Radio fhaek ADDENDUM Service M®గロฏ

TRS-80
 VIDED DISPLAY

(KTR123S)
Catalog Number 26-1201

INTRODUCTION

Radio Shack's TRS-80 Video Display consists of RCA's model AB123W Television set which has been modified for use in Radio Shack's TRS-80 Microcomputer System. Radio Shack's model number for the Display is KTR 123S. This manual contains complete service information for the TRS-80 Video Display (KTR123S only).

Sections of this manual are a direct pickup from RCA's Television Service Data, File 1977 B-2. Radio Shack has been granted permission to reproduce those sections of the manual by RCA Corporation, Consumer Electronics, 600 N. Sherman Drive, Indianapolis, IN 46201.

SPECIFICATIONS

Power Input 120 Volts AC, 60 Hz Power Consumption 37 Watts at 120 VAC

SAFETY PRECAUTIONS

NOTE: Before servicing this chassis, read and follow these precautions and the "Product Safety Notes" in the REPLACEMENT PARTS section.

Before returning any instrument to the customer a safety check of the entire Video Display Monitor should be made. The service technician must be sure that no protective device built into the instrument by the manufacturer has become defective or inadvertently defeated during servicing.

1. Comply with all caution and safety related notes located on or inside the receiver cabinet and on the monitor chassis or picture tube.
2. WARNING: Alterations of the design or circuitry of this video display monitor should not be made.
Any design alterations or additions such as, but not limited to, circuit modifications, auxiliary speaker jacks, switches, grounding, active or passive circuitry, etc may alter the safety characteristics of this instrument and potentially create a hazardous situation for the user. Any design alterations or additions will void the manufacturer's warranty and will further relieve the manufacturer of responsibility for personal injury or property damage resulting therefrom.
3. HOT CHASSIS WARNING: The chassis of some video display monitors are connected to one side of the AC supply. "Hot" chassis equipment in which the chassis is solidly connected to one side of the AC line cord may be serviced without using an isolation transformer if the power plug is inserted so that the chassis is connected to the grounded side of the AC supply. Check with an $A C$ voltmeter to see if a potential exists between the chassis and a known earth ground. A zero or very low AC reading should be obtained. If a significant reading is obtained, reverse the power plug and recheck for a zero or low meter reading.
Some chassis have a secondary ground system in addition to the main chassis ground. The secondary ground is NON-ISOLATED in respect to the power line. The two ground systems are separated by insulating material which must not be defeated or altered in any way. Other chassis have an 85 V RMS potential from chassis to earth ground, regardless of the polarity of the AC supply. Service on these types of chassis should only be
performed with an isolation transformer inserted in the power line between the receiver and the AC supply for protection of both personnel and test equipment.
4. Observe the original correct lead dress. Extra precaution should be taken to assure proper lead dress in the following areas: (a) near sharp edges. (b) that wire or components do not touch thermally hot parts. (c) AC supply area. (d) high voltage area. (e) video input wiring. (f) inspect for pinched, out-of-place, or damaged wiring in all areas.
5. Components that indicate evidence of overheating should be replaced.
6. WARNING: The picture tube in this monitor employs integral implosion protection. Replace with a tube of the same type number for continued safety. Do not remove, install or handle the picture tube in any manner unless shatterproof goggles are worn. People not so equipped should be kept away while picture tubes are handled. Keep picture tube away from the body while handling. On "In-Line" type picture tubes, the deflection yoke is an integral part of the picture tube and is permanently attached. Do not attempt to remove "permanently attached" yoke from CRT because of possible tube breakage and hazard to the servicer.
7. Protective shields are provided on this chassis for the protection of both the service technician and the customer. Protective shields removed for servicing convenience must be correctly re-installed and ANY MISSING SHIELDS MUST BE REPLACED. DO NOT OP. ERATE THIS INSTRUMENT WITHOUT THE PROTECTIVE SHIELDS IN POSITION AND PROPERLY SECURED.
8. When replacing a chassis in the cabinet, always be certain that all the protective devices are put back in place, such as: non-metallic control knobs, insulating fish papers, adjustment and compartment covers/shields, isolation resistor capacitor networks, etc.

9. VIDEO INPUT COLD CHECK

With the AC plug removed from the 120 VAC source, place a jumper across the two plug prongs. Turn the instrument AC switch on. Using an ohmmeter, connect one lead to the jumpered AC plug and touch the other lead to each exposed coaxial connector. The resistance measured should not be less than 20 megohms. Any resistance value below this range indicates an abnormality which requres corrective action. Repeat the test with the AC switch in the OFF position.

10. LEAKAGE CURRENT HOT CHECK (ON COMPLETELY ASSEMBLED INSTRUMENT)

Plug the AC line cord directly into a 120 VAC outlet (do not use an isolation transformer for this check). Use a Leakage Current Tester or a metering system which complies with American National Standards Institute (ANSI C101.1 "Leakage Current for Appliances") (50.7). Ni: sure for current with the AC switch "on" and repeat with the AC switch "off" from all exposed metal parts of the cabinet (plugs, jacks, handle bracket, metal cabinet, screwheads, metal overlays, control
shafts, etc.) to a known earth ground (waterpipe, conduit, etc); particularly any exposed metal part having a return path to the chassis. Any current measured must not exceed 0.5 milliamp. Reverse plug in the AC outlet and repeat test. ANY MEASUREMENTS NOT WITHIN THE LIMITS OUTLINED ABOVE ARE INDICATIVE OF A POTENTIAL SHOCK HAZARD AND CORRECTIVE ACTION MUST BE TAKEN BEFORE RETURNING THE INSTRUMENT TO THE CUSTOMER.

AC Leakage Test

11. X-RADIATION AND HIGH VOLTAGE LIMITS

The primary source of potential x-radiation in solid state video display monitors is the picture tube. The picture tube is specially constructed to prohibit x-radiation emissions. For continued x-radiation protection, the replacement tube must be the same type as the original. The shields and mounting hardware for picture tubes have an x-radiation protection function and

Many electrical and mechanical parts in television sets have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this Data and its Supplements and Bulletins. Electrical components having such features are identified by shading on the schematics and by (*) on the Parts List in this Data and its Supplements and Bulletins. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement part shown in the Parts List in this Data and its Supplements and Bulletins, may create shock, fire, or other hazards.
must be properly in place.
High voltage must be checked each time any service is required that involves $B+$, horizontal deflection or high voltage. Where used, x-radiation Protection Circuits (may also be referred to as horizontal disable or holddown) must be checked for proper operation each time the x-radiation Protection Circuit is serviced. Refer to the Technician x-radiation warning note on the Chassis Schematic in the Basic Service Data and Instrument Labels for specific high voltage limits of each chassis and, where used, x-radiation Protection Circuits specifications.
High voltage is maintained within specified limits by the use of close tolerance safety related components and adjustments in the high voltage circuit. If high voltage exceeds specified limits, check each component specified on the chassis schematic diagram and take necessary corrective action.

12. PRODUCT SAFETY NOTICE

Figure 1. Chassis Layout

CHASSIS DESCRIPTION

The chassis assembly consists of discrete components mounted on a circuit board (PW200 - Figure 3) and one plug-in Video Interface module (Figure 4). High wattage resistors, a high voltage transformer and electrolytic capacitor, C113, are mounted on the chassis at the right side (Figure 1). The horizontal output transistor, Q101, is mounted on a heatsink at the bottom of the chassis (refer to Figure 1).

CIRCUIT PROTECTION DEVICES

Fuse		Physical Location
F101	1.0 A/250V clip-in	Terminal strip above
F102 $\ldots . .5$ 5A/250V pig-tail	AC power (Figure 1)	

Power is supplied from a half wave rectifier (CR101) and associated components C113A, B, R114 and R118 to operate the horizontal output stage and to start the horizontal oscillator and driver stages immediately when the set is turned on. All other power (12VDC and 18VDC) is derived from the secondary winding of the high voltage transformer (T101).

CAUTION

The wide blade of the polarized power plug is grounded to the chassis. Read "Safety Precautions" on page 2, paragraph 3, of this service data before servicing the chassis.

CENTERING

The picture is centered on the screen by rotating the two disc magnets (centering tabs) located on the neck of the picture tube directly behind the yoke (Figure 1). To view the left and right edge of the picture, reduce the AC line voltage using a variac transformer. To view the top and bottom edges of the picture, reduce height with the vertical size control (R244 - Figure 1). Rotate the two disc magnets either separately or together to center the picture on the screen. Restore AC line voltage and height to normal.

VERTICAL SIZE

Adjust AC line voltage to 108 VAC using a variac transformer. Adjust contrast, R102, and brightness, R103, controls (Figure 1) fully CW. Adjust vertical size control (R244 Figure 1) until picture just fills the mask at top and bottom. Restore full AC line voltage. The picture should slightly overscan the mask at sides and at top and bottom.

HORIZONTAL HOLD CHECK

Pull-in - From either direction should be a minimum of three bars and a maximum of ten bars.
Range - When fully rotated in either direction the picture should fall out of sync when signal is interrupted.
Phase - Immediately after pull-in from either side, the picture should be within $1 / 4^{\prime \prime}$ of center.

INSTRUMENT DISASSEMBLY

Cabinet Rear Cover Removal - Disconnect the AC power cord. Remove five $1 / 4^{\prime \prime}$ hex head screws: two in the cabinet handle mold, one next to the AC power cord and two on the bottom of the cabinet. The rear cover is now free to be completely removed.

Power Switch and Control Brackets on Chassis - Remove two $1 / 4^{\prime \prime}$ hex head screws from each bracket.

DANGER

The 2 nd anode lead on the picture tube's envelope supplies high voltage. Keep hands and test probes away from the left side of the picture tube while making voltage measurements. Always discharge the 2 nd anode lead to the chassis before inserting or extracting the Video Interface board. The picture tube may hold a charge for a long time. Remember always discharge!

Chassis Removal (Figuse 2) - Remove one 1/4' hex head screw at left side of chassis to disconnect ground (black) lead. Disconnect high voltage lead from picture tube and leads from speaker. Remove the $3 / 16^{\prime \prime}$ hex head/slot head from the yoke clamp. Remove two $1 / 4^{\prime \prime}$ hex head screws from the bottom of chassis frame. Pull off the kine cap and slide chassis back (yoke leads are soldered to chassis). The yoke must be removed with the chassis.

Remove Module from Chassis - Remove the module; if the module is to be replaced, unsolder the bracket from the module and retain bracket for use with replacement module.

Figure 2. Disassembly

VIDEO INTERFACE

The Video Interface Board has two main purposes. First, it supplies a convenient method of providing video from the computer to the Video Display. Second, it isolates the hot chassis in the Display from the computer ground. The isolating function is performed by Z 1 , a high-speed optical isolator.

TROUBLESHOOTING THE VIDEO INTERFACE BOARD

All voltages, shown enclosed in circles on the Video Interface Schematic (Figure 5), are measured with the Video Display plugged into an Isolation Transformer, the computer
connected and R1 shorted. Remember - there are two commons for each side of $\mathrm{Z1}$. Be sure you have selected the proper common points or your readings will be wrong. All voltages are measured with a Digital Voltmeter having an input impedance of 10 megohms.

All waveform measurements are made with R1 not shorted to ground. Be sure to use an Isolation Transformer and use the proper common for the Oscilloscope. The waveforms should be present when the word "READY" appears on the Video Display.

SERVICE CHECK CHART

Symptoms	Probable Cause
Set inoperative	AC supply to set (wall plug)
	F101 open
	R112 open
	C113 shorted
No brightness	CR108
	L202 open
	Q101
	T101
No raster	Horizontal system dead
	Q212 horizontal driver transistor
	Q211 horizontal oscillator transistor
Brightness - none or intermittent	L204 horizontal hold control open
	L205 horizontal driver transformer open
Raster - narrow	Filter C270 shorted
Fold over - horizontal, left side	Q202 video output transistor
Vertical deflection - none	T101 high voltage transformer
	C105 open
Vertical sync. - weak or none	CR106 damper open

. CRITICAL LEAD DRESS

GENERALPRACTICE

All components, leads and mechanical parts listed below are related to safety. When replacing components, wiring, spacers, etc., observe original lead length and spacing. Replace all components, leads, wire ties and cable clamps exactly as in the original circuit. Also refer to "SAFETY PRECAUTIONS" on page 2 of this service data.

When replacing flame proof, power or high wattage (over 1 watt) resistors, keep body of resistor a minimum of $1 / 8^{\prime \prime}$ (or more where specified below) away from terminal board. Dress all leads away from these types of resistors.

AC wiring connections should be inspected for solder splash, teardrop solder and frayed ends. Wire ends protruding from connection should not be more than $1 / 16^{\prime \prime}$ long. Make sure no "near short" condition exists.

Seat all modules firmly with retainers in place.
Dress leads away from any rotating parts, such as function switch S-7.

VHF TUNER AND I-F MODULE

1. I-F module (MAF) is to be seated firmly in connector and held in place by a retainer bracket.
2. VHF Tuner - dress C91 down toward tuner and away from antenna filter.
3. Dress all leads away from UHF/VHF splitter assembly.

CHASSIS

1. Neon glow lamp - dress lamp (on kine socket) toward front and close to neck of kine to give clearance for back cover.
2. Wires or components should not touch body of flameproof or power resistors.
3. AC power cord - dress through strain relief. The power cord in front of the strain relief should be $3-1 / 2^{\prime \prime}$ long.
4. C113 - terminal " A " of this electrolytic is to be covered with heat shrink.
5. Leads of power resistors R112, R114, R118 and R121 should be dressed through both holes of their respective terminal strips and soldered at both holes. These resistors should be $1 / 8^{\prime \prime}$ away from terminal strips and dressed away from each other.
6. R118 - not to be more than .1-1/2" from chassis to top of resistor.
7. CR106, C108 and C109 - leads to be kept as short as possible.
8. C105 - dress body of capacitor against terminal of T101 and away from frame of T101.
9. C103 and C106 … dress away from frame of T101.
10. L101 - dress away from tire of T101.
11. C101 - dress away from R118.

HIGH VOLTAGE

1. Dress high voltage stick rectifier directly to high voltage anode button connection with any excess lead on the anode end looped toward top of kine. High voltage lead must not touch cabinet.
2. Dress all leads and components away from tire of high voltage transformer (T101).

PW200 COMPONENT
LOCATION GUIDE

(7)

IV P-P SOURCE B+I8VDC

(3) 74 V P-P AGC 3) PULSE HORIZRATE

(6)

SOV P-P HOR BLANKER INF

2

Figure 4. Video Interface (Bottom View) With Waveforms

Figure 5. Video Display Schematic

WARRANTY STATUS OF ASSEMBLIES AND PARTS
t Eligible for warranty exchange for new or rebuilt unit.
\ddagger Complete assembly eligible for warranty replacement with new or rebuilt unit.

All other parts except cabinet parts are eligible for warranty replacement as discrete components. Cabinet parts must have prior approval of RCA for warranty replacement.

Warranty status of assemblies and parts is subject to change without notice.

PRODUCT SAFETY NOTE - Components marked with a (*) have special characteristics important to safety. Before replacing any of these components, read carefully the PRODUCT SAFETY NOTICE on page 2 of the Basic Service Data. Don't degrade the safety of the set through improper servicing.

Symbol Stock No. No.
 No. No.

 rawingDescription

Symbol No.	Stock No.	Drawing No.	Description
	133540	147682-9	Socket - for 0101
	143036	1465916-506	Socket - kine
	137746	1446251-1	Spring - clip module
	143045	1463734-503	*Yoke - deflection
	PW200		
PW200	143035	1458929-502	- Circuit - complete
	CAPACITORS		
C209	141432	1446668-661	$470 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
C210	141029	1446668-361	$270 \mu \mathrm{~F}$ electrolytic
C222	102230	1420193-59	470 pF 10\% 500V Z5P dise
C223	139199	1420193-51	100 pF 10\% 500V Z5P disc
C224	137088	973999-75	$0.1 \mu \mathrm{~F} 10 \% 200 \mathrm{~V}$ film
C225	120832	1420193-13	1000 pF 20\% 500V Z5P disc
C226	228181	984655-38	$1 \mu \mathrm{~F} 150 \mathrm{~V}$ electrolytic
C227	139378	1446665-181	$1 \mu \mathrm{~F} 50 \mathrm{~V}$ electrolytic
C 228	$\uparrow 33058$	973999-23	$0.068 \mu \mathrm{~F} 20 \% 200 \mathrm{~V}$ film
C229	103852	1420193-3	$150 \mathrm{pF} 20 \% 500 \mathrm{~V}$ Z5P disc
C233	134778	1472442-69	$0.033 \mu \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{100V} \mathrm{film}$
C234	104131	1420193-68	2700 pF 10\% 500V Z5P disc
C235	120832	1420193-63	1000 pF 20\% 500V Z5P disc
C238	134778	1472442-69	$0.033 \mu \mathrm{~F} 10 \% 100 \mathrm{~V}$ film
C239	139285	1446668-241	$220 \mu \mathrm{~F} 15 \mathrm{~V}$ electrolytic
C240	139285	1446668-241	$220 \mu \mathrm{~F} 15 \mathrm{~V}$ electrolytic
C241	133398	1449092-112	5600 pF 10\% 50V film
C242	137331	1446657-321	$47 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C243	139444	1472442-75	$0.1 \mu \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{100V} \mathrm{film}$
C244	127167	1442134-56	$0.68 \mu \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{75V} \mathrm{film}$
C245	104205	1420193-69	3300 pF 10\% 500V 25 P disc
C248	104135	1420193-61	680 pF 10\% 500V Z5P disc
C249	139199	1420193-51	$100 \mathrm{pF} 10 \% 500 \mathrm{~V}$ Z5P disc
C250	137654	945354-21	$0.01 \mu \mathrm{~F} 20 \% 200 \mathrm{~V}$ Z5U disc
C251	-	-	1000 pF
C256	121671	1420193-17	2200 pF 20\% 500V Z5P disc
C257	121671	1420193-17	2200 pF 20\% 500V Z5P disc
C259	131764	1420193-12	820 pF 20\% 500V Z5P disc
C260	120832	1420193-63	1000 pF 20\% 500V Z5P disc
C261	135048	1472442-67	$0.022 \mu \mathrm{~F} 10 \% 200 \mathrm{~V}$ film
C262	126826	1472442-62	8200 pF 10\% 200V gim
C263	141028	1446666-151	$5.6 \mu \mathrm{~F} 20 \mathrm{~V}$ electrolytic
C264	134778	1472442-69	$0.033 \mu \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{100V} \mathrm{film}$
C265	138743	1472442-64	$0.12 \mu \mathrm{~F}$ 10\% 200V film
C266	126343	1472442-68	$0.027 \mu \mathrm{~F} 10 \% 100 \mathrm{~V}$ film
C268	133904	1472442-79	$0.22 \mu \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{Z5V} \mathrm{film}$
C269	105301	1420193-57	330 pF 10\% 500V Z5P disc
C270	141027	1446668-541	$390 \mu \mathrm{~F} 15 \mathrm{~V}$ electrolytic
CR204	139706	1471872-14	Silicon
CR206	119597	1471872-6	Silicon
CR207	119597	1471872-10	Rectifier - power switching
CR208	119597	1471872-6	Silicon
CR209	119597	1471872-6	Silicon
CR210	119597	1471872-6	Silicon
CR212	138173	1476171-31	Silicon
CR213	139706	1471872-14	Silicon
CR214	139706	1471872-14	Silicen

(Continued)

PRODUCT SAFETY NOTE - Components marked with a (*) have special characteristics important to safety. Before replacing any of these components, read carefully the PRODUCT SAFETY NOTICE on page 2 of the Basic Service Data. Don't degrade the safety of the set through improper servicing.

PRODUCT SAFETY NOTE - Components marked with a (*) have special characteristics important to safety. Before replacing any of these components, read carefully the PRODUCT SAFETY NOTICE on page 2 of the Basic Service Data. Don't degrade the safety of the set through improper servicing.

KTR123S CABINET PARTS IDENTIFICATION

