06
3489.0 3489.0#

22.5! 7654321.1234

Numeric constants in Amiga Basic cannot contain commas.

Variables

Variables represent values that are used in a program. As with constants,
there are two types of variables: numeric and string. A numeric variable can
only be assigned a value that is a number. A string variable can only be
assigned a character string value. You can assign a value to a variable, or it
can be assigned as the result of calculations in the program. Before a
variable is assigned a value, its value is zero (numeric variables) or null
(string variables).

Variable Names

8-8

A variable name can contain as many as 40 characters. The characters
allowed in a variable name are letters, numbers, and the decimal point. The
first character in a variable name must be a letter. Special type declaration
characters are also allowed (see “Declaring Variable Types” in this section).

Variable names are not case-sensitive. That means that variables with the
names ALPHA, alpha, and AIPhA are the same variable.

If a variable begins with FN, Amiga Basic assumes it to be a call to a
user—defined function. (See “DEF FN” in the Statement and Function
Directory that follows for more information on user-defined functions.)

Reference

C L

L C [

11

B I i I R R R D D R

1

1

Reserved Words

Reserved words are words that have special meaning in Amiga Basic. They
include the names of all Amiga Basic commands, statements, functions, and
operators. Examples include GOTO, PRINT, and TAN. Always separate
reserved words from data or other elements of an Amiga Basic statement
with spaces. Reserved words cannot be used as variable names. Reserved
words can be entered in either uppercase or lowercase. A complete list of
reserved words is given in Appendix C, “Amiga Basic Reserved Words.”

While a variable name cannot be a reserved word, a reserved word
embedded in a variable name is allowed.

Declaring Variable Types

Variable names can be declared either as numeric values or as string values.
String variable names can be written with a dollar sign ($) as the last
character. For example:

LET A$ = "SALES REPORT"

The dollar sign is a variable type declaration character; that is, it “declares”
that the variable will represent a String.

You can assign a numeric value certain properties by appending a trailing
declaration character to its variable name. You can declare the value to be
a short integer or a long integer a with single—precision or double-precision
value. Computations with double-precision variables are more accurate
than single-precision variables. However, double—precision variables take
up more memory space than single-precision precision variables.

The default type for a numeric variable is single precision.

The trailing declaration characters for numeric variables and the memory
requirements (in bytes) for storing each variable type are as follows:

Reference 8-9

SHORT Integer
LONG Integer
Single precision
Double precision
String

ee’h:"‘gooﬁ
wnoo KN

bytes plus the contents of the
string.

Instead of using the trailing declaration characters, you can include
DEFINT, DEFLNG, DEFSTR, DEFDBL, and DEFSNG statements in a
program to relate the starting letter of a variable name to a variable type.
Each time you declare a variable name beginning with the specified letter,
Amiga Basic assumes the variable type you specified in the DEFtype
statement. (These statements are described in the DEFINT section later in
this chapter.)

Array Variables

8-10

An array is a group of values of the same type, referenced by a single
variable name. The individual values in an array are called elements. Array
elements are variables also. They can be used in any Amiga Basic statement
or function that uses variables. Declaring the name and type of an array and
setting the number of elements in the array is known as dimensioning the
array.

Each element in an array is referenced by an array variable that is
subscripted with an integer or an integer expression. An array variable
name has as many subscripts as there are dimensions in the array. For
example, V(10) would reference a value in a one-dimension array, T(1,4)
would reference a value in a two-dimension array, and so on. Note that the
array variable T(n) and the “simple” variable T are not the same variable.
The maximum number of dimensions for an array is 255. The maximum
number of elements per dimension is 32,768.

Individual elements of string arrays need not be the same length.

Array elements, like numeric variables, require a certain amount of memory
space, depending on the variable type. The memory requirements for
storing arrays are the same as for variables, each element of the array
requiring as much as the same type of “simple” variable.

Reference

I A

C C C C

C C - L

RS I IV B O

]

N D

J 1 1 1 1

1 1 1 1]

1 1

Type Conversion

When necessary, Amiga Basic will convert a numeric constant from one type
to another. Keep the following rules in mind.

If a numeric constant of one type is assigned to a numeric variable of a
different type, the numeric constant is stored as the type declared in the
variable name. (If a string variable is assigned to a numeric value or vice
versa, a “Type mismatch” error message is generated.)

During expression evaluation, all of the operands in an arithmetic or
relational operation are converted to the same degree of precision; that is,
the degree of the most precise operand. Also, the result of an arithmetic
operation is returned to this degree of precision.

Logical operators convert their operands to integers and return an integer
result. The operand must be in the range applicable to the short integer or
long integer specified.

When a floating—point value is converted to an integer, the fractional portion
is rounded.

Expressions and Operators

An expression is a combination of constants, variables, and other
expressions with operators. Expressions are “evaluated” by the interpreter
to produce a string or numeric value. Operators perform mathematical or
logical operations on values. The operators provided by Amiga Basic can be
divided into four categories:

Arithmetic
Relational
Logical
Functional

Reference 8-11

Hierarchy of Operations

The Amiga Basic operators have an order of precedence; that is, when
several operations take place within the same program statement, certain
operations are executed before others. If the operations are of the same
level, the leftmost one is executed first, the rightmost last. The following is
the order in which operations are executed:

Exponentiation

Unary Negation
Multiplication and Floating-Point Division
Integer Division

Modulo Arithmetic
Addition and Subtraction
Relational Operators
NOT

. AND

10. OR and XOR

11. EQV

12. IMP

Arithmetic Operators

8-12

The Amiga Basic arithmetic operators are listed in the following table in
order of operational precedence:

Operator Operation Sample Expression

" Exponentiation XY

- Unary Negation -X

* Multiplication X*Y

/ Floating-Point Division XY

\ Integer Division X\Y

MOD Modulo Arithmetic Y MOD Z

+, - Addition, Subtraction X+Y, X-Y
Reference

C C C CC ot bt b

[:' E [: l_—.f Eﬁ'

L C ¢

J 3 1 3 3 0 33 3 33 32 3 3 7

1 1

To change the order in which the operations are performed, use
parentheses. Operations within parentheses are performed first. Inside
parentheses, the usual order of operation is maintained.

Amiga Basic expressions look somewhat different from their algebraic
equivalents. Here are some sample algebraic expressions and their Amiga
Basic counterparts:

Algebraic Expression Amiga Basic Expresssion
X-Z

Y X-2)/Y
XY
4 X*Y/Z
X+Y

z X+Y)/2
x3Y (X"2)"Y

V4
xY X*(Y*Z)
X(-Y) X*(-Y)

Integer Division

Integer division is denoted by the backslash (\) instead of the slash (/); the
slash indicates floating—point division. The operands of integer division are
rounded to integers (for short integers, in the range —32768 to +32767 and
for long integers, from -2147483648 to 2147483647) before the division is
performed, and the quotient is truncated to an integer.

Reference 8-13

For example:

X=10/4
Y¥=25.68\6.99
PRINT X,Y

2 3

Modulo Arithmetic

Modulo arithmetic is denoted by the operator MOD. Modulo arithmetic
provides the integer remainder of an integer division.

For example:

10.4 MOD 4=2 (10\4=2 with a remainder of 2)
25.68 MOD 6.99=5 (26\7=3 with a remainder of 5)

Note that Amiga Basic rounds both the divisor and the dividend to integers
for the MOD operation.

Overflow and Division by Zero

If a division by zero is encountered during the evaluation of an expression,
the “Division by zero” error message is also displayed, machine infinity (the
highest number Amiga Basic can produce) with the sign of the numerator is
supplied as the result of the division, and execution continues. If the
evaluation of an exponentiation results in zero being raised to a negative
power, the “Division by zero” error message is displayed, positive machine
infinity is supplied as the result of the exponentiation, and execution
continues. If overflow occurs, the “Overflow” error message is displayed,
plus or minus infinity is supplied as a result, and execution continues.

Relational Operators

Relational operators are used to compare two values. The result of the
comparison is either “true” (-1) or “false” (0). This result can then be used
to make a decision regarding program flow (see the “IF...THEN” statement

8-14 Reference

C C C C CCcCcCcULCccocreoceoeoerotcoe bbbl

J 1 3 1 1 1 1 1 1 3 1 1 1 3 1 7

in the Statement and Function Directory). The following table lists the
relational operators:

Operator Relation Tested Expression
= Equality X=Y

< Inequality XY

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a variable. See “LET” in
the Statement and Function Directory.) When arithmetic and relational
operators are combined in one expression, the arithmetic operation is always
performed first.

Logical Operators

Logical operators perform bit manipulation, Boolean operations, or tests on
multiple relations. Like relational operators, logical operators can be used
to make decisions regarding program flow.

A logical operator returns a result from the combination of true-false
operands. The result (in bits) is either “true” (-1) or “false” (0). The
true-false combinations and the results of a logical operation are known as
truth tables. There are six logical operators in Amiga Basic. They are:
NOT (logical complement), AND (conjunction), OR (disjunction), XOR
(exclusive or), IMP (implication), and EQV (equivalence). Each operator
returns results as indicated in the following table. A “T” indicates a true
value and an “F” indicates a false value. Operators are listed in order of
operational precedence.

Reference 8-15

Operation Value Value Result
NOT X NOT X
T F
F T
AND X Y X AND Y
T T T
T F F
F T F
F F F
OR X Y XORY
T T T
T F T
F T T
F F F
XOR X Y X XOR Y
T T F
T F T
F T T
F F F
IMP X Y X IMPY
T T T
T F F
F T T
F F T
EQV X Y X EQVY
T T T
T F F
F T F
F F T

In an expression, logical operations are performed after arithmetic and
relational operations. Logical operators convert their operands to signed,
two’s complement integers in the range applicable to the long integer or
short integer specified.

8-16 Reference

C C C CCccccCcCCoc b o bbb b e

a1 1 31 3 31 1 3 1 1 1 1

a1 1 1 1 1

1

If both operands are supplied as 0 or -1, logical operators return 0 or -1,
respectively. The given operation is performed on these integers in bits; that
is, each bit of the result is determined by the corresponding bits in the two
operands. Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator can be used to
“mask” all but one of the bits of a status byte. The OR operator can be used
to “merge” two bytes to create a particular binary value. The following
examples illustrate how the logical operators work:

63 AND 16 = 16 63 = binary 111111 and 16 = binary 010000, so 63
AND 16 = 16.

15 AND 14 = 14 15 = binary 1111 and 14 = binary 1110, so 15 AND
: 14 = 14 (binary 1110).

-1 AND 8 =8 -1 = binary 1111111111111111 and 8 = binary
1000, so -1 AND 8 = 8.

40R2=6 4 = binary 100 and 2 = binary 10, so 4 OR 2 =6
(binary 110).

-10R-2=-1 -1 = binary 1111111111111111 and -2 = binary
1111111111111110, so -1 OR -2 = —1. The binary
complement of 16 zeroes is sixteen ones, which is
the two’s complement representation of —1.

NOT X = —-(X+1) The two’s complement of any integer is the bit
complement plus one.

Functions and Functional Operators

When a function is used in an expression, it calls a predetermined operation
that is to be performed on its operands. Amiga Basic has two types of
functions: “intrinsic” functions, such as SQR (square root) or SIN (sine),
which reside in the system, and user-defined functions that are written by
the programmer.

Reference 8-17

See the Statement and Function Directory starting on page 8-19 for exact
description of individual intrinsic functions and DEF FN.

Using Operators with Strings

A string expression consists of string constants, string variables, and other
string expressions combined by operators. There are three classes of
operations with strings: concatenation, relational, and functional.

Concatenation

Combining two strings together is called concatenation. The plus symbol (+)
is the concatenation operator. Here is an example of the use of the
operator:

LET A$ = "File" : LET B$ = "name"
PRINT A$ + B$

PRINT "New " + A$ + B$

END

These statements display the following on the screen:

Filename
New Filename

This example combines the string variables A$ and B$ to produce the value
“Filename.”

Relational Operators

8-18

Strings can also be compared using the same relational operators that are
used with numbers:

Reference

S o e e e S e S S e O O

I I

L

11 1]

a3 1 1 1 1 1 1 1 1 1 1

1

Using operators with strings is similar to using them with numbers, except
that the operands are strings rather than numeric values. String comparisons
are made by taking one character at a time from each string and comparing
the ASCII codes. The ASCII code system assigns a number value to each
character produced by the computer. (See Appendix A, “ASCII Character
Codes.”) If all the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes the higher. If during
string comparison the end of one string is reached, the shorter string is said
to be smaller if they are equal to that point. Leading and trailing blanks are
significant.

Here are some examples of true expressions:

WAA" < "BB"'

"FILENAME" = "FILENAME"
NX&E" >= "X#"

"CL " <> "“CL"

"KG" <= nkgn

"SMYTH" < "SMYTHE"

Thus, string comparisons can be used to test string values or to alphabetize
strings. All string constants used in comparison expressions must be
enclosed in quotation marks.

Statement and Function Directory

The Statement and Function directory ‘describes each Amiga Basic
command or function, including the appropriate syntax for each statement.
Many descriptions include a programming example. The syntax conventions
are outlined below, followed by a description of each Amiga Basic command
and function, listed alphabetically.

Syntax Conventions

Amiga Basic is a powerful programming language with over 130 statements
and functions. These are presented in alphabetical order on the following

pages.

The correct syntax for each statement or function is given after the name.
There are two kinds of syntax: one for statements and one for functions. All

Reference 8-19

8-20

functions return a value of a particular type and can be used wherever an
expression can be used. Unlike functions, statements can appear alone on
an Amiga Basic program line or they can be entered in immediate mode
where they are considered commands.

Following the name and syntax is a summary of what the statement or
function does, descriptions of arguments and options, and an explanation of
how to use the statement or function.

Cross-references to related statements and functions (if any) along with
notes and warnings are provided following the example program using the
statement or function.

The following syntax notation is used in this section:

CAPS Items in capital letters must be input as shown.
italics Items in italics are to be supplied by the user.
[] Items inside square brackets are optional. The brackets are

not a part of the statement syntax.

Items followed by ellipses may be repeated any number of
times. '

{} Braces indicate that the user has a choice between two or
more items. One of these items must be chosen unless the
entries are also enclosed in square brackets. The braces are
not a part of the statement syntax.

| Vertical bars separate the items enclosed in braces discussed
above.

O) Items in parentheses are to be supplied by the user.

All punctuation including commas, parentheses, semicolons, hyphens, and
equal signs must be included where shown.

Reference

E:.A

CcCccCccCcCcoCCCCCo

L C [

[

1 1

4o 3 11101111111 ".]

ABS ABS (X)
Returns the absolute value of the expression X.
Example:
The following example shows the results ABS returns for a positive and a
negative number.
LET X = 987 : LET Y = -987
PRINT ABS (X), ABS(Y)
The results displayed on the screen are as follows:
987 987

AREA AREA [STEP](X,Y)
Defines a point of a polygon to be drawn with the AREAFILL statement.
‘The parameters x and y specify one of several points that Amiga Basic is to
connect in forming a polygon with an AREAFILL statement. The
AREAFILL statement ignores all AREA statements in excess of 20.
If STEP is included, x and y are offsets from the current graphics pen
position. Otherwise, they are absolute values specifying a location in the
current window.
See also: AREAFILL

AREAFILL AREAFILL [mode]

Alters the interior of a polygon defined by two or more preceding AREA
statements.

Reference 8-21

ASC

8-22

The mode parameter determines the format of the polygon as shown in the
following table. '

0 Fills the area with the area pattern established by the PATTERN
statement. This is the default mode.

1 Inverts the area.

Example:
The following statements draw a triangle and fill its interior:

AREA (10,10)

AREA STEP (0,40)
AREA STEP (40,-40)
AREAFILL

See also: AREA, PATTERN, and COLOR

ASC(X$)

Returns a numerical value that is the ASCII code for the first character of
the string X§.

The Amiga Basic character set includes the entire ASCII set, but also
contains additional characters. These non-ASCII characters, as well as the
standard ASCII characters, may be tested with the ASC function (see
Appendix A, “ASCII Character Codes”).

See also: CHRS$

Example:

The following demonstrates the use of the ASC function:

Reference

[

C C C O

. C [

L

I I N

CC O

L]

11 1

1 1

1 1

[0 R Y R B N B

1]

1

ATN

LET OBJECTS$ = "T"
PRINT ASC(OBJECTS)
END

This statement prints out the following value:

84

ATN(X)

Returns the arc tangent of X, where X is in radians. The result is in the
range —pi/2 to pi/2 radians.

The evaluation of this function is performed in single precision when the
argument is in single precision and in double precision when the argument is
in double precision.

Examples:

In the following example, ATN is used in a program that converts numbers
to their respective arc tangents. ‘

‘Arctangent request program

newnumber:

INPUT "Enter a number ", NUMBER

PRINT "Arc tangent of " NUMBER " is " ATN(NUMBER)
INPUT "If you have another number, enter y ", YORN$
IF YORN$ = "y" GOTO newnumber

END

The following example shows the results produced by this program:

Enter a number 33

Arc tangent of 33 is 1.540503

If you have another number, enter y y
Enter a number 2

Arc tangent of 2 is 1.107149

If you have another number, enter y n

Reference 8-23

BEEP

BEEP
Sounds the speaker and flashes the display.
The BEEP statement causes a momentary sound. The statement is useful
for alerting the user.
Example:

IF MemLeft& < 100 THEN
BEEP
LOCATE 17,1
PRINT "OUT OF MEMORY: decrease picture size";

END IF
BREAK ON BREAK ON
BREAK OFF BREAK OFF
BREAK STOP BREAK STOP

8-24

Enables, disables, or suspends event trapping based on the user trying to
stop program execution.

The BREAK ON statement enables event trapping of user attempts to halt

the program (by pressing Amiga—-period or selecting the Stop option on the

Run menu).

The BREAK OFF statement disables ON BREAK event trapping. Event
trapping stops until a subsequent BREAK ON statement is executed. The
BREAK STOP statement suspends BREAK event trapping. Event trapping
continues, but Amiga Basic does not execute the ON BREAK...GOSUB
statement for an event until a subsequent BREAK ON statement is executed.

See also: ON BREAK

Reference

L C C

L L

L C L C C C C ot bbb L

1

1

B0 S I R R R R R

B I B

1

1

Example:
This program fragment illustrates the use of ON BREAK.

BREAK ON
ON BREAK GOSUB DIRECTUSER
DIM PAYTIME(99),HRS(99),GROSS(99),FIT(99),FICA(99),STATE(99),NET(99)
LET TOTALEMPLOYEES = 99
OPEN "O",#1, "EmployeePay"
FOR I=1 TO TOTALEMPLOYEES

WRITE#1,PAYTIME(I),HRS(I),GROSS(I),FIT(I),FICA(I),STATE(I),NET(I)
NEXT I

CLOSE #1 :BREAK OFF

INPUT "Do you wish to print the payroll now (Y/N)?", ANSWER$

IF ANSWER$ = "Y" THEN BREAK ON: GOSUB PRINTCHECKS

END

DIRECTUSER:
CLS:BEEP:PRINT "You can‘t exit program until file is updated."

RETURN

CALL name [(argument-list)]
name [argument -list]

(1) Calls an Amiga Basic subprogram as defined by the SUB statement; (2)
calls a machine language routine at a fixed address; or (3) calls a machine
language LIBRARY routine.

The CALL keyword optional. If CALL is omitted, the parentheses
surrounding argument-list are also omitted. See Chapter 6 for further
details.

Calling Amiga Basic Subprograms Defined by the SUB Statement

You can call subprograms using the SUB statement. Variables are passed by
reference. Expressions are passed by value. For example,

SUB ALPHA (X,y) STATIC
END SUB
CALL ALPHA (a,b)

Reference 8-25

See the SUB statement in this chapter and also in Chapter 6 for more
information on calling subprograms.

Calling Machine Language Subprograms

The CALL statement is the only way to transfer program flow to an external
subroutine. The name identifies a simple variable that contains an address
that is the starting point in memory of the subroutine. The name cannot be
an array element.

The argument list contains the arguments that are passed to the subroutine.
Parameters are passed by value using the standard C-language calling
conventions. All parameters must be short integer or long integer, or Amiga
Basic issues a “Type mismatch” message. The address of a single or double
precision variable can be passed as follows:

CALL Routine (VARPTR (X))
The address of a string can be passed as follows:
CALL Routine (SADD(x$))

In the following example, the variable that holds the address of the routine is
a short integer (&). (Use a long integer if the address length is 24 bits; a
short integer or a single-precision number can’t hold a 24-bit address.)

a=0: b=0

DIM Code%(100)

FOR 1=0 TO 90

READ Code%(I)

NEXT I

CodeAdr& = VARPTR(Code%(0))
CALL CodeAdré&(a,b)

Calling a Machine Language Subroutine from a LIBRARY

Library routines are machine language routines that are bound to Amiga
Basic dynamically at runtime.

Library files are special Amiga resource files.

8-26 Reference

R B

S SN I PR

C C C . O

L. L

l

1]

B I

I B D D R D B B

1

n

1

Parameters are passed by value using standard C-language conventions.

Example:

LIBRARY “"graphics.library"
CALL Draw(50,80)

In the above example, Amiga Basic creates a variable by the name of Draw.

It then stores information about where the machine language routine resides
in this variable. For this reason, the variable cannot be a short integer.

For example, the following call would generate a “Type mismatch” error

DEFINT A-Z
CALL Draw(50,860)

but the following call would be acceptable:

DEFINT A-Z .
CALL Draw#(50,60)

Note that Amiga Basic ignores the trailing declaration character (¥)
following the routine name when searching the libraries for the routine. So,
in the above example, it would search for “Draw,” and not “Draw#.”

Warning

Because the word CALL can be omitted, a CALL can be executed with the
syntax

name argument-list
Such a CALL statement may resemble an alphanumeric label.
Consider the statement

ALPHA: Let A = §

Reference 8-27

CDBL

It is not visually clear whether the statement is calling a subprogram named
ALPHA with no argument list, or the statement LET A = 5 is on a line with
the label ALPHA:. In such a case, ALPHA: is assumed to be a line label
and not a subprogram call with no arguments.

After a THEN or ELSE keyword, CALL is required to distinguish the
identifier from a label.

CDBL (X)

Converts X to a double—precision number.

Example:

The following example shows the product of two single-precision numbers

displayed in single-precision, and then converted to double precision and
displayed.

Al = 6666 : B! = 100000!
PRINT A!*B!, "(result printed in single precision)"
PRINT CDBL(A!*B!), "(result printed in double precision)"

The following is displayed on the screen:

8.B86E+08 (result printed in single precision)
86860000 (result printed in double precision)

CHAIN CHAIN [MERGE] filespec|,[expression][,[ALL] [,DELETE range]]]

8-28

Executes another program and passes variables to it from the current
program.

The filespec is the specification of the program that is called.

The expression is a line number, or an expression that evaluates to a legal
line number, in the called program. It is the starting point for execution of

Reference

C O C

[:ji [::i

.

C C C C ¢ o L

L C

1

]

1 1 1 1 1 1 1 1 73 1 11 3 1

the called program. If it is omitted, execution begins at the first line. An
alphanumeric label cannot be used as a starting point.

The MERGE option allows a subroutine to be brought into the Amiga Basic
program as an overlay. That is, the current program and the called program
are merged, with the called program being appended to the end of the
calling program. The called program must be an ASCII file if it is to be
merged.

With the ALL option, every variable, except variables which are local to a
subprogram in the current program, is passed to the called program. If the
ALL option is omitted, the current program must contain a COMMON
statement to list the variables that are passed.

If the ALL option is used and the expression is not, a comma must hold the
place of the expression.

CHAIN leaves files opened.

After an overlay is used, it is usually desirable to delete it so that a new
overlay may be brought in. To do this, use the DELETE option.

Note: The CHAIN statement with the MERGE option preserves the current
OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve variable types or
user—defined functions for use by the chained program. That is, any
DEFINT, DEFLNG, DEFSNG, DEFSTR, DEFDBL, or DEF FN statements
must be restated in the chained program. Also, CHAIN turns off all event
trapping. If event trapping is still desired, each event trap must be turned on
again after the chain has executed.

When using the MERGE option, user-defined functions should be placed
before the range deleted by the CHAIN statement in the program.
Otherwise, the user—defined functions are undefined after the merge is
complete.

Reference 8-29

The DELETE range consists of a line number or label, a hyphen, and
another line number or label. All the lines between the two specified lines,
inclusive, are deleted from the program chained from.

See also: COMMON, MERGE

Example:

This program illustrates the use of the CHAIN and COMMON statements.

COMMON ACCT,BALANCE!,CHARGES(), DISCOUNT!, CONTACT$
CHAIN "Receivables"

CHDIR CHDIR string

CHRS

8-30

Changes the current directory.The string is an expression that identifies the
new directory that becomes the current directory.

Example:

CHDIR "df1:" - Cchange to the current directory on Device 1
CHDIR "df0:c" ~ Change to Directory C on Device 0O

CHDIR "/" Change to parent directory

CHR$ (1)

Returns a string whose one character has the ASCII value given by I (see
Appendix A, “ASCII Character Codes”).

CHRS$ is commonly used to send a special character to the screen or a
device. For instance, the ASCII code for the bell character (CHR$(7)) can
be printed to cause the same effect as the BEEP statement, or the form feed
character (CHR$(12)) can be sent to clear the Output window and return
the cursor to the home position.

Reference

L

C O L

I

CCC O

I .

L L

I

N

1]

41

]

1

1

1

g1 1 1 1 1

CINT

Example:

In the following example, CHR$ converts the ASCII codes 65 through 90 to
their respective ASCII character representation.

CLS

FOR I = 65 TO 80
PRINT CHR$(I); SPC(1);
NEXT I

The following is displayed on the screen:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

CINT(X)
Converts X to an integer by rounding the fractional portion.

If X is not in the range -32768 to 32767, an “Overflow” error message is
generated. Related to CINT are the CDBL and CSNG functions which
convert numbers to the double precision and single precision data types,
respectively.

Note: For a decimal portion that is exactly .5, if the integer portion of X is
even, the function rounds down. If it is odd, the function rounds up.
Example:

The following example displays three non-integer numbers, and then
displays each number after conversion with CINT.

PRINT CINT(-8.5)
PRINT CINT(-3.2)
FORI =1 TO 3

X = RND*10

PRINT X, "= random number generated by RND, times 10"
PRINT CINT(X), "= integer portion of the same number"
NEXT I

Reference 8-31

The following is displayed on the screen:

-4

-3

1.213501 = random number generated by RND, times 10
1 = integer portion of the same number
6.518611 = random number generated by RND, times 10
7 = integer portion of the same number
8.686811 = random number generated by RND, times 10
<] = integer portion of the same number

See also: CLNG, CDBL, CSNG, FIX, INT

CIRCLE CIRCLE [STEP](x,y),radius [,color-id [,start,end [,aspect]]]

8-32

Draws a circle or an ellipse with the specified center and radius.
The x parameter is the x coordinate for the center of the circle.
The y parameter is the y coordinate for the center of the circle.

The STEP option indicates the x and y coordinates are relative to the
current coordinates of the pen. For example, if the most recent point
referenced were (10,10), CIRCLE STEP(20,15) would reference a point 30
for x and 25 for y.

The radius is the radius of the circle in pixels. The color-id specifies the
color to be used; it corresponds to the color-id in a PALETTE statement.
The default color is the current foreground color as set by the COLOR
statement.

The start and end parameters are the start and end angles in radians. The
range is —2*(Pi) through 2*(Pi). These angles allow the user to specify
where a circle or ellipse begins and ends. If the start or end angle is
negative, the circle or ellipse is connected to the center point with a line,
and the angles are treated as if they were positive. The start angle may be
less than the end angle.

The aspect is the aspect ratio, which is the ratio of the width to the height of
one pixel. The aspect ratio used by manufacturers of monitors varies.

Reference

-

L [

C O C C o C C b

[

S R R R N N R R R R R D R

B

1

CIRCLE draws a perfect circle if aspect is set to the aspect ratio of the
monitor; otherwise, CIRCLE draws an ellipse.

The aspect ratio for the standard Amiga monitor (using high resolution and
the 640 by 200 screen) is 2.25:1 or approximately .44 (1/2.25), which is the
default for aspect. If you specify .44 for aspect, or omit a specification, a
perfect circle is drawn on the Amiga monitor.

Example:

CIRCLE (60,60),55

The above example draws a circle with a radius of 55 pixels; the center of
the circle is located at x coordinate 60 and y coordinate 60.

ASPECT = .1 ‘Initialize aspect ratio
WHILE ASPECT<20

CIRCLE (60,60),55,0,,,ASPECT ‘Draw an ellipse

ASPECT = ASPECT*1.4 ‘Change aspect ratio
WEND

The above example draws a series of ellipses of varying aspect ratios. The 0
parameter specifies the color; here, the Amiga system background color of
blue would apply unless overridden by a PALETTE statement.

CLEAR CLEAR [,basicData) [,stack]

””

Sets all numeric variables to zero and all string variables to and allocates
memory to the Amiga Basic data area and to the system stack. Closes all
files and resets all DEF FN, DEFINT, DEFLNG, DEFSNG, DEFDBL, and
DEFSTR statements.

basicData is a numeric expression that specifies the amount of memory to
be allocated to Amiga Basic program text, variables, string, and file data
blocks; the numeric expression must be 1024 bytes or greater. If this
parameter is omitted, Amiga Basic allocates the current value.

Reference 8-33

CLNG

stack is a numeric expression that specifies the amount of memory to be
allocated to the system stack; the numeric expression must be 1024 bytes or
greater. If this parameter is omitted, Amiga Basic allocates the current
value.

See also: FRE

Examples:

CLEAR

CLEAR ,130000
CLEAR ,, 2000
CLEAR ,20000,2048

CLNG (numeric expression)

Converts a numeric expression to long-integer format, rounding off any
fractional part.

Note: For a decimal portion that is exactly .5, if the integer portion of X is
even, the function rounds down. If it is odd, the function rounds up.

CLOSE CLOSE [[#]filenumber],[#]filenumber ...]]

8-34

Concludes 1I/0 to a file. The CLOSE statement complements the OPEN
statement.

The filenumber is the number with which the file was opened. A CLOSE
with no arguments closes all open files. The association between a particular
file and the filenumber terminates upon execution of a CLOSE statement.
The file may then be reopened using the same or a different filenumber;
likewise, that filenumber can be reused to open any file.

A CLOSE for a sequential output file writes the final buffer of output. When
Amiga Basic performs sequential file I/O, it uses a holding area, called a

Reference

C CcC CCcCCcCccCccCcoctottottobdiobootbrnbh

3 13 1 0 1 3 1 31 3 3 1 3 1 71

1

CLS

buffer, to build a worthwhile load before transferring data. If the buffer is
not yet full, the CLOSE statement assures that the partial load is transferred.

The END, SYSTEM, and CLEAR statements and the NEW command
always close all disk files automatically. (STOP does not close disk files.)

See also: CLEAR, END, NEW, OPEN, STOP, SYSTEM

Example:

This is a fragment of a program that opens an existing file, gets data from it,
updates it, and returns it.

OPEN "Payables" AS #2 LEN = 80
FIELD #2, 30 AS FIRM$, 30 AS ADDR$, 10 AS OWES$, 10 AS DAYS
GET #2, ACCOUNT :

LET DEBT! = CVS(OWES$)
LET DEBT! = DEBT! + CHARGES! - PAID)
LSET OWE$ = MKS$ (DEBT!)

PUT #2 ACCOUNT

CLOSE #2
PRINT "Account #";ACCOUNT;" updated"
CLS

Erases the contents of the current Output window and sets the pen position
to the upper left-hand corner of the Output window.

The CLS statement clears the current Output window only and not other
Output windows.

Example:

CLS

Reference 8-35

COLLISION L COLLISION (object—id)

Amiga Basic maintains a queue of collisions that have occurred and have not
yet been reported to the program. Amiga Basic can remember only 16
collisions at one time. After the sixteenth collision, it discards any new
collision information. Each call of COLLISION removes one item from this
queue of collisions. o '

The object-Id corresponds to the object—-id in an OBJECT.SHAPE
statement; it identifies the object being tested. The number can range from
1ton. If object-Id is 0, the function returns the identification number of an
object that collides with another object without removing any information
from the collision queue. If object-Id is -1, the function returns the
identification number of the window in which the collision identified by
COLLISION(0) occurred.

If object-Id is non-zero, the function returns the identification number of
an object that collided with object-id, and removes the information from the
collision queue.

If the function returns a negative number from -1 through -4, the object-Id
collided with one of the four window borders, as indicated below.

-1 Top border
-2 Left border
-3 Bottom border
-4 Right border

See also: OBJECT.SHAPE for an example.

COLLISION ON COLLISION ON
COLLISION OFF COLLISION OFF
COLLISION STOP COLLISION STOP

Enables, disables, or suspends COLLISION event trapping. A COLLISION
occurs when an object defined by the OBJECT.SHAPE statement collides

8-36 Reference

C CCCCCcCcCccCcroCcrCococUrocUoetoeoobr-rh.

3 30 32 3 31 3 3 3 1 3 3 3 1 1 1 1

1

with another object or the window border. Use the COLLISION function to
determine which object collided.

The COLLISION ON statement enables COLLISION event trapping by the
ON COLLISION...GOSUB statement.

The COLLISION OFF statement stops event trapping by the ON
COLLISION...GOSUB statement; Amiga Basic does not record. any
collision until a subsequent COLLISION ON statement is executed. The
COLLISION STOP statement suspends COLLISION event trapping. Event
trapping continues, but Amiga Basic does not execute the ON
COLLISION...GOSUB for an event until a subsequent COLLISION ON
statement is executed.

See also: COLLISION, “Event Trapping” in Chapter 6, “Advanced
Topics.” See OBJECT.SHAPE for an example.

COLOR COLOR ([foreground-color-id] [, background-color-id]

Indicates foreground and background colors to be used.

Amiga Basic uses the foreground-color-id specification to determine the
color for drawing points, lines, area fill and text, and the
background-color-id to determine area surrounding these items.

The foreground-color-id and background-color-id each correspond to the
color-id defined in a PALETTE statement or to the default color-ids of the
Amiga system (see the PALETTE statement for more information on the
default color-ids).

If a COLOR statement is not specified, and a PALETTE statement doesn’t
override the system color-ids, Amiga Basic uses the system colors. These
colors are initially white in the foreground and blue in the background, or
the colors as specified by the user with the Preferences Tool from the
Workbench.

Reference 8-37

Example:

PALETTE 1,RND,RND,RND
PALETTE 2,RND,RND,RND
COLOR 1,2

COMMON COMMON variable-list

8-38

Passes variables to a chained program.

The COMMON statement is used in conjunction with the CHAIN
statement. COMMON statements may appear anywhere in a program,
though it is recommended that they appear at the beginning. This technique
decreases the likelihood that program control will branch before the
COMMON statements execute, passing the desired values to the chained
program.

The same variable cannot appear in more than one COMMON statement.
Array variables are specified by appending parentheses (thatis “()”) to the

variable name. If all variables are to be passed, use CHAIN with the ALL
option and omit the COMMON statement.

Some versions of Amiga Basic allow the number of dimensions in the array
to be included in the COMMON statement. This implementation accepts
that syntax, but ignores the numeric expression itself.

Example:

This program illustrates the use of the CHAIN and COMMON statements.

COMMON ACCT,BALANCE!, CHARGES(), DISCOUNT!, CONTACTS$
CHAIN “"Receivables"

Reference

I I e e T O) Y A I

I B D B B R R I I D D R

I I R

CONT

COS

CONT

Continues program execution after an Amiga—period has been typed or a
STOP statement has been executed. It can also be used to continue
execution after single stepping.

Execution resumes at the point where the break occurred. If the break
occurred after a prompt from an INPUT statement, execution continues
with the reprinting of the “?” prompt or the prompt string).

CONT is usually used with STOP for debugging. When execution is
stopped, intermediate values may be examined and changed using
immediate mode statements. Execution may be resumed with CONT or an
immediate mode GOTO, which resumes execution at a specified line
number. CONT may be used to continue execution after an error has
occurred.

CONT is invalid if the program has been edited during the break.

Example:
This example illustrates the use of the CONT and STOP statements.

CHECK! =25: DEBIT! = 9.89
PRINT CHECK!,DEBIT!

STOP
LET BALANCE! = CHECK! -~ DEBIT!
PRINT BALANCE!
END

COS(X)

Returns the cosine of X, where X is in radians.
The evaluation of this function is performed in single precision when the

argument is in single precision and in double precision when the argument is
in double precision.

Reference 8-39

CSNG

8-40

Example:

The following example returns the cosine of 1, 100, and 1000.

PRINT “"COSINE OF 1 IS " COS(1)
PRINT "COSINE OF 100 IS " COS(100)
PRINT "COSINE OF 1000 IS " COS(1000)

The following is displayed on the screen:

COSINE OF 1 IS .5403023
COSINE OF 100 IS .8623189
COSINE OF 1000 IS .5623791

CSNG(X)

Converts X to a single-precision number.

Example:

In the following example, the product of two double—precision numbers is
displayed in double-precision, then converted to single precision and
displayed.

A# = 6666 : B# = 100000
PRINT A#*B#, "(result printed in double precision)"
PRINT CSNG(A#*B#), "(result printed in single precision)"

The following is displayed on the screen:

6666800000 (result printed in double precision)
6.666E+08 (result printed in single precision)

See also: CDBL, CINT

Reference

L O L C C C & *©

L

L O C C =

I

B
™)
M

-
a
a
a
a

™
™
™
™

™
N
,'_7
I
=

CSRLIN CSRLIN

CVI
CVL
CVS
CVD

Returns the approximate line number (relative to the top border of the
current Output window) of the pen.

The value returned is always equal to or greater than 1.

In determining the line number, CSRLIN uses the height and width of the
character “0” as determined by the font of the current Output window. This
value is always greater than, or equal to, 1.

CSRLIN is the opposite of the LOCATE statement, which positions the pen.

Example:

The following example records the current line and row numbers, moves the
cursor to the bottom of the screen, and prints a message; it then restores the
cursor to its original position and prints a message.

Y CSRLIN “ GET CURRENT CURSOR LINE NUMBER (VERTICAL POSITION)

X POS(0) “ GET CURRENT CURSOR COLUMN NUMBER (HORIZONTAL POSITION)
LOCATE 20,1 ° PLACE CURSOR ON LINE 20, COLUMN 1 (BOTTOM OF SCREEN)
PRINT "THIS PRINTS AT LOCATION 20,1 (BOTTOM OF PAGE)"

LOCATE Y,X ° PLACE CURSOR IN ORIGINAL LOCATION

PRINT "THIS PRINTS AT ORIGINAL LOCATION OF CURSOR"

nu

See also: POS, LOCATE

CVI(2-byte string)
CVL (4-byte string)
CVS(4-byte string)
CVD(8-byte string)

Converts random file numeric string values to numeric values. CVI converts
a 2-byte string to a short integer. CVL converts a 4-byte string to a long
integer. CVS converts a 4-byte string to a single-precision number, and
CVD converts an 8-byte string to a double-precision number.

Reference 8-41

DATA

8-42

CVI, CVL, CVS, and CVD can be used with FIELD and GET statements to
convert numeric values that are read from a random disk file, from strings
into numbers. Use the VAL function instead of CVI, CVL, or CVS to
return the numerical value of a string.

Example:

OPEN FileName$ FOR INPUT AS 1
ColorSet=CVL (INPUT$(4,1))
DataSet=CVL (INPUT$(4,1))

See also: MKI$, MKL$, MKS$, MKDS$, VAL

DATA constant-list

~ Stores the numeric and string constants that are accessed by the READ

statement.

DATA statements are nonexecutable and may be placed anywhere in the
program. A DATA statement may contain as many constants as will fit on a
line (separated by commas). Any number of DATA statements may be
used in a program. READ statements access DATA statements in order
(from the top of the program to the bottom). The data contained in a
DATA line may be thought of as one continuous list of items, regardless of
how many items are on a line or where the lines are placed in the program.

The constant-list parameter may contain numeric constants in any format,
that is, fixed—point, floating-point, or integer. (No numeric expressions are
allowed in the list.) String constants in DATA statements must be
surrounded by double quotation marks only if they contain commas, colons,
or significant leading or trailing spaces. Otherwise, quotation marks are not
needed.

The variable type (numeric or string) given in the READ statement must
agree with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the
RESTORE statement.

Reference

C

C o b b L [

L L C [O

I I

N

il

1

11 1 1

1 1 1

1 1 1

1

N

1

Example:

DIM Pattern0%(3)
DIM Patternl%(3)
DIM Pattern2%(3)
FOR I=0 TO 3

READ Pattern0%(I)

READ Patternil%(I)

READ Pattern2%(I)
NEXT I
DATA &HAAAA, &H3333, &HFFFF
DATA &H5555, &H3333, &HFFFF
DATA &HAAAA, &H3333, &HFFFF
DATA &H5555, &H3333, &HFFFF

See also: READ, RESTORE

DATES DATE$
Retrieves the current date.
The DATES$ function returns a ten-character string in the form
mm-~-dd-yyyy.
Example:
10 PRINT DATE$ “PRINT SYSTEM DATE
The following is displayed on the screen:

08-10-1985

DECLARE FUNCTION - DECLARE FUNCTION id [(param-list)] LIBRARY

Causes Amiga Basic to search all libraries opened with the LIBRARY
statement for the machine language function id in any expression within the
program.

Reference 8-43

See LIBRARY statement for details on opened libraries.

The id is any valid Amiga Basic identifier and can optionally contain one of
the following trailing declaration characters: (%, &, !, #). The id identifies
the name of the machine language function and the type of value it returns.

The param-list is a list of parameters for the function. This list is ignored by
Amiga Basic, but it is useful for documentation purposes.

If the function is found, Amiga Basic passes all parameters (if any) to the
function. The trailing declaration character (if any) of the id indicates the
type returned by the function. If the id doesn’t have a trailing declaration
character, the standard type identifier rules apply. (See DEFINT for
standard type rules.) For example, ALPHA# returns a double-precision
result, BETA% returns an integer result, and so on.

See the CALL statement for a description of the conventions for passing
parameters.
Example:

DECLARE FUNCTION ViewPortAddress&() LIBRARY
LIBRARY "intuition.library"
VPA& = ViewPortAddress&(WINDOW(7))

This sets the variable VPA& to the value returned by the library function
ViewPortAddressé&.

See also: CSNG, DEFINT, DEFSNG, LIBRARY, CALL

DEF FN DEF FN name[(parameter-list)|=function—definition

8-44

Defines a user—written function.

The name parameter must be a legal variable name with no spaces between
it and DEF FN. When specified in a program, name invokes the function
being defined.

Reference

L

|

—

I

C O

i

L [[

L)

!
1
)

L

'
1

L

)

L

L L

[

1

1

1 1

N

"J

1

I I I R B

1

il

1 1

The parameter-list contains the variable names in the function definition
that are to be replaced when the program invokes the function. Each name
must be separated by a comma. These variables contain the values specified
in the corresponding argument variables passed from the program function
call.

The function—definition is an expression, limited to one line, that performs
the operation of the function. Variable names that appear in the expression
do not affect program variables with the same name.

When a function is invoked, 'a variable name specified in both the
function—-definition and the parameter-list contain the same values.
Otherwise, the current value of the function-definition variable is used.

The DEF FN statement can define either numeric or string functions. The
function always returns the type specified in the calling statement. However,
Amiga Basic issues a “Type mismatch” message if the data type specified in
the calling statement does not match the data type specified in the DEF FN
statement. -

Note: If you specify the same DEF FN name twice, Amiga Basic uses the
last definition.

The DEF FN statement must be executed before the function it defines is
called. Otherwise, Amiga Basic issues an “Undefined user function”
message. You cannot specify a DEF FN statement in either immediate
mode or within a subprogram.

DEF FN statements apply only to the program in which they are defined. If
a program passes control to a new program with a CHAIN statement, a DEF
FN statement in the old program does not apply to the new program.

Example:

DEF FNPERCENT(A,B) = (A/B)*100

INPUT "ENTER PORTION OF TOTAL AMOUNT ", PORTION:
INPUT "ENTER THE TOTAL ", TOTAL

RESULT = FNPERCENT (PORTION,TOTAL)

PRINT "PERCENTAGE IS ";RESULT;"%"

Reference 8-45

The following is an example of input and output when these statements are
executed.

ENTER PORTION OF TOTAL AMOUNT 276
ENTER THE TOTAL 1000
PERCENTAGE IS 27.6 %

DEFDBL DEFDBL letter-range
DEFINT DEFINT letter-range
DEFLNG DEFLNG letter-range
DEFSNG DEFSNG letter-range
DEFSTR DEFSTR letter-range

8-46

Relates the beginning letter of a variable name to a variable type (short
integer, long integer, single precision, double precision, or string).

Amiga Basic assumes that any variable name beginning with a letter specified
in letter—range to be one of the variable types shown below.

Statement Declaration
Variable Type Character
DEFDBL Double precision #

DEFINT Short integer %
DEFLNG Long integer &
DEFSNG Single precision (default) !

DEFSTR String, $

A variable name with a trailing declaration character (%, &, !, $, or #) takes
precedence over these statements. (See “Declaring Variable Types” earlier
in this chapter for more information on trailing declaration characters.)

DEF type declarations apply only to the program in which they are declared;
they are reset upon exit from the program.

Reference

B

L

U IR S

.

L C O O O

(D T I

1

]

1

1 1

1 1

I

B

1 1 1

1

i

1

Example:
DEFLNG a-p,w

This statement causes any name beginning with any letter from a through p
and the letter w to be treated as long integers.

DELETE DELETE [line][-line]
Deletes program lines.

The DELETE statement works with both line numbers and alphanumeric
labels. If line does not exist, an “Illegal function call” error message is
generated.

DIM DIM [SHARED] variable-list

Specifies the maximum values for array variable subscripts, and allocates
storage accordingly.

Use the DIM statement when the value of an array’s subscript(s) must be
greater than 10; otherwise Amiga Basic issues a “Subscript out of range”
error message. The minimum value for a subscript is always 0, unless
otherwise specified with the OPTION BASE statement.

The DIM statement sets all the elements of the specified arrays to an initial
value of zero. The maximum number of dimensions allowed in a DIM
statement is 255; the number you can actually specify depends on the
amount of memory available.

Specify SHARED to make the variables globally accessible to the main
program and to all subprograms. The DIM SHARED statement must be
specified only in the main program. Using a DIM SHARED statement lets
you avoid duplicating the same SHARED statements among several

subprograms.

Reference 8-47

END

EOF

8-48

If the array has already been dimensioned or referenced and that variable is
later encountered in a DIM statement, Amiga Basic issues a
“Redimensioned array” error message. To avoid this error condition, place
DIM statements at the top of a program so that they execute before
references to the dimensioned variable are made.

Example:

DIM SHARED A,B,C(10,2)
DIM CF(19)
FOR I=1 TO 19
READ CF(I)
PRINT CF(I)
NEXT I
DATA 0,2,4,5,7,9,11,0,1,-1, 0,0,0,0,0,0, -12,12,0

See also: SHARED

END

Terminates program execution, closes all files, and returns to previous
mode.

END statements may be placed anywhere in the program to terminate
execution. An END statement at the end of a program is optional.

EOF (filenumber)

Tests for the end-of-file condition.

Returns -1 (true) if the end of a sequential input file has been reached. Use
EOF to test for end-of-file while reading in data with an INPUT statement,
to avoid “Input past end” error messages.

When EOF is used with a random access file, it returns true if the last GET
statement was unable to read an entire record. It is true because it was an
attempt to read beyond the end of the file.

Reference

(S U A

L L. [

L

L L

R R

L]

1

1

]

]

1 1 1 1

[R R N B

]

N

Example:
This program demonstrates a use of the EOF function.

OPEN "I",#1, "INFO"
LINE INPUT #1, LONGS$
PRINT LONGS$
CLOSE #1
OPEN "I",#1,"INFO"
WHILE NOT EOF (1)
PRINT ASC(INPUT$(1,#1));
LET C = C + 1: IF C = 10 THEN PRINT: LET C = O
WEND
CLOSE #1
END

ERASE ERASE array-variable-list
Eliminates arrays from memory.
Arrays may be redimensioned after they are erased, or the previously
allocated array space in memory may be used for other purposes. If an

attempt is made to redimension an array without first erasing it, an error
message is generated.

Example:

ERASE BobArray

ERR ERR
ERL ERL

Returns the error number and the line on which the error occurred.

When an error-handling routine is entered by way of an ON ERROR
statement, the function ERR returns the error code for the error, and the
function ERL returns the line number of the line in which the error was
detected.

Reference 8-49

If the line with the detected error has no line number, ERL will return the
number of the first numbered line preceding the line with the error. ERL
will not return line labels. The ERR and ERL functions are usually used in
IF...THEN statements to direct program flow in an error-handling routine.

With the Amiga Basic Interpreter, if the statement that caused the error was
an immediate mode statement, ERL will return 65535.

See Appendix B, “Error Codes and Error Messages,” for a list of the Amiga
Basic error codes.

Example:
ON ERROR GOTO errorfix

errorfix:
IF (ERR=55) AND (ERL=90) THEN CLOSE#1:RESUME

ERROR ERROR integer—expression

8-50

Simulates the occurrence of an Amiga Basic error, or allows error codes to
be defined by the user.

ERROR can be used as a statement (part of a program source line) or as a
command (in immediate mode).

The value of the integer-expression must be greater than 0 and less than
256. If the value of the integer-expression equals an error code already in
use by Amiga Basic (see Appendix B, “Error Codes and Error Messages”),
the ERROR statement causes the error message for the Amiga Basic error to
be printed (unless errors are being trapped).

To define your own error code, use a value that is greater than the highest
value used by an Amiga Basic error code. Use the highest values possible to
avoid conflicting with duplicate codes in future versions of Amiga Basic. You
can write an error handling routine to process the error you define.

Reference

O

L

I

(I U

L

R I B B

(ISR I

l

|

11

1 1

11

1

]

B

11 1

EXP

If an ERROR statement specifies a code for which no error message has
been defined, Amiga Basic responds with an “Unprintable error” error
message. Execution of an ERROR statement for which there is no
error-handling routine causes an error message to be generated and
execution to halt. '

Example:
This example shows how ERROR is used in direct mode:

ERROR 15
String too long

EXP(X)

Returns e (base of natural logarithms) to the power of X; that is,
2.7182818284590°X.

If X is greater than 88 (for single-precision numbers) or 709 (for
double-precision numbers), an “Overflow” error message is displayed,
machine infinity with the appropriate sign is supplied as the result, and
execution continues. The evaluation of this function is performed in single
precision when the argument is in single precision and in double precision
when the argument is in double precision.

Example:
The following example returns e to the power of 0, 1, 2, and 3.

FOR I = 0 TO 38
PRINT EXP(I)
NEXT I

The following is displayed on the screen:

1

2.718282
7.3898056
20.08554

Reference 8-51

FIELD FIELD [#]filenumber, fieldwidth AS string-variable...

8-52

Allocates space for variables in a random file buffer.

It is good programming practice to have a FIELD statement follow as closely
as possible the statement that opens the file it is defining.

The filenumber parameter corresponds to the number specified in OPEN
when the file was created. The fieldwidth is the number of characters to be
allocated to the string-variable.

The total number of bytes allocated in a FIELD statement must not exceed
the record length that was specified when the file was created with OPEN.
Otherwise, a “Field overflow” error message is generated. (The default
record length is 128 bytes.)

Any number of FIELD statements may be executed for the same file. All
FIELD statements that have been executed will remain in effect at the same
time.

Note

Do not use a fielded variable name in an INPUT or LET statement. Once a
variable name is fielded, it points to the correct place in the random file
buffer. If a subsequent INPUT or LET statement with that variable name is
executed, the variable’s pointer no longer refers to the random record
buffer, but to string space.

See also: GET, LSET, OPEN, PUT, RSET

Example:

This is a fragment of a program that opens an existing file and fields it for
three variables.

OPEN "Payables" AS #2
FIELD #2, 20 AS N8, 14 AS A3, 4 AS X8

Reference

[

C CC oo o b

(NS IR I (NI IR U N A

]

B I

1

N

11 1 3 1 1

1

1 1

1

FILES

FIX

See page 5-13 for a complete programming example that uses the FIELD
command.

FILES [string]
Lists all files in a given directory.
If you omit string, the statement lists all files in the current directory. If
string contains a directory name, all files in that directory are listed. If
string contains a filename, it is listed if the file exists.
If string specifies a drive number, the statement lists all files in the current

directory of the disk on that drive. See the AmigaDOS User’s Manual for
details on specifying files and their pathnames.

Example:

FILES "df1:"
FILES "c"

FIX(X)

Returns the truncated integer part of X.
FIX(X) is equivalent to SGN(X)*INT(ABS(X)). The difference between

FIX and INT is that FIX does not round off negative numbers to their next
lower number (see the example below).

Example:

The following example shows the operation of FIX and INT on the same
negative, non-integer number.

30 PRINT FIX(-58.75)
40 PRINT INT(-58.75)

Reference 8-53

The following is displayed on the screen:

-58
-58

. C

See also: CINT, INT

=

FOR...NEXT FOR variable=x TO y [STEP z]
NEXT [variable]|[,variable...]

.

Performs a series of instructions in a loop a given number of times.

The FOR statement uses X, y, and z as numeric expressions, and variable as
a counter. The expression x is the initial value of the counter. The
expression y is the final value of the counter.

The program lines following the FOR statement are executed until the
NEXT statement is encountered. Then the counter variable is adjusted by
the amount specified by STEP. A check is performed to see if the value of
the counter is now greater than the final value of y. If it is not greater,
Amiga Basic branches back to the statement after the FOR statement and
the process is repeated. If it is greater, execution continues with the
statement following the NEXT statement. This is called a FOR...NEXT
loop.

. L L

If STEP is not specified, the increment is assumed to be one (+1). If STEP
is negative, the counter is decreased each time through the loop. The loop
is executed until the counter is less than the final value.

A FOR statement without a corresponding NEXT statement will generate a
“FOR without NEXT” error message. A NEXT statement without a

corresponding FOR statement will generate a “NEXT without FOR” error
message.

L L

Nested Loops

L

FOR...NEXT loops may be nested; that is, a FOR...NEXT loop may be
placed within the context of another FOR..NEXT loop. When loops are

L

8-54 Reference

E.

]

I B

a1 1 1 1

1]

]

1 1

n

1

]

FRE

nested, each loop must have a unique variable name as its counter. The
NEXT statement for the inside loop must appear before that for the outside
loop.

The variable in the NEXT statement may be omitted, in which case the
NEXT statement matches the most recent FOR statement. If a NEXT

statement is encountered before its corresponding FOR statement, a “NEXT
without FOR” error message is generated and execution is terminated.

Example:

In the following example, the FOR statement produces a loop of 11
repetitions, each printing out the current value of I.

FOR I = O TO 100 STEP 10
PRINT I;
NEXT I

The following is displayed on the screen:
0 10 20 30 40 50 60 70 80 90 100
FRE(-1)

FRE (-2)
FRE(Xx)

Returns numbers of free bytes in specified areas.
FRE(-1) returns the total number of free bytes in the system. FRE (-2)
returns the number of bytes of stack space that has never been used.

FRE(x) where x is not —1 or -2 returns the number of free bytes in Amiga
Basic’s data segment.

Example:
DEF FNMemoryLeft& = FRE(0)-INT ((BobRight+16)/16)*2* (BobBottom+1)*5-6

See also: CLEAR

Reference 8-55

GET

GET [#]|filenumber|[,recordnumber)
GET (x1,yl)-(x2,y2),array-name [(index|[,index...,index])]

Reads a record from a random disk file into a random buffer.

. Gets an array of bits from the screen.

The two syntaxes shown above correspond to two different uses of the GET
statement. These are called a random file GET and a screen GET,
respectively.

Random File GET

Screen

8-56

In the first form of the statement, the filenumber is the number under which
the file was created with OPEN. If the recordnumber is omitted, the next

record (after the last GET) is read into the buffer. The largest possible
record number is 16,777,215.

After a GET statement has been executed, the data in recordnumber may be
accessed directly using fielded variables. (See “Random Access Files” in
Chapter 5, “Working With Files and Devices,” for details on random file
operations.) INPUT# and LINE INPUT# also may be executed to read
characters from the random file buffer.

EOF (filenumber) may be used after a GET statement to check if the GET
statement was beyond the end-of-file.

GET

The second form of the GET statement is used for transferring graphic
images. GET obtains an array of bits from the screen, and its counterpart,
PUT, places an array of bits on the screen.

The arguments to GET include specification of a rectangular area on the
display screen with (xl,yl)-(x2,y2). The two points specify the upper
left-hand corner of the rectangle and the lower right-hand corner of the
rectangle, respectively.

Reference

I N

CC C C o & o bbb

C C O

]

1]

B R S R B

I D R

I R R B

The array-name is the name assigned to the place that will hold the image.
The array can be any type except string, and the dimension must be large
enough to hold the entire image.

The multiple index parameters for an array permit multiple objects in a
multidimensional graphic array. This allows looping through different views
of an object in rapid succession.

Unless the array is of type integer, the contents of the array after a GET is
meaningless when interpreted directly (see below).

The required size of the array, in bytes, is:
8+((y2-yl+1)*2*INT((X2-X1+16)/18)*D

where x and y are the lengths of the horizontal and vertical sides of the
rectangle. D is the depth of the screen, for which 2 is the default.

The bytes per element of an array are:

2 bytes for integer
4 bytes for single precision
8 bytes for double precision

For example, assume you want to GET (10,20)-(30,40),ARRAY%. The
number of bytes required is 6+(40-20+1)*2* (INT((30-10)+16)/16))*2 or
174 bytes. Therefore, you would need an integer array with at least 87
elements. '

It is possible to examine the x and y dimensions and even the data itself if an
integer array is used. The width, height, an depth of the rectangle can be
found in elements 0, 1, and 2 of the array, respectively.

The GET and PUT statements are used together to transfer graphic images
to and from the screen. The GET statement transfers the screen image
bounded by the rectangle described by the specified points into the array.
The PUT statement transfers the image stored in the array onto the screen.

Reference 8-57

Example:
GET (0,0)-(127,127),P

See also: PUT

GOSUB...RETURN GOSUB line

8-58

RETURN [line]
Branches to and returns from a subroutine.

The line in the GOSUB statement is the line number or label of the first line
of a subroutine. Program control branches to the line after a GOSUB
statement executes. A RETURN within the GOSUB will return control back
to the statement just following the GOSUB statement in the program text.

A subroutine may be called any number of times in a program. A
subroutine also may be called from within another subroutine. Such nesting
of subroutines is limited only by available memory.

RETURN statements in a subroutine cause Amiga Basic to branch back to
the statement following the most recent GOSUB statement.

A subroutine may contain more than one RETURN statement, should logic
dictate a return at different points in the subroutine.

The line option may be included in the RETURN statement to return to a
specific line number or label from the subroutine. This type of return should
be used with care, however, because any other GOSUB, WHILE, or FOR
statements that were active at the time of the GOSUB will remain active, and
error messages such as “FOR without NEXT” may be generated.

Subroutines may appear anywhere in the program, but it is recommended
that the subroutine be readily distinguishable from the main program. To

~ prevent inadvertent entry into the subroutine, precede it with a STOP, END,

or GOTO statement that directs program control around the subroutine.

Reference

L . . C L. C L. oot b o b b b b L

J 1 1 31 1 1 1 1 31 1 31 171 3 31 73 1]

GOSUB InitGraphics

InitGraphics:
iDraw = 30
iErase = 0

RETURN

GOTO GOTO line
Branches to a specified line.

If the program statement with the number or label line is an executable
statement, that statement and those following are executed.

If it is a nonexecutable statement, such as a REM or DATA statement,
execution proceeds at the first executable statement encountered after line.

It is advisable to wuse control structures (IF...THEN...ELSE,WHILE
...WEND, and ON...GOTO) in lieu of GOTO statements as a way of
branching, because a program with many GOTO statements can be difficult
to read and debug.

Example:

CheckMouse:

IF MOUSE(0)=0 THEN CheckMouse

IF ABS(X-MOUSE(1)) > 2 THEN MovePicture

IF ABS(Y-MOUSE(2)) < 8 THEN CheckMouse
MovePicture:

PUT (X,Y),P

X=MOUSE(1): Y=MOUSE(2)

PUT (X,Y),P

GOTO CheckMouse

HEXS$ HEX$ (X)

Returns a string that represents the hexadecimal value of the decimal
argument.

Reference 8-59

X is rounded to an integer before HEX$(X) is evaluated.

Example:

The following example prints the decimal and hexadecimal values of 10
through 16.

FOR A = 10 TO 18
PRINT A ; HEXS$(A)
NEXT A

The following is displayed on the screen:

10 A
11 B
12 ¢
18 D
14 E
15 F
16 10
IF...GOTO IF expression GOTO line[ELSE else-clause)
IF..THEN...ELSE IF expression THEN then-clause[ELSE else-clause]
IF..THEN...ELSE Block IF expression THEN
statementBlock
ELSEIF expression THEN
statementBlock
ELSE
statementBlock
END IF

8-60

Makes a decision regarding program flow based on the result returned by an
expression.

The following rules apply to syntax 1 and 2 IF...GOTO and
IF..THEN...ELSE statements:

Reference

C C C CCCoC b L

N I I I I A B

a1 31 31 1 31 1 31 1 1 1 3 1 32 71 7

1

If the result of the expression is true, the then-clause or GOTO
statement is executed.

If the result of the expression is false, the then-clause or GOTO
statement is ignored and the else-clause, if present, is executed.

The then—clause and the else-clause, can be nested; that is,
they can contain multiple Amiga Basic statements and functions.

However, for Syntax 1 and Syntax 2, the clauses must not
exceed one line.

THEN may be followed by either an Amiga Basic statement, a
function, or a label or line number.

GOTO is always followed by a label or line number.

If the statement does not contain the same number of ELSE
and THEN clauses, each ELSE is matched with the closest
unmatched THEN.

If an IF...THEN statement is followed by a line number or label
in immediate mode, an “Undefined line number” error message
is generated, unless a statement with the specified line number
or label had previously been entered in program edit mode.

The rules that apply to Syntax 1 and 2 also apply to Syntax 3. However,
Syntax 3 differs in the following respects:

The statementBlock can contain nested IF-THEN-ELSE
blocks. Amiga Basic does not limit nested statements to only
one line; statementBlock can contain one or more Amiga Basic
statements entered on different lines.

If an expression is true, the corresponding THEN
statementBlock is executed, and program execution resumes at
the first statement following the END IF statement.

Reference 8-61

8-62

A block IF

Example:

INPUT a,b

If no expressions are true, either (1) program execution
resumes at the first statement following the END IF statement or
(2) the ELSE statementBlock (if present) is executed and
program execution resumes at the first statement following the
END IF statement.

The ELSE-IF block is optional; Amiga Basic doesn’t limit the
number you can specify.

The ELSE block is optional.

If anything other than a remark follows on the same line as
THEN, Amiga Basic considers it a single-line IF-THEN-ELSE
statement.

In a line containing a block ELSE, ELSE IF, or END IF

statement, only a label can precede the statement; otherwise,
Amiga Basic issues an error message.

statement does not have to be the first statement on the line.

IF a = 1 THEN

IF b=1

THEN

PRINT "a and b are 1"

ELSE
PRINT
END IF
ELSEIF a >
IFb>0
REM---ab
PRINT '"a
ELSE
PRINT "a
PRINT "w
END IF

Reference

"a =1,b <> 1"
O THEN

THEN PRINT "both a and b > 0O"
ove line is single-line-IF, not Block-IF
> oll

<= O"

e know nothing about b"

[

I I

L [[

L L C [

L O C O >

o 1 1 1 1 1 1 1 1 0 1 1 1]

1 1

INKEYS INKEY$

Returns either a one-character string containing a character read from the
keyboard or a nullstring if no character is pending at the keyboard.

No characters are echoed. All characters are passed through to the program
except for Amiga-period, which terminates the program.

Note that if an Output window is not active while the program is running,
and the user presses a key, the key is ignored and a BEEP will occur, since
keystrokes on the Amiga are only directed to the selected window.

Example:

GetAKey:
a$=INKEY$
IF a$<>"" THEN
a$=UCASES$ (a8)
IF a$="Y" THEN Response=1
IF a$="N" THEN Response=2
IF a$="C" THEN Response=3
IF Response=0 THEN BEEP
END IF
IF Response = 0 THEN GOTO GetAKey
PRINT Response

See also: SLEEP

INPUT INPUT[;] [prompt-string;]variable-list

Allows input from the keyboard during program execution.

When an INPUT statement is encountered, program execution pauses and a
question mark is printed to indicate the program is waiting for data. If the
prompt-string is included, the string is printed before the question mark.
The required data is then entered at the keyboard. :

A comma may be used instead of a semicolon after the prompt string to
suppress the question mark. For example, the statement INPUT “ENTER
BIRTHDATE"”,B$ will print the prompt with no question mark.

Reference 8-63

8-64

The data that is entered is assigned to the variables given in the
variable-list. The number of data items supplied must be the same as the
number of variables in the list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names
(including subscripted variables). The type of each data item that is input
must agree with the type specified by the variable name. (Strings input to an
INPUT statement need not be surrounded by quotation marks.)

Responding to INPUT with too many or too few items or with the wrong type
of value (string instead of numeric, etc.) causes the prompt message “?Redo
from start” to be generated. No assignment of input values is made until an
acceptable response is given.

Example:

The following example shows the use of INPUT to prompt a user to enter
values for a conversion program.

THIS PROGRAM CONVERTS DECIMAL VALUES TO HEXADECIMAL
ANSWERS$="Y"
WHILE (ANSWER$="Y")
INPUT "ENTER DECIMAL NUMBER ", DECIMAL
PRINT "HEX VALUE OF " DECIMAL "IS " HEX$(DECIMAL)
PRINT "OCTAL VALUE OF " DECIMAL "IS " OCT$(DECIMAL)

INPUT "DO YOU WANT TO CONVERT ANOTHER NUMBER? ", ANSWER$
ANSWER$ = UCASES$ (ANSWERS)

WEND

END

The following shows an example of some of the results displayed when a user
interacts with this program.

ENTER DECIMAL NUMBER 186

HEX VALUE OF 16 IS 10

OCTAL VALUE OF 16 IS 20

DO YOU WANT TO CONVERT ANOTHER NUMBER? Y
ENTER DECIMAL NUMBER 31

HEX VALUE OF 381 IS 1F

OCTAL VALUE OF 31 IS 387

DO YOU WANT TO CONVERT ANOTHER NUMBER? N

Reference

L. C C O [

'
i

L [

(NN S O T I Ay I

L [

[

I D N

1 10 1 1 1 1 1 1 1 1

1

INPUTS INPUTS$ (X[, [#]filenumber])

Returns a string of X characters, and reads from filenumber. If the
filenumber is not specified, the characters are read from the keyboard.

If the keyboard is used for input, no characters are echoed on the screen.
All control characters are passed through except Ctrl-C, which is used to
interrupt the execution of the INPUTS$ function.

objAttributes$ = INPUT$(LOF(1),1)
OBJECT.SHAPE 1,0objAttributes$

INPUT# INPUT#filenumber,variable-list

Reads items from a sequential file and assigns them to program variables.

The filenumber corresponds to the number specified when the file was
created with OPEN. The variable-list contains the variable names to be
assigned to the items in the file; the data type specified for the variable
names must match the data type of the corresponding items in the file.

The data items in the file should appear just as they would if data were being
typed in response to an INPUT statement. Amiga Basic ignores leading
spaces, carriage returns, and linefeeds; it processes any other character as
the first digit of a number. For numeric items, the next space, carriage
return, linefeed, or comma delimits the last digit of the number from the
next item. ’

For string items, if the first character of a string is a quotation mark ("), a
second quotation mark delimits the end of the string (such a string cannot
contain an embedded quotation mark). If a quotation mark is not the first
character, then a comma, carriage return, linefeed, or the 255th character
of the string delimits the end of the string item.

Reference 8-65

INSTR INSTR([I,]X$,Y$)

INT

8-66

Searches for the first occurrence of string Y$ in X$, and returns the position
at which the match is found. Optional offset I sets the position for starting
the search.

If I is greater than the number of characters in X$ (LEN(X$)), or if X$ is
null or Y$ cannot be found, INSTR returns 0. If Y$ is null, INSTR returns I
or 1. X$ and Y$ may be string variables, string expressions, or string literals.

Example:

The following statements locate a specific field within a string and then
replace it with a new string; INSTR determines the byte location of the field.

‘THIS ROUTINE CHANGES THE ADDRESS FIELD IN RECORD$

RECORD$ ="n:JOHN JONES adr:3633 8TH ST WACO, TX "

PRINT "RECORDS$ = " RECORD$

OFFSET = INSTR(RECORD$, "adr:") ‘FIND START OF ADDRESS adr:

MIDS$ (RECORD$,OFFSET,40) = "adr:222 ELM ST. WAXAHACHIE, TX "
PRINT "MODIFIED RECORD$ = " RECORD$

The following is displayed on the screen:

RECORDS$ = n:JOHN JONES adr:3633 6TH ST WACO, TX
MODIFIED RECORDS$ = n:JOHN JONES adr:222 ELM ST. WAXAHACHIE, TX

INT(X)

Returns the largest integer less than or equal to X.

Example:

PRINT INT(3.4)
X = INT(37.98)
PRINT INT(X)
Y = INT(-32.3)
PRINT INT(Y)

Reference

(I A

C O CCc bbb b b o

[

I I B

11 1 1 1]

l

1

0 I

I

KILL

The following integers would be printed:

3
317
-33

See also: CINT, FIX

KILL filespec
Deletes a file from disk.

If a KILL command is given for a file that is currently OPEN, a “File
already open” error message is generated. The filespec argument is any
legal Amiga filename.

Example:
This deletes the file named MailLabels:

KILL "MailLabels"

LBOUND LBOUND (array-name|,dimension))
UBOUND UBOUND (array-name|,dimension])

Returns the lower or upper bounds of the dimensions of an array.
The array-name is the name of the array variable to be tested.

The dimension parameter is an optional number used when the array is
multi-dimensional, and specifies the dimensions of the array being bounded.
The optional dimension parameter specifies for which dimension to find the
bound. The default value is 1.

The lower bounds are the smallest indices for the specified dimension of the

array. LBOUND returns 0 or 1 depending on whether the OPTION BASE
is 0 or 1.

Reference 8-67

Example:

LBOUND and UBOUND are particularly useful for determining the size of
an array passed to a subprogram. For example, a subprogram could be
changed to use these functions rather than explicitly passing upper bounds to
the routine:

CALL INCREMENT (ARRAY1(0), ARRAY2(), TOTAL())

SUB INCREMENT (A(2), B(2), C(2)) STATIC
FOR I = LBOUND(A,1) TO UBOUND (A,1)
FOR J = LBOUND(A,2) TO UBOUND(A, 2)

C(I,J) = A(I,J) + B(I,J)
NEXT J
NEXT I
END SUB

LEFTS LEFT$(X$,])

LEN

8-68

Returns a string containing the leftmost I characters of X$.

I must be in the range 0 to 32767. If I is greater than the number of
characters in X$ (LEN(X$)), the entire string (X$) is returned. If =0, a
null string of length zero is returned.See also: MID$, RIGHTS$

LEN(X$)

Returns the number of characters in X$. Nonprinting characters and blanks
are counted.

Example:

The following routines shows the use of LEN in determining the offset of a
field within a string.

Reference

(N N

C C C C C L

L

L L L

[

1

1

1

1 1 1

1 1 1

1 1 1

1

11

LET

“THIS ROUTINE EXTRACTS THE ADDRESS a: FROM STRING RECORD$

.

RECORD$ = "n:JOHN JONES ss:5349 12 99 a:36383 6TH ST WACO,TX"
LENGTH = LEN(RECORD$) ‘DETERMINE LENGTH OF RECORD

OFFSET = INSTR(RECORD$,"a:") ‘FIND START OF ADDRESS a:

RIGHTCHAR = LENGTH - OFFSET - 1

ADDRESS$ = RIGHT$ (RECORD$,RIGHTCHAR) ‘EXTRACT ADDRESS FROM RECORD$
PRINT ADDRESS$

The following is displayed on the screen:

3633 86TH ST WACO,TX

[LET] variable=expression

Assigns the value of an expression to a variable.

Notice that the word LET is optional. The equal sign by itself is sufficient

for assigning an expression to a variable name.

Example:

The following example shows the optional nature of LET in variable
assignments; lines 10 and 20 perform the same function, even though LET is

not specified in line 20.

[{
w

10 LET A =1 : LET B 2 : LET C =
20D =1 : E=2: F =3
30 PRINT ABCDETF

The following is displayed on the screen:

123123

Reference

8-69

LIBRARY LIBRARY “filename”

LINE

8-70

LIBRARY CLOSE

LIBRARY opens a library of machine language subprograms and functions
to Amiga Basic. LIBRARY CLOSE closes all libraries that have been
opened by the LIBRARY statement.

The filename is a string expression designating the file where Amiga Basic is
to look for machine language functions and subprograms. The LIBRARY
statement lets you attach up to five library files to Amiga Basic at a time.
Amiga Basic continues to look for subprograms in these libraries until a
NEW, RUN, or LIBRARY CLOSE statement is executed. See Appendix F
for more information on these statements.

The LIBRARY statement can generate the, “File not found” and the “Out
of memory” error messages.

To use the LIBRARY statement, you must create a .bmap file on disk; the
file describes the routines in the specified library. See Appendix F for a
description of how to create this file. '

Example:

LIBRARY "graphics.library"
CALL SetDrMd& (WINDOW(8),3)

LINE [[STEP](xl,yl)] - [STEP] (x2,y2),[color-id][,b[f]]

Draws a line or box in the current Output window.

The coordinate for the starting point of the line is (x1,yl); the coordinate
for the end point of the line is (x2,y2).

The color-id specifies the color to be used; it corresponds to the color-id
parameter in a PALETTE statement.

Reference

[

. o O

I U

L

oL

L

C C O L

1
)

C

A1 1

[D B R R B

B N

1]

With the “,b” option, a box is drawn in the foreground, with the points (x1,
y1) and (x2,y2) as opposite corners.

The “,bf” option fills the interior of the box. When out-of-range
coordinates are given, the coordinate that is out of range is given the closest
legal value. Boxes are drawn and filled in the color given by color-id.

With STEP, relative rather than absolute coordinates can be given. For
example, assume that the most recent point referenced was (10,10). The
statement LINE STEP (10,5) would specify a point at (20,15), offset 10
from x1; and offset 5 from y1.

If the STEP option is used for the second coordinate in a LINE statement, it
is relative to the first coordinate in the statement.

Example:
LINE(0,0)-(120,120),,BF

The above statement draws a box and fills it in with the foreground color
specified by either the COLOR statement or the Amiga system default.

LINE INPUT LINE INPUT [;][“prompt-string”;]string-variable

Reads an entire line from the keyboard during program execution and places
it in a string variable without using delimiters.

The “prompt-string” is a literal that Amiga Basic prints to the screen before
input is accepted. Amiga Basic prints question marks only when they the
are part of prompt-string. All input from the end of the prompt-string to
the carriage return is assigned to the string-variable.

If LINE INPUT is immediately followed by a semicolon, the carriage return

typed by the user to end the line does not echo a carriage return/linefeed
sequence on the screeen.

Reference 8-71

To terminate a LINE INPUT statement, press the AMIGA key on the
righthand side of the keyboard and a period.

Example:

This example demonstrates the use of LINE INPUT and LINE INPUT#.

OPEN "O", #2, "INFO"
LINE INPUT "Customer Data?";CUSTOMER$
PRINT #2,CUSTOMER$

CLOSE #2

OPEN "I, #2,"INFO"
LINE INPUT #2,CLIENTS$

PRINT CLIENTS$

END

When you run this program, the following is displayed on the screen:

Customer Data? Clarissa Dalloway $10.17 Penknife
Clarissa Dalloway $10.17 Penknife

LINE INPUT# LINE INPUT# filenumber;string—variable

8-72

Reads an entire line from a sequential file during program execution and
places it in a string variable without using delimiters.

The filenumber corresponds to the number assigned to the file when it was
created with OPEN. The string-variable is the variable name to which
Amiga Basic assigns the line.

The carriage-return character delimits each line in the file. LINE INPUT#
reads only the characters preceding the carriage-return character, and then
skips this character and the linefeed character before reading the next line.

This statement is useful if each line in a data file is broken into fields, or if
an Amiga Basic program saved in ASCII format is being read as data by
another program.

See also: LINE INPUT, SAVE

Reference

CCCCCCC oG

L.

C O C .

I

a1 1 1]

1

]

n

I I B

a

1

1

1

]

LIST

Example:

See the example for LINE INPUT.

LIST [line]
LIST [line][-[line]], “filename”

Lists the program currently in memory to a List window, a file, or a device.

The line may be a line number or an alphanumeric label. When a LIST
command is given, the specified lines appear in the List window.

The second syntax allows the following options:

e If only the first line is specified, that line and all following lines
are listed.

e If only the second line is specified, all lines from the beginning
of the program through the specified line are listed.

® If both line arguments are specified, the entire range is listed.

® If a filename is given in a string expression such as SCRN: or
LPT1:, the listed range is printed on the given device.

See also: “List Window Hints” in Chapter 4, “Editing and Debugging Your
Programs.”

Example:
This example produces a List Window and lists the program:

LIST

Reference 8-73

LLIST

LOAD

8-74

LLIST [line][-[line]]

Sends a listing of all or part of the program currently in memory to the
printer (PRT:).

The options for LLIST are the same as for LIST, except that there is no
optional output device parameter; output is always to the printer (PRT:).

See also: LIST

LOAD ([filespec[,R]]

Loads a file from disk into memory. See SAVE for a description of file
specification that includes different drives or libraries.

If the filespec is not included, a requester appears to prompt the user for the
correct name of the file to load.

The filespec must include the filename that was used when the file was
saved.

The R option automatically runs the program after it has been loaded.

LOAD closes all open files and deletes all variables and program lines
currently residing in memory before it loads the designated program.
However, if the R option is used with LOAD, the program is run after it is
loaded, and all open data files are kept open. Thus, LOAD with the R
option may be used to chain several programs (or segments of the same
program). Information may be passed between the programs using their
disk data files.

See also: CHAIN, MERGE, SAVE

Reference

C O COoCCocCcoC o b b o b L

O

]

1 1

]

I R R

]

]

I N B

]

]

]

LOC

LOC (filenumber)

For random disk files, LOC returns the record number of the last record
read or written.

For sequential disk files, LOC returns a different number, the increment.
The increment is the number of bytes written to or read from the sequential
file, divided either by the number of bytes in the default record size for
sequential files (128 bytes) or the record size specified in the OPEN
statement for that file. Mathematically, this can be expressed as shown
below.

Number of Bytes Read or Written /| OPEN statement Record Size
= # Returned by LOC (filenumber)

For files opened to KYBD: or COMI1, LOC returns the value 1 if any
characters are ready to be read from the file. Otherwise, it returns 0.

When a file is opened for sequential input, Amiga Basic reads the first
record of the file, so LOC returns 1 even before any input from the file
occurs. LOC assumes the filenumber is the number under which the file was
opened.

LOCATE LOCATE [line] [,column]

Positions the pen at a specified column and line in the current Output
window.

The value of the column and line parameters must be equal to or greater
than 1; the location they specify is relative to the upper-left corner of the
current Output window. If you omit these parameters, Amiga Basic uses the
current location of the pen.

In determining the column and line position, LOCATE uses the height and
width of the character “0” in the font of the current Output window.

Reference 8-75

LOF

LOG

8-76

Example:

The following example records the current line and row numbers, moves the
cursor to the bottom of the screen, and prints a message; it then restores the
cursor to its original position and prints a message.

Y = CSRLIN ~“ GET CURRENT CURSOR LINE NUMBER (VERTICAL POSITION)

X = POS(0) ~“ GET CURRENT CURSOR COLUMN NUMBER (HORIZONTAL POSITION)
LOCATE 20,1 ° PLACE CURSOR ON LINE 24, ROW 1 (BOTTOM OF SCREEN)
PRINT "THIS PRINTS AT LOCATION 20,1 (BOTTOM OF PAGE)"

LOCATE Y,X ~ PLACE CURSOR IN ORIGINAL LOCATION

PRINT "THIS PRINTS AT ORIGINAL LOCATION OF CURSOR"

LOF (filenumber)
Returns the length of the file in bytes.

Files opened to SCRN:, KYBD:, or LPT1: always return the value 0.

Example:

entireFile$ = INPUT$(LOF(1),1)

LOG(X)

Returns the natural (base ¢) logarithm of X. X must be greater than zero.

The evaluation of this function is performed in single precision when the
argument is in single precision and in double precision when the argument is
in double precision.

Example:

The following statements generate the five sets of results by means of the
LOG function.

Reference

C O

CCCoCoC

L L

.

L C L

C C

41 31 1 1 31 31 31 1 1 1 1 1 1 1 1

10 FOR I = 1 TO 2 STEP .2

20 PRINT "LOG OF ";I "= ";LOG(I)
30 NEXT I

40 END

The following is displayed on the screen:

LOGOF 1= O
LOG OF 1.2 = .1823216
LOG OF 1.4 = .33684723
LOG OF 1.8 = .47000837
LOG OF 1.8 = .58778868
LPOS LPOS(X)

Returns the current position of the line printer’s print head within the line
printer buffer.

X is a dummy argument. LPOS does not necessarily give the physical
position of the print head.

Example:

IF LPOS(X) > 60 THEN PRINT CHR$(13)

LPRINT LPRINT [expression-list]
LPRINT USING LPRINT USING string—expression;expression-list

Prints data on the line printer.

LPRINT and LPRINT USING are the same as PRINT and PRINT USING
except that output goes to the line printer instead of to the screen.

Example:

See the examples in PRINT and PRINT USING.

Reference 8-77

LSET

LSET string—variable=string—expression

Moves data from memory to a random file buffer in preparation for a PUT
statement.

If the string—expression parameter requires fewer bytes than were fielded to
the string-variable, LSET left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to pad the extra positions.) If
the string is too long for the field, characters are dropped from the right.
Numeric values must be converted to strings with MKI$, MKL$, MKSS$, or
MKD$ before they are used with LSET or RSET.

Note

LSET and RSET may also be used with a nonfielded string variable to
left—justify or right—justify a string in a given field.

MENU MENU menu-id, item—id, state [,title-string]

8-78

MENU RESET
MENU (0)
MENU (1)

The statements create custom Menu Bar options and items underneath
them, or restore the default Menu Bar.

The functions return the number of the last Menu Bar or menu item
selection made.

The menu-id is the number assigned to the Menu Bar selection. It can be a
value from 1 to 10.

The item-id-is the number assigned to the menu item underneath the Menu
Bar. It can be a value from 0 to 19. If item-id is between 1 and 19, it
specifies an item in the menu. If item-id is 0, it specifies the entire menu.

For the state argument, use 0 to disable the menu or menu item, 1 to enable
it, or 2 to enable the item and place a check mark by it. If the item-id is 0,

Reference

C C C C CC ot o .

C C C C ¢ & ©b L

17 13137 317 3327171111713 717

the state takes effect for the entire menu. When you compose a menu item
which is to be checkmarked, you must leave two blank spaces ahead of the
item for the checkmark to be rendered.

The title-string is a string assigned to be the title of a custom Menu Bar
selection or an item underneath one.

Depending on the state, the MENU statement enables or disables menu
item item in MENU menu-id. If the title-string argument appears, the item
name on the Menu Bar is changed to title-string.

The MENU RESET statement restores Amiga Basic’s default Menu Bar.

The function syntax MENU(0) returns a number which corresponds to the
number of the last Menu Bar selection made. MENU(0) is reset to 0 every
time it executes, so the Menu Bar can be polled just like INKEYS.

The function syntax MENU(1) returns a number which corresponds to the. '
number of the last menu item selected.

This set of MENU statements and functions gives you the tools to build
custom menus and menu items in the Menu Bar at the top of the screen. If
a MENU ON statement is executed, the user’s selection of custom menu
items can be trapped with the ON MENU GOSUB statement.

You can override the existing Amiga Basic menu items with the MENU
statement.

Example:
The following are examples of menu statements.

MENU 1,0,1,"Transactions:"

MENU 1,1,1, "Deposits"

MENU 1,2,1, "Withdrawals"

MENU 1,8,1, "Automatic Payment"
MENU 1,5,1,"Credit Card Purchases"

Reference 8-79

The following are examples of MENU functions.

MenuId=MENU (0)
MenuItem=MENU (1)

See also: MENU ON, ON MENU, SLEEP

MENU ON MENU ON
MENU OFF MENU OFF
MENU STOP MENU STOP

Enables, disables, or suspends trapping MENU events; a MENU event
occurs when the user selects a menu item defined by the MENU statement.
The MENU function can be used to determine which menu item was
selected.

The MENU ON statement enables event trapping.

The MENU OFF statement disables ON MENU event trapping. Event
trapping stops until a subsequent MENU ON statement is executed. The
MENU STOP statement suspends MENU event trapping. Event trapping
continues, but Amiga Basic does not execute the ON MENU...GOSUB
statement for an event until a subsequent MENU ON statement is executed.

Example:

ON MENU GOSUB CheckMenu
ON MOUSE GOSUB CheckMouse
MENU ON

MOUSE ON

See also: MENU, ON MENU, “Event Trapping” in Chapter 6, “Advanced
Topics.”

MERGE MERGE filespec

8-80

Appends a specified disk file to the program currently in memory.

Reference

L L b oot bbb bbb

J 2 1 1 1 331 3132 31 1 1 31 1 1 1 1

The filespec must include the filename used when the file was saved. That
file must have been saved in ASCII format to be merged. You can put a file
in ASCII format by using the A option to the SAVE command. If it was not
saved in ASCII format, a “Bad file mode” error message is generated.

Amiga Basic returns to command level after executing a MERGE command.

Example:

MERGE "SortRoutine"

MID$ (string—expl,n [,m])=string—exp2
MID$(X$,n [,m])

The statement replaces a portion of one string with another string.

The function returns a string of length m characters from X$, beginning with
the nth character.

In the statement syntax, n and m are integer expressions, and string—expl
and string—exp2 are string expressions. The characters in string—expl,
beginning at position n, are replaced by the characters in string—exp2. If nis
greater than the number of characters in X$ (that is, LEN(X$)),MID$
returns a null string.

The optional m refers to the number of characters from string—exp2 that are
used in the replacement. If m is omitted, all of string—exp2 is used. The
replacement of characters never exceeds the original length of string—expl.
In the function syntax, the values n and m must be in the range 1 to 32767.
If m is omitted or if there are fewer than m characters to the right of the nth
character, all rightmost characters, beginning with the nth character, are
returned.

In the function syntax, the values n and m must be in the range 1 to 32767.
If m is omitted or if there are fewer than m characters to the right of the n
character, all rightmost characters, beginning with the nth character, are
returned. If n is greater than the number of characters in X$ (that is,
LEN(X$)), MIDS$ returns a null string.

Reference 8-81

Example:

The following statements locate a specific field within a string and then
replace it with a new string.

THIS ROUTINE CHANGES THE ADDRESS FIELD IN RECORD$

RECORD$ ="n:JOHN JONES adr:3633 8TH ST WACO, TX "

PRINT "RECORD$ = " RECORD$

OFFSET = INSTR(RECORDS$, "adr:") ‘FIND START OF ADDRESS adr:

MID$ (RECORD$,OFFSET, 40) "adr:222 ELM ST. WAXAHACHIE, TX "
PRINT "MODIFIED RECORD$ " RECORD$

The following is displayed on the screen:

RECORD$ = n:JOHN JONES adr:3633 6TH ST WACO, TX
MODIFIED RECORDS$ = n:JOHN JONES adr:222 ELM ST. WAXAHACHIE, TX

MKI$ MKI$ (short—integer—expression)
MKLS$ MKLS$ (long—integer—expression)
MKS$ MKSS$ (single-precision—expression)
MKD$ MKDS$ (double—precision—expression)

8-82

Puts numeric values into string variables for insertion into random file
buffers.

MKI$ converts a short integer to a 2-byte string.

MKLS$ converts a long integer to a 4-byte string.

MKSS$ converts a single-precision number to a 4-byte string.
MKDS$ converts a double-precision number to a»8-byte string.

You must convert numeric variables to string variables before placing them
in a random file. Use MKI$, MKL$, MKDS$, and MKSS$ for this purpose.
Then move the variable to the random file buffer using either LSET or
RSET, and write the buffer to the file using PUT#.

Reference

L . L L O C [C C C Cb *C

C L [[

[

11 1 1 1 1 1 1 1 1 1 1 1

1

I R B

Instead of converting the binary value to its string representation, like the
STR$ function, MK$ moves the binary value into a string of the proper
length. This greatly reduces the amount of storage required for storing
numbers in a file.

Example:
PRINT #1, MKI$(Flags);

The following example illustrates the use of MKI$, MKS$, and MKD$ with
random files.

OPEN "AccountInfo" AS #2 LEN = 14
FIELD #2,8 AS ACCT$,4 AS CHECK$,2 AS DEPOSITS
LET ACCOUNTNO# = 987654332556#
LET CHECKING! = 123456!
LET SAVINGS% = 2500
LSET ACCT$ = MKD$ (ACCOUNTNO#)
LSET CHECKS = MKS$ (CHECKING!)
LSET DEPOSIT$ = MKI$ (SAVINGS%)
PUT #2,1
CLOSE #2
END

See also: CVI, CVS, CVL, CVD, LSET, RSET, Chapter 5, “Working with
Files and Devices.”

MOUSE MOUSE (n)

The MOUSE function returns information about the left mouse button and
the location of the mouse’s cursor within the active window. MOUSE does
not monitor the right button, which is used to control the menu (see the
MENU function for information on monitoring menu selections).

MOUSE performs seven functions; specify any value from 0 through 6 as the
n parameter to select the desired function. The functions are described in
the sections that follow.

Reference 8-83

MOUSE(0): Mouse Button Position

8-84

MOUSE(0) gives the status of the left mouse button. After executing
MOUSE(0), Amiga Basic retains the start and end positions of the mouse
until a subsequent MOUSE(0) is executed. Therefore, after detecting the
movement of the mouse through MOUSE(0), a program should then use
MOUSE(3), MOUSE(4), MOUSE(5), and MOUSE(6) to determine the
starting and ending positions.

The following table explains the values returned by MOUSE(0).

Value

Returned Explanation

0

The left MOUSE button is not currently down, and it has not gone
down since the last MOUSE(0) function call.

The left MOUSE button is not currently down, but the operator
clicked the left button once since the since the last call to MOUSE
(0). To determine the start and end points of the selection, use
MOUSE(3), MOUSE(4), MOUSE(5), and MOUSE(6).

The left MOUSE button is not currently down, but the operator
clicked the left button twice since the last call to MOUSE (0). To
determine the start and end points of the selection, use
MOUSE(3), MOUSE(4), MOUSE(5), and MOUSE(6). (Similarly,
a value of 3 indicates the button was clicked three times.)

The operator is holding down the left mouse button after clicking it
once. The return of this value usually signifies that the mouse is
moving.

The operator is holding down the left mouse button after clicking it
twice. The return of this value usually signifies that the mouse is
moving. (Similarly, a value of -3 indicates the button was clicked
three times.)

Reference

C C C C C CCcC ot L L CC & Cc Cc

|
3

-

1

I [S N I e T A D R

n

MOUSE(1): Current X Coordinate

MOUSE(1) returns the horizontal (X) coordinate of the mouse cursor the
last time the MOUSE(0) function was invoked, regardless of whether the
left button is down.

MOUSE(2): Current Y Coordinate

MOUSE(2) returns the vertical (Y) coordinate of the mouse cursor the last
time the MOUSE(0) function was invoked, regardless of whether the left
button was down.

MOUSE((3): Starting X Coordinate

MOUSE(3) returns the horizontal (X) coordinate of the mouse cursor the
last time the left button was pressed before MOUSE(0) was called. Use
MOUSE(3) in combination with MOUSE(4) to determine the starting point
of a mouse movement.

MOUSE(4): Starting Y Coordinate

MOUSE(4) returns the vertical (Y) coordinate of the mouse cursor the last
time the left button was pressed before MOUSE(0) was called.

MOUSE(5): Ending X Coordinate

If the left button was down the last time MOUSE(0) was called, MOUSE(5)
returns the horizontal (X) coordinate where the mouse cursor was when
MOUSE(0) was called. If the left button was up the last time MOUSE(0)
was called, MOUSE(S5) returns the horizontal (X) coordinate where the
mouse cursor was when the left button was released. Use MOUSE(5) to
track the mouse as the operator moves it and to determine the coordinate
where movement stops.

Reference 8-85

MOUSE(6): Ending Y Coordinate

MOUSE(6) works the same way as MOUSE(5), except it returns the
vertical (Y) coordinate.

Mouse Example

The following routine checks the movement of the mouse. As the mouse
moves, the routine moves a graphic image in array P to the new X and Y
positions.

CheckMouse:

IF MOUSE(0)=0 THEN CheckMouse

IF ABS(X-MOUSE(1)) > 2 THEN MovePicture

IF ABS(Y-MOUSE(2)) < 3 THEN CheckMouse
MovePicture:

PUT (X,Y),P

X=MOUSE (1) : Y=MOUSE(2)

PUT (X,Y),P

GOTO CheckMouse

MOUSE ON MOUSE ON
MOUSE OFF MOUSE OFF
MOUSE STOP MOUSE STOP

8-86

Enables, disables, or suspends event trapping based on the pressing of the
mouse button. '

The MOUSE ON statement enables event trapping based on a user’s
pressing the mouse button.

The MOUSE OFF statement disables ON MOUSE event trapping. Event
trapping stops until a subsequent MOUSE ON statement is executed. The
MOUSE STOP statement suspends MOUSE event trapping. Event trapping
continues, but Amiga Basic does not execute the ON MOUSE...GOSUB
statement until a subsequent MOUSE ON statement is executed.

See also: MOUSE, ON MOUSE, “Event Trapping” in Chapter 6,
“Advanced Topics.”

Reference

L . L C

CCCCoC

L o L L

I I

!
i

O

B

1

1]

11 1 1

B

1

A1 1 1]

1

NAME NAME “old-filename” AS “new-filename”

NEW

Changes the name of a disk file.

Both parameters are string expressions. The old-filename must exist and
the new-filename must not exist. Otherwise, an error results.

Example:

In this example, the file that was formerly named Accounts becomes
LEDGER.

NAME "Accounts" AS "LEDGER"

NEW

Deletes the program currently in memory and clears all variables and the
List window.

NEW is entered in immediate mode or selected from the Project menu to
clear memory before entering a new program. If there is a program
currently in memory, and that program has been changed since it was
loaded, a requester will automatically appear to allow saving of that program.
If executed from within a program, NEW causes Amiga Basic to return to
edit mode.

NEW closes all files and turns off tracing mode. When you execute NEW,
the windows retain their sizes and locations.

NEXT NEXT [variable[,variable...]]

Allows a series of instructions to be performed in a loop a given number of
times.

See “FOR...NEXT"” for a discussion of NEXT usage.

Reference 8-87

OBJECT.AX OBJECT.AX object-id, value
OBJECT.AY OBJECT.AY object-id, value

Define the acceleration of an object in the x and y directions.

The object-id corresponds to the object-id in an OBJECT.SHAPE
statement; it identifies the object whose acceleration is to be defined.

The value specifies the acceleration rate in number of pixels per second per
second.

OBJECT.CLIP OBJECT.CLIP (x1,yI)-(x2,y2)

Defines a rectangle and instructs Amiga Basic not to draw objects outside
this area.

The xI and x2 parameters define the left and right boundaries of the
rectangle on the x axis, and yI and y2 define the top and bottom boundaries
on the y axis. The default value of the CLIP rectangle is the border of the
current Output window.

Note: If you change the size of the window using the Sizing Gadget, the
boundaries you have defined using OBJECT.CLIP aren’t automatically
updated. That is, if you enlarge the window, the object remains within the
current bounds defined with the last OBJECT.CLIP executed.

OBJECT.CLOSE OBJECT.CLOSE [object-id [,object-id...]]

8-88

The OBJECT.CLOSE statement releases all memory held by one or more
objects when the object is no longer needed.

The object-id corresponds to the object-id in an OBJECT.SHAPE
statement; it identifies the one or more objects in the current Output window
that OBJECT.CLOSE will release.

Reference

C O C L

(I W

L

i
)

L O C

(T I I

[

1 1

1]

1

1]

1

11

l

1

A I N R R

If object-id is not specified, all objects in the current Output window are
released.

OBJECT.HIT OBJECT.HIT object-id, [MeMask] [,HitMask]

Determines collision objects for object-id.

The object-id corresponds to the object-id in an OBJECT.SHAPE
statement.

By default, all objects collide with each other and the border. This
statement can be used to allow some objects to pass through each other
without causing a collision.

MeMask is a 16-bit mask that describes object—id. HitMask is a 16-bit
mask that describes the object that object—id is to collide with. If the least
significant bit of Hitmask is set, object—id collides with the border. If the
MeMask of one object, when logically ANDed to the HitMask of another
object, produces a non-zero result, object—id collides with any object
described by HitMask and a COLLISION event occurs.

For more information on defining MeMask and HitMask, see the Using
HitMask and MeMask section of the “Graphics Animation Routines”
chapter in the Amiga ROM Kernel Manual for details.

Example:

OBJECT.SHAPE 1,Asteroid$

OBJECT.SHAPE 2,Ship$

OBJECT.SHAPE 3,Missle$

OBJECT.HIT 1,8,7 ‘collides with border, ship, missile
OBJECT.HIT 2,2,9 ‘collides with border, asteroid
OBJECT.HIT 3,4,9 ‘collides with border, asteroid

OBJECT.ON OBJECT.ON [object-id [,object-id...]]
OBJECT.OFF OBJECT.OFF [object—id [,object-id...]]

These two statements make one or more objects visible or invisible.

Reference 8-89

The object-id corresponds to the object-id in an OBJECT.SHAPE
statement; it identifies an object within the current Output window that
OBJECT.ON or OBJECT.OFF will respectively make visible or invisible.

In OBJECT.ON, if object-id is not specified, all objects within the current
Output window are made visible. If the object was previously started with an
OBJECT.START statement, it moves again.

In OBJECT.OFF, if object-id is not specified, all objects within the current
Output window are made invisible. This statement halts the object if it was
started with OBJECT.START, and prevents future collisions.

Example:
See OBJECT.SHAPE for an example of OBJECT.ON.

See also: OBJECT.START and OBJECT.STOP

OBJECT.PLANES OBJECT.PLANES object-id [,plane-pick][,plane-on-off]

Sets the bob’s planePICK and place-on-off masks. For details see the
Amiga ROM Kernel Manual.

The object-id corresponds to the object-id in an OBJECT.SHAPE
statement; it identifies an object in the current Output window.

The plane-pick and plane-on-off can be an integer from 0 to 255. It
defaults to the value established by the Object Editor.

OBJECT.PRIORITY OBJECT.PRIORITY object-id, value

8-90

Sets a priority that determines when an object is drawn in relation to other
objects with higher or lower priorities. This statement affects only bobs; it
has no effect on sprites.

Two objects assigned the same priority are drawn in random order.

Reference

1 T Y Y Y O Ay IOy Ny

1

1 1

S R R R D R A

[I

The object-id corresponds to the object-id in an OBJECT.SHAPE
statement; it identifies the object to be drawn.

The value is a number from -32768 to 32767 indicating the priority; the
higher the value specified, the higher the priority. For example, an object
with a priority of 8 is displayed “in front of” objects with a priority of 0
through 7.

OBJECT.SHAPE

Statement Syntax 1 OBJECT. SHAPE object-id, definition

Syntax 1 of the OBJECT.SHAPE statement defines the shape, colors,
location, and other attributes of an object that can be moved around the
current Output window. This includes blitter-objects (bobs) and VSprites as
discussed in the “Graphic Animation Routines” chapter of the Amiga ROM
Kernel Manual.

The object-id identifies the object and is referred to by other OBJECT
statements; object—id can range from 1 to n, where n is only limited by
memory available.

The definition is a string expression that describes the static attributes
(including size, shape, and color) of the object. The Object Editor utility
program, written in Amiga Basic and supplied with the system, builds this
string expression. See Chapter 7 for information on using this program.

Statement Syntax 2 OBJECT . SHAPE object-idl, object-id2

Syntax 2 of the OBJECT.SHAPE statement copies the shape of object-id2
to object-idl, creating a new object. Both objects share a significant
amount of memory; thus memory requirements for multiple objects is
reduced when they are created with Syntax 2.

Even though object-id2 and object-idl share memory, you can specify
different attributes to each using other OBJECT statements. Amiga Basic
initializes the values assigned to OBJECT.X, OBJECT.Y, OBJECT.VX,
OBJECT.VY, OBJECT.AX, and OBJECT.AY to 0 for this purpose.

Reference 8-91

8-92

Example:

OPEN "ball" FOR INPUT AS 1
OBJECT.SHAPE 1,INPUT$(LOF(1),1)

In the above example, the static attributes of the object (including the size,
shape, and color) are in the file ball earlier created by the user with the
Object Editor program (see Chapter 7).

The following gives an example of an Amiga Basic routine that starts up and
handles collisions of the objects defined in ball. Refer to the other sections

of this chapter for an explanation of the COLLISION statement and the
other OBJECT statements.

WINDOW 4, "Animation", (310,95)-(580,170),15
ON COLLISION GOSUB BounceOff
COLLISION ON
OPEN "ball" FOR INPUT AS 1 ‘file created by the Object Editor
OBJECT.SHAPE 1, INPUT$(LOF(1),1)
CLOSE 1
OBJECT.X 1,10
OBJECT.Y 1,50
OBJECT.VX 1,30
OBJECT.VY 1,30
OBJECT.ON
OBJECT.START
WHILE 1
SLEEP
WEND
BounceOff:
saveld = WINDOW(1)
WINDOW 4
i=COLLISION (0)
IF i=0 THEN RETURN
j=COLLISION (i)
IF j=-2 OR j=-4 THEN
‘object bounced off left or right border
OBJECT VX i,-OBJECT VX (i)
ELSE
‘object bounced off top or bottom border
OBJECT.VY i,-OBJECT.VY (i)
END IF
OBJECT.START
WINDOW saveld
RETURN

Reference

C C O

L L

. C O C

'
)

I N I

[

1 1

]

1 1 1 1

1

A B R I B

1 1

OBJECT.START OBJECT.START [object-id [,object-id...]]
OBJECT.STOP OBJECT.STOP [object-id [,object-id...]]

The OBJECT.START statement sets one or more objects into motion.
The OBJECT.STOP statement freezes the motion of one or more objects.

The object—-id corresponds to the object-id in an OBJECT.SHAPE
statement; it identifies one or more objects in the current Output window
that OBJECT.START or OBJECT.STOP, respectively, sets into motion or
freezes.

In OBJECT.START, if object-id is not specified, all objects in the current
Output window are set in motion.

In OBJECT.STOP, if object-id is not specified, all objects in the current
Output window are frozen.

When two objects collide, Amiga Basic does an OBJECT.STOP on both

objects. When one object collides with the border, Amiga Basic does an
OBJECT.STOP on the object.

Example:

See OBJECT.SHAPE for an example of the OBJECT.START statement.

OBJECT.VX

OBJECT.VY

Statement Syntax OBJECT.VX object-id, value
OBJECT.VY object-id, value

Function Syntax OBJECT. VX (object-id)

OBJECT. VY (object-id)

The statement defines the velocity of an object in the x and y directions.
The function returns the velocity of an object in the x and y directions.

Reference 8-93

The object-id corresponds to the object-id in an OBJECT.SHAPE
statement; it identifies the object to which the velocity applies.

The value in the statement defines the velocity in number of pixels per
second. The function returns the same value.

Example:

OBJECT.VX 1,380
OBJECT.VY 1,30

See also: OBJECT.AX, and OBJECT.AY, and OBJECT.SHAPE for an
example of the use of this statement with other OBJECT statements.

OBJECT.X

OBJECT.Y

Sta