

USER’S MANUAL STATEMENT

This equipment generates and uses radio frequency energy and if not
installed and used properly, that is, in strict accordance with the
manufacturer‘s instructions, may cause interference to radio and
television reception. It has been type tested and found to comply with
the limits for a Class B computing device in accordance with the
specifications inSubpart J of Part 15 of FCC rules,which are designed
to provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment
does cause interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is
encouraged to try to correct the interference by one or more of the
following measures:

- reorient the receiving antenna

- relocate the computer with respect to the receiver

- move the computer away from the receiver

- plug the computer into a different outlet so that computer and
receiver are on different branch circuits.

―If necessary, the user should consult the dealer or an experienced
radio/television technician for additional suggestions. The user may
find the following booklet prepared by the Federal Communications
Commission helpful: ‗How to Identify and Resolve Radio-TV
Interference Problems.‘ This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock No.
004-000-00345-4.‖

COMMODORE 64
USER'S GUIDE

Published by
Commodore Business Machines, Inc.

and
Howard W. Sams& Co., Inc.

FIRST EDITION
SECOND PRINTING - 1982

Copyright © 1982 by Commodore Business Machines, Inc.
All rights reserved.

This manual is copyrighted and contains proprietary information. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form cr by anymeans,
electronic, mechanical, photocopying, recording or otherwise, without the prior written
permission of COMMODORE BUSINESS MACHINES, Inc.

ii

TABLE OF CONTENTS

INTRODUCTION ... vii

1. SETUP ... 1
 Unpacking and Connecting the Commodore 64 2

 Installation .. 3

 Optional Connections ... 6

 Operation ... 8

 ColorsAdjustment ... 11

2. GETTING STARTED ... 13
 Keyboard .. 14

 Back to Normal .. 17

 Loading and Saving Programs .. 18

 PRINT and Calculations ... 22

 Precedence .. 27

 Combining Things .. 28

3. BEGINNING BASIC PROGRAMMING 31
 The Next Step .. 32

GOTO .. 33

 Editing Tips .. 34

 Variables .. 34

 IF … THEN .. 37

 FOR … NEXT Loops ... 39

4. ADVANCED BASIC .. 41

 Introduction .. 42

 Simple Animation ... 43
Nested Loops .. 44

 INPUT .. 45

 GET .. 47

 Random Numbers and Other Functions 48

 Guessing Game ... 50

 Your Roll .. 52

iii

 Random Graphics .. 53
CHR$ and ASC Functions .. 53

5. ADVANCED COLOR AND GRAPHIC COMMANDS 55
 Color and Graphics .. 56

 PRINTing Colors .. 56

 Color CHR$ Codes .. 58

 PEEKs and POKEs .. 60

 Screen Graphics .. 62

 ScreenMemoryMap .. 62

 Color MemoryMap ... 64

 More Bouncing Balls .. 65

6. SPRITE GRAPHICS .. 67
 Introduction to Sprites .. 68

 Sprite Creation ... 69

 Additional Notes on Sprites.. 75

 BinaryArithmetic ... 76

7. CREATING SOUND .. 79
 Using Sound if You‘re Not a

Computer Programmer ... 80

 Structure of a Sound Program ... 80

 Sample: Sound Program.. 80

 Making Music on Your Commodore 64 81

 ImportantSound Settings ... 83

 Playing a Song on the Commodore 64 88

 Creating Sound Effects .. 89

 Sample Sound Effects ToTry ... 90

8. ADVANCED DATA HANDLING 91
 READ and DATA ... 92

 Averages .. 94

 Subscripted Variables .. 95
One-Dimensional Arrays ... 96
Averages Revisited ... 97

 DIMENSION ... 98

 Simulated Dice Roll With Arrays .. 99

 Two-Dimensional Arrays .. 100

iv

APPENDICES .. 105

Introduction .. 106
A: COMMODORE 64 ACCESSORIES AND SOFTWARE 107
B: ADVANCED CASSETTE OPERATION 110
C: COMMODORE 64-BASIC .. 112
D: ABBREVIATIONS FOR BASIC KEYWORDS 130
E: SCREEN DISPLAY CODES .. 132
F: ASClIand CHR$ CODES ... 135
G: SCREEN AND COLOR MEMORY MAPS 138
H: DERIVING MATHEMATICAL FUNCTIONS 140
I: PINOUTS FOR INPUT/OUTPUT DEVICES 141
J: PROGRAMS TO TRY .. 144
K: CONVERTING STANDARD BASIC PROGRAMS TO
 COMMODORE 64 BASIC .. 148
L: ERROR MESSAGES ... 150
M: MUSIC NOTE VALUES ... 152
N: BIBLIOGRAPHY .. 156
O: SPRITE REGISTER MAP .. 159
P: COMMODORE 64 SOUND CONTROL SETTINGS 162

INDEX ... 165

v

INTRODUCTION

Congratulations, on your purchase of one of the best computers in the

world. You are now the proud owner of the COMMODORE 64.

Commodore is known as The Friendly Computercompany, and part of

being friendly is giving you easy to read, easy to use and easy to

understood instruction manuals. The COMMODORE 64 USER’S GUIDE is

designed to give you all the information you need to properly set up your

equipment, get acquainted with operating the COMMODORE 64, and give

you o simple, fun start at learning to make your own programs.

For those of you who don‘t want to bother learning how to program,

we've put all the information you need to use Commodore programs or

other prepackaged programs and/or game cartridges (third party software)

right up front. This means you don‘t have to hunt through the entire book to

get started.

Now let‘s look at some of the exciting features that are just waiting for

you inside your COMMODORE 64. First, when it comes to graphics you've

got the most advanced picture maker in the microcomputer industry. We

call it SPRITE GRAPHICS, and it allows you to design your own pictures in

4 different colors, just like the ones you see on arcade type video games.

Not only that, the SPRITE EDITORlet‘s you animate as many as 8 different

picture levels at one time. The SPRITE EDITOR will soon be available as a

software program that you can load directly into your COMMODORE 64.

You can move your creations anywhere on the screen, even pass one

image in front of or behind another. Your COMMODORE 64 even provides

automatic collision detection which instructs the computer to take the action

you want when the sprites hit each other.

Next, the COMMODORE 64 has built-in music and sound effects

thatrival many wellknown music synthesizers. This part of your

computergives you 3 independent voices, each with a full 9 octave ―piano-

type‖range. In addition you get 4 different waveforms (sawtooth,

triangle,variable pulse, and noise), a programmable ADSR (attack, decay,

sustain, release) envelope generator and a programmable high, low,

andbandpass filter for the voices, and variable resonance and volume

controls. If you want your music to play back with professional sound

reproduction, the

vii

COMMODORE 64 allows you to connect your audio output to almost any

high-quality amplification system.

While we‘re on the subject of connecting the COMMODORE 64 to

other pieces of equipment … your system can be expanded by

addingaccessories, known as peripherals, as your computing needs grow.

Some of your options include items like co DATASSETTE* recorder or as

many as 5, VIC 1541 disk drive storage units for the programs you

makeand/or play. If you already have a VIC 1540 disk drive your dealer

canupdate it for use with the COMMODORE 64. You can add a VIC

dotmatrix printer to give you printed copies of your programs, letters,

invoices, etc. …if you want to connect up with larger computers and

theirmassive data bases then just plug in a VICMODEM cartridge, and

getthe services of hundreds of specialists and a variety of information

networks through your home or business telephone. Finally if you‗re one

ofthose people interested in the wide variety of applications

softwareavailable in CP/M**, the COMMODORE 64 can be fitted with a

plug-in Z-80 microprocessor.

Just as important as all the available hardware is the fact that

thisUSER’S GUIDE will help you develop your understanding of

computers.

It won't tell you everything there is to know about computers, but it will

arefer you to a wide variety of publications for more detailed

informationabout the topics presented. Commodore wants you to really

enjoy yournew COMMODORE 64. And to have fun, remember:

programming isnot the kind of thing you can learn in a day. Be patient with

yourself asyou go through the USER’S GUIDE. But before you start, take a

fewminutes to fill out and mail in the owner/registration card that came

withyour computer. It will ensure that your COMMODORE 64 is properly

registered with Commodore Headquarters and that you receive the

mostup-to-date information regarding future enhancements for your

machine. Welcome to a whole new world of fun!!

NOTE:

Many programs are under development while this manual is

beingproduced. Please check with your local Commodore dealer and

withCommodore User's Magazines anc Clubs, which will keep you up

todate on the wealth of applications programs being written for

theCommodore 64, worldwide.

 * DATASSETTE is a registered trademark of Commodore Business Machines, Inc.

 ** CP/M is a registered trademark of Digital Research Inc. Specifications subject tochange

viii

1

CHAPTER1

SETUP

 Unpacking and Connecting the

Commodore 64

 Installation

 Optional Connections

 Operation

 Color Adjustment

.

;

2

UNPACKING AND CONNECTING
THECOMMODORE 64

The following step-by-step instructions show you how to connect

theCommodore 64 to your television set, sound system, or monitor

andmake sure everything is working properly.

Before attaching anything to the computer, check the contents of

theCommodore 64 container. Besides this manual, you should find the

following items:

1. Commodore 64

2. Power supply (black box with an AC plug and supply cord)

3. Video cable

4. TV Switchbox (small silver box with short antenna leads).

If any items are missing check back with your dealer immediately for a

replacement.

First, let‘s take a look at the arrangement of the various connectionson

the computer and how each functions.

SIDE PANEL CONNECTIONS

1. Power Socket. The free end of the cable from the power supply

isattached here to supply power to the Commodore 64.

2. Power Switch. Turns on power to the Commodore 64.

3. Game Ports. Each game connector can accept a joystick or

gamecontroller paddle, while the lightpen can only be plugged into the

game port closest to the front of your computer.

REAR CONNECTIONS

4. Cartridge Slot.The rectangular slot to the left accepts program orgame

cartridges.

5. Channel Selector. Use this switch to select which TV channel

thecomputer's picture will be displayed on.

6. TV Connector. This connector supplies both the picture and sound

toyour television set.

7. Audio & Video Output. This connector supplies direct audio, which

can be connected to a high quality sound system, and a ―composite‖

video signal, which can be fed into a television ―monitor.‖

8. Serial Port. You can attach a printer or single disk drive directly tothe

Commodore 64 through this connector.

3

9. Cassette Interface. A DATASSETTE recorder can be attached to

thecomputer so you can save information entered for use at a later

time.

10. User Port. Various interface cartridges can be attached to the

userport, such as the VICMODEM, or RS 232 communication cartridge.

INSTALLATION

CONNECTIONS TO YOUR TV

Connect the computer to your TV as shown on page 4.

1. Attach one end of the TV cable to the phono type TV signal jack atthe

rear of the Commodore 64. Just push it in. Either end of thecable can

be used.

2. Connect the other end of the cable to the antenna switchbox. Justpush

it in.

4

3. If you have a VHF antenna, disconnect it from your TV set.

4. Connect your VHF antenna cable to the screw terminals labeled

―antenna input‖ on the switchbox. If your antenna cable is the

round75ohm coax type, use a 75ohm to 300ohm adapter (not

supplied)to attach your antenna cable to the switchbox.

5. Connect the twin lead output cable of the antenna switchbox to theVHF

antenna terminals of your TV set. If your set is one of the newertypes

with a round 75ohm VHF connector, you will need a 300ohmto 75ohm

converter (not supplied) to connect the switchbox to the 75ohm VHF

antenna input on the set.

6. Set the TV's VHF tuner to the channel number indicated on the

computer‘s channel selector switch (channel 3 move the switch to the

left, achannel 4 move the switch to the right). If a strong local TV signal

ispresent on one of these channels, select the other channel to

avoidpossible interference.

8. Plug the power supply cable into the power socket on the side of the

Commodore 64. Just push it in. It is ―keyed‖ to allow insertion in

onlyone direction, so you can‘t connect the power cord the wrong

way.The power supply converts household current into the form the

computer uses.

5

The Commodore 64 is now correctly connected. No additional

connections are required to use the computer with your TV. The

antennaswitchbox will connect the computer ta the TV when the slide

switch is inthe ―computer‖ position. When the switch is in the ―TV‖ position

your setwill operate normally.

6

OPTIONAL CONNECTIONS

Since the Commodore 64 furnishes o channel of high fidelity sound,

you may wish to play it through a quality amplifier to realize the bestsound

possible. In addition, the Commodore 64 also provides a standard

―composite‖ video signal, which can be fed into a television monitor.

These options are made possible by the audio/video output jack onthe

rear panel of the Commodore 64. The easiest way to gain access tothese

signals is by using a standard 5-Pin DIN audio cable (not supplied). This

cable connects directly to the audio/video connector onthe computer. Two

of the four pins on the opposite end of the cablecontain the audio and video

signals. Optionally, you can construct your own cable, using the pinouts

shown in Appendix I as a guide.

7

Normally, the BLACK connector of the DIN cable supplies the

AUDIOsignal. This plug may be connected to the AUXILIARY input of an

amplifier, or the AUDIO IN connector of a monitor or other video

system,such as a video cassette recorder (VCR).

The WHITE or RED connector usually supplies the direct VIDEO

signal.This plug is connected to the VIDEO IN connector of the monitor or

videoinput section of some other video system, such as a VCR.

Depending on the manufacturer of your DIN cable, the color codingof

the plugs may be different. Use the pinouts shown in Appendix I tomatch

up the proper plugs if you don‘t get an audio or video signalusing the

suggested connections.

If you purchased peripheral equipment, such as a VIC 1541 disk driveor

a VIC 1515 printer, you may wish to connect it at this time. Refer tothe

user‘s manuals supplied with any additional equipment for theproper

procedure for connecting it to the computer.

8

A completed system might look like this.

OPERATION

USING THE COMMODORE 64

1. Turn on the computer using the rocker switch on the right-side panel

when you're looking at the computer from the front.

2. After a few moments the following will be displayed on the TVscreen:

9

3. If your TV has a manual fine tuning knob, adjust the TV until you geta

clear picture.

4. You may also want to adjust the colar and tint controls on the TV forthe

best display. You can use the color adjustment procedure described

later to get everything setup properly. When you first get a picture, the

screen should appear mostly dark blue, with a lightblue border and

letters.

If you don‘t get the expected results, recheck the cables and

connections. The accompanying chart will help you isolate any problem.

TROUBLESHOOTING CHART

Symptom Cause Remedy

Indicator Light not ―On‖ Computer rot ―On‖ Make sure power switch

is in ―On‖ position

 Power cable not plugged

in

Check power socket for

loose or disconnected

power cable.

 Power supply not plugged

in

Check connection with

wall outlet

 Bad fuse in computer

Take system to

authorized dealer for

replacement of fuse

 TV on wrong channel Check other channel

for picture (3 or 4)

 Incorrect hookup Computer hooks up to

VHF antenna terminals

 Video cable not

plugged in

Check TV output cable

connection

 Computer set for

wrong channel

Set computer for same

channel as TV (3 or 4)

10

Symptom Cause Remedy

Random pattern on TV

with cartridge in place

Cartridge not properly

inserted

Reinsert cartridge after

turning off power

Picture without color Poorly tuned TV Retune TV

Picture with poor color Bad color adjustment on

TV

Adjust

color/hue/brightness

controls on TV

Sound with excess

background noise

TV volume up high Adjust volume of TV

Picture OK, but no sound TV volume too low Adjust volume of TV

 Aux. output not properly

connected

Connect sound jack to

aux. input on amplifier

and select aux. input

TIP: The COMMODORE 64 was designed to be used by everyone.

But we at Commodore recognize that computer users may, occasionally, run

intodifficulties. To help answer your questions and give you some fun

programmingideas, Commodore has created several publications te help you. You

might also find that it's a good idea to join a Commodore Users Club to help you

meet some otherCOMMODORE 64 owners who can help you gain knowledge and

experience.

CURSOR

The flashing square under READY is called the cursor and indicates

where what you type on the keyboard will be displayed on the screen.As

you type, the cursor will move ahead one space, as the originalcursor

position is replaced with the character you typed. Try typing on the

keyboard and watch as characters you type are displayed on the

TVscreen.

11

COLOR ADJUSTMENT

There is a simple way to get a pattern of colors on the TV so you

caneasily adjust the set. Even though you may not be familiar with

theoperation of the computer right now, just follow along, and you‘ll seehow

easy it is to use the Commodore 64.

First, look on the left side of the keyboard and locate the key

marked[CTRL]. This stands for ConTRoLand is used, in conjunction with

otherkeys, to instruct the computer to do a specific task.

To use a control function, you hold down the [CTRL] key while

depressing a second key.

Try this: hold the [CTRL] key while also depressing the [9] key. Then

release both keys. Nothingobvious should have happened, but if youtouch

any key now, the screen will show the character displayed in reverse type,

rather than normal type like the opening message or anything you typed

earlier.

Hold down the [SPACE BAR]. What happens? If you did the above

procedure correctly, you should see a light blue bar move across the

12

screenand then move down to the next line as long as the [SPACE BAR]is

depressed.

Now, hold [CTRL] while depressing any of the other number keys.

Eachof them has a color marked on the front. Anything displayed from

thispoint will be in that color. For example, hold [CTRL]and the[8]key

andrelease both. Now hold the [SPACE BAR].

Watch the display. The bar is now in yellow! In a like manner you

canchange the bar to any of the other colors indicated on the number

keysby holding [CTRL] and the appropriate key.

Change the bar to a few more different colors and then adjust thecolor

and tint controls on yourTV so the display matches the colors youselected.

The display should appear something like this:

At this point everything is properly adjusted and working correctly.The

following chapters willintroduce you to the BASIC language. However, you

can immediately start using some of the many prewritten applications and

games available for the Commodore 64 without knowinganything about

computer programming. :

Each of these packages contains detailed information about how touse

the program. |t is suggested, though, that you read through the firstfew

chapters of this manual to become more familiar with the basic operation of

your new system.

13

CHAPTER2

GETTING STARTED

 Keyboard

 Back to Normal

 Loading and Saving Programs

 PRINT and Calculations

 Precedence

 Combining Things

14

KEYBOARD

Now that you've got everything set up and adjusted, please take afew

moments to familiarize yourself with the keyboard which is yourmost

important means of communication with the Commodore 64.

You will find the keyboard similar to a standard typewriter

keyboardfound in most areas. There are, however, a number of new keys

whichcontrol specialized functions. What follows is a brief description of

thevarious keys and how they function. The detailed operation of each

keywill be covered in later sections.

[RETURN]

The [RETURN]key signals the computer to look at the information that you

typed and enters that information into memory.

[SHIFT]

The [SHIFT]key works like that on a standard typewriter. Many keysare

capable of displaying two letters or symbols and two graphic characters. In

the ―upper/lower case‖ mode [SHIFT]the key gives you standard upper

case characters. In the ―upper case/graphic‘‖ mode the[SHIFT]key will

display the graphic character on the right hand side ofthe front part of the

key.

In the case of special YELLOW function keys, the [SHIFT]key will

giveyou the function marked on the front of the key.

15

EDITING

No one is perfect, and the Commodore 64 takes that into account.

Anumber of editing keys let you correct typing mistakes and move

information around on the screen.

[CRSR]

There are two keys marked [CRSR] (CuRSoR), one with up and

downarrows,the other with left and right arrows. You canuse these keys to

move the cursor up and down or left and right. In theunshifted mode,

the[CRSR] keys will let you move the cursor down and tothe right. Using

the [SHIFT]key and [CRSR]keys allows the cursor to bemoved either up or

to the left. The cursor keys have a special repeatfeature that keeps the

cursor moving until you release the key.

[INST/DEL]

If you hit the [INST/DEL]key, the cursor will move back a space,

erasing (DELeting) the previous character you typed. If you‘re in the

middleof a line, the character to the left is deleted and the characters to

theright automatically move together to close up the space.

A [SHIFT]ed[INST/DEL]allows you to INSerT information on a line.

Forexample, if you noticed a typing mistake in the beginning of a line -

perhaps you left out part of a name - you could use the [CRSR]key tomove

back to the error and then hit [INST/DEL]to insert a space. Thenjust type in

the missing letter.

[CLR/HOME]

[CLR/HOME]positions the cursor at the ―HOME‖ position of the

screen,which is the upper left-hand corner. A shifted [CLR/HOME]will clear

thescreen and place the cursor in the home position.

[RESTORE]

[RESTORE]operates as the name implies. It restores the computer to

thenormal state it was in before you changed things with a program orsome

command. A lot more will be said on this in later chapters.

16

FUNCTION KEYS

The four function keys on the right side of the keyboard can be

―programmed‖ to handle a variety of functions. They can be defined inmany

ways to handle repetitive tasks.

[CTRL]

The [CTRL] key, which stands for ConTRol, allows you to set colors,

andperform other specialized functions. You hold the [CTRL] key

downwhiledepressing another designated key to get a control function. You

had an opportunity to try the [CTRL] key when you changed text colors to

createdifferent color bars curing the setup procedure.

[RUN/STOP]

Normally, depressing the [RUN/STOP]key will stop the execution of

aBASIC program. It signals the computer ta STOP doing something.

17

Usingthe [RUN/STOP]key in the shifted mode will allow you to

automaticallyload a program from tape.

[C=]COMMODORE KEY

The Commodore key [C=]performs a number of functions. First, itallows

you to move between the text and graphic display modes.

When the computer is first turned on, it is in the Upper Case/Graphic

mode, that is, everything you type is in upper case letters. As was

mentioned, using the [SHIFT]key in this mode will display the graphic on

theright side of the keys.

If you hold down the [C=] key and [SHIFT]key, the display will changeto

upper and lower case. Now, if you hold down the [C=] key and anyother

key with a graphic symbol, the graphic shown on the left side ofthe key will

be displayed.

To get back into the upper case/graphic mode hold down the

[C=]keyand [SHIFT]key again.

The second function of the [C=] key is to allow you access to a

secondset of eight text colors. By holding down the [C=] key and any of

thenumber keys, any text now typed will be in the alternate color

availablefrom the key you depressed. Chapter 5 lists the text colors

availablefrom each key.

BACK TO NORMAL

Now that you‘ve had a chance to look over the keyboard, let‘s

exploresome of the Commodore 64‘s many capabilities.

If you still have the color bars on the screen from adjusting your TVset,

hold [SHIFT]and [CLR/HOME]. The screen should clear and the cursorwill

be positioned in the ―home‖ spot (upper left-hand corner of thescreen).

Now,simultaneously hold [C=] and the [7]key. This sets the text color

back to light blue. There is one more step needed to get everything backto

normal. Hold [CTRL]and [0] (Zero not Oh!). This sets the display

modeback to normal. If you remember, we turned REVERSE type on with

the[CTRL][9]to create the color bars (the color bars were actually

reversedspaces). If we were in the normal text mode during the color test,

thecursor would have moved, but just left blank spaces.

18

TIP:

Now that you‘ve done things the hard way, there is a simple way to reset the

machine to the normal display. First press the [RUN/STOP]key and then pressthe

[RESTORE]key. [RUN/STOP]must always be held down in order to use

the[RESTORE] key function.

This will clear the screen and return everything to normal. If there is a program in

the computer, it will be left untouched. This is a good sequence to remember,

especially if you do a lot of programming.

Ifyou wish to reset the machine as if it were turned off and then switched

onagain, type, SYS64759 and press [RETURN]. Be careful using this command it

will wipe cut any program or information that is currently in the computer.

LOADING AND SAVING PROGRAMS

One of the most important features of the Commodore 64 is the abilityto

save and load programs to and from cassette tape or disk.

This capability allows you to save the programs you write for use at

alater time, or purchase prewritten programs to use with the Commodore

64.

Make sure that either the disk drive or datasette unit is

attachedproperly.

LOADING PREPACKAGED PROGRAMS

For those of you interested in using only prepackaged programs

available on cartridges, cassette, or disk here‘s all you have to do:

1. CARTRIDGES: The Commodore 64 computer has a line of

programsand games on cartridge. The programs offer a wide variety of

businessand personal applications and the games are just like real

arcadegames - not imitations. To load these games, first turn on your TV

set.

Next turn OFF your Commodore64.YOU MUST TURN OFF YOUR

COMMODORE 64 BEFORE INSERTING OR REMOVING CARTRIDGES

OR YOUMAY DAMAGE THE CARTRIDGE AND/OR YOUR

COMMODORE 64!

Third insert the cartridge. Now turn your Commodore 64 on. Finally type

the appropriate START key as is listed on the instruction sheet that

comeswith each game.

19

2. CASSETTES: Use your DATASSETTE recorder and the ordinary

audiocassettes that came as part of your prepackaged program. Make

surethe tape is completely rewound to the beginning of the first side.Then,

just type LOAD. The computer will answer with PRESS PLAY ONTAPE, so

you respond by pressing play on your datasette machine. Atthis point the

computer screen will go blank until the program isfound. The computer will

say FOUND (PROGRAM NAME) on thescreen. Now you press down on

the [C=] KEY. This will actuallyload the program into the computer. If you

want to stop the loadingsimply press the [RUN/STOP]key.

3. DISK: Using your disk drive, carefully insert the preprogrammed diskso

that the label on the disk is facing up and is closest to you. Lookfor a little

notch on the disk (it might be covered with a little piece oftape). If you‘re

inserting the disk properly the notch will be on the leftside. Once the disk is

inside, close the protective gate by pushing downon thelever. Now type

LOAD ―PROGRAM NAME‖, 8 and hit the[RETURN]key. The disk will make

noise and your screen will say:

When the READY comes on and the § is on, just type RUN, andyour

prepackaged software is ready to use.

LOADING PROGRAMS FROM TAPE

Loading a program back from tape or disk is just as simple. For

tape,rewind the tape back to the beginning and type:

If you don‘t remember the program name, just type LOAD and thefirst

program on the tape will be loaded into memory.

After you press [RETURN]the computer will respond with:

20

After you depress the play key, the screen will blank, turning the border

color of the screen as the computer searches for the program.

When the program is found, the screen will display:

To actually LOAD the program, depress the[C=] key. To abandon

theLOADing procedure, hit [RUN/STOP]. If you hit the Commodore key,

thescreen will again turn the border color while the program is

LOADed.After the LOADing procedure is completed, the screen will return

to thenormal state and the READY prompt will reappear.

LOADING PROGRAMS FROM DISK

Loading a program from disk follows the same format. Type:

The 8 is the code for the disk, so you‘re just letting the computer

knowthat you want the program loaded from the disk.

After you hit [RETURN]the disk will start whirring and the displayshows:

21

NOTE:

When you load a new program into the computer's memory, any

instructions that were in the computer previously will be erased. Makesure

you save a program you're working on before loading a new one.Once a

program has been loaded, you can RUN it, LIST it, or makechanges and

re-save the new version.

SAVING PROGRAMS ON TAPE

After entering a program, if you wish to save it on tape, type:

―PROGRAM NAME‖ can be up to 16 characters long. After you

hit[RETURN]the computer will respond with:

Press both the record and play keys on the datasette. The screen

willblank, turning the color of the border.

After the program is saved on tape, the READY prompt will

reappear,indicating that you can start working on another program, or just

turn off the computer for a while.

SAVING PROGRAMS ON DISK

Saving a program on disk is even simpler. Type:

22

The 8 is the code for the disk, so you're just letting the computer

knowyou want the program saved to disk.

After you press [RETURN]the disk will start to turn and the computer

will respond with:

PRINT AND CALCULATIONS

Now that you've gotten through a couple of the more difficult operations

you need in order to keep the programs you like, lets start makingsome

programs for you to save.

Try typing the following exactly as shown:

If you make a typing mistake, use the [INST/DEL] key to erase the

character immediately to the left of the cursor. You can delete as

manycharacters as necessary.

Let's see what went on in the example above. First, you

instructed(commanded) the computer to PRINT whctever was inside the

quotemarks. By hitting[RETURN] you told the computer to do what you

instructed and COMMODORE 64 was printed on the screen.

When you use the PRINT statement in this form, whatever is

enclosedin quotes is printed exactly as you typed it.

If the computer responded with:

?SYNTAX ERROR

Ask yourself if you made a mistake in typing, or forgot the quote marks.

23

The computer is precise and expects instructions to be given in a

specificform.

But don‘t get worried; just remember to enter things as we presentthem

in the examples and you'll get along great with the Commodore 64.

Remember, you can‘t hurt the computer by typing on it, and the best

way to learn BASIC is to try different things and see what happens.

PRINT is one of the most useful and powerful commands in the

BASIClanguage. With it, you can display just about anything you wish,

including graphics and results of computations.

For example, try the following. Clear the screen by holding down

the[SHIFT]key and [CLR/HOME]key and type (be sure to use the ‗1‘ key

forone, not a letter ‗I'):

What you've discovered is that the Commodore 64 is a calculator in

itsbasic form. The result of ―24‖ was calculated and printed automatically.In

fact, you can also perform subtraction, multiplication, division,

exponentiation, and advanced math functions such as calculating

squareroots, etc. And you‘re not limited to a single calculation on a line,

butmore on that later.

Note that in the above form, PRINT behaved differently from the

firstexample. In this case, a value or result of a calculation is printed, rather

thanthe exact message you entered because the quote marks were

omitted.

ADDITION

The plus sign (+) signals addition: we instructed the computer to

printthe result of 12 added to 12. Other arithmetic operations take a

similarform to addition. Remember to always hit [RETURN]after typing

PRINTand the calculation.

24

SUBTRACTION

To subtract, use the conventional minus (-) sign. Type:

MULTIPLICATION

If you wanted to multiply 12 times 12, use the asterisk (*) to represent

multiplication. You would type:

DIVISION

Division uses the familiar ―/ ―. For example, to divide 144 by 12, type:

25

EXPONENTIATION

In a like fashion, you can easily raise a number to a power (this is

thesame as multiplying a number by itself a specified number of times).

The Up arrow signifies exponentiation.

This is the same as typing:

TIP:

BASIC has a number of shortcut ways of doing things. One such way is

abbreviating BASIC commands (or keywords). A ?canne used in place of PRINT, for

example. As we go on you'll be presented with many commands; Appendix D shows

theabbreviations for each and what will be displayed on the screen when you type

the abbreviated form.

The last example brings up another important point: many calculations

may be performed on the same line, and they can be of mixedtypes.

You could calculate this problem:

26

Up to this point we've just used small numbers and simple

examples.However, the Commodore 64 is capable of more complex

calculations.

You could, for example, add a number of large figures together. Trythis,

but don‘t use any commas, or you'll get an error:

That looks fine, but now try this:

If you took the time to add this up by hand, you would get a

differentresult.

What's going on here? Even though the computer has a lot of

power,there's a limit to the numbers it can handle. The Commodore 64

canwork with numbers containing 10 digits. However when a number

isprinted, only nine digits are displayed.

So in our example, the result was ―rounded‖ to fit in the properrange.

The Commodore 64 rounds up when the next digit is five or more;it rounds

down when the next digit is four or less.

Numbers between 0.01 and 999,999,999 are printed using

standardnotation. Numbers outside this range are printed using scientific

notation.

Scientific notation is just a process of expressing a very large or

smallnumber as a power of 10.

If you type:

27

This is the same as 1.23 * 10717 and is used just to keep things

tidy.There is a limit to the numbers the computer can handle, even

inscientific notation. These limits are:

Largest; + 1.70141183E 38

Smallest (different from zero): = 2.93873588E-39

PRECEDENCE

If you tried to perform some mixed calculations different from

theexamples we showed earlier, you might not have gotten the results

thatyou expected. The reason is that the computer performs calculations in

acertain order.

In this calculation:

20 + 8/2

you can‘t tell whether the answer should be 24 or 14 until you know inwhich

order to perform the calculations. If you add 20 to 8 divided by 2(or 4), then

the result is 24. But, if you add 20 plus 8 and then divide by2 the answer is

14. Try the example and see what result you get.

The reason you got 24 is because the Commodore 64 performs

calculations left to right according to the following:

First: - minus sign indicating negative numbers

Second: ^ exponentiation, left to right

Third: */ multiplication and divisions, left to right

Fourth: + - addition and subtraction, left to right

Follow along according to the order of precedence, and you will seethat

in the above example the division was performed first and then theaddition

to get co result of 24.

Make up some problems of your own and see if you can follow

alongand predict the results according to the rules set down above.

There's also an easy way to alter the precedence process by

usingparentheses to set off which operations you want performed first.

For example, if you want to divide 35 by 5-plus-2 you type:

28

you will get 35 divided by 5 with 2 added te the answer, which is notwhat

you intended at all. To get what you really wanted, try this:

What happens now is that the computer evaluates what is containedin

the parentheses first. If there are parentheses within parentheses,

theinnermost parentheses are evaluated first.

Where there are a number of parentheses on a line, such as:

the computer evaluates them left to right. Here 21 would be multiplied by 7

for the result of 147.

COMBINING THINGS

Even though we‘ve spent a lot of time in areas that might not seemvery

important, the details presented here will make more sense onceyou start

to program, and will prove invaluable.

To give you an idea how things fit in place, consider the following:how

could you combine the two types of print statements we've examined so far

to print something more meaningful on the screen?

We know that by enclosing something within quote marks prints that

information on the screen exactly as it was entered, and by using

mathoperators, calculations can be performed. So why not combine the

twotypes of PRINT statements like this:

29

Even though this might seem a bit reduncant, what we‘ve done issimply

use both types of print statements together. The first part prints―5 *9 ="

exactly as it was typed. The second part does the actual workand prints the

result, with the semicolon separating the message part ofthe statement

from the actual calculation.

You can separate the parts of a mixed print statement with punctuation

for various formats. Try a comma in place of the semicolon and seewhat

happens.

For the curious, the semicolon causes the next part of the statement

tobe printed immediately after the previous part, without any spaces.

Thecomma does something different. Even though it is an

acceptableseparator, It spaces things out more. If you type:

the numbers will be printed across the screen and down on to the nextline.

The Commodore 64's display is organized into 4 areas of 10

columnseach. The comma tabs each result into the next available area.

Sincewe asked for more information to be printed than would fit on one

line,(we tried to fit five 10-column areas on one line) the last item was

moveddown to the next line.

The basic difference between the comma and semicolon in

formattingPRINT statements can be used to our advantage when creating

morecomplex displays: it will allow us to create some sophisticated

resultsvery easily.

30

31

CHAPTER3

BEGINNING

BASIC

PROGRAMMING

 The Next Step

- GOTO

 Editing Tips

 Variables

 IF … THEN

 FOR … NEXT Loops

32

Up to now we've performed some simple operations by entering a

single line of instructions into the computer. Once [RETURN] was

depressed, the operation that we specified was performed

immediately.This is called the IMMEDIATE or CALCULATOR mode.

But to accomplish anything significant, we must be able to have

thecomputer operate with more than a single line statement. A number

ofstatements combined together is called a PROGRAM and allows you

touse the full power of the Commodore 64.

To see how easy it is to write your first Commodore 64 program, trythis:

Clear the screen by holding the [SHIFT]key, and then depressing

the[CLR/HOME]key.

Type NEW and press [RETURN]. This just clears out any numbers

thatmight have been left in the computer from your experimenting.)

Now type the following exactly as shown (Remember to hit[RETURN]after

each line)

Now, type RUN and hit [RETURN]- watch what happens. Your

screenwill come alive with COMMODORE 64. After you've finished

watchingthe display, hit [RUN/STOP]to stop the program.

A number of important concepts were introduced in this short program

that are the basis for all programming.

Notice that here we preceded each statement with a number. This LINE

number tells the computer in what order to work with each statement.

These numbers are also a reference point, in case the programneeds to

get back to a particular line. Line numbers can be any wholenumber

(integer) value between 0-63,999.

33

It is good programming practice to number lines in increments of10 - in

case you need to insert some statements later on.

Besides PRINT, our program also used another BASIC

command,GOTO. This instructs the computer to go directly to a particular

line andperform it, then continue from that point.

In our example, the program prints the message in line 10, goes tothe

next line (20), which instructs it to go back to line 10 and print themessage

over again. Then the cycle repeats. Since we didn‘t give thecomputer a

way out of this loop, the program will cycle endlessly, untilwe physically

stop it with [RUN/STOP]the key.

Once you've stopped the program, type: LIST. Your program will

bedisplayed, intact, because it‘s still in the computer‘s memory. Notice,too,

that the computer converted the ?into PRINT for you. The programcan now

be changed, saved, or run again.

Another important difference between typing something in the

immediate mode and writing a program is that once you execute andclear

the screen of an immediate statement, it‘s lost. However, you canalways

get a program back by just typing LIST.

By the way, when it comes to abbreviations don‘t forget that

thecomputer may run out of space on a line if you use too many.

34

EDITING TIPS

If you make a mistake on a line, you have a number of editingoptions.

1. You can retype a line anytime, and the computer will

automaticallysubstitute the new line for the old one.

2. An unwanted line can be erased by simply typing the line numberand

[RETURN]

3. You can also easily edit an existing line, using the cursor keys

andediting keys.

Suppose you made a typing mistake in a line of the example. Tocorrect

it without retyping the entire line, try this:

Type LIST, then using the [SHIFT]and [^CRSR] keys together move

thecursor up until it is positioned on the line that needs to be changed.

Now, use the cursor-right key to move the cursor to the character you

want to change, typing the change over the old character. Now

hit[RETURN]and the corrected line will replace the old one.

If you need more space on the line, position the cursor where thespace

is needed and hit [SHIFT] and [INST/DEL] at the same time and a space

will open up. Now just type in the additional information and hit[RETURN].

Likewise, you can delete unwanted characters by placing thecursor to the

right of the unwanted character and hitting the [INST/DEL]key.

To verify that changes were entered, type LIST again, and the

corrected program will be displayed! And lines don‘t have to be entered

innumerical order. The computer will automatically place them in the proper

sequence.

Try editing our sample program on page 33 by changing line 10

andadding a comma to the end of the line. Then RUN the program again..

VARIABLES

Variables are some of the most used features of any

programminglanguage, because variables can represent much more

information inthe computer. Understanding how variables operate will make

computing easier and allow us to accomplish feats that would not be

possible otherwise.

35

Imagine a number of boxes within the computer that can each hold

anumber or a string of text characters. Each of these boxes is to belabeled

with a name that we choose. That name is called o variableand represents

the information in the respective box.

For example, if we say:

10 X% = 15
20 X - 23.5
30 X$ = “THE SUM OF X%+X – “

The computer might represent the variables like this:

X% 15

X 23.5

X$ THE SUM OF X%-X -

A variable name represents the box, or memory location, where

thecurrent value of the variable is stored. As you can see, we can

assigneither an integer number, floating point number, or a text string to

avariable.

The % symbol following a variable name indicates the variable

willrepresent an integer number. The following are valid integer

variablenames:

36

A%

X%

Al%

NM%

The ‗$‘ following the variable name indicates the variable will represent

a text string. The following are examples of string variables:

A$

X$

MI$

Floating point variables follow the same format, with the type indicator:

A1

X

Y

Ml

In assigning a name to a variable there are a few things to keep inmind.

First, a variable name can have one or two characters. The firstcharacter

must be an alphabetic character from A to Z; the secondcharacter can be

either alphabetic or numeric (in the range 0 to 9). Athird character can be

included to indicate the type of variable (integeror text string), % or $.

You can use variable names having more than two alphabetic

characters, but only the first two are recognized by the computer.

SoPA and PARTNO are the same and would refer to the same

variablebox.

The last rule for variable names is simple: they can‘t contain anyBASIC

keywords (reserved words) such as GOTO, RUN, etc. Refer backto

Appendix D for a complete list of BASIC reserved words.

To see how variables can be put to work, type in the complete program

that we introduced earlier and RUN it. Remember to hit[RETURN]after

each line in the program.

37

If you did everything as shown, you should get the following

resultprinted on the screen.

We've put together all the tricks learned so far to format the displayas

you see it and print the sum of the two variables.

In lines 10 and 20 we assigned an integer value to X% and assigned

afloating point value to X. This puts the number associated with the

variable in its box. In line 30, we assigned a text string to X$. Line

40combines the two types of PRINT statements to print a message and

theactual value of X% and X. Line 50 prints the text string assigned to

X$and the sum of X% and X.

Note that even though X is used as part of each variable name,

theidentifiers % and $ make X%, X, and X$ unique, thus representingthree

distinct variables.

But variables are much more powerful. If you change their value,

thenew value replaces the original value in the same box. This allows youto

write a statement like:

X =X+1

This would never be accepted in normal algebra, but is one of themost

used concepts in programming. It means: take the current value ofX, add

one to it and place the new sum into the box representing X.

IF … THEN

Armed with the ability to easily update the value of variables, we

cannow try a program such as:

38

What we've done is introduce two new BASIC commands, and provided

some control over our runaway little print program introduced atthe start of

this chapter.

IF … THEN adds some logic to the program. It says IF a conditionholds

true THEN do something. IF the condition no longer holds true,THEN do

the next line in the program.

A number of conditions can be set up in using an IF … THEN

statement:

 SYMBOL MEANING

 < Less Than

 > Greater Than

 = Equal To

 <> Not Equal To

 >= Greater Than or Equal To

 <= Less Than or Equal To

The use of any one of these conditions is simple, yet

surprisinglypowerful.

39

In the sample program, we've set up a ―loop‖ that has some constraints

placed on it by saying: IF a value is less than some numberTHEN do

something

Line 10 sets CT (CounT) equal to 0. Line 20 prints our message. Line

30 adds one to the variable CT. This line counts how many times we do

theloop. Each time the loop is executed, CT goes up by one.

Line 40 is our control line. If CT is less than 5, meaning we've executed

the loop less than 5 times, the program goes back to line 20 andprints

again. When CT becomes equal to 5- indicating 5 COMMODORE64's

were printed - the program goes to line 50, which signals to ENDthe

program.

Try the program and see what we mean. By changing the CT limit inline

40 you can have any number of lines printed.

IF … THEN has a multitude of other uses, which we'll see in

futureexamples.

FOR ... NEXT LOOPS

There is a simpler, and preferred way to accomplish what we did inthe

previous example by using a FOR . . . NEXT loop. Consider thefollowing:

As you can see, the program has become much smaller and

moredirect.

CT starts at 1 in line 10. Then, line 20 does some printing. In Line 30CT

40

is incremented by 1. The NEXT statement in line 30 automaticallysends the

program back to line 10 where the FOR part of the FOR … NEXT

statement is located. This process will continue until CT reaches thelimit

you entered.

The variable used in a FOR … NEXT loop can be incremented

bysmaller amounts than 1, if needed.

Try this:

If you enter and run this program, you'll see the numbers from 1 to 10,

by .5, printed across the display.

All we‘re doing here is printing the values that NB assumes as it goes

through the loop.

You can even specify whether the variable is increasing or decreasing.

Substitute the following tor line 10:

10 FOR NB = 10TO1 STEP -.5

and watch the opposite occur, as NB goes from 10 to 1 in

descendingorder.

41

CHAPTER4

ADVANCED BASIC

 Introduction

 Simple Animation

- Nested Loops

 INPUT

 GET

 Random Numbers and Other Functions

 Guessing Game

 Your Roll

 Random Graphics

- CHR$ and ASC Functions

42

INTRODUCTION

The next few chapters have been written for people who have become

relatively familiar with the BASIC programming language and theconcepts

necessary to write more advanced programs.

For those of you who are just starting to learn how to program, you may

find some of the information a bit too technical to understandcompletely.

But take heart… because for these two fun chapters,SPRITE GRAPHICS

and CREATING SOUND, we've set up some simple aexamples that are

written for the new user. The examples will give youa good idea of how to

use the sophisticated sound and graphicscapabilities available on your

COMMODORE 64.

If you decide that you want to learn more about writing programs

inBASIC, we‘ve put a bibliography (Appendix N) in the back of this manual.

If you are already familiar with BASIC programming, these chapterswill

help you get started with advanced BASIC programming techniques. More

detailed information can be found in the COMMODORE

64PROGRAMMER‘S REFERENCE MANUAL, available through your local

Commodore dealer.

43

SIMPLE ANIMATION

Let‘s exercise some of the Commodore 64's graphic capabilities

byputting together what we‘ve seen so far, together with a few new

concepts. If you're ambitious, type in the following program and see

whathappens. You will notice that within the print statements we can

alsoinclude cursor controls and screen commands. When you see

somethinglike [CRSR LEFT] in a program listing, hold the key and hit

theCRSR LEFT / RIGHT key. The screen will show the graphic

representationof a cursor left (two vertical reversed bars). In the same way,

pressing[SHIFT]and [CLR/HOME]shows as a reversed heart.

TIP:

All words in this text will he completed on one line. However, as ong as you don‘thit

[RETURN]your 64 will automatically move to the next line even in the middle of

aword.

The program will display a bouncing ball moving from left to right,and

back again, across the screen.

If we look at the program closely, (shown on page 44) you can seehow

this feat was accomplished.

Line 10 is a REMark that just tells what the program does; it has no

44

effect on the program itself. Line 20 clears the screen of any information.

Line 25 PRINTs 10 cursor-down commands. This just positions the

ballin the middle of the screen. If line 25 was eliminated the bell wouldmove

across the top line of the screen.

Line 30 sets up a loop for moving the ball the 40 columns from the leftto

right.

Line 40 does a lot of work. It first prints a soace to erase the previous

ball positions, then it prints the ball, and finally it performs a cursor-leftto

get everything ready to erase the current ball position again.

The loop set up in lines 50 and 60 slows the ball down a bit by delaying

the program. Without it, the ball would move too fast to see.

Line 70 completes the loop that prints balls on the screen, set up inline

30. Each time the loop is executed, the ball moves another space tothe

right. As you notice from the illustration, we have set up a loopwithin a loop.

This is perfectly acceptable. The only time you get in trouble is whenthe

loops cross over each other. It‘s helpful in writing programs to

checkyourself as illustrated here to make sure the logic of a loop is correct.

To see what would happen if you cross a loop, reverse the statementsin

lines 60 and 70. You will get an error because the computer getsconfused

and cannot figure out what's going on.

Lines 80 through 120 just reverse the steps in the first part of

theprogram, and move the ball from right to left. Line 90 is slightly different

from line 40 because the kal! is moving in the opposite direction (wehave to

erase the ball to the right and move to the left).

45

And when that‘s all done the program goes back to line 20 to start

thewhole process over again. Pretty neat! To stop the program holddown

[RESTORE] and hit [RUN/STOP].

For a variation on the program, edit line 40 to read:

Run the program and see what happens now. Because we left out

thecursor control, each ball remains on the screen until erased by the balla

moving right to left in the second part of the program.

INPUT

Up to now, everything within a program has been set before it is

run.Once the program was started, nothing could be changed.

INPUTallows us to pass new information to a program as it is running

andhave that new information acted upon.

To get an idea of how INPUT works, type NEW and enter thisshort

program:

What happens when you run this program is simple. A question

markwill appear, indicating that the computer is waiting for you to

typesomething. Enter any character, or group of characters, from

thekeyboard and hit [RETURN]. The computer will then respond with ―YOU

TYPED:‖ followed by the information you entered.

This may seem very elementary, but imagine what you can have

thecomputer do with any information you enter.

You can INPUT either numeric or string variables, and even have

theINPUT statement prompt the user with a message. The format of INPUT

is:

46

Or, just:

INPUT VARIABLE

NOTE: To get out of this program hold down

the[RUN/STOP]and[RESTORE]keys.

The following program is not only useful, but demonstrates a lot of what

has been presented so far, including the new input statement.

If you enter and run this program, you'll see INPUT in action.

Line 10 uses the input statement to not only gather information, butalso

print our prompt. Also notice that we can ask for either a number or string

(by using a numeric or string variable).

Lines 20, 30, and 40 do some checks on what is typed in. |n line 20,

ifnothing is entered (just is hit), then the program goes back to line 10 and

requests the input again. In line 30, if F is typed, you knowthe user wants to

convert a temperature in degrees Fahrenheit to Celsius, so the program

branches to the part that does that conversion.

Line 40 does one more check. We know there are only two validchoices

the user can enter. To get to line 40, the user must have typedsome

47

character other than F. Now, a check is made to see if that character is a

C; if not, the program requests input again.

This may seem like a lot of detail, but it is good programming practice.

48

A user not familiar with the program can become very frustrated ifit

does something strange because a mistake was made entering

information.

Once we determine what type of conversion to perform, the

programdoes the calculation and prints out the temperature entered and

theconverted temperature.

The calculation is just straight math, using the established formula

fortemperature conversion. After the calculation is finished and

answerprinted, the program loops back and starts over.

After running, the screen might laok like this:

After running the program, make sure to save it on disk or tape.

Thisprogram, as well as others presented throughout the manual, can

formthe base of your program library.

GET

GET allows you to input one character ot a time from the

keyboardwithout hitting [RETURN]. This really speeds entering data in

many applications. Whatever key is hit is assigned to the variable you

specify withGET.

The following routine illustrates how GET works:

49

If you RUN the program, the screen will clear and each time you hit

akey, line 20 will print it on the display, and then GET another character.

It is important to note that the character entered will not be displayed

unless you specifically PRINT it to the screen, as we've done here.

The second statement on line 10 is also important. GET

continuallyworks, even if no key is pressed (unlike INPUT that waits for a

response), so the second part of this line continually checks the keyboard

until a keyis hit.

See what happens if the second part of line 10 is eliminated.

To stop this program you can hit the [RUN/STOP]and[RESTORE]

keys.

The first part of the temperature conversion program could easily

berewritten to use GET. LOAD the temperature conversion program,

andmodify lines 10, 20 and 40 as shown:

This modification will make the program operate smoother, as

nothingwill happen unless the user types in one of the desired responses

toselect the type of conversion.

Once this change is made, make sure you save the new version of the

program.

RANDOM NUMBERS AND OTHER FUNCTIONS

The Commodore 64 contains a number of functions that are used

toperform special operations. Functions could be thought of as built-

inprograms included in BASIC. But rather than typing in a number

ofstatements each time you need to perform a specialized calculation, you

just type the command for the desired function and the computer doesthe

rest.

Many times when designing a game or educational program, you need

to generate a random number, to simulate the throw of dice, forexample.

You could certainly write a program that would generate thesenumbers, but

an easier way to call upon the RaNDom number function.

To see what RND actually does, try this short program:

50

After running the program, you will see a display like this:

Your numbers don‘t match? Well, if they did we would all be introuble,

as they should be completely random!

Try running the program a few more times to verify that the results

arealways different. Even if the numbers don‘t follow any pattern,

youshould start to notice that some things remain the same every time

theprogram is run.

First, the results are always between 0 and 1, but never equal to 0 or1.

This will certainly never do if we want to simulate the random toss ofdice,

since we're looking for numbers between 1 and 6,

The other important feature to look for is that we are dealing with

realnumbers (with decimal places). This could also be a problem

sincewhole (integer) numbers are often needed.

There are a number of simple ways to produce numbers from theRND

function in the range desired.

Replace line 20 with the following and run the program again:

51

That cured the problem of not having results larger than 1, but we

stillhave the decimal part of the result to deal with. Now, another

functioncan be called upon.

The INTeger function converts real numbers into integer values.

Once more, replace line 20 with the following and run the program

tosee the effect of the change:

That took care of a lot, getting us closer to our original goal

ofgenerating random numbers between 1 and 6. If you examine closely

what we generated this last time, you'll find that the results range from0 to

5, only.

As a last step, add a one to the statement, as follows:

20 PRINT INT(6*RND(1))+1,

Now, we have achieved the desired results.

In general, you can place a number, variable, or any BASIC expression

within the parentheses of the INT function. Depending on the rangedesired,

you just multiply the upper limit by the RND function. Forexample, to

generate random numbers between 1 and 25, you couldtype:

20 PRINT INT(25*RND(1))+1

The general formula for generating a set of random numbers in acertain

range is:

NUMBER=INT(LOWERLIMIT +(UPPER – LOWER+1)*RND(1))

GUESSING GAME

Since we‘ve gone lo some lengths to understand random numbers,why

not put this information to use? The following game not only illustrates a

52

good use of random numbers, but also introduces some additional

programming theory.

In running this program, a random number, NM, will be generated.

You can specify how large the number will be at the start of the

program. Then, it's up to you to guess what the number is.

A sample run follows along with an explanation.

53

IF/THEN statements compare your guess to the number

generated.Depending on your guess, the program tells you whether your

guess washigher or lower than the random number generated.

From the formula given for determining random number range, see

ifyou can add a few lines to the program that allow the user to alsospecify

the lower range of numbers generated.

Each time you make a guess, CN is incremented by 1 to keep track

ofthe number of guesses. In using the program, see if you can use

goodreasoning to guess a number in the least number of tries.

When you get the right answer, the program prints out the ―GREAT!

YOU GOT MY NUMBER‖ message, along with the number of tries it

took.You can then start the process over again. Remember, the

programgenerates a new random number each time.

PROGRAMMING TIPS:

In lines 40 and 50, a colon is used to separate multiple statements on a single

line.This not only saves typing, but in long programs will conserve memory space.

Also notice in the IF/THEN statements on the same two lines, we instructed the

computer to PRINT something, rather than immediately branching to some other

point in the program.

The last point illustrates the reason behind using line numbers in increments of

10. After the program was written, we decided to add the count part. By just adding

those new lines at the end of the program, numbered to fall between the

properexisting lines, the program was easily modified.

YOUR ROLL

The following program simulates the throw of two dice. You can enjoyit

as it stands, or use it as part of a larger game.

5 PRINT "Care to try your luck?"
10 PRINT "RED DICE = "; INT(6*RND(1)) +1
20 PRINT "WHITE DICE = "; INT(6 * RND(1)) +1
30 PRINT “HIT SPACE BAR FOR ANOTHER ROLL”; PRINT
40 GET A$; IF A$ = “” THEN 40
50 IF A$ = CHR$(32) THEN 10

Care to try your luck?

From what you've learned about random numbers and BASIC, see if

you can follow what is going on.

54

RANDOM GRAPHICS

As a final note on random numbers, and as an introduction to designing

graphics, take a moment to enter and run this neat little program:

As you may have expected, line 20 is the key here. Another

function,CHR$ (Character String), gives you a character, based on a

standardcode number from 0 to 255. Every character the Commodore 64

canprint is encoded this way (see Appendix F).

To quickly find out the code for any character, just type:

PRINT ASC(“X”)

where X is the character you‘re checking (this can be any

printablecharacter, including graphics). The response is the code for the

character you typed. As you probably figured out, ―ASC‖ is another

function,which returns the standard ―ASCII‖ code for the character you

typed.

You can now print that character by typing:

PRINT CHR$(X)

If you try typing:

PRINT CHR$(205); CHR$(206)

you will see the two right side graphic characters on the M and N

keys.These are the two characters that the program is using for the maze.

By using the formula 205.5 + RND(1) the computer will pick a

randomnumber between 205.5 and 206.5. There is a fifty-fifty chance of

thenumber being above or below 206. CHR$ ignores any fractional

values,so half the time the character with code 205 is printed and the

remaining time code 206 is displayed.

If you'd like to experiment with this program, try changing 205.5

byadding or subtracting a couple tenths from it. This will give either

character a greater chance of being selected.

55

56

CHAPTER5

ADVANCED COLOR

AND GRAPHIC

COMMANDS

 Color and Graphics

 PRINTing Colors

 Color CHR$ Codes

 PEEKs and POKEs

 Screen Graphics

 More Bouncing Balls

57

COLOR AND GRAPHICS

Up to now we‘ve explored some of the sophisticated computing

capabilities of the Commodore 64, But one of its most fascinating features

is an outstanding ability to produce color and graphics.

You've seen a quick example of graphics in the ―bouncing ball‖ and

―maze‖ programs. But these only touched on the power you command.A

number of new concepts will be introduced in this section to explaingraphic

and color programming and show how you can create your owngames and

advanced animation.

Because we've concentrated on the computing capabilities of the

machine, all the displays we've generated so far were a single color

(lightblue text on a dark blue background, with a light blue border).

In this chapter we'll see how to add color to programs and control

allthose strange graphic symbols on the keyboard.

PRINTING COLORS

As you discovered if you tried the color alignment test in Chapter 1, you

can change text colors by simply holding the (GEM key and one ofthe color

keys. This works fine in the immediate mode, but what happens if you want

to incorporate color changes in your programs?

When we showed the ―bouncing ball‖ program, you saw howkeyboard

commands, like cursor movement, could be incorporatedwithin PRINT

statements. In a like way, you can also add text colorchanges to your

programs.

You have a full range of 16 text colors to work with. Using the

[CTRL]key and a number key, the fallowing colors are available:

1 2 3 4 5 6 7 8

Black While Red Cyan Purple Green Blue Yellow

If you hold down the [C=] key along with the appropriate numberkey,

these additional eight colors can be used:

1 2 3 4 5 6 7 8
Orange Brown Lt.

Red
Gray 1 Gray 2 Lt.

Green
Lt.

Blue
Gray 3

TYPE NEW, and experiment with the following. Hold down the

[CTRL]key and at the same time hit the [1] key. Next, hit the [R] key

withouthold-

58

ingdown the [CTRL] key. Now, while again depressing the [CTRL] keyat

the same time hit the [2]key. Release the [CTRL] key and hit the [A]

key.Move through the numbers, alternating with the letters, and type out

theword RAINBOW as follows:

Just as cursor controls show as graphic characters within the

quotemarks of print statements, color controls are also represented as

graphiccharacters.

In the previous example, when you held down [CTRL] and typed

[3]a"£" was displayed. [CTRL][7] displayed a ―←". Each color control

willdisplay its unique graphic code when used in this way. The table

showsthe graphic representations of each printable color control.

Even though the PRINT statement may look a bit strange on thescreen,

when you RUN the program, only the text will be displayed. Andit will

automatically change colors according to the color controls youplaced in

the print statement.

Try a few examples of your own, mixing any number of colors within

asingle PRINT statement. Remember, too, you can use the second set

oftext colors by using the Commodore key and the number keys.

TIP:

You will notice after running a program with color or mode (reverse) changes, that

the―READY‖ prompt and any additional text you type is the same as the last color or

mode change. To get back to the normal display, remember to depress:

[RUN/STOP]and[RESTORE]

59

COLOR CHR$ CODES

Take a brief look at Appendix F, then turn back to this section.

You may have noticed in looking over the list of CHR$ codes

inAppendix F that each color (as well as most other keyboard controls,such

as cursor movement) has a unique code. These codes can beprinted

directly to obtain the same results as typing [CTRL]and theappropriate key

within the PRINT statement.

For example, try this:

The text should now be green. In many cases, using the CHR$ function

will be much easier, especially if you want to experiment withchanging

colors. The following program is a different way to get a rainbow of colors.

Since there are a number of lines that are similar (40-110) use the editing

keys to save a lot of typing. See the notes after thelisting to refresh your

memory on the editing procedures.

NEW

1 REM AUTOMATIC COLOR BARS
5 PRINT CHR$(147) : REM CHR$(147) = CLR/HOME
10 PRINT CHR$(18) ; " " ; : REM REVERSE BAR
20 CL = INT(8*RND(1))+1
30 ON CL GOTO 40,50,60,70,80,90,100,110
40 PRINT CHR$(5) ; : GOTO 10
50 PRINT CHR$(28) ; : GOTO 10
60 PRINT CHR$(30) ; : GOTO 10
70 PRINT CHR$(31) ; : GOTO 10
80 PRINT CHR$(144) ; : GOTO 10
90 PRINT CHR$(156) ; : GOTO 10
100 PRINT CHR$(158) ; : GOTO 10
110 PRINT CHR$(159) ; : GOTO 10

60

Type lines 5 through 40 normally. Your display should look like this:

EDITING NOTES

Use the CRSR-UP key to position the cursor on line 40. Then type

5over the 4 of 40. Next, use the CRSR-RIGHT key to move over to the 5

inthe CHR$ parentheses. Hit [SHIFT] [INST/DEL]to open up a space and

type‗28‘. Now just hit with the cursor anywhere on the line.

The display should now look like this:

Don‗t worry, Line 40 is still there. LIST the program and see. Using

thesame procedure, continue to modity the last line with a new line

numberand CHR$ code until all the remaining lines have been entered.

See, wetold you the editing keys would come in handy. As o final check, list

theentire program to make sure all the lines were entered properly

beforeyou RUN it.

Here is a short explanation of what's going on.

You've probably figured out most of the color bar program by

nowexcept for some strange new statement in line 30. But let‘s quickly

61

seewhat the whole program actually does. Line 5 prints the CHR$ code

forCLR/HOME.

Line 10 turns reverse type on and prints 5 spaces, which turn out to bea

bar, since they‘re reversed. The first time through the program the barwill

be light blue, the normal text color.

Line 20 uses our workhorse, the random function to select a

randomcolor between 1 and 8.

Line 30 contains a variation of the IF . . . THEN statement which

iscalled ON … GOTO. ON … GOTO allows the program to choosefrom a

list of line numbers to go to. If the variable (in this case CL) has avalue of 1,

the first line number is the one chosen (here 40). If the valueis 2, the

second number in the list is used, etc.

Lines 40-110 just convert our random key colors to the

appropriateCHR$ code for that color and return the program to line 10 to

PRINT asection of the bar in that color. Then the whole process starts

overagain.

See if you can figure out how to produce 16 random numbers, expand

ON … GOTO to handle them, and add the remaining CHR$codes to

display the remaining 8 colors.

PEEKS AND POKES

No, we're not talking about jabbing the computer, but we will be ableto

―look around‖ inside the machine and ―slick‖ things in there.

Just as variables could be thought of as a representation of

―boxes‖within the machine where you placed your information, you can also

think at some specially defined ―boxes‖ within the computer that represent

specific memory locations.

The Commodore 64 looks at these memory locations to see what

thescreen's background and border color should be, what characters are

tobe displayed on the screen—and where—and a host of other tasks.

By placing, ―POKEing,‖ a different value into the proper memory

location, we can change colors, define and move objects, and evencreate

music.

These memory locations could be represented like this:

53280 53281 53282 53283

X Y

BORDER BACKGROUND

62

COLOR COLOR

On page 60 we showed just four locations, two of which control

thescreen and background colors. Try typing this:

POKE 53281,7 [RETURN]

The background color of the screen will change to yellow because

weplaced the value ‗7‘ - for yellow - in the location that controls

thebackground color of the screen.

Try POKEing different values into the background color location,

andsee what results you get. You can POKE any value between O and

255,but only 0 through 15 will work.

The actual values to POKE for each color are:

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 10 Light RED

3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN

6 BLUE 14 Light BLUE

7 YELLOW 15 GRAY 3

Can you think of a way to display the various background and

bordercombinations? The following may be of some help:

Two simple loops were set up to POKE various values to change

thebackground and border colors. The DELAY loop in line 50 just slows

things down a bit.

63

For the curious, try:

? PEEK (53280) AND 15

You should get a value of 15. This is the last value BORDER was

givenand makes sense because both the background and border colors

areGRAY (value 15) after the program is run.

By entering AND 15 you eliminate all other values except 1-15,

because of the way color codes are stored in the computer. Normally

youwould expect to find the same value that was last POKEd in the

location.

In general, PEEK lets us examine a specific location and see what

valueis presently there. Can you think of a one line addition to the

programthat will display the value of BACK and BORDER as the program

runs? How about this:

25 PRINT CHR$(147); “BORDER = “;PEEK (53280) AND 15,
“BACKGROUND = “; PEEK (53281) AND 15

SCREEN GRAPHICS

In all the printing of information that you‗ve done so far, the computer

normally handled information in a sequential fashion: one character

isprinted after the next, starting from the current cursor position

(exceptwhere you asked for a new line, or used the ‗,‘ in PRINT formatting).

To PRINT data in a particular spot you can start from a known placeon

the screen and PRINT the proper number of cursor controls to formatthe

display. But this takes program steps and is lime consuming.

But just as there are certain spots in the Commodore 64‘s memory

tocontrol color, there are also locations that you can use to directly

controleach location on the screen.

SCREEN MEMORY MAP

Since the computer's screen is capable of holding 1000 characters

(40columns by 25 lines) there are 1000 memory locations set aside to

handle what is placed on the screen. The layout of the screen could

bethought of as a grid, with each square representing a memory location.

And since each location in memory can contain a number from 0 to255,

there are 256 possible values for each memory location. Thesevalues

represent the different characters the Commodore 64 can display(see

Appendix E). ByPOKEing the value for a character in the appropriate

64

screen memory location, that character will be displayed in the proper

position.

Screen memory in the Commodore 64 normally begins at

memorylocation 1024, and ends at location 2023. Location 1024 is the

upper leftcorner of the screen. Location 1025 is the position of the next

characterto the right of that, and so on down the row. Location 1063 is

theright-most position of the first row. The next location following the lasta

character on a row is the first character on the next row down.

Now, let‘s say that you‘re controlling a ball bouncing on the screen.The

ball is in the middle of the screen, column 20, row 12. The formulafor

calculation of the memory location on the screen is:

where X is the column and Y is the row.

Therefore, the memory location of the ball is:

65

Clear the screen with [SHIFT]and [CLR/HOME]and type:

COLOR MEMORY MAP

A ball appears in the middle of the screen! You have placed a character

directly into screen memory without using the PRINT statement.

The ball that appeared was white. However there is a way to changethe

color of an object on the screen by altering another range of memory.

Type:

The ball‘s color changes to red. For every spot on the Commodore

64‘sscreen there are two memory locations, one for the character code,

andthe other for the color code. The color memory map begins at location

55296 (top left-hand corner), and continues on for 1000 locations.

Thesamecolor

66

codes, from 0-15, that we used to change border and background colors

can be used here to directly change character colors.

The formula we used for calculating screen memory locations can

bemodified to give the locations to POKE color codes. The new formula is:

COLOR PRINT - 55296 - X + 40*Y

MORE BOUNCING BALLS

Here's a revised bouncing ball program that prints directly on thescreen

with POKEs, rather than using cursor controls within PRINT statements. As

you will see after running the program, it is much more flexible than the

earlier program, and will lead up to programming muchmore sophisticated

animation.

NEW

10PRINT“{CLR/HOME}”
20 POKE 53280,7 : POKE 53281,13
30 X = 1 : Y = 1
40DX = 1: DY =1
50 POKE 1024 + X + 40 * Y, 81

67

60 FOR T = 1 TO 10 : NEXT
70 POKE 1024 + X + 40 * Y,32
80 X = X + DX
90 IF X <= 0 OR X>= 39 THEN DX = -DX
100 Y= Y + DY
110 IF Y <= 0 OR Y >= 24 THEN DY = -DY
120 GOTO 50

Line 10 clears the screen, and line 20 sets the background to lightgreen

with a yellow border.

The X and Y variables in line 30 keep track of the current row

andcolumn position of the ball. The DX and DY variables in line 40 are

thehorizontal and vertical direction of the boll‘s movement. When a +1

isadded to the X value, the ball is moved to the right; when -1 is added,the

ball moves to the left. A +1 added to Y moves the ball down a row;a - 1

added to Y moves the ball up a row.

Line 50 puts the ball on the screen at the current cursor position. Line60

is the familiar delay loop, leaving the ball on the screen just longenough to

see it.

Line 70 erases the ball by putting a space (code 32) where the ballwas

on the screen.

Line 80 adds the direction factor to X. Line 90 tests to see if the ballhas

reached one of the side walls, reversing the direction if there‘s abounce.

Lines 100 and 110 do the same thing for the top and bottom walls.

Line 120 sends the program back to display and moves the ballagain.

By changing the code in line 50 from 81 to another character code,you

can change the ball to any other character. If you change DX or DYto 0 the

ball will bounce straight instead of diagonally.

We can also add a little more intelligence. So far the only thing

youchecked for is the X and Y values getting cut of bounds for the screen.

Add the following lines to the program.

21 FOR L = 1 TO 10
25 POKE 1024 + INT(RND(1)*1000), 166
27 NEXT L
85 IF PEEK(1024+X+40*Y) = 166 THEN DX = -DX: GOTO 80
105 IF PEEK(1024+X+40*Y) = 166 THEN DY = -DY:GOTO100

Lines 21 to 27 put 10 blocks on the screen in random positions. Lines85

and 105 check (PEEK) to see if the ball is about to bounce into ablock, and

changes the ball‘s direction if so.

68

CHAPTER6

SPRITE GRAPHICS
 Introduction to Sprites

 Sprite Creation

 Additional Notes on Sprite

 Binary Arithmetic

69

INTRODUCTION TO SPRITES

In previous chapters dealing with graphics, we saw that graphic

symbols could be used in PRINT statements to create animation and

addchartlike appearances to our displays.

A way was also shown to POKE character codes in specific screen

memory locations. This would then place the appropriate characters

directly on the screen in the right spot.

Creating animation In both these cases requires a lot of work

becauseobjects must be created from existing graphic symbols. Moving the

object requires a number of program statements to keep track of the object

and move it to a new spot. And, because of the limitation of usinggraphic

symbols, the shape and resolution of the object might not be asgood as

required.

Using sprites in animated sequences eliminates a lot of these problems.

A sprite is a high-resolution programmable object that can be made into

just about any shape - through BASIC commands. The objectcanbe easily

moved around the screen by simply telling the computerthe position the

sprite should be moved to. The computer takes care of the rest.

And sprites have much more power than just that. Their color can

bechanged; you can tell if one object collides with another; they can

bemade to go in front and behind another; and they can be easily

expanded in size, just for starters.

The penalty for all this is minimal. However, using sprites

requiresknowing some more details about how the Commodore 64

operates andhow numbers are handled within the computer. It‘s not as

difficult as it sounds, though. Just follow the examples and you'll be making

your ownsprites do amazing things in no time.

SPRITE CREATION

Sprites are controlled by a separate picture-maker in the

Commodore64. This picture maker handles the video display. It does all

the hardwork of creating and‘ keeping track of characters and graphics,

creating colors, and moving around.

This display circuit has 46 different ―ON/OFF‖ locations which act

likeinternal memory locations. Each of these locations breaks down into

aseries of 8 blocks. And each block can either be ―on‖ or ―off‖. We'll getinto

more detail about this later. By POKEing the appropriate decimalvalue in

the proper memory location you can control the formation and movement of

your sprite creations.

70

In addition to accessing many of the picture making locations we

willalso be using some of the Commodore 64‘s main memory to store

information (data) that defines the sprites. Finally, eight memory

locationsdirectly after the screen memory will be used to tell the computer

exactlywhich memory area each sprite will get its data from.

As we go through some examples, the process will be

verystraightforward, and you'll get the hang of it.

So let‘s get on with creating some sprite graphics. A sprite object is

24dots wide by 21 dots long. Up to eight sprites can be controlled at atime.

Sprites are displayed in a special independent 320 dot wide by200 dot high

area. However, you can use your sprite with any made,high-resolution, low-

resolution, text etc.

Say you want to create a balloon and have it float around the sky.The

balloon could be designed as in the 24 by 21 grid on page 70.

The next step is to convert the graphic design into data the

computercan use. Get a piece of notebook or graph paper and set up a

samplegrid that is 21 spaces down and 24 spaces across. Across the top

write128,64,32,16,8,4,2,1, three times (as shown) for each of the

24squares. Number down the left side of the grid 1-21 for each row.

Writethe word DATA at the end of each row. Now fill in the grid with

anydesign or use the balloon that we have. It‘s easiest to outline the

shapefirst and then go back and fill in the grid.

Now if you think of all the squares you filled in as ―on‖ then substitutea 1

for each filled square. For the one‘s that aren‘t filled in, they‘re ―off‖so put a

zero.

Starting on the first row, you need to convert the dots into three

separate pieces of data the computer can read. Each set of 8 squares

isequal to one piece of data called a byte in our balloon. Working fromthe

left, the first 8 squares are blank, or 0, so the value for that series

ofnumbers is 0.

The middle series looks like this (again a 1 indicates a dot, 0 is aspace):

The third series on the first row also contains blanks, so it, too,

equalszero. Thus, the data for the first line is.

DATA 0, 127, 0

71

The seriesthat make up row two are calculated like this:

For row 2, the data would be:

DATA 1,255,192

In the same way, the three series that make up each remaining row

would be converted into their decimal value. Take the time to do

theremainder of the conversion in this example.

Now that you have the data for your object, how can it be put to

use?Type in the following program and see what happens.

72

1 REM UP, UP, AND AWAY!
5 PRINT "{CLR/HOME}"
10 Y=53248 : REM START OF DISPLAY CHIP
11 POKE V+21,4: REM ENABLE SPRITE 2
12 POKE 242,13: REM SPRITE 2 DATA FROM 13TH BLK
20 FOR N = 0 TO 62: READ Q : POKE 832+N,Q: NEXT
30 FOR X = 0 TO 200
40 POKE V+4,X:REM UPDATE X COORDINATES
50 POKE V+5,X: REM UPDATE Y COORDINATES
60 NEXT X
70 GOTO 30
200 DATA 0,127,0,1,255,192,3,255,224,3,231,224
210 DATA 7,217,240,7,223,240,7,217,240,3,231,224
220 DATA 3,255,224,3,255,224,2,255,160,1,127,64
230 DATA 1,62,64,0,156,128,0,156,128,0,73,0,0,73,0
240 DATA 0,62,0,0,62,0,0,62,0,0,28,0
*FOR MORE DETAIL ON READ & DATA SEE CHAPTER 8.

If you typed everything correctly, your balloon is smoothly flyingacross

the sky (page 72).

In order to understand what happened, first you need to know

whatpicture making locations control the functions you need. These

locations,called registers, could be illustrated in this manner:

Register(s) Description

0 X coordinate of sprite 0

1 Y coordinate of sprite 0

2 – 15 Paired like 0 and 1 for sprites 1-7

16 Most Significant Bit - X Coordinate

21 Sprite appear: 1=appear0=disappear

29 Expand sprite in ―X‖ Direction

23 Expand sprite in ―Y‖ Direction

39 – 46 Sprite 0 - 7 color

In addition to this information you need to know from which 64

bytesection sprites will get their data (1 byte is not used).

This data is handled by 8 locations directly after screen memory:

Now let‘s outline the exact procedure to get things moving and finally

write a program.

73

There are only a few things necessary to actually create and move

anobject.

1. Make the proper sprite(s) appear on the screen by POKEing into

location 21 a 1 for the bit which turns on the sprite.

2. Set sprite pointer (locations 2040-7) to where sprite data should

beread from.

3. POKE actual data into memory.

4. Through a loop, update X and Y coordinates to move sprite around.

5. You can, optionally, expand the object, change colors, or perform

avariety of special functions. Using location 29 to expand your sprite

inthe ―X" direction and location 23 in the ―Y‖ direction.

There are only a few items in the program that might not be familiarfrom

the discussion so far.

In line 10;

V=53248

sets V to the starting memory location of the video chip. In this way wejust

increase V by the memory number to get the actual memory location. The

register numbers are the ones given on the sprite register map.

74

In line 11,

POKE V+21,4
makes sprite 2 appear by placing a 4 in what is called the sprite

enableregister (21) to turn on sprite 2. Think of it like this:

Each sprite level is represented in section 21 of the sprite memory and4

happens to be sprite level 2. If you were using level 3 you would puta1 in

sprite 3 which has a value of 8. In fact if you used both sprites 2and 3 you

would put a 1 in both 4 and 8. You would then add thenumbers together

just like you did with the DATA on your graph paper.So, turning on sprites 2

and 3 would be represented as V+21,12.

In line 12;

POKE 2042,13

instructs the computer to get the data for sprite 2 (location 2042) fromthe

13th area of memory. You know from making your sprite that ittakes up 63

sections of memory. You may not have realized it, but thosenumbers you

put across the top of your grid equal what is known as 3bytes of the

computer. In other words each collection of the followingnumbers,

128,64,32,16,8,4,2,1 equals 1 byte of computer memory.Therefore with the

21 rows of your grid times the 3 bytes of each row,each sprite takes up 63

bytes of memory.

20 FOR N = 0 to 62: READ Q: POKE 832+N,Q: NEXT

This line handles the actual sprite creation. The 63 bytes of data

thatrepresent the sprite you created are READ in through the loop

andPOKEd into the 13th block of memory. This starts at location 832.

30 FOR X = 0 TO 200
40 POKE V+4, X [SPRITE 2's X COORDINATE]
50 POKE V + 5, X [SPRITE 2's Y COORDINATE]

If you remember from school the X coordinate represents an

objectshorizontal movement across the screen and the Y coordinate

representsthe sprite‘s vertical movement across the screen. Therefore as

75

the values

76

of X change in line 30 from 0 to 200 (one number at a time) the

spritemoves across the screen DOWN and TO THE RIGHT one space for

eachnumber. The numbers are READ by the computer fast enough to

makethe movement appear to be continuous, instead of 1 step at a time.

Ifyou need more details take a look at the register map in Appendix O.

When you get into moving multiple objects, it would be impossible for

one memory section to update the locations of all eight objects. Therefore

each sprite has its own set of 2 memory sections to make it move onthe

screen.

Line 70 starts the cycle over again, after one pass on the screen.

Theremainder of the program is the data for the balloon. Sure looks

different on the screen, doesn‘t it?

Now, try adding the following line:

25 POKE V+23,4 : POKE V+29,4: REM EXPAND

and RUN the program again. The balloon has expanded to twice

theoriginal size! What we did was simple. By POKEing 4 (again to indicate

sprite 2) into memory sections 23 and 29, sprite 2 was expanded in theX

and Y direction.

It's important to note that the sprite will start in the upper left-

handcorner of the object. When expanding an object in either direction,

thestarting point remains the same.

For some added excitement, make the following changes:

11 POKE V+21,12
12 POKE 2042,13: POKE 2043,13
30 FOR X = 1 to 190
45 POKE V+6,X
55 POKE V+7,190 - X

A second sprite (number 3) has been turned on by POKEing12 into

thememory location that makes the sprite appear (V+21). The 12 turns

sprites 3 and 2 on (00001100 = 12).

The added lines 45 and 55 move sprite 3 around by POKEing

valuesinto sprite 3‘s X and Y coordinate locations (V+6 and V+7).

Want to fill the sky with even more action? Try making these additions:

11 POKE V+21, 28
12 POKE 2042,13:POKE 2043,13:POKE 2044,13
25 POKE V+23,12: POKE V+29,12
48 POKE V +8,X
58 POKE V+9,100

77

In line 11 this time, another sprite (4) was made to appear by POKEing

28 into the appropriate ‖on‖ location of the sprite memory section.Now

sprites 2-4 are on (00011100 = 28).

Line 12 indicates that sprite 4 will get its data from the samememory

area (13th 63 section area) as the other sprites by POKEing2044,13.

In line 25, sprites 2 and 3 are expanded by POKEing 12 (Sprites 2 and

3 on) into the X and Y direction expanded memory locations (V+ 23and

V+29).

Line 48 moves sprite 3 along the X axis. Line 58 positions sprite

3halfway down the screen, at location 100. Because this value does

notchange, like it did before with X=0 to 200, sprite 3 just moves

horizontally.

ADDITIONAL NOTES ON SPRITES

Now that you‘ve experimented with sprites, a few more words are

inorder. First, you can change a sprite‘s color to any of the standard

16color codes (0-15) they were used to change character color. These

canhe found in Chapter 5 or in appendix G.

For example, to change sprite 1 to light green, type: POKEV+40,13 (be

sure to set V=53248).

You may have noticed in using the example sprite programs thatthe

object never moved to the right-hand edge of the screen. This wasbecause

the screen is 320 dots wide and the X direction register canonly hold a

value up to 255. How then can you get an object to moveacross the entire

screen?

There is a location on the memory map that has not been mentioned

yet, Location 16 (of the map) controls something called the mostsignificant

bit (MSB) of the sprite‘s X direction location. In effect, thisallows you to

move the sprite to a horizontal spot between 256 and 320.

The MSB of X register works like this: after the sprite has beenmoved to

X location 255, place a value into memory location 16 representing the

sprite you want to move. For example, to get 2 to move tohorizontal

locations 256-320, POKE the value for sprite 2 which is (4) intomemory

location 16:

POKE V+16,4.

Now start from 0 again in the usual X direction register for sprite

2(which is in location 4 of the map). Since you are only moving another

64spaces, X locations would only range between 0 and 63 this time.

78

This whole concept is best illustrated with a version of the originalsprite

1 program:

10V = 53248: POKE V+21,4: POKE 2042,13
20 FOR N = 0 TO 62: READQ: POKE 832+N,Q: NEXT
25 POKE V +5, 100
30 FOR X = 0 TO 255
40 POKE V+4, X
50NEXT
60 POKE V +16, 4
70 FOR X = 0 TO 63
80 POKE Y+4, X
90 NEXT
100 POKE V +16, 0
110 GOTO 30

Line 60 sets the most significant bit for sprite 2. Line 70 starts

movingthe standard X direction location, moving sprite 2 the rest of the way

across the screen.

Line 100 is important because it ―turns off‖ the MSB so that thesprite

can start moving from the left edge of the screen again.

To define multiple sprites, you may need additional blocks for thesprite

data. You can use some of BASIC‘s RAM by moving BASIC. Beforetyping

or loading your program type:

POKE44, 16:POKE16*256,0:NEW

Now, you can use blocks 32 through 41 (locations 2048 through

4095)to store sprite data.

BINARY ARITHMETIC

It is beyond the scope of this introductory manual to go into details

ofhow the computer handles numbers. We will, however, provide you with

a good base for understanding the process and get you started

onsophisticated animation.

But, before you get too involved we have to define a few terms:

BIT - This is the smallest amount of information a computer can store.

79

Think of a BIT as a switch that is either ―on‖ or ―off‖. When a BIT is―on‖

it has a value of 1; when a BIT is ―off‖ it has a value of 0.

After BIT, the next level is BYTE.

BYTE - This is defined as a series of BITS. Since a BYTE is made up

of8 BITS, you can actually have a total of 256 different combinationsof

BITS. In other words, you can have ail BITS ―off‖ so your BYTEwill

look like this:

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 0

and its value will be 0. All BITS ―on‖ is:

128 64 32 16 8 4 2 1

1 1 1 1 1 1 1 1

which is 128+64+32+16+8+2+1=255.

The next step up is called a REGISTER.

REGISTER - Defined as a block of BYTES strung together. But, in

thiscase each REGISTER is really only 1 BYTE long. A series of

REGISTERS makes up a REGISTER MAP. REGISTER MAPS are

charts likethe one you looked at to make your BALLOON SPRITE.

Each REGISTER controls a different function, like turning on the

SPRITE is reallycalled the ENABLE REGISTER. Making the SPRITE

longer is the EXPAND X REGISTER, while making the SPRITE wider

is the EXPAND YREGISTER. Keep in mind that a REGISTER is a

BYTE that performs aspecific task.

Now let's move on to the rest of BINARY ARITHMETIC.

BINARY TO DECIMAL CONVERSION

Decimal Value

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 1 2 ^ 0

0 0 0 0 0 0 1 0 2 ^ 1

0 0 0 0 0 1 0 0 2 ^ 2

0 0 0 0 1 0 0 0 2 ^ 3

0 0 0 1 0 0 0 0 2 ^ 4

0 0 1 0 0 0 0 0 2 ^ 5

0 1 0 0 0 0 0 0 2 ^ 6

1 0 0 0 0 0 0 0 2 ^ 7

80

Using combinations of all eight bits, you can obtain any decimal

valuefrom 0 to 255. Do you start to see why when we POKEd character

orcolor values into memory locations the values had to be in the 0-255

range? Each memory location can hold a byte of information.

Any possible combination of eight 0‘s and 1‘s will convert to aunique

decimal value between 0-255. If all places contain a 1 then the itvalue of

the byte equals 255. All zeros equal a byte value of zero;―00000011‖

equals 3, and so on. This will be the basis for creating datathat represents

sprites and manipulating them. As just one example, ifthis byte grouping

represented port of a sprite (0 is a space, 1 is a 7colored area):

Then we would POKE 255 into the appropriate memory location

torepresent that part of the object.

TIP:

To save you the trouble of converting binary numbers into decimal values - we'll

need to do that a lot - the following program will do the work for you. It‘s a good idea

to enter and save the program for future use.

5 REM BINARY TO DECIMAL CONVERTER
10 INPUT "ENTER 8-BIT BINARY NUMBER :";A$
12 IF LEN(A$)<>8 THEN PRINT "8 BITS PLEASE...": GOTO
10
15 TL = 0:C= 0
20 FOR X = 8TO 1 STEP -1 :C=C + 1
30 TL = TL + VAL(MID$(A$,C,1)) * 2 ^ (X -1)
40 NEXT X
50 PRINT A$; " BINARY "; " = "; TL; " DECIMAL"
60 GOTO 10

This program takes your binary number, which was entered as a string, and

looks at each character of the string, from left to right (the MID$ function). The

variable Cindicates what character to work on as the program goes through the loop.

The VAL function, in line 30, returns the actual value of the character. Since we

are dealing with numeric characters, the value is the same as the character.

Forexample, if the first character of A$ is 1 then the value would also be 1.

The final part of line 30 multiplies the value of the current character by the

properrower of 2. Since the first value is in the 2*7 place, in the example, TL would

first equal | times 128 or 128. If the bit is 0 then the value for that place would also

bezero.

This process is repeated for all eight characters as TL keeps track of the

runningtotal decimal value of the binary number.

81

CHAPTER7

CREATING SOUND
 Using Sound if You‘re Not a Computer

Programmer

 Structure of a Sound Program

 Sample Sound Program

 Making Music on Your Commodore 64

 Important Sound Settings

 Playing a Song on the Commodore 64

 Creating Sound Effects

 Sample Sound Effects to Try

82

USING SOUND IF YOU’RE NOT A COMPUTER
“PROGRAMMER”

Most programmers use computer sound for two purposes: makingmusic

and generating sound effects. Before getting into the ―intricacies‖of

programming sound, let‘s take a quick look at how a typical soundprogram

is structured… and give you a short sound program you canexperiment

with.

STRUCTURE OF A SOUND PROGRAM

To begin with, there are five settings which you should know in orderto

generate sound on your COMMODORE 64: VOLUME, ATTACK/DECAY,

SUSTAIN/RELEASE(ADSR), WAVEFORM CONTROL and HIGH

FREQUENCY/LOW FREQUENCY. The first three settings are usually

setONCE at the beginning of your program. The high and low

frequencysettings must be set for EACH NOTE you play. The

waveformcontrol astarts and stops each note.

SAMPLE SOUND PROGRAM

Before you start you have to choose a VOICE. There are 3 voices.Each

voice requires different sound setting numbers for Waveform, etc.You can

play 1, 2 or 3 voices together but our sample uses only VOICE NUMBER

1. Type in this program line by line…be sure to hit theRETURN key after

each line:

First clear sound chip.
5 FOR L = 54272 TO 54296 :
POKE L,0 : NEXT

1. Set VOLUME at highest setting.
10 POKE 54296,15

2. Set ATTACK/DECAY rates to define

how fast a note rises to and falls from

its peak volume level (0 to 255).

20 POKE 54277,190

3. Set SUSTAIN/RELEASE to define

level to prolong note and rate to

release it.

30 POKE 54278,248

4. Find the note/tone you want to play in

the TABLE OF MUSICAL NOTES in

Appendix M and enter the HIGH-

FREQUENCY and LOW-

FREQUENCY values for that note

(each note requires 2 POKEs).

40 POKE 54273,17: POKE
54272, 37

83

5. Start WAVEFORM with one of 4

standard settings (17, 33, 65 or 129).

50 POKE 54276,17

6. Enter a time loop to set the

DURATION of the note to be played (a

quarter note is approx. ―250‖ but may

vary since a longer program can affect

the timing).

60 FOR T = 1 TO 250 : NEXT

7. Turn off note.
70 POKE 54276,16

To hear the note you just created, type the word RUN and then hit

the[RETURN]key. To view the program type the word LIST and hit

[RETURN].

To change it, retype the lines you want to after.

MAKING MUSIC ON YOUR COMMODORE 64

You don‘t have to be a musician to make music on your

COMMODORE64! All you need to know are a few simple numbers which

tell yourcomputer how loud to set the volume, which notes to play, how

long toplay them, etc. But first... here‘s a program which gives you a

quickdemonstration of the COMMODORE 64's incredible music

capabilities,using only ONE of your computer's 3 separate voices.

Type the word NEW and hit [RETURN]to erase your previous program,

then enter this program, type the word RUN and hit the[RETURN]key.

5 REM MUSICAL SCALE Title of program.

7 FORL=54272TO54296: POKEL,0:NEXT

10 POKE 54296,15 Sets volume at highest setting (15).

20 POKE 54277,9 Sets Attack/DecaySustain/Release level (each

note)

30 POKE 54276,17 Determines waveform (type of sound)

40 FORT=1TO300:NEXT Duration (how long) each note plays.

50 READA A Reads first number in line 110 DATA.

84

60 READ B Reads second number in line 110 DATA.

70IFB=-1THENEND ENDS when it READs -1 in line 900.

80 POKE 54273,A:POKE54272,B POKEs the first number from DATA in

line 110 (A= 17) as HIGH FREQUENCY and

second number (B= 37)as LOW

FREQUENCY. Next time program

loopsaround it READS A as 19 and B as 63,

and so on, and POKEs these numbers into the

HIGH and LOWFREQUENCY locations. The

number 54273 = HIGHFREQUENCY for

VOICE 1 and 54272=LOW FREQUENCY for

VOICE 1.

85 POKE 54276,17 start note

90 FORT=1TO250: NEXT: POKE54276,16 Let it play then stop note

95 FORT=1TO50: NEXT Time for release.

100 GOTO20 Loops back to reset CONTROL and play new

note.

110 DATA17,37,19,63,21,154,22,227 Musical note valuesfrom

note value chart in Appendix M.

120 DATA25,177,28,214,32,94,34,175 Each pair ofnumbers

represents one note. Forexample, 17 and 37

represent ―C‖ at the 1th octave, 19 and 63

represent "D‖ and so on.

900 DATA -1,-1 when program reaches -1 it turns off

HIGH/LOWFREQUENCY settings and ENDs

as instructed in line 70.

To change the sound to a ―harpsichord,‖ change Line 85 to

readPOKE54276,33 and Line 90 to read FORT=1TO250:

NEXT:POKE54276,32and RUN the program again. (To change the line, hit

the key[RUN/STOP]to stop the program, type the word LIST and hit

[RETURN], then retypethe program line you want to change; the new line

will automaticallyreplace the old one). What we did here is change the

―waveform‖ froma ―triangular‖ shaped sound wave to a ―sawtooth‖ wave.

Changing theWAVEFORM can drastically change the sound produced by

the COMMODORE 64… but… waveform is only one of several settings

youcan change to make different musical tones and sound effects! You

canalso change the ATTACK/DECAY rate of each note . . . for example,

tochange from a ―harpschord‖ sound to a more ―banjo‖ sound try changing

lines 20 and 30 to read:

20 POKE54277,3

30 POKE54278,0 Sets sustain for banjo effect.

85

As you've just seen, you can make your COMMODORE 64 sound

likedifferent musical instruments. Let‘s take a closer look at how each

soundsetting works

IMPORTANT SOUND SETTINGS

1. VOLUMETo turn on the volume and set it to the highest level,

type:POKE 54296,15. The volume setting ranges from 0 to 15 but you'll

use 15most of the time. To turn ―off‖ the volume, type:

POKE 54296,0

You only have to set the volume ONCE at the beginning of your

program, since the same setting activates all three of the Commodore

64‘sVOICES. (Changing the volume during a musical note or sound

effectcan produce interesting results but is beyond the scope of this

introduction).

2. ADSR and WAVEFORM CONTROL SETTING- You‘ve already

seenhow changing the waveform can change the sound effect

from―xylophone‖ to ―harpsichord.‖ Each VOICE has its own

WAVEFORMCONTROL SETTING which lets you define four different

types ofwaveforms: Triangle, Sawtooth, Pulse (Square) and Noise. The

CONTROL also activates the COMMODORE 64‘s ADSR feature, but

we'llcome back to this in a moment. A sample waveform start setting

lookslike this:

POKE 54276,17

where the first number (54276) represents the control setting for VOICE I

and the second number (17) represents the start for a triangularwaveform.

The settings for each VOICE and WAVEFORM combinationare shown in

the table below.

ADSR AND WAVEFORM CONTROL SETTINGS

 CONTROL

REGISTER

Note Start/Stop Numbers

 TRIANGLE SAWTOOTH PULSE NOISE

VOICE 1 54276 17/16 33/32 65/64 129/128

VOICE 2 54283 17/16 33/32 65/64 129/128

VOICE 3 54290 17/16 33/32 65/64 129/128

Although the control registers are different for each voice thewaveform

settings are the same for each type of waveform. To see howthis works,

86

look at Lines 85 and 90 in the musical scale program. In thisprogram,

immediately after setting the frequency in Line 80, we set theCONTROL

SETTING for VOICE 1 in Line 85 by POKEing 54276,17. Thisturned on the

CONTROL for VOICE 1 and set it to a TRIANGLEWAVEFORM (17). In

Line 70 we POKE 54276,16, stopping the note. Later, we changed the

waveform start setting from 17 to 33 to create aSAWTOOTH WAVEFORM

and this gave the scale a ―harpsichord‖ effect.See how the CONTROL

SETTING and WAVEFORM interact? Setting thewaveform is similar to

setting the volume, except each voice has its ownsetting and instead of

POKEing volume levels we're defining waveforms.Next, we'll look at

another aspect of sound . . . the ADSR feature.

3. ATTACK/DECAY SETTING - As we mentioned before, the

ADSRCONTROL SETTING not only defines the waveform but it also

activatesthe ADSR, or ATTACK/DECAY/SUSTAIN/RELEASE feature of

the COMMODORE 64. We'll begin by looking at the ATTACK/DECAY

setting. Thefollowing chart shows the various ATTACK and DECAY levels

for eachvoice. If you're not familiar with the concepts of sound attack and

decay, you might think of ―attack‖ as the rate at which a note/sound

arisesto its MAXIMUM VOLUME. The DECAY is the rate at which the

note/sound falls from its highest volume level back to the SUSTAIN level.

Thefollowing chart shows the ATTACK/DECAY setting for each voice, and

thenumbers for each attack and decoy setting. Note that YOU

MUSTCOMBINE ATTACK AND DECAY SETTINGS BY ADDING THEM

UP ANDENTERING THE TOTAL. For example, you can set a HIGH

ATTACK rateand a LOW DECAY rate by adding the high attack number

(64) to thelow decay number (1). The total (65) will tell he computer to set

the highattack rate and low decay rate. You can also increase the attack

rates by adding them together (128 + 64 + 32 + 16 = MAX. ATTACK

RATEof 240).

ATTACK/DECAY RATE SETTINGS

ATTACH / DECAY

SETTING

HIGH

ATTACK

MEDIUM

ATTACK

LOW

ATTACK

LOWEST

ATTACK

HIGH

DECAY

MED.

DECAY

LOW

DECAY

LOWEST

DECAY

VOICE 1 54277 128 64 32 16 8 4 2 1

VOICE 2 54284 128 64 32 16 8 4 2 1

VOICE 3 54291 128 64 32 16 8 4 2 1

If you set an attack rate with no decay, the decay is automaticallyzero,

and vice-versa. For example, if you POKE 54277,64 you set a medium

attack rate with zero decay for VOICE 1. If you POKE 54277,66you set a

medium attack rate and a low decay rate (because 66=64+2and sets

BOTH settings). You can also add up several attack values, or several

87

decay values. For example, you can add a low attack (32) andamedium

88

attack (64) for a combined attack rate of 96, then add amedium decay of

4and… presto… POKE 54277,100.

At this paint, a sample program will better illustrate the effect. Typethe

word NEW, hit [RETURN]and type in this program and RUN it:

5 FOR L=54272TO54296: POKEL,0: NEXT Duration the note plays.

10 PRINT “HIT ANY KEY” Screen message.

20 POKE54296,15 Set volume at highest level.

30 POKE54277,64 Set Attack/Decay.

40 POKE54273,17:POKE54272,37 Poke one note into VOICE 1.

60 GETK$:IFK$=”” THEN60 Check the keyboard.

70 POKE54276,17:FORT=1TO200:NEXT Set Waveform control (triangle).

80 POKE54276,16:FORT=1TO50:NEXT Turn of settings.

90 GOTO20 Loop back and do it again.

Here, we're using VOICE 1 to create one note ata time… with

aMEDIUM ATTACK RATE end ZERO DECAY. The key is Line

40.POKEing theATTACK/DECAY setting with the number 64 activates a

MEDIUM attackrate. The result sounds like someone bouncing a ball in an

oil drum.Now for the fun part. Hit the [RUN/STOP]key to stop the program,

thentype the word LIST and hit [RETURN]. Now type this line and hit

[RETURN] (the new line 40 automatically replaces the old line 40):

40POKE 54277,192

Type the word RUN and hit to see how it sounds. What we‘vedone here

is combine several attack and decay settings. The settingsare: HIGH

ATTACK (128) + LOW ATTACK(32) + LOWEST ATTACK (16)+ HIGH

DECAY (8) + MEDIUM DECAY(4) + LOW DECAY(2) = 190.

This effect sounds like a sound an oboe or other ―reedy‖

instrumentmight make. If you‗d like to experiment, try changing the

waveform andattack/decay numbers in the musical scale example to see

how an―oboe‖ sounds. Thus… you can see that changing the

attack/decayrates can be used to create different types of sound effects.

4. SUSTAIN/RELEASE SETTING - Like Attack/Decay, the

SUSTAIN/RELEASE setting is activated by the ADSR/WAVEFORM

Control. SUSTAIN/RELEASE lets you ―extend‖ (SUSTAIN) a portion of a

particular sound, likethe ―sustain pedal‖ on o piano or organ which lets you

prolong a note.Any note or sound can be sustained at any one of 16 levels.

TheSUSTAIN/RELEASE Setting may be used with a FOR… NEXT loop

89

todetermine how long the note will be held at SUSTAIN volume

beforebeing released. The following chart shows the numbers you have

toPOKE to reach different SUSTAIN/RELEASE, rates.

SUSTAIN/RELEASE RATE SETTINGS

SUSTAIN / RELEASE

CONTROL SETTING

HIGH

ATTACK

MEDIUM

ATTACK

LOW

ATTACK

LOWEST

ATTACK

HIGH

DECAY

MED.

DECAY

LOW

DECAY

LOWEST

DECAY

VOICE 1 54278 128 64 32 16 8 4 2 1

VOICE 2 54285 128 64 32 16 8 4 2 1

VOICE 3 54292 128 64 32 16 8 4 2 1

As an example, if you‘re using VOICE1, you can set a HIGH

SUSTAINLEVEL by typing: POKE 54278,128 or you could combine a

HIGH SUSTAINLEVEL with a LOW RELEASE RATE by adding 128 + 2

and then POKE54278,130. Here‘s the same sample program we used in

the ATTACK/DECAY section above… with a SUSTAIN/RELEASE feature

added.Notice the difference in sounds.

5 FORL=54272 TO 54296:POKEL,0: NEXT Duration the note plays.

10 POKE54296,15 Set volume at highest level.

20 POKE54277,64 Set Attack / Decay.

30POKE54278,128 Set Sustain/Release

40 POKE54273,17:POKE54272,37 POKE one note Into VOICE 1.

50 PRINT “HIT ANY KEY” Screen message.

60 GETK$:IFK$=”” THEN60 Check the keyboard.

70 POKE54276,17:FORT=1TO200:NEXT Set Waveform control (triangle)

80 POKE54276,16:FORT=1TO50:NEXT Turn off settings.

90 GOTO60 Loop back and do it again.

In Line 30, we tell the computer to SUSTAIN the note at a HIGH

SUSTAIN LEVEL (128 from chart above)… after which the tone is

releasedin Line 80. You can vary the duration of a note by changing the

―count‖in Line 70. To see the effect of using the release function try

changingLine 30 to POKE54278,89 (SUSTAIN = 80, RELEASE = 9).

5. CHOOSING VOICES AND SETTING HIGH/LOW FREQUENCY

SOUND VALUES - Each individual note on the Commodore 64

requiresTWO SEPARATE POKE COMMANDS… one for HIGH

FREQUENCY andone for LOW FREQUENCY. The MUSICAL NOTE

VALUE table in AppendixM shows you the corresponding POKEs you need

to play any

90

note in theCommodore 64's eight octave range. The HIGH and LOW

FREQUENCYPOKE COMMANDS are different tor each VOICE you use -

this allowsyou to program all 3 voices independently to create 3-voice

music orexotic sound effects.

The HIGH and LOW FREQUENCY POKE COMMANDS for each

voiceare shown in the chart below, which also contains the NOTE VALUES

forthe middle (fifth) octave.

As you can see, there are 2 settings for each voice, a HIGH

FREQUENCY setting and a LOW FREQUENCY setting. To play a musical

note,you must POKE a value into the HIGH FREQUENCY location and

POKEanother value into the LOW FREQUENCY location. Using the

settings inour VOICE/FREQUENCY/NOTE VALUE table, here‘s the setting

that playsa C note from the 5th octave (VOICE1):

POKE 54273,34:POKE 54272,75.

The same note on VOICE2 would be:

POKE 54280,34:POKE 54279,75.

Used in a program, it looks like this:

5 FORL=54272TO54296:POKEL,0:NEXT

10 V=54296:W=54276:A=54277: Set numbers equal to letters.

S=542798:H=54273:L=54272

20 POKEV,15:POKEA,190:POKES,89 POKE volume, waveform, attack/decay.

30 POKEH,34:POKEL,75 POKE hi/lo freq. notes

48 POKEW,33:FORT=1TO200:NEXT start note, list it play

50 POKEW,32 stop note

91

PLAYING A SONG ON THE COMMODORE 64

The following program can be used to compose or play a song (using

VOICE1). There are two important lessons in this program: First, notehow

we abbreviate all the long control numbers in the first line of theprogram ...

after that, we can use the letter W for ―Waveform‖ instead of the number

54276.

The second lesson concerns the way we use the DATA. This programis

set up to let you enter 3 numbers for each note: the HIGH

FREQUENCYNOTE VALUE, the LOW FREQUENCY NOTE VALUE, and

the DURATIONTHE NOTE WILL BE PLAYED.

For this song, we used a duration ―count‖ of 125 for an eighth note,250

for a quarter note, 375 for a dotted quarter note, 500 for a half note and

1000 for a whole note. These number values can be increasedor

decreased to match a particular tempo, or your own musical taste.

To see how a song gets entered, look at Line 100. We entered 34 and

75 as our HIGH and LOW FREQUENCY settings to play o ―C‖ note(from

the sample scale shown previously) and then the number 250 for aquarter

note. So the first note in our song is a quarter note C. Thesecond note is

also a quarter note, this time the note is ―E‖ . . . and so on to the end of our

tune. You can enter almost any song this way,adding as many DATA

statement lines as you need. You can continue thenote and duration

numbers from one line to the next but each line must begin with the word

DATA. DATA-1,-1,-1 should be the last line in yourprogram. This line

―ends‖ the song.

Type the word NEW to erase your previous program and type in

thefollowing program, then type RUN to hear the song.

MICHAEL ROW THE BOAT ASHORE-1 MEASURE

2 FORL=54272TO54296:POKEL,9:NEXT
5 V=54296:W=54276:A=54277:HF=54273:LF =54272: S

=54278:PH=54275:PL=54274
10 POKEV,15:POKEA,88:POKEPH,15:POKE PL,15:POKES,89
20 READH:IFH=—1THENEND
30 READL
40 READD
60 POKEHF,F:POKELF,L:POKEW,65
80 FORT=1TOD:NEXT:POKEW,64
85 FORT=1TO50:NEXT

92

90 GOTO 10
100 DATA34,75,250,43,52,250,51,97,375,43,52,125,51,97
105 DATA250,57,172,250
110 DATA51,97,500,0,0,125,43,52,250,51,97,250,57,172
115 DATA1000,51,97,500
120 DATA-1,-1,-1

CREATING SOUND EFFECTS

Unlike music, sound effects are more often tied to a specific

programming ―action‖ such as the explosion made by an astro-fighter as

itcrashes through a barrier in a space game... or the warning buzzer ina

business program that tells the user he‘s about to erase his disk bymistake.

You have a wide range of options available if you want to

createdifferent sound effects. Here are 10 programming ideas which

mighthelp you get started experimenting with sound effects:

1. Change the volume while a note is playing, for example to createan

―echo‖ effect.

2. Vary between two notes rapidly to create a sound ―tremor.‖

3. Waveform… try different settings for each voice.

4. Attack/Decay… to alter the rate a sound rises toward its ―peak‖volume

and rate it diminishes from that peak.

5. Sustain/Release… to change sustain to volume of a sound effect,and

rate it diminishes from that volume.

6. Multivoice effects… playing more than one voice at the sametime,

each voice independently controlled, or one voice playinglonger or

shorter than another, or serving as an ―echo‖ or responseto o first

note.

7. Changing notes on the scale, or changing octaves, using the valuesin

the MUSICAL NOTE VALUE table.

8. Use the Square Waveform and different Pulse Settings to

createdifferent effects.

9. Use the Noise Waveform to generate ―white noise‖ for accentingtonal

sound effects or creating explosions, gunshots or footsteps.The same

musical notes that create music can also be used with theNoise

Waveform to create different types of white noise.

10. Combine several HIGH/LOW frequencies in rapid succession acrossx

different octaves.

11. Filter… try the extra POKE setting in Appendix M.

93

SAMPLE SOUND EFFECTS TO TRY

The following programs may be added to almost any BASIC program.

They are included to give you some programming ideas and demonstrate

the Commodore 64‘s sound effect range.

Notice the programming shortcut we‘re using in Line 10. We

canabbreviate those long cumbersome sound selling numbers by

definingthem as easy-to-use letters (numeric variables). Line 10 simply

meansthat these easy to remember LETTERS can be used instead of

those long numbers. Here, V = Volume, W=Waveform, A=Attack/Decay,

H=HighFrequency (VOICE1), and L=Low Frequency (VOICE1). We then

use theseletters instead of numbers in our program… making our

programshorter, typing faster, and the sound settings easier to remember

and spot.

DOLL CRYING

10 V=54296:W = 54276:A= 54277: H=54273:L=54272
20 POKEV,15:POKEW,65:POKEA,15
30 FORX=200TO 5 STEP-2:POKEH,40:POKE L,X: NEXT
40 FORX=150 TO 5 STEP-2:POKEH,40:POKEL,X: NEXT
50 POKEW,0

SHOOTING SOUND... USING VOICE1, NOISE WAVEFORM,

FADINGVOLUME

10 V=54296:W=54276:A=54277:H =54273:L=54272
20 FORX=15TO 0 STEP-1:POKE V,X:POKEW,129:POKE

A,15:POKEH,40:POKEL, 200: NEXT
30 POKEW,0:POKEA,0

94

CHAPTER8

ADVENCED DATA

HANDLING
 READ and DATA

 Averages

 Subscripted Variables

 One-Dimensional Arrays

 Averages Revisited

 DIMENSION

 Simulated Dice Roll With Arrays

 Two-Dimensional Arrays

95

READ AND DATA

You've seen how to assign values to variables directly within the

program (A = 2), and how to assign different values while the program

isrunning - through the INPUT statement.

There are many times, though, when neither one of these ways willquite

fit the job you're trying to do, especially if it involves a lot ofinformation.

Try this short program:

In line 10, the computer READs one value from the DATA

statementand assigns that value to X. Each time through the loop the next

value inthe DATA statement is read and that value assigned to X, and

PRINTed.A pointer in the computer itself keeps track of which value is to

be used next:

40 DATA 1, 34, 10.5, 16, 234.56

When all the values have been used, and the computer executed

theloop again, looking for another value, the OUT OF DATA error was

displayed because there were no more values to READ.

96

It is important to follow the format of the DATA statement precisely:

40 DATA 1, 34, 10.5, 16, 234.56

Data statements can contain integer numbers, real numbers (234.65),or

numbers expressed in scientific notation. But you can‘t READ

othervariables, or have arithmetic operations in DATA lines. This would

beincorrect:

40 DATA A, 23/56, 2*5

You can, however, use a string variable in a READ statement and

thenplace string information in the DATA line. The following is acceptable:

Notice that this time, the READ statement was placed inside a

FOR…NEXT loop. This loop was then executed to match the number

ofvalues in the data statement.

In many cases you will change the number of values in the

DATAstatement each time the program is run. A way to avoid counting

thenumber of values and still avoid an OUT OF DATA ERROR is to place

a―FLAG‖ as the last value in the DATA line. This would be a value thatyour

date would never equal, such as a negative number or a verylarge or small

number. When that value is READ the program will

There is a way to reuse the same DATA later in the program by RES-

97

TOREing the data pointer to the beginning of the data list. Add line 50to the

previous program:

50 GOTO 10

You will still get the OUT OF DATA error because as the

programbranches back to line 10 to reread the data, the data pointer

indicates all the data has been used. Now, add:

45 RESTORE

and RUN the program again. The data pointer has been RESTOREd

andthe data can be READ continuously.

AVERAGES

The following program illustrates a practical use of READ and DATA,by

reading in a set of numbers and calculating their average.

Line 5 sets CT, the CounTer, and T, Total, equal to zero. Line 10

READsa value and assigns the value to X. Line 20 checks to see if the

value isour flag (here a —1). If the value READ is part of the valid DATA,

CT isincremented by 1 and X is added to the total.

When the flag is READ, the program branches to line 50 which PRINTs

98

the number of values read. Line 60 PRINTs the total, and line 70 dividesthe

total by the number of values to get the average.

By using a flag at the end of the DATA, you can place any number

ofvalues in DATA statements - which may stretch over several lines -

without worrying about counting the number of values entered.

Another variation of the READ statement involves assigning information

from the same DATA line to different variables. This information caneven

be a mixture of string data and numeric values. You can do all thisin the

following program that will READ a name, some scores – saybowling - and

print the name, scores, and the average score:

In running the program, the DATA statements were set up in the

sameorder that the READ statement expected the information: a name

(astring), then three values. In other words N$ the first time through getsthe

DATA ―MIKE‖, A in the READ corresponds to 190 in the data statement,

―B‖ to 185 and ―C‖ to 165. The process is then repeated in thatorder for the

remainder of the information. (Dick and his scores, Johnand his scores,

and Paul and his scores).

SUBSCRIPTED VARIABLES

In the past we‘ve used only simple BASIC variables, such as A, A$,and

NU to represent values. These were a single letter followed by aletter or

99

single digit. In any of the programs that you would write, it isdoubtful that

we would have a need for more variable names thanpossible with all the

combinations of letters or numbers available. Butyou are limited in the way

variables are used with programs.

Now let‘s introduce the concept of subscripted variables.

This would be said: A sub 1. A subscripted variable consists of a

letterfollowed by a subscript enclosed within parentheses. Please note

thedifference between A, Al, and A(1). Each is unique. Only A(1) is a

subscripted variable.

Subscripted variables, like simple variables, name a memory

locationwithin the computer. Think of subscripted variables as boxes to

storeinformation, just like simple variables:

A(0)

A(1)

A(2)

A(3)

A(4)

If you wrote:

10 A(0)=25: A(3)=55: A(4)=-45.3

Then memory would look like this:

A(0) 25

A(1)

A(2)

A(3) 55

A(4) -45.3

This group of subscripted variables is also called an array. In thiscase,

a one-dimensional array. Later on, we'll introduce multidimensional arrays.

Subscripts can also be more complex to include other variables,

orcomputations. The following are valid subscripted variables:

A(X)A(X+1)A(2+1)A(1*3)

The expressions within the parentheses are evaluated according to

thesame rules for arithmetic operations outlined in Chapter 2.

100

Now that the ground rules are in place, how can subscripted variables

be put to use? One way is to store a list of numbers entered withINPUT or

READ statements.

Let‘s use subscripted variables to do the averages a different way.

There might have been an easier way to accomplish what we did inthis

program, but it illustrates how subscripted variables work. Line 10asks for

how many numbers will be entered. This variable, X, acts asshe counter for

the loop within which values are entered and assigned tothe subscripted

variable, B.

Each time through the INPUT loop, Ais increased by | and so the

nextvalue entered is assigned to the next element in the array A. For

example, the first time through the loop A = 1, so the first value enteredis

assigned toB(1). The next time through, A = 2; the next value isassigned to

B(2), and so on until all the values have been entered.

But now a big difference comes into play. Once all the values havebeen

entered, they are stored in the array, ready to be put to work in avariety of

ways. Before, you kept a running total each time through the

101

INPUT or READ loop, but never could get back the individual pieces ofdata

without re-reading the information.

In lines 50 through 80, another loop has been designed to add up

thevarious elements of the array and then display the average. This

separate part of the program shows that all of the values are stored and

canbe accessed as needed.

To prove that all of the individual values are actually stored separatelyin

an array, type the following immediately after running the previousprogram:

FOR A = 1 TO 5: ?B(A),: NEXT

125167189167
158

The display will show your actual values as the contents of the arrayare

PRINTed.

DIMENSION

If you tried to enter more than 10 numbers in the previous example,you

got a DIMENSION ERROR. Arrays of up to eleven elements (subscripts 0

to 10 for a one-dimensional array) may be used where needed,just as

simple variables can be used anywhere within a program. Arrays of more

than eleven elements need to be ―declared‖ in a dimensionstatement.

Add this line to the program:

5 DIM B(100)

This lets the computer know that you will have a maximum of 100

elements in the array.

The dimension statement may also be used with a variable, so

thefollowing line could replace line 5 (don‘t forget to eliminate line 5):

15 DIM B(X)

This would dimension the array with the exact number of values thatwill

be entered.

Be careful, though. Once dimensioned, an array cannot be

redimensioned in another part of the program. You can, however, have

multiplearrays within the program and dimension them all on the same line,

likethis:

10 DIM C(20), D(50), E(40)

102

SIMULATED DICE ROLL WITH ARRAYS

As programs become more complex, using subscripted variables willcut

down on the number of statements needed, and make the programsimpler

to write.

A single subscripted variable can be used, for example, to keep trackof

the number of times o particular face turns up:

1 REM DICE SIMULATION: PRINT CHR$(147)
10 INPUT “HOW MANY ROLLS:"; X
20 FOR L = 1 TO X
30 R = INT(6*RND(1)) +1
40 F(R) = F(R) + 1
50 NEXT L
60 PRINT “FACE", “NUMBER OF TIMES"
70 FOR C = 1 TO6 : PRINT C, F(C): NEXT

The array F, for FACE, will be used to keep track of how many times

aparticular face turns up. For example, every time a 2 is thrown, F(2)

isincreased by one. By using the same element of the array to hold

theactual number on the face that is thrown, we‘ve eliminated the need

forfive other variables (one for each face) and numerous statements

tocheck and see what number is thrown.

Line 10 asks for how many rolls you want to simulate.

Line 20 establishes the loop to perform the random roll and

incrementthe proper element of the array by one each for each toss.

After all of the required tosses are completed, line 60 PRINTs

theheading and line 70 PRINTs the number of times each face shows up.

A sample run might look like this:

Well, at least it wasn‘t loaded!

Just as a comparison, the following is one way of re-writing the

sameprogram, but without using subscripted variables. Don‘t bother to type

itin, but do notice the additional statements necessary.

103

10 INPUT "HOW MANY ROLLS?"; X
20 FOR L = 1 TO X
30 R = INT(6*RND(1)) + 1
40 IF R = 1 THEN F1 = F1 +1 : NEMT
41 IF R = 2 THEN F2 = F2 +1 : NEXT
42 IF R = 3 THEN F2 = F3 + 1 : NEXT
43 IF R = 4 THEN F4 = F4 +1 : NEXT
44 IF R = 5 THEN F5 = F5 + 1: NEXT
45 IF R = 6 THEN F6 = F6 +1 :NEXT
60 PRINT "FACE", “NUMBER OF TIMES"
70 PRINT 1. F1
71 PRIWT 2, F2
72 PRINT 3, F3
73 PRINT 4, F4
74 PRINT 5, F5
75 PRINT 6, F6

The program has doubled in size from 8 to 16 lines. In larger programs

the space savings from using subscripted variables will be evenmore

dramatic.

TWO-DIMENSIONAL ARRAYS

Earlier in this chapter you experimented with one-dimensional

arrays.This type of array was visualized as a group of consecutive boxes

withinmemory each holding an element of the array. What would you

expecta two-dimensional array to look like?

First, a two-dimensional array would be written like this:

and could be represented as a two-dimensional grid within memory:

 0 1 2 3 4 5 6

0

1

2

3

4

The subscripts could be thought of as representing the row and column

within the table where the particular element of the array is stored.

104

 0 1 2 3 4 5 6

0

1

2

3 255

4

If we assigned the value 255 to A(3,4), then 255 could be thought ofas

being placed in the 4th column of the 3rd row within the table.

Two-dimensional arrays behove according to the same rules that

wereestablished for one-dimensional arrays:

They must be dimensioned: DIM A(20,20)

Assignment of data: A(1,1) = 255

Assign values to other variables: AB = A(1,1)

PRINT values: PRINT A(1,1)

If two-dimensional arrays work like their smaller counterparts,

whatadditional capabilities will the expanded arrays handle?

Try this: can you think of a way using a two-dimensional array

totabulate the results of a questionnaire for your club that involved

fourquestions and had up to three responses for each question? The

problem could be represented like this:

CLUB QUESTIONNAIRE

Q1: ARE YOU IN FAVOR OF RESOLUTION #1?

□1-YES □2-NO□3-UNDECIDED

…and so on.

105

The array table for this problem could be represented like this:

 RESPONSES

 YES NO UNDECIDED

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

The program to do the actual tabulation for the questionnaire mightlook

like that shown on page 103.

This program makes use of many of the programming techniques that

have been presented so far. Even if you don‘t have any need for theactual

program right now, see if you can follow how the program works.

The heart of this program is a 4 by 3 two-dimensional array, A(4,3).The

total responses for each possible answer to each question are heldin the

appropriate element of the array. For the sake of simplicity, wedon‘t use the

first rows and column (A(O,0) te A(0,4)). Remember,though, that those

elements are always present in any array you design.

In practice, if question one is answered YES, then A(1,1) is

incremented by one - row 1 for question 1 and column 1 for a YES

response. The rest of the questions and answers follow the same pattern.A

NO response for question three would add one to element A(3,2), andso

on.

106

107

108

APENDICES

109

INTRODUCTION

Now that you‘ve become more intimately involved with your

Commodore 64, we want you to know that our customer support does not

stophere. You may not know it, but Commodore has been in business

forover 23 years. In the 1970's we introduced the first self-contained

personal computer (the PET). We have since become the leading

computer company in many countries of the world. Our ability to design

andmanufacture our own computer chips allows us to bring you new

andbetter personal computers at prices way below what you'd expect for

this level of technical excellence.

Commodore is committed to supporting not only you, the end user,but

also the dealer you bought your computer from, magazines whichpublish

how-to articles showing you new applications or techniques, aand…

importantly . . . software developers who produce programson cartridge,

disk and tape for use with your computer. We encourageyou to establish or

join a Commodore ―user club‖ where you can learn new techniques,

exchange ideas and share discoveries. We publish twoseparate magazines

which contain programming tips, information onnew products and ideas for

computer applications. (See Appendix N).

In North America, Commodore provides a ―Commodore

InformationNetwork‖ on the CompuServe Information Service…to access

thisnetwork, all you need is your Commodore 64 computer and our low

costVICMODEM telephone interface cartridge (or other compatible

modem).

The following APPENDICES contain charts, tables, and other

information which help you program your Commodore 64 faster and

moreefficiently. They also include important information on the wide variety

of Commodore products you may be interested in, and a bibliographylisting

of over 20 books and magazines which can help you develop

yourprogramming skills and keep you current on the latest information

concerning your computer and peripherals.

110

APPENDIX A

COMMODORE 64 ACCESSORIESAND
SOFTWARE

ACCESSORIES

The Commodore 64 will support Commodore VIC 20 storage

devicesand accessories - DATASSETTE recorder, disk drive, modem,

printer - so your system can expand to keep pace with changing needs.

 Datasette Recorder - This low cost tape unit enables programs

anddata to be stored on cassette tape, and played back at a

latertime. The datasette can also be used to play pre-written

programs.

 Disk - The single disk unit uses standard 5%-inch floppy

diskettes,about the size of a 45 RPM record, to store programs and

data.Disks allow faster access to data and hold up to 170,000

characters of information each. Disk units are ―intelligent,‖

meaningthey have their own microprocessor and memory. Disks

require noresources from the Commodore 64, such as using part of

mainmemory.

 Modem - A low-cost communication devicethe VICMODEM

allowsaccess to other computers over ordinary telephone lines.

Users willhave access to the full resources of large data bases such

as TheSource, CompuServe, and Dow Jones News Retrieval

Service (North America only).

 Printer - The VIC printer produces printed copies of programs,data,

or graphics. This 30 character per second dot-matrix printeruses

plain tractor feed paper and other inexpensive supplies. Theprinter

attaches directly to the Commodore 64 without any additional

interfaces.

 Interface Cartridges - A number of specialized cartridges will

beavailable for the Commodore 64 to allow various standard

devicessuch as modems, printers, controllers, and instruments to be

attached to the system.

111

With a special IEEE-488 Cartridge, the Commodore 64 will supportthe

full range of CBM peripherals including disk units and printers.

Additionally, a Z80 cartridge will allow you to run CP/M
1
 on the

Commodore 64, giving you access to the largest base ofmicrocomputer

applications available.

SOFTWARE

Several categories of software will be offered for the Commodore

64,providing you with a wide variety of personal, entertainment, and

educational applications to choose from.

BUSINESS AIDS

 An Electronic Spreadsheet package will allow you to plan

budgets,and perform ―what if?‖ analysis. And with the optional

graphicprogram, meaningful graphs may be created from the

spreadsheetdata.

 Financial planning, such as loan amortization, will be easily handled

with the Financial Planning Package.

 A number of Professional Time Management programs will

helpmanage appointments and work load.

 Easy-to-use Data Base programs will allow you to keep track

ofinformation… mailing lists… phone lists… inventories… and

organize information in a useful form.

 Professional Word Processing programs will turn the Commodore 64

into a full-featured word processor. Typing and revising

memos,letters, and other text material become a breeze.

ENTERTAINMENT

 The highest quality games will be available on plug-in cartridgesfor

the Commodore 64, providing hours of enjoyment. These programs

make use of the high resolution graphics and full soundrange possible

with the Commodore 64.

 Your Commodore 64 allows you all the fun and excitement available

on MAX games because these two machines have

completelycompatible cartridges.

1
CP/M is a registered trademark of Digital Research Inc.

112

EDUCATION

The Commodore 64 is a tutor that never tires and always givespersonal

attention. Besides access to much of the vast PET educational programs,

additional educational languages that will beavailable for the Commodore

64 include PILOT, LOGO and otherkey advanced packages.

113

APPENDIX B

ADVANCED CASSETTE OPERATION

Besides saving copies of your programs on tape, the Commodore

64can also store the values of variables and other items of data, in agroup

called a FILE. This allows you to store even more information thancould be

held in the computer's main memory at one time.

Statements used with data files are OPEN, CLOSE, PRINT#,

INPUT#,and GET#. The system variable ST (status) is used to check for

tapemarkers.

In writing data to tape, the same concepts are used as when displaying

information on the computer‘s screen. But instead of PRINTing information

on the screen, the information is PRINTed on tape using avariation of the

PRINT command - PRINT#.

The following program illustrates how this works:

10PRINT "WRITE-TO-TAPE-PROGRAM"
20 OPEN 1,1.-1,"DATA FILE"
30 PRINT "TYPE DATA TO BE STORED OR TYPE STOP"
50PRINT
60 INPUT "DORTA" -AS peal
70 PRINT #1, AF
80 IF AS <>"STOP" THEN 5@
90PRINT
100 PRINT “CLOSING FILE”
110 CLOSE 1

The first thing that you must do is OPEN a file (in this case DATA

FILE).Line 10 handles that.

The program prompts for the data you want to save on tape in line60.

Line 70 writes what you typed - held in A$ - onto the tope. And the process

continues.

If you type STOP, line 110 CLOSES the file.

114

To retrieve the information, rewind the tape, and try this:

10PRINT “READ-TAPE-PROGRAM"
20 OPEN 1,1,@,"DATA FILE"
30 PRINT “FILE OPEN"
40PRINT
50 INPUT#1, A$
60 PRINT A$
70 IF A$ = "STOP" THEN END
80 GOTO 40

Again, the file ―DATA FILE‖ first must be OPENed. In line 50 the

program INPUTs A$ from tape and also PRINTs A$ on the screen. Then

thewhole process is repeated until ―STOP‖ is found, which ENDs the

program.

A variation of GET - GET# - can also be used to read the data backfrom

tape. Replace lines 50-80 in the program above with:

50 GET#1, A$
60 IF A$ = “” THEN END
70 PRINT A$,ASC(A$)
80GOTO 50

115

APPENDIX C

COMMODORE 64 BASIC

This manual has given you an introduction to the BASIC language -

enough for you to get a feel for computer programming and some ofthe

vocabulary involved. This appendix gives a complete list of the

rules(SYNTAX) of Commodore 64 BASIC, along with concise

descriptions.Please experiment with these commands. Remember, you

can‘t do any permanent damage to *he computer by just typing in

programs, and thebest way to learn computing is by doing.

This appendix is divided into sections according to the different types of

operations in BASIC. These include:

1. Variables and Operators: describes the different type of

variables,legal variable names, and arithmetic and logical operators.

2. Commands: describes the commands used to work with

programs,edit, store, and erase them.

3. Statements: describes the BASIC program statements used in

numbered lines of programs.

4. Functions: describes the string, numeric, and print functions.

VARIABLES

The Commodore 64 uses three types of variables in BASIC. These

arereal numeric, integer numeric, and string (alphanumeric) variables.

Variable names may consist of a single letter, a letter followed by

anumber, or two letters.

An integer variable is specified by using the percent (%) sign after the

―avariable name. String variables have the dollar sign ($) after theirname.

EXAMPLES

Real Variable Names: A, A5, BZ

Integer Variable Names: A%, A5%, BZ%

116

String Variable Names: A$, A5$, BZ$

Arrays are lists of variables with the same name, using extra numbersto

specify the element of the array. Arrays are defined using the

DIMstatement, and may contain floating point, integer, or string

variables.The array variable name is followed by a set of parentheses ()

enclosing the number of variables in the list.

A(7), BZ%(11), A$(50), PT(20,20)

NOTE: There are three variable names which are reserved for use

bythe Commodore 64, and may not be defined by you. These variablesare:

ST, Tl, and TI$. ST is a status variable which relates to

input/outputoperations. The value of ST will change if there is a problem

loading aprogram from disk or tape.

Tl and TI$ are variables which relate to the real-time clock built intothe

Commodore 64. The variable Tl is updated every
1
/60th of a second.It starts

at 0 when the computer is turned on, and is reset only by changing the

value of TI$.

TI$ is a string which is constantly updated by the system. The first

twocharacters contain the number of hours, the 3rd and 4th characters

thenumber of minutes, and the 5th and 6th characters are the number

ofseconds. This variable can be given any numeric value, and will

beupdated from that point.

TI$ - ―101530‖ sets the clock to 10:15 and 30 seconds AM.

This clock is erased when the computer is turned off, and starts atzero

when the system is turned back on.

OPERATORS

The arithmetic operators include the following signs:

+ Addition

- Subtraction

* Multiplication

/ Division

^ Raising to a power (exponentiation)

On a line containing more than one operator, there is a set order

inwhich operations always occur. If several operations are used togetheron

117

the same line, the computer assigns priorities as follows: First,

exponentiation. Next, multiplication and division, and lost, addition

andsubtraction.

You can change the order of operations by enclosing within

parentheses the calculation to be performed first. Operations enclosed

inparentheses will take place before other operations.

There are also operations for equalities and inequalities:

= Equal To

< Less Than

> Greater Than

<= Less Than or Equal To

>= Greater Than or Equal To

<> Not Equal To

Finally, there are three logical operators:

AND

OR

NOT

These are used most often to join multiple formulas in IF...

THENstatements. For example:

IF A = B AND C = D THEN 100 (Requires both parts to be true)

IF A = B OR C = D THEN 100 (Allows either part to be true)

COMMANDS

CONT (Continue)

This command is used to restart the execution of a program which

hasbeen stopped by either using the STOP key, a STOP statement, or

anEND statement within the program. The program will restart at the exact

place from where it left off.

CONT will not work if you have changed or added lines to the program

(or even just moved the cursor), or if the program halted due to anerror, or

if you caused an error before trying to restart the program. Inthese cases

you will get a CAN‘T CONTINUE ERROR.

118

LIST

The LIST command allows you to look at lines of a BASIC program

inmemory. You can ask for the entire program to be displayed, or

onlycertain line numbers.

LIST Shows entire program

LIST 10- Shows only from line 10 until end

LIST 10 Shows only line 10

LIST -10 Shows lines from beginning until 10

LIST 10-20 Shows line from 10 to 20, inclusive

LOAD

This command is used to transfer a program from tape or disk

intomemory so the program can be used. If you just type LOAD and

hitRETURN, the first program found on the cassette unit will be placed

inmemory. The command may be followed by a program name

enclosedwithin quotes. The name may then be followed by a comma and

anumber or numeric variable, which acts as a device number to

indicatewhere the program is coming from.

If no device number is given, the Commodore 64 assumes device

#1,which is the cassette unit. The other device commonly used with

theLOAD command is the disk drive, which is device #8.

LOAD Reads in the next program on tape

LOAD ―HELLO‖ Searches tape for program called

 HELLO, and loads program, if found

LOAD A$ Looks for program whose name is in the variable A$

LOAD ―HELLO‖,8 Looks for program called HELLO on the disk drive

LOAD ‖*‖,8 Looks for first program on disk

NEW

This command erases the entire program in memory, and also

clearsout any variables that may have been used. Unless the program

wasSAVEd, it is lost. BE CAREFUL WHEN YOU USE THIS COMMAND.

The NEW command can also be used as a BASIC program statement.

When the program reaches this line, the program is erased. This is useful if

you want to leave everything neat when the program is done.

119

RUN

This command causes execution of a program, once the program is

loaded into memory. If there is no linc number following RUN, the computer

will start with the lowest line number. If a line number is designated, the

program will start executing from the specified line.

RUN Starts program at lowest line number

RUN 100 Starts execution at line 100

RUN X UNDEFINED STATEMENT ERROR. You must

 always specify an actual line number,

 not a variable representation

SAVE

This command will store the program currently in memory on cassetteor

disk. If you just type SAVE and RETURN, the program will be SAVEd

oncassette. The computer has no way of knowing if there is a

programalready on that tape, so be careful with your tapes or you may

erase avaluable program.

If you type SAVE followed by a name in quotes or a string variable, athe

computer will give the program that name, so it can be more easilylocated

and retrieved in the future. The name may also be followed bya device

number.

After the device number, there can be a comma and a secondnumber,

either 0 or 1. If the second number is 1, the Commodore 64 willput an

END-OF-TAPE marker after your program. This signals thecomputer not to

look any further on the tape if you were to give an additional LOAD

command. If ycu try to LOAD a program and the computer finds one of

these markers, you will get a FILE NOT FOUND ERROR.

SAVE Stores program to tape without name

SAVE ―HELLO‖ Stores on tape with name HELLO

SAVE A$ Stores on tape with name in A$

SAVE ―HELLO‖,8 Stores on disk with name HELLO

SAVE ―HELLO‖,1,1 Stores on tape with name HELLO

 and follows program with END-OF-TAPE

 marker

120

VERIFY

This command causes the computer to check the program on disk

ortape against the one in memory. This is proof that the program is actually

SAVEd, in case the tape or disk is bad, or something went wrongduring the

SAVE. VERIFY without anything after the command causes

theCommodore 64 to check the next program on tape, regardless of

name,against the program in memory.

VERIFY followed by a program name, or a string variable, will searchfor

that program and then check. Device numbers can also be includedwith the

verify command.

VERIFY Checks the next program on tape

VERIFY ―HELLO‖ Searches for HELLO, checks against memory

VERIFY ―HELLO‖,8 Searches for HELLO on disk, then checks

STATEMENTS

CLOSE

This command completes and closes any files used by OPEN

statements. The number following CLOSE is the file number to be closed.

CLOSE 2 Only file #2 is closed

CLR

This command will erase any variables in memory, but leaves

theprogram itself intact. This command is automatically executed when

aRUN command is given.

CMD

CMD sends the output which normally would go to the screen {i.e.,

PRINT statements, LISTs, but not POKEs onto the screen) to another

device instead. This could be a printer, or a data file on tape or disk. Thisa

device or file must be OPENed first. The CMD command must be followed

by a number or numeric variable referring to the file.

121

OPEN 1,4 OPENs device #4, which is the printer

CMD 1 All normal output now goes to printer

LIST The program listing now goes to

 the printer, not the screen

To send output back to the screen, CLOSE the file with CLOSE 1.

DATA

This statement is followed by a list of items to be used by READ

statements. Items may be numeric values or text strings, and items

areseparated by commas. String items need not be inside quote

marksunless they contain space, colon, or comma. If two commas have

nothing between them, the value will be READ as a zero for a number, or

an empty string.

DATA 12, 14.5, ―HELLO, MOM‖, 3.14, PART1

DEF FN

This command allows you to define a complex calculation as a function

with a short name. In the case of a long formula that is used manytimes

within the program, this can save time and space.

The function name will be FN and any legal variable name (1 or 2

characters long). First you must define the function using the

statementDEF followed by the function name. Following the name is a set

of parentheses enclosing a numeric variable, Then follows the actual

formula that you want to define, with the variable in the proper spot. You

can then ―call‖ the formula, substituting any number for the variable.

10 DEF FNA(X) = 12*(34.75 X/.3)

20 PRINT FNA(7)
7 is inserted where

X is in the formula

For this exarnple, the result would be 137.

DIM

When you use more than 11 elements of an array, you must execute a

DIM statement for the array. Keep in mind that the whole array takes up

122

room in memory, so don‘t create an array much larger than you'll need.To

figure the number of variables created with DIM, multiply the totalnumber of

elements in each dimension of the array.

10 DIM A$(40), B7(15), CC%(4,4,4)
 41 ELEMENTS 15 ELEMENTS 125 ELEMENTS

You can dimension more than one array in a DIM statement. However,

be careful not to dimension an array more than once.

END

When a program encounters an END statement, the program halts, asif

it ran out of lines. You may use CONT to restart the program.

FOR…TO…STEP

This statement works with the NEXT statement to repeat a section ofthe

program a set number of times. The format is:

FOR (Var. Name)=(Start of Count) TO (End of Count) STEP (Count By)

The loop variable will be added to or subtracted from during

theprogram. Without any STEP specified, STEP is assumed to be 1. The

startcount and end count are the limits to the value of the loop variable.

10 FOR L = 1 TO 10 STEP .1

20 PRINT L

30 NEXT L

The end of the loop value may be followed by the word STEP

andanother number or variable. In this case, the value following STEP

isadded each time instead of 1. This allows you to count backwards, orby

fractions.

GET

The GET statement allows you to get data from the keyboard,

onecharacter at a time. When GET is executed, the character that is typed

isassigned to the variable. If no character is typed, then a null

123

(empty)character is assigned.

124

GET is followed by a variable name, usually o string variable. If

anumeric variable was used and a nonnumeric key depressed, the

program would halt with an error message. The GET statement may be

placed into a loop, checking for any empty result. This loop will

continueuntil a key is hit.

10 GET A$: IF A$ =‖‖ THEN 10

GET#

The GET# statement is used with a previously OPENed device or file,to

input one character at a time from that device or file.

GET #1,A$

This would input one character from a data file.

GOSUB

This statement is similar to GOTO, except the computer

rememberswhich program line it last executed before the GOSUB. When a

line witha RETURN statement is encountered, the program jumps back to

thestatement immediately following the GOSUB. This is useful if there is

aroutine in your program that occurs in several parts of the

program.Instead of typing the routine over and over, execute GOSUBs

each time the routine is needed.

20 GOSUB 800

GOTO OR GO TO

When a statement with the GOTO command is reached, the next lineto

be executed will be the one with the line number following the wordGOTO.

IF…THEN

IF…THEN lets the computer analyze a situation and take two possible

courses of action, depending on the outcome. If the expression istrue, the

statement following THEN is executed. This may be any BASICstatement,

If the expression is false, the program goes directly to the next line.

The expression being evaluated may be a variable or formula, inwhich

case it is considered true if nonzero, and false if zero. In mostcases, there

is an expression involving relational operators (=, <, >, <=, >=, <>, AND,

OR, NOT).

125

10 1F X >10 THEN END

INPUT

The INPUT statement allows the program to get data from the user,

assigning that data to a variable. The program will stop, print a question

mark (?) on the screen, and wait for the user to type in the answerand hit

RETURN.

INPUT is followed by a variable name, or a list of variable

names,separated by commas. A message may be placed within quote

marks,before the list of variable names to be INPUT. If more than one

variableis to be INPUT, they must be separated by commas when typed.

10 INPUT ―PLEASE ENTER YOUR FIRST NAME ‖;A$

20 PRINT ―ENTER YOUR CODE NUMBER‖; : INPUT B

INPUT#

INPUT# is similar to INPUT, but takes data from a previously

OPENedfile or device.

10 INPUT#1, A

LET

LET is hardly ever used in programs, since it is optional, but

thestatement is the heart of all BASIC programs. The variable name

whichis to be assigned the result of a calculation is on the left side of

theequal sign, and the formula on the right.

10 LET A = 5

20 LET D$ = ―HELLO‖

NEXT

NEXT is always used in conjunction with the FOR statement. When

theprogram reaches a NEXT statement, it checks the FOR statement to

seeif the limit of the loop has been reached. If the loop is not finished,

theloop variable is increased by the specified STEP value. It the loop

isfinished, execution proceeds with the statement following NEXT.

126

NEXT may be followed by a variable name, or list of variable

names,separated by commas. If there are no names listed, the last loop

startedis the one being completed. If variables are given, they are

completedin order from left to right.

10 FOR X = 1 TO 100: NEXT

ON

This command turns the GOTO and GOSUB commands into

specialversions of the IF statement. ON is followed by a formula, which

isevaluated. If the result of the calculation is one, the first line on the list

isexecuted; if the result is 2, the second line is executed, and so on. If the

result is 0, negative, or larger than the list of numbers, the next

lineexecuted will be the statement following the ON statement.

10 INPUT X

20 ON X GOTO 10,20,30,40,50

OPEN

The OPEN statement allows the Commodore 64 to access devices

suchas the cassette recorder and disk for data, a printer, or even the

screen. OPEN is followed by a number (0-255), to which all following

statementswill refer. There is usually a second number after the first, which

is thedevice number.

The device numbers are:

0 Screen

1 Cassette

4 Printer

8 Disk

Following the device number may be a third number, separated again

by a comma, which is the secondary address. In the case of thecassette,

this is 0 for read, 1 for write, and 2 for write with end-of-tape marker.

In the case of the disk, the number refers to the buffer, or

channel,number. In the printer, the secondary address controls features

like expanded printing. See the Commodore 64 Programmer's Reference

Manual for more details.

127

10 OPEN 1,0 OPENs the SCREEN as a device

20 OPEN 2,1,0,‖D‖ OPENs the cassette for reading,

 file to be searched for is D

30 OPEN 3,4 OPENSs the printer

40 OPEN 4,8,15 OPENs the data channel on the disk

Also see: CLOSE, CMD, GET#, INPUT#, and PRINT#, system

variableST, and Appendix B.

POKE

POKE is always followed by two numbers, or formulas. The first

location is a memory location; the second number is a decimal value from 0

to 255, which will be placed in the memory location, replacing any

previously stored value.

10 POKE 53281,0

20 S=4096* 13

30 POKE S+29,8

PRINT

The PRINT statement is the first one most people learn to use, butthere

are a number of variations to be aware of. PRINT can be followedby:

Text String with quotes

Variable names

Functions

Punctuation marks

Punctuation marks are used to help format the data on the screen.The

comma divides the screen into four columns, while the

semicolonsuppresses all spacing. Either mark can be the last symbol on a

line.This results in the next thing PRINTed acting as if it were a

continuationof the same PRINT statement.

10 PRINT ―HELLO‖

20 PRINT ―HELLO‖,A$

30 PRINT A+B

128

40 PRINT J;

60 PRINT A,B,C,D

Also see: POS, SPC and TAB functions

PRINT#

There are a few differences between this statement and PRINT.PRINT#

is followed by a number, which refers to the device or data filepreviously

OPENed. This number is followed by a comma and a list to beprinted. The

comma and semicolon have the same effect as they do inPRINT. Please

note that some devices may not work with TAB and SPC.

100 PRINT#1,‖DATA VALUES‖; A%,B1,C$

READ

READ is used to assign information from DATA statements to variables,

so the information may be put to use. Care must be taken toavoid READing

strings where READ is expecting a number, which will agive a TYPE

MISMATCH ERROR.

REM (Remark)

REMark is a note to whomever is reading a LIST of the program. Itmay

explain a section of the program, or give additional instructions.REM

statements in no way affect the operation of the program, except to add to

its length. REM may be followed by any text.

RESTORE

When executed in a program, the pointer to which an item in a

DATAstatement will be READ next is reset to the first item in the list. This

givesyou the ability to re-READ the information. RESTORE stands by itself

on aline.

RETURN

This statement is always used in conjunction with GOSUB. When

theprogram encounters a RETURN, it will go to the statement

immediatelyfollowing the GOSUB command. If no GOSUB was previously

issued, a RETURN WITHOUT GOSUB ERROR will occur.

129

STOP

This statement will halt program execution. The message, BREAK

INxxx will be displayed, where xxx is the line number containing STOP.

Theprogram may be restarted by using the CONT command. STOP is

normally used in debugging a program.

SYS

SYS is followed by a decimal number or numeric value in the range0-

65535. The program will then begin executing the machine

languageprogram starting at that memory location. This is similar to the

USRfunction, but does not allow parameter passing.

WAIT

WAIT is used to halt the program until the contents of a memory

location changes in a specific way. WAIT is followed by a memory

location(X) and up to two variables. The format is:

WAIT X,Y,Z

The contents of the memory location are first exclusive-ORed with

thethird number, if present, and then logically ANDed with the

secondnumber. If the result is zero, the program goes back to that

memorylocation and checks again. When the result is nonzero, the

programcontinues with the next statement.

NUMERIC FUNCTIONS

ABS(X) (absolute value)

ABS returns the absolute value of the number, without its sign (+ or -).

The answer is always positive.

ATN(X) (arctangent)

Returns the angle, measured in radians, whose tangent is X.

130

COS(X) (cosine)

Returns the value of the cosine of X, where X is an angle measured

inradians.

EXP(X)

Returns the value of the mathematical constant e(2.71827183) raisedto

the power of X.

FNxx(X)

Returns the value of the user-defined function xx created in a

DEFFNxx(X) statement.

INT(X)

Returns the truncated value of X, that is, with all the decimal placesto

the right of the decimal point removed. The result will always be lessthan,

or equal to, X. Thus, any negative numbers with decimal places will

become the integer less than their current value.

LOG(X) (logarithm)

Will return the natural log of X, The natural log to the base e

(seeEXP(X)). To convert to log base 10, simply divide by LOG(10).

PEEK(X)

Used to find out contents of memory location X, in the range 0-65535,

giving a result from 0-255. PEEK is often used in conjunction with thePOKE

statement.

RND(X) (random number)

RND(X) returns a random number in the range 0-1. The first random

number should be generated by the formula RND(—T1) to start things

offdifferently every time. After this, X should be a 1 or any positivenumber.

If X is zero, the result will be the same random number as thelast one.

131

A negative value for X will reseed the generator. The use of the

samenegative number for X will result in the same sequence of

―random‖numbers.

The formula for generating a number between X and Y is:

N = RND(1)*(Y-X)+X

where,

Y is the upper limit

X is the lower range of numbers desired.

SGN(X) (sign)

This function returns the sign (positive, negative, or zero) of X.

Theresult will be +1 if positive, 0 if zero, and —1 if negative.

SIN(X) (sine)

SIN(X) is the trigonometric sine function. The result will be the sine ofX,

where X is an angle in radians.

SQR(X) (square root)

This function will return the square root of X, where X is a positive

number or 0. If X is negative, an ILLEGAL QUANTITY ERROR results.

TAN(X) (tangent)

The result will be the teongent of X, where X is an angle in radians.

USR(X)

When this function is used, the program jumps to a machine

languageprogram whose starting point is contained in memory locations.

The parameter X is passed to the machine language program, which will

return another value back to the BASIC program. Refer to the

Commodore64 Programmer's Reference Manual for more details on this

functionand machine language programming.

132

STRING FUNCTIONS

ASC(X$)

This function will return the ASCII code of the first character of X$.

CHR$(X)

This is the opposite of ASC, and returns a string character whose ASCII

code is X.

LEFT$(X$,X)

Returns a string containing the leftmost X characters of $X.

LEN(X$)

Returned will be the number of characters (including spaces and other

symbols) in the string X$.

MID$(X$,S,X)

This will return a string containing X characters starting from the

Sthcharacter in X$.

RIGHT$(X$,X)

Returns the rightmost X characters in X$.

STRS$(X)

This will return a string which is identical to the PRINTed version of X.

VAL(X$)

This function converts X$ into a number, and is essentially the

inverseoperation from STR$. The string is examined from the leftmost

characterto the right, for as many characters as are in recognizable number

format.

133

10 X = VAL("123.456‖) X = 123.456

10 X = VAL(―12A13B") X= 12

10 X = VAL(―RIU017‖) X= 0

10 X = VAL (―-1.23.45.67") X = -1.23

OTHER FUNCTIONS

FRE(X)

This function returns the number of unused bytes available in

memory,regardless of the value of X. Note that FRE(X) will read out n

negativenumbers if the number of unused bytes is over 32K.

POS(X)

This function returns the number of the column (0-39) at which thenext

PRINT statement will begin on the screen. X may have any valueand is not

used.

SPC(X)

This is used in a PRINT statement to skip X spaces forward.

TAB(X)

TAB is also used in a PRINT statement; the next item to be PRINTed

willbe in column X.

134

APPENDIX D

ABBREVIATIONS FOR
BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commodore

64 BASIC allows the user to abbreviate most keywords. The abbreviation

for PRINT is a question mark. The abbreviations for otherwords are made

by typing the first one or two letters of the word, followed by the SHIFTed

next letter of the word. If the abbreviations areused in a program line, the

keyword will LIST in the full form.

135

136

APPENDIX E

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the

Commodore64 character sets. It shows which numbers should be POKEd

into screenmemory (locations 1024-2023) to get a desired character. Also

shown iswhich character corresponds to a number PEEKed from the

screen.

Two character sets are available, but only one set at a time. Thismeans

that you cannot have characters from one set on the screen atthe same

time you have characters from the other set displayed. Thesets are

switched by holding down the [SHIFT]and [C=] keys simultaneously.

From BASIC, POKE 53272,21 will switch to upper case mode

andPOKE 53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE.

Thereverse character code may be obtained by adding 128 to the values

shown.

If you want to display a solid circle at location 1504, POKE the codefor

the circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to control the color of

eachcharacter displayed on the screen (locations 55296-56295). To

changethe color of the circle to yellow (color code 7) you would POKE the

corresponding memory location (55776) with the character color:

POKE55776,7.

Refer to Appendix G for the complete screen and color memorymaps,

along with color codes.

SCREEN CODES

137

138

139

Codes from 128-255 are reversed images of codes 0-127.

140

APPENDIX F

ASCII AND CHR$ CODES

This appendix shows you what characters will appear if you

PRINTCHR$(X), for all possible values of X. It will also show the values

obtained by typing PRINT ASC("x‖), where x is any character you can

type.This is useful in evaluating the character received in a GET

statement,a converting upper/lower case, and printing character based

commands(like switch to upper/lower case) that could not be enclosed in

quotes.

141

142

143

CODES 192-223 SAME AS 96-127

CODES 224-254 SAME AS 160-190

CODE 255 SAME AS 128

144

APPENDIX G

SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing

characters on the screen, and the locations used to change individual

character colors, as well as showing character color codes.

SCREEN MEMORY MAP

145

The actual values to POKE into a color memory location to change

acharacter's color are:

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 10 Light RED

3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN

6 BLUE 14 Light BLUE

7 YELLOW 15 GRAY 3

For example, to change the color of a character located at the upperleft-

hand corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

146

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to Commodore 64 BASIC may be

calculated as follows:

FUNCTION BASIC EQUIVALENT

SECANT

COSECANT

COTANGENT

INVERSESINE

INVERSE COSINE

INVERSESECANT

INVERSECOSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLICTANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE

INVERSE HYPERBOLIC COSINE

INVERSE HYPERBOLIC TANGENT

INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

SEC(X)= 1/COS(X)

CSC(X)=1/SIN(X)

COT(X)=1/TAN(X)

ARCSIN(X)=ATN(X/SQR(- X*X+1))

ARCCOS(X)= -ATN(X/SQR

(-X*X+1)+𝜋/2

ARCSEC(X)=ATN(X/SQR(X* X-1))

ARCCSC(X)=ATN(X/SQR(X* X-1))

-(SGN(X)-1* 𝜋/2

ARCOT(X)=ATN(X)+ 𝜋/2

SINH(X)=(EXP(X)-EXP(-X))/2

COSH(X)= (EXP(X)+EXP(-X))/2

TANH(X)= EXP(-X)/(EXP(x)+EXP

(-X))*2+1

SECH(X)= 2/(EXP(X)+ EXP(-X))

CSCH(X)= 2/(EXP(X)-EXP(-X))

COTH(X)= EXP{-X)/(EXP(X)

-EXP(-X))*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1))

ARCCOSH(X)=LOG(X+SQR(X*X-1))

ARCTANH(X)=LOG((1 +X)/(1-X))/2

ARCSECH(X)=LOG((SQR

(-X*X+°)+1/X)

ARCCSCH(X)=LOG((SGN(X)*SQR

(X*X+1/X)

ARCCOTH(X)=LOG((X+1)/(X-1))/2

147

APPENDIX I

PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may bemade

to the Commodore 64.

1) Game I/0 4) Serial I/O (Disk/Printer)

2) Cartridge Slot 5) Modulator Output

3) Audio/Video 6) Cassette

 7) User Port

Control Port 1

Pin

1

2

3

4

5

6

7

8

9

Type

JOYA0

JOYA1

JOYA2

JOYA3

POT AY

BUTTON A/LP

+5V

GND

POTAX

Note

MAX. 50mA

Control Port 2

Pin

1

2

3

4

5

6

7

8

9

Type

JOYB0

JOYB1

JOYB2

JOYB3

POT BY

BUTTON B

+5V

GND

POTBX

Note

MAX. 50mA

148

Cartridge Expansion Slot

Pin Type Pin Type

12

13

14

15

16

17

18

19

20

21

22

BA

-DMA

D7

D6

D5

D4

D3

D2

D1

D0

GND

 1

2

3

4

5

6

7

8

9

10

11

GND

+5V

+5V

-IRQ

R/-W

Dot Clock

I/O 1

-GAME

-EXROM

I/O 2

-ROM

Pin Type Pin Type

N

P

R

S

T

U

V

W

X

Y

Z

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

GND

 A

B

C

D

E

F

H

J

K

L

M

GND

-ROMH

-RESET

-NMI

S 02

A15

A14

A13

A12

A11

A10

Audio/Video

Pin

1

2

3

4

5

Type

LUMINANCE

GND

AUDIO OUT

VIDEO OUT

AUDIO IN

Serial I/O
Pin

1

2

3

4

5

6

Type

SERIAL -SRQIN

GND

SERIAL ATN IN/OUT

SERIAL CLK IN/OUT

SERIAL DATA IN/OUT

-RESET

149

Cassette

Pin

A-1

B-2

C-3

D-4

E-5

F-6

Type

GND

+5V

CASSETTE MOTOR

CASSETTE READ

CASSETTE WRITE

CASSETTE SENSE

User I/O
Pin

1

2

3

4

5

6

7

8

9

10

11

12

Type

GND

+5V

-RESET

CNT1

SP1

CNT2

SP2

-PC2

SER:ATN IN

9 VAC

9 VAC

GND

Note

MAX 100mA

MAX 100mA

MAX 100mA

Pin

A

B

C

D

E

F

H

J

K

L

M

N

Type

GND

-FLAG2

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PA2

GND

Note

150

APPENDIX J

PROGRAMS TO TRY

We've included a number of useful programs for you to try with

yourCommodore 64. These programs will prove both entertaining and

useful.

151

152

This program courtesy of Gene Deals

153

NOTES:

Line 100 uses (SHIFTCLR/HOME) Line 530 uses (f7)

(CTRL 9),(CTRL]),(SHIFT B). Line 540 uses (f2)

Line 150 uses (CRSR DOWN) Line 550 uses (f4)

Line 240 uses (CASR UP) Line 560 uses (f6)

Line 500 uses (f1) Line 570 uses (f8)

Line 510 uses (f3) Line 590 uses (SHIFT CLR/HOME)

Line 520 uses (f5)

154

APPENDIX K

CONVERTING STANDARD
BASIC PROGRAMS TO
COMMODORE 64 BASIC

If you have programs written in a BASIC other than Commodore

BASIC, some minor adjustments may be necessary before running them

on the Commodore-64. We've included some hints to make the conversion

easier.

String Dimensions

Delete all statements that are used to declare the length of strings.

Astatement such as DIM AS$(I,J), which dimensions a string array for

Jelements of length |, should be converted to the Commodore

BASICstatement DIM A$(J).

Some BASICs use a comma or ampersand for string

concatenation.Each of these must be changed to a plus sign, which is the

CommodoreBASIC operator for string concatenation.

In Commodore-64 BASIC, the MID$, RIGHT$, and LEFT$ functions

areused to take substrings of strings. Forms such as A$(I) to access the

Ithcharacter in A$, or A$(I,J) to take a substring of A$ from position I to

J,must be changed as follows:

Other BASIC Commodore 64 BASIC

A$(l) = X$ A$ = LEFT$(A$,I-1)+X$+MID$(A$,I+1)

A$(I,J) = X$ A$ = LEFT$(A$,I-1)+X$+MID$(A$,J+1)

Multiple Assignments

To set B and C equal to zero, some BASICs allow statements of

theform:

10 LET B=C=0

155

Commodore 64 BASIC would interpret the second equal sign as

alogical operator and set B = -1 if C = 0. Instead, convert this statement to:

10 C=0 : B=0

Multiple Statements

Some BASICs use a backslash (\) to separate multiple statements ona

line. With Commodore 64 BASIC, separate all statements by a colon(:).

MAT Functions

Programs using the MAT functions available on some BASICs must

berewritten using FOR… NEXT loops to execute properly.

156

APPENDIX L

ERROR MESSAGES

This appendix contains a complete list of the error messages generated

by the Commodore-64, with a description of causes.

BAD DATA String data was received from an open file, but the program

was expecting numeric data.

BAD SUBSCRIPT The program was trying to reference an element ofan

array whose number is outside of the range specified in the DIMstatement.

CAN’T CONTINUE The CONT command will not work, either becausethe

program was never RUN, there has been an error, or a line has been

edited.

DEVICE NOT PRESENTThe required I/O device was not available foran

OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.

DIVISION BY ZERO Division by zero is a mathematical oddity and

notallowed.

EXTRA IGNORED Too many items of data were typed in response toan

INPUT statement. Only the first few items were accepted.

FILE NOT FOUNDIf you were laoking for a file on tape, and END-OF-

TAPE marker was found. If you were looking on disk, no file with thatname

exists.

FILE NOT OPENThe file specified in a CLOSE, CMD, PRINT#, INPUT#, or

GET#, must first be OPENed.

FILE OPEN An attempt was made to open a file using the number ofan

already open file.

FORMULA TOO COMPLEX The string expression being evaluatedshould

be split into at least two parts for the system to work with, or aformula has

too many parentheses.

ILLEGAL DIRECT The INPUT statement can only be used within a

program, and not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a function

orstatement is out of the allowable range.

157

LOAD There is a problem with the program on tape.

NEXT WITHOUT FOR This is caused by either incorrectly nesting loopsi or

having a variable name in c NEXT statement that doesn‘t correspondwith

one in a FOR statement.

NOT INPUT FILE An attempt was made to INPUT or GET data from az file

which was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a file

whichwas specified as input only.

OUT OF DATA A READ statement was executed out there is no dataleft

unREAD in a DATA statement.

OUT OF MEMORY There is no more RAM available for program

orvariables. This may also occur when too many FOR loops have

beennested, or when there are too many GOSUBs in effect.

OVERFLOW The result at a computation is larger than the largestnumber

allowed, which is 1.70141884E+38.

REDIM’D ARRAY An array may only be DIMensioned once. If an

arrayvariable is used before that array is DIM‘d, an automatic DIM

operationis performed on that array setting the number of elements to ten,

andany subsequent DIMs will cause this error.

REDO FROM START Character data was typed in during an

INPUTstatement when numeric data was expected. Just re-type the entry

sothat it is correct, and the program will continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was encountered,and

no GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.

?SYNTAX ERROR A statement is unrecognizable by the Commodore64. A

missing or extra parenthesis, misspelled keywords, etc.

TYPE MISMATCH This error occurs when a number is used in place of a

string, or vice-versa.

UNDEF’D FUNCTION A user defined function was referenced, but ithas

never been defined using the DEF FN statement.

UNDEF’D STATEMENTAn attempt was made to GOTO or GOSUB orRUN

a line number that doesn‘t exist.

VERIFY The program on tape or disk does not match the program currently

in memory.

158

APPENDIX M

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, end the

values to be POKEd into the HI FREQ and LOW FREQ registers of

thesound chip to produce the indicated note.

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

0

1

2

3

4

5

6

7

8

9

10

11

16

17

18

19

20

21

22

23

24

25

26

27

32

C-0

C#-0

D-0

D#-0

E-0

F-0

F#-0

G-0

G#-0

A-0

A#-0

B-0

C-1

C#-1

D-1

D#-1

E-1

F-1

F#-1

G-1

G#-1

A-1

A#-1

B-1

C-2

268

284

301

318

337

358

379

401

425

451

477

506

536

568

602

637

675

716

758

803

851

902

955

1012

1072

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

4

12

28

45

62

81

102

123

145

169

195

221

250

24

56

90

125

163

204

246

35

83

134

187

244

48

159

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

33

34

35

36

37

38

39

40

41

42

43

48

49

50

51

52

53

54

55

56

57

58

59

64

65

66

67

68

69

70

71

72

73

74

75

80

81

C#-2

D-2

D#-2

E-2

F-2

F#-2

G-2

G#-2

A-2

A#-2

B-2

C-3

C#-3

D-3

D#-3

E-3

F-3

F#-3

G-3

G#-3

A-3

A#-3

B-3

C-4

C#-4

D-4

D#-4

E-4

F-4

F#-4

G-4

G#-4

A-4

A#-4

B-4

C-5

C#-5

1136

1204

1275

1351

1432

1517

1607

1703

1804

1911

2025

2145

2273

2408

2551

2703

2864

3034

3215

3406

3608

3823

4050

4291

4547

4817

5103

5407

5728

6069

6430

6812

7217

7647

8101

8583

9094

4

4

4

5

5

5

6

6

7

7

7

8

8

9

9

10

11

11

12

13

14

14

15

16

17

18

19

21

22

23

25

26

28

29

31

33

35

112

180

251

71

152

237

71

167

12

119

233

97

225

104

247

143

48

218

143

78

24

239

210

195

195

209

239

31

96

181

30

156

49

223

165

135

134

160

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

82

83

84

85

86

87

88

89

90

91

96

97

98

99

100

101

102

103

104

105

106

107

112

113

114

115

116

117

118

119

120

121

122

123

D-5

D#-5

E-5

F-5

F#-5

G-5

G#-5

A-5

A#-5

B-5

C-6

C#-6

D-6

D#-6

E-6

F-6

F#-6

G-6

G#-6

A-6

A#-6

B-6

C-7

C#-7

D-7

D#-7

E-7

F-7

F#-7

G-7

G#-7

A-7

A#-7

B-7

9634

10207

10814

11457

12139

12860

13625

14435

15294

16203

17167

18188

19269

20415

21629

22915

24278

25721

27251

28871

30588

32407

34334

36376

38539

40830

43258

45830

48556

51443

54502

57743

61176

64814

37

39

42

44

47

50

53

56

59

63

67

71

75

79

84

89

94

100

106

112

119

126

134

142

150

159

168

179

189

200

212

225

238

253

162

223

62

193

107

60

57

99

190

75

15

12

69

191

125

131

214

121

115

199

124

151

30

24

139

126

250

6

172

243

230

143

248

46

161

FILTER SETTINGS

Location Contents

54293

54294

54295

54296

Low cutoff frequency (0-7)

High cutoff frequency (0-255)

Resonance (bits 4-7)

Filter voice 3 (bit 2)

Filter voice 2 (bit 1)

Filter voice 1 (bit 0)

High pass (bit 6)

Bandpass (bit 5)

Low pass (bit 4)

Volume (bits 0-3)

162

APPENDIX N

BIBLIOGRAPHY

Addison-Wesley ―BASIC and the Personal Computer‖, Dwyerand

Critchfield

Compute ―Compute‘s First Book of PET/CBM‖

Cowbay Computing ―Feed Me, I‘m Your PET Computer‖, Carol

Alexander

 ―Looking Good with Your PET‖, Carol Alexander

 ―Teacher's PET—Plans, Quizzes, and Answers‖

Creative Computing ―Getting Acquainted With Your VIC 20‖, T.

Hartnell

Dilithium Press ―BASIC Basic-English Dictionary for the

PET‖,Lerry Noonan 7

 ―PET BASIC‖, Tom Rugg and Phil Feldman

Faulk Baker Associates ―MOS Programming Manual‖, MOS Technology

Hayden Book Co. ―BASIC From the Ground Up‖, David E. Simon

 ―l Speak BASIC to My PET‖, Aubrey Jones, Jr.

 ―Library of PET Subroutines‖, Nick Hampshire

 ―PET Graphics‖, Nick Hampshire

 ―BASIC Conversions Handbook, Apple, TRS-80,

and PET‖, David A. Brain, Phillip R.Oviatt, Paul

J. Paquin, and Chandler P. Stone

163

Howard W. Sams ―The Howard W. Soms Crash Course in

Microcomputers‖, Louis E, Frenzel, Jr.

 ―Mostly BASIC: Applications for Your

PET‖,Howard Berenbon

 ―PET Interfacing‖, James M. Downey and

Steven M. Rogers

 ―VIC 20 Programmer's Reference Guide‖,

A.Finkel, P. Higginbottom, N. Harris, and

M.Tomezyk

Little, Brown & Co. ―Computer Games for Businesses, Schools,and

Homes‖, J. Victor Nagigian, and WilliamS.

Hodges

 ―The Computer Tutor: Learning Activities for7

Homes and Schools‖, Gary W. Orwig, University

of Central Florida, and William S. Hodges

McGraw-Hill ―Hands-On BASIC With a PET‖, Herbert

D.Peckman

 ―Home and Office Use of VisiCalc‘‘,

D.Castlewitz, and L. Chisauki

Oshorne/McGraw-Hill ―PET/CBM Personal Computer Guide‖, CarrollS.

Donahue

 ―PET Fun and Games‖, R. Jeffries and G.Fisher

 ―PET and the IEEE‘, A. Osborne and C.Donahue

 ―Some Common BASIC Programs for the

PET‖,L. Poole, M. Borchers, and C. Donahue

 ―Osborne CP/M User Guide‖, Thom Hogan

 ―CBM Professional Computer Guide‖

 ―The PET Personal Guide‖

 ―The 8086 Book‖, Russell Rector and

GeorgeAlexy

P. C. Publications ―Beginning Self-Teaching Computer Lessons‖

164

Prentice-Hall ―The PET Personal Computer for Beginners‖,S.

Dunn and V. Morgan

Reston Publishing Co. ―PET and the IEEE 488 Bus (GPIB)‖,

EugeneFisher and C. W. Jensen

 ―PET BASIC—Training Your PET

Computer‖,Ramon Zamora, Wm. F. Carrie, and

B.Allbrecht

 ―PET Games and Recreation‖, M. Ogelsby,

L.Lindsey, and D. Kunkin

 ―PET BASIC‖, Richard Huskell

 ―VIC Games and Recreation‖

TelmasCoursewore ―BASIC and the Personal Computer‘, T.

A.Ratings Dwyer, and M. Critchfield

Total Information Ser- ―Understanding Your PET/CBM, Vol. 1, BASIC

vices Programming‖

―Understanding Your VIC‘, David Schultz

Commodore Magazines provide you with the most up-to-date

information for your Commodore 64. Two of the most popular

publicationsthat you should seriously consider subscribing to are:

COMMODORE - The Microcomputer Magazine is published bi-monthlyand

is available by subscription ($15.00 per year, U.S., and $25.00 peryear,

worldwide).

POWER/PLAY - The Home Computer Magazine is published quarterlyand

is available by subscription ($10.00 per year, U.S., and $15.00 per year

worldwide).

165

APPENDIX O

SPRITE REGISTER MAP

166

167

168

APPENDIX P

COMMODORE 64 SOUND
CONTROL SETTINGS

This handy table gives you the key numbers you need to use in

yoursound programs, according to which of the Commodore 64's 3 voices

you want to use. To set or adjust a sound control in your BASIC program,

just POKE the number from the second column, followed by acomma (,)

and a number from the chart… like this: POKE 54276,17(Selects o Triangle

Waveform for VOICE 1).

Remember that you must set the VOLUME before you can

generatesound. POKE54296 followed by a number from 0 to 15 sets the

volumefor all 3 voices.

It takes 2 separate POKEs to generate each musical note… forexample

POKE54273,34:POKE54272,75 designates low C in the sample scale

below.

Also… you aren‘t limited to the numbers shown in the tables. If

34doesn‘t sound ―right‖ for a low C, try 35. To provide o higher SUSTAINor

ATTACK rate than those shown, add two or more SUSTAIN

numberstogether. (Examples: POKE54277,96 combines two attack rates

(32 and64) for a combined higher attack rate… but…

POKE54277,20provides a low attack rate (16) and a medium decay rate

(4).

169

170

TRY THESE SETTINGS TO SIMULATE DIFFERENT INSTRUMENTS

MEANINGS OF SOUND TERMS

ADSR - Attack/Decay/Sustain/Release

Attack - rate sound rises to peak volume

Decay - rate sound falls from peck volume to Sustain level

Sustain - prolong note at certain volume

Release - rate at which volume falls from Sustain level

Waveform - ―shape‖ of sound wave

Pulse - tone quality of Pulse Waveform

NOTE: Attack/Decay and Sustain/Release settings should always bePOKEd in your

program

BEFORE the Waveform is POKEd.

165

INDEX
A

Abbreviations, BASIC commands, 130,

131

Accessories, viii, 106-108

Addition, 23, 26-27, 113

AND operator, 114

Animation, 43-44, 65-66, 69-75, 132,138-

139

Arithmetic, Operators, 23, 26-27,113-114

Arithmetic, Formulas, 23, 26-27, 113,120,

140

Arrays, 95-103

ASC function, 128, 135-137

ASCII character codes, 135-137

B

BASIC

abbreviations, 130-131

commands, 114-117

numeric functions, 125-127

operators, 113-114

other functions, 129

statements, 117-125

string functions, 128

variables, 112-113

Bibliography, 156-158

Binary arithmetic, 75-77

Bit, 75-76

Business aids, 108

Byte, 76

C

Calculations, 22-29

Cassette tape recorder (audic), viii, 3,18-

20, 21

Cassette tape recorder (video), 7

Cassette, port 3

CHR$ function, 36-37, 46-47, 53,58-60,

113, 128, 135-137, 148

CLR statement, 117

CLR/HOME key, 15

Clock, 113

CLOSE statement, 117

Color

adjustment, 11-12

CHRS codes, 58

keys, 56-57

memory map, 64, 139

PEEKS and POKES, 60-61

screen and border, 60-63, 138

Commands, BASIC, 114-117

Commodore key, (see graphics keys)

Connections

optional, 6-7

rear, 2-3

side panel, 2

TV/Monitor, 3-5

CONT command, 114

ConTRL key, 11, 16

COSine function, 126

CURSOR keys, 10, 15

Correcting errors, 34

Cursor, 10

D

DATASSETTE recorder, (see

cassettetape recorder)

Data, loading and saving (disk), 18-21

Data, loading and saving (tape),18-21

DATA statement, 92-94, 118

DEFine statement, 118

Delay loop, 61, 65

DELete key, 15

DiMension statement, 118-119

Division, 23, 26, 27, 113

Duration, (see For… Next)

E

Editing programs, 15, 34

END statement, 119

Equal, not-equal-to, signs, 23, 26-27,114

Equations, 114

Error messages, 22-23, 150-151

Expansion port, 141-142

EXPonent function, 126

Exponentiation, 25-27, 113

F

Files, (DATASSETTE), 21, 110-111

Files, (disk), 21, 110-111

FOR statement, 119

FRE function, 129

Functions, 125-129

G

Game controls and ports, 2-3, 141

GET statement, 47-48, 119-120

GET# statement, 120

Getting started, 13-29

GOSUB statement, 120

GOTO (GO TO) statement, 32-34, 120

166

Graphic keys, 17, 56-57, 61, 132-137

Graphic symbols, (see graphic keys)

Greater than, 114

H

Hyperbolic functions, 140

I

IEEE-488 Interface, 2-3, 141

IF…THEN statement, 37-39, 120-121

INPUT statement, 45-47, 121

INPUT#, 121

INSert key, 15

INTeger function, 126

Integer variable, 112

I/O pinouts, 141-143

I/O ports, 2-7, 141-143

J

Joysticks, 2-3, 141

K

Keyboard, 14-17

L

LEFT$ function, 128

LENgth function, 128

Less than, 114

LET statement, 121

LIST command, 33-34, 115

LOAD command, 115

LOADing programs on tape, 18-20

LOGarithm function, 126

Loops, 39-40, 43-45

Lower case characters, 14-17

M

Mathematics

formulas, 23-27

function table, 140

symbols, 24-27, 38, 114

Memory expansion, 2-4, 142

Memory maps, 62-65

MID$ function, 128

Modulator, RF, 4-7

Multiplication, 24, 113

Music, 79-90

N

Names

program, 18-21

variable, 34-37

NEW command, 115

NEXT statement, 121-122

NOT operator, 114

Numeric varicbles, 36-37

O

ON statement, 122

OPEN statement, 122

Operators

arithmetic, 113

logical, 114

relational, 114

P

Parentheses, 28

PEEK function, 60-62

Peripherals, viii, 2-8, 107-109

POKE statement, 60-61

Ports, I/O, 2-3, 141-143

POS function, 129

PRINT statement, 23-29, 123-124

PRINT#, 124

Programs

editing, 15, 34

line numbering, 32-33

loading/saving (DATASSETTE),18-21

loading/saving (disk), 18-21

Prompt, 45

Q

Quotation marks, 22

R

RaNDom function, 48-53, 126

Random numbers, 48-53

READ statement, 124

REMark statement, 124

Reserved words, (see Command state-

ments)

Restore key, 15, 18

RESTORE statement, 124

Return key, 15, 18

RETURN statement, 124

RIGHTS function, 128

RUN command, 116

RUN/STOP key, 16-17

S

SAVE command, 21, 116

Saving programs (DATASSETTE), 21

Saving programs (disk), 21

Screen memory maps, 62-63, 138 Ft

SGN, function, 127

Shift key, 14-15, 17

SINe function, 127

Sound effects, 89-90 i

SPC function, 129

167

SPRITE EDITOR, vii, 69-76

SPRITE graphics, vii, 69-76

SQuaRe function, 127

STOP command, 125

STOP key, 16-17

String variables, 36-37, 112-113

STR$ function, 128

Subscripted variables, 95-98, 112-113

Subtraction, 24, 113

Syntax error, 22

SYS statement, 125

T

TAB function, 129

TAN function, 127

Tl variable, 113

TI$ variable, 113

Time clock, 113

TV connections, 3-7

U

Upper/Lower Case mode, 14

USR function, 127

User defined function, (see DEF)

V

VALue function, 128

Variables

array, 95-103, 113

dimensions, 98-103, 113

floating point, 95-103, 113

integer, 95-103, 112

numeric, 95-103, 112

string ($), 95-103, 112

VERIFY command, 117

Voice, 80-90, 162-164

W

WAIT command, 125

Writing to tape, 110

Z

Z-80, vii, 108

Commodore hopes you‘ve enjoyed the COMMODORE

64USER‘S GUIDE. Although this manual contains some

programming information and tips, it is NOT intended to be

aProgrammer's Reference Manual. For those of you who

areadvanced programmers and computer hobbyists

Commodore suggests that you consider purchasing the

COMMODORE 64 PROGRAMMER‘S REFERENCE GUIDE

availablethrough your local Commodore dealer.

a addition updates and corrections as well as programming hints and tips are available inthe

COMMODORE and POWER PLAY magazines, on the COMMODORE database of

theCOMPUSERVE INFORMATION NETWORK, accessed through a VICMODEM

COMMODORE 64 QUICK REFERENCE CARD

SIMPLE VARIABLES

Tape Name Range

Real XY ±1.70141183E+38

±2.93873588E-39

Integer XY% ±32767

String XY$ 0 to 255 characters

X Is a letter (A-Z), Y is a letter or number (0-9). Variable names

car be more than 2 characters, but only the first two are

recognized.

ARRAY VARIABLES

Type Name

Single Dimension XY(5)

Two Dimension XY(5,5)

Three-Dimension XY(5,5,5)

Arrays of up to eleven elements (subscripts 0-10) can be used

where needed. Arrays with more than eleven elements need to

be DIMensioned.

ALGEBRAIC OPERATORS

= Assigns value to variable

- Negation

^ Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction

RELATIONAL AND LOGICAL OPERATORS

= Equal

<> Not Equal To

< Less Than

> Greater Than

<= Less Than or Equal To

>= Greater Than or Equal To

NOT Logical ―not‖

AND Logical ―AND‖

OR Logical ―OR‖

Expression equals 1 if true, 0 if false

SYSTEM COMMANDS

LOAD ―NAME‖ Loads a program from tape

SAVE ―NAME‖ Saves a program to tape

LOAD ―NAME‖,8 Loads a program from disk

SAVE "NAME",8 Saves a program to disk

VERIFY ―NAME‖ Verifies that program was SAVEd without

errors

RUN Executes a program

RUN xxx Executes program starting at line xxx

STOP Halts execution

END Ends execution

CONT Continues program execution from line

where program was halted

PEEK(X) Returns contents of memory location X

POKE X,Y Changes contents of location

X to value Y

SYS xxxxx Jumps to execute a machine

languageprogram, starting at xxxxx

WAIT X,Y,Z Program waits until contents of location

X, when FORed with Z and ANDed with

Y, is nonzero

USR(X) Passes value of X to a machine language

subroutine

EDITING AND FORMATING COMMANDS

LIST Lists entre program

LIST A-B Lists from line A to line B

REM Message Comment message can be listed but is

ignored during program execution

TAB(X) Used in PRINT statements. Spaces

Xpositions on screen

SPC(X) PRINTs X blanks on line

POS(x) Returns current cursor position

CLR/HOME Positions cursor at left corner of screen

SHIFT CLR/HOME Clears screen and places cursor in

―Home‖ position

SHIFT INST/DEL Inserts space at current cursor position

INST/DEL Deletescharacter al current cursor

position

CTRL When used with numeric color key,

selects text color, May be used inPRINT

statement.

CRSR Keys Moves cursor up, down, left, right on

screen.

Commodore Key When used with SHIFT selects between

upper/lower case and graphic display

mode.

 When used with numeric color key,

selects optional text color

ARRAYS AND STRINGS

DIM A(X,Y,Z) Set maximum subscripts for A; reserves

space for (X+1)*(Y+1)*(Z+1) elements

starting at A(0,0,0)

LEN (X$) Returns number of characters in X$

STR$(X) Returns numeric value of X converted to

a string

VAL(X$) Returns numeric value of A$, up tofirst

nonnumeric character

CHR$(X) Returns ASCII character whose codeis X

ASC(X$) Returns ASCII code for firstcharacter of

X$

LEFT$(A$,X) Returns leftmost X character of A$

RIGHT$(A$,X) Returns rightmost X characters of A$

MID$(A$,X,Y) Returns Y characters of A$ starting at

character

INPUTOUTPUT COMMANDS

INPUT A$ OR A PRINTs―?" on screen and waits foruser to

enter a string or value

INPUT ―ABC‖,A PRINTs message and waits for userto

enter valve. Can also INPUT A$

GET A$ or A Waits for user to type one-character

value, no RETURN needed

DATA A,‖B",C Initializes aset of values that can be used

by READ statement

READ A$ or A Assigns next DATA value to A$ or A

RESTORE Resets data pointer to startREADing the

DATA list again

PRINT ―A= ―; A PRINTs string ―A= ― and value of A ‗;‘

suppresses spaces –‗,‘ tabs data to

nextfield.

PROGRAM FLOW

GOTO X Branches to line X

IF A=3 THEN 10 IF assertion is true THEN

executefollowing part of statement.

IFfalse, execute next line number

FOR A=1TO 10 Executes all statements between FOR

STEP 2: NEXT and corresponding NEXT, with Agoing

from 1 to 10 by 2. Step size is 1 unless

specified

NEXT A Defines end of loop. A is optional

GOSUB 2000 Branches to subroutine starting at line

2000

RETURN Marks end of subroutine, Returns

tostatement following most recent

GOSUB

ON X GOTO A,B Branches to Xth line number on list. If

X=1 branches A. etc.

ON X GOSUB A,B Branches to subroutine at Xth

linepositions on screen number in list

