Amiga LOGO

Tutorial
and Reference

Retrnocomwiputing

Amiga Logo software and manual developed and written by
Carl Sassenrath.

Amiga Logo is dedicated in memory of Elizabeth R. Smyth.

Many thanks to Cynthia L. Sassenrath and Robert |. Mical, without whom
this product could not have been created.

COPYRIGHT

Copyright ® Commodore-Amiga, Inc. and Carl Sassenrath, 1989,

All Rights Reserved. This document may not, in whole or in part, be copied, photocopied,
reproduced, transiated, or reduced to any electronic medium or machine readable form without
the prior consent, in writing, from Commodore-Amiga, Inc.

The software Copyright © Commodore-Amiga, Inc. and Carl Sassenrath, 1989.

All Rights Reserved. The distribution and sale of this product are intended for the use of the original
purchaser only. Lawful users of this program are hereby licensed only to read the program, from its
medium into memory of a computer, solely for the purpose of executing the program. Duplicating or
copying for other than backup purposes, or selling, or otherwise distributing this product is a violation
of the law.

DISCLAIMER

THE PROGRAM I8 PROVIDED “AS 18" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
RESULTS AND PERFORMANCE OF THE PROGRAM I8 ASSUMED BY YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU (AND NOT THE DEVELOPER OR COMMODORE-AMICA OR
ITS DEALERS) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIK OR
CORH. "'ﬂ\)\' FURTHER, COMMODORE-AMIGA DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING 1‘{5' USE CF, OR THE RESUL T‘) OF THE USE OF, THE
PROGRAM IN TERMS OF CORRECTNESS, ACCU TH.«-"‘Y RELIABILITY, CURRENTNESS, OR
OTHERWISE; AND YOU RELY ON THE DDL'J“.AM AND THE RESULTS SOLELY AT YOUR OWN
RISK. INNO § ‘-‘ SNT WILL COMMODORE-AMIGA, INC. BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL OP. CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE
PROGRAM EVEN I[F IT HAS BEEN ADVISED OF THE POSSIBILITY OF § U(,H DAMAGES. SOME
LAWS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, 80 THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APFLY.

Amiga is a registered trademark of Commodore-Amiga, Inc.

PRINTED IN THE U.S.A.

Contents

R T T e
WRIEl AWAY s o ovn sonmvaenin o5 aosi swess
Introducing Logo::: aiviassioss somas s sne s
Installationl
What's Included on the Amiga Logo Disk . . .
Apout This Manmal ... e smms s

TUTORIAL

BN RO . . . oo cvnv s vaees ovaaEses
RUNMINE LOBG 0w sownie wwan s v
The Command Window...................
Entenmg A LIRG osovesivi svonn cions igase-ns

Making Logo Talk
Stoppinga Command. ..« v smemienas
B LB o smamamenmamasmgs summmmis
Moving Arounid . .covenessamm s s
SEEOIINE s svsmsmmmmmisnmensme mwesoesie
Deleting d Lifte. . oo wi e smnmonn swann v
Copying and MovingaLine
SpLtHNg d BAn8 .y suissveaas swn ssene i
Re-éntering a Line . ooiu yions senis s
Long LInes: «; seniisiais sivvi spamumaases
Erasing Text ... oo vesvomos oonnevsnvas
Reference Card.......coocevesmnennocsens
The Graphics Window:. ...« «euiss wmmeie wmwan
DIOUSE T IAWN sccnsom wmmon omwms ssms omene
Load, Save, Erage g . s uws vawsa s s
Bt LOBO: o wiclin s s s onsman

Elementsoflogo...........................
Primitives
ADOTB YIRS et e s Soaivas

DY TUBIINERIG: ¢ 10105 -ainsison osmsmn wrsssnsse mioiogi ol
AMIBA LOgOHED o csmmmumsnu swsmn s
BRPIS oo .0 wmoniori s s wrisonsin stsbonsatoniun wiace
Optichal Ipuls's oo oo ons s ssvmass s
Variable INputsi« os v o0 swves s i
OUIBHES e s iz A Fa e
Optional Outpuls « i swein swanmess s

Procedurles «susss saies suhie e i e, sk 26

Making a Procedure 27
Editing a Procedure..................... 29
TIPS o cnmnmcnn smmmmemmmsicn smeisams s s 29
Local Variables 31
Name CONFHCES: oo srawamasris semnse 31
ORI v swwniiesm st s 33
Balldifg 6D <« s susmmainenvpss va 34
GEADINCE s siviio 55 Vo oGS SR e S 35
The SCHEeN: wu56 sasnnnmeverss ot s e 13D
TR TUPHE o2 ois i it iiis o5 ss e mmibs 37
The Pen ..., 38
Heading...................... ... 39
Movement.ooieiiuiniiiinannn. 41
ColOTS . o e 44
PG ATORE < .. s v swevmavvsive 48
Turtle BoURAS: .. wowmamamnams s 51
AGPECERAGDE v waswcwsm s svmmnivs susiion 52
Drawing Text .. cuovcucisass sussess i 53
Graphics Projects . ssssienvii seovassana s
WOTAS: st 5555 o oo St HR ims i bubpbionsas 55
Special Delimiters 56
Wordsas Valuesccoovvinnn.. 57
Wordsas Namesccovnnnn.. 57
CIPRERBONE 515110020 wsansiovsvssiatesin v araissis 58
NOMDEES a5 crvaammsm e omeen wmms wsine 60
OPETEHONE wuoowssssowssi i s s i 62
PreCedBRee ~vsus snmiss sams swn e s s 66
R T 67
POMItIVES: s vn sites csimisn saissn samdn s 68
Prmlng LiSts ...ox vowen wosns sasine oimemis o 71
Variables 71
Propertiesc.coiniiit i 73
Flowof Controlcciviiiininnn.. 75
|45 § VPN 75
REPBBRE con x0s avssss wmminin soaraimasizersse sion s 77
Conditional EXSCUHON v simas o 79
Catehiand TRIOW : cuwne svssswwanss v 81
WRALE swieims 35 s ras Ca i e S S e 83

Reading Inpuits.coms vigue snemani sns s i 84

L BT 86

Workspace Management 86
Paekapes wocomsw sevan somras sses s sosn s 86
PHRBNE Ot . vvui ey susamsnseiaassiae 88
Brasing Names : . . svsnn veawenssvesis 89

BAIOr s o o 55 s Sasih s esosa i3 90
Mouse Pointingcoo0nan. 91
Normal Keys..............cooiiiiinn.. 91
] R o s DR A N AR SRS 94
Editing Packages . .. cvwss sesomanens s 98
BAibing Files! e s ssamacaame s 98

Printing Hardeopy ...« saww sswmvassanass 99

Advanced Procedures. ivouvieviniiies 101
Prefitiihion Lists. ov0u: vesvasess exons snes 101
Copying Defifiiions : i« vawin v vss voen 102
Procedures as Variables 102

REFERENCE
BP0 UBHIEIN voxcnammmmpming sumnammmsen s wa 104

RERDTAES o oo cmsamionins onkcisem wiwin s sy 4o 105

POaibyes o s wommemaummammmes ssae s 106

B O MEBBARES ... v.oiv vioinie wsrlitn s i minos 196
UridefineaObjects. .« -« 8 o davdvenias 197
Procedure Definition« covasivenovis 198
Frovedure Inpils .5 o0 T i s onn s s s 199
Proceare CRIMMIIS . 3"\ i o.osisblons i5 5% v v 199
ERGIRRIBERRL < 50 . o0 v hveisammasamm i # S rin 200
uatd gl ey T e S A S N i 200
1 D WRRCINR, < WIS WO e 201

Here’s how to test drive Amiga Logo:

® Check that your Amiga Logo disk is write
protected. The little tab in the corner of the disk
should be in the open position.

® Insert your Amiga Logo disk into disk drive 0.

® Turn on or restart your Amiga.

® Double click on the Amiga Logo disk icon. This
will open the main disk directory.

I
Anigal.ogo

® Double click on the Logo drawer icon. This will
open the Logo drawer.

=
Logo

® Double click on the DEMO icon.

= &
DEMO

Getting Started

2

Getting Started

You will now see Amiga Logo come to life.

To stop the demo, move the mouse to the top border
of the screen, click the right mouse button, and select
QUIT from the PROJECT menu.

If you want to try your own hand at Logo, click on the
Amigal.ogo icon.

Introducing Logo

Logo is a computer language originally designed to
introduce young minds to the world of computers.
Amiga Logo hosts an interactive, discovery-oriented
environment, which makes Logo fun to learn and
easy to use. Like other modern computer languages,
Logo offers features such as built-in graphics and list
processing.

Although learning to program with Logo is fun,
computer programming is an engineering discipline
that requires knowledge of the language’s principles,
attention to details, and plenty of practice.
Computation belongs to the realm of applied
mathematics, and learning to program computers is a
demanding discipline. Remember that thought should
always precede experimentation. The computer is only a
machine; with practice and patience, you will learn to
master Logo and make the computer do what you
want.

Many dialects of Logo exist. Amiga Logo was
designed to be very similar to the original Logo. It
provides the same basic vocabulary and supports the
fundamental features and primitives of this original
Logo. The widely available Logo textbooks found in
most bookstores will work well for learning and
teaching the language. If you are familiar with other
Logos, you will find that Amiga Logo has extended
features to make use of the superior graphics
capabilities of the Amiga.

Amiga Logo runs on all Commodore Amiga
computers. One disk drive and 512K bytes of
memory are required for basic operation; however,
with more memory Logo will perform faster and
display more colors. We highly recommend the use
of a color monitor.

Getting Started 3

Installation

4

Getting Started

Amiga Logo comes ready to run on a standard 1.3
Workbench disk. Amiga Logo is distributed with
Workbench 1.3, but it will also run under version 1.2.
However, the speech feature of Amiga Logo requires
1.3. You can run Logo from this disk directly, but to
avoid accidental damage, we suggest that you make a
copy first. See your Introduction to the Commodore
Amiga user’s manual for instructions on duplicating a
disk. Once you’ve made a copy, store the original in a
safe place away from heat and moisture.

If you want to copy Logo to another floppy or a hard
disk, you will need to know what files to copy. Below
is a list of the relevant files that come with your Logo:

AmigaLogo is the Logo main program. This file
is required to run Logo.

INIT is an initialization file used by Logo
when it starts running. It is not
absolutely required in order to run
Logo, but it contains a number of
helpful commands. You can add
your own commands to this file to
customize your Logo.

DEMO is the Logo demo file. It is not
required for the proper operation of
Logo, but presents an interesting
demonstration of Amiga Logo. You
may want to load this file and look
at it. It contains a number of Logo
examples.

MathTrans.Library is a library file found in the LIBS
directory of the system disk, and it
comes on the Workbench disk with
every Amiga system. This file must
be present for Logo to work.

Some of these files will not be seen from the
Workbench, as they do not have icons. You will need
to use the CLI to copy or move these files.

To copy Amiga Logo to a hard drive, click on the hard
drive disk icon to open the hard drive window. Point
your mouse cursor to the Logo drawer icon, click,
and drag the icon from the Amiga Logo Disk window
to the hard drive window. Release the mouse button
to copy the drawer to the hard drive.

Another way to copy files to the hard drive is to use
the CLI. For example, to copy the contents of the
Logo drawer from the Amiga Logo disk to the hard
drive, you would type the following:

Copy AmigaLogo:Logo to dHO:directoryname all

You can make or specify a destination directory on
the hard drive to which the file will be copied. Refer
to your AmigaDos or Hard Drive manuals for further
information about the CLI. Repeat the above
procedure for every file you want to copy. You must
copy the MathTrans.Library file for Amiga Logo to
work. This file is found in the LIBS directory of the
Amiga Logo system disk.

What’s Included on the Amiga Logo Disk

System Drawer

The following is a description of all the icons you will
find on your Amiga Logo System disk.

CLI Command Line Interface for entering
AmigaDos commands

DiskCopy Copy utility

Format Format a floppy disk

FastMemFirst Allows programs to use fast memory
before $C00000 memory, resulting in
faster system operation.

SetMap Allows you to select the correct
keymap for your keyboard.

Getting Started 5

Empty Drawer

Prefs Drawer

Logo Drawer

InitPrinter Initializes your printer using the
printer settings specified in
Preferences.

An empty directory that can be copied and renamed
to create new drawers.

Preferences ~ The main preferences window
CopyPrefs Copies the devs:system-
configuration to df0:devs

Pointer Edit pointer window

Printer Change printer window

Serial Change serial window

DEMO An Amiga Logo demonstration
program. Double click to run this
program.

INTRO An audio-visual introduction to Logo

programming. Double click to run
the program.

INIT Initialization file used by Logo when
it starts running.

Amigalogo This is the Logo main program.
Double click on the icon to run Logo.

About this Manual

6

Getting Started

This manual serves dual tpurposes. First, it gives the
Logo newcomer a taste of the programming language
and its environment. Second, it serves as the official
reference manual for day to day programming. This
manual assumes that you are already familiar with
the basics of using the Amiga. This includes the use
of the Workbench, disk, mouse, and keyboard. If you
are unfamiliar with any of these components, refer to
your Amiga DOS User Manual and your Amiga
Installation Manual.

If you are a beginner, learning a new language is no
modest undertaking. Whether it be a human or
computer language, you've got a task ahead of you.
There are many books about learning Logo. You can
find them in almost any bookstore or public library.
This manual is meant to supplement other sources of
instruction.

This user’s manual is divided into two major parts: a
tutorial and a reference.

The tutorial sections give you a brief introduction to
the Logo language. They describe the basic elements
of the language and the operation of the Logo
programming environment. In addition to the
examples in the tutorial it is recommended that the
novice Logo programmer obtain another tutorial type
text on the language. Since Amiga Logo is similar to
the original Logo, a number of tutorial books are
widely available and the examples should work with
Amiga Logo.

If you are already familiar with Logo, it is suggested
that you use the tutorial for a quick review. After
you have warmed up, use the reference section for
detailed descriptions of all the Logo functions.

Getting Started /.

TUTORIAL

This tutorial section gives a brief introduction to
using Amiga Logo. It gets you started by showing
you how to run Logo, enter and edit command lines,
switch between the graphics and text windows, and
exit back to DOS.

Once you have learned these steps, the next section
will teach you the language.

Double click
here to run
Amigalogo

Start by making a backup of your Amiga Logo
distribution disk. You wouldn’t want to accidentally
damage it. To make a backup, use the Workbench or
CLI diskcopy operations. See your Introduction to the
Commodore Amiga user’s manual for more
information.

Once you've made a copy, store the original in a safe
place away from heat and moisture.

To start Logo from the Workbench, double click on
the AmigaLogo program icon. After a few seconds,
the screen will turn black and a Logo window will
appear.

AnigaLogo

To start Logo from the CLI, type AmigaLogo:LOGO/
AMIGALOGO. If this is followed by a Logo file
name, the file will be loaded as soon as Logo starts
running.

Using Logo 9

The Command Window

10

Using Logo

When Logo starts running it will present you with
two windows, one of which is titted AMIGA LOGO -
COMMAND. This is a textual Command Window in
which you will type your commands and create new
Logo programs.

AMIGA LOGO ()|

];’HI‘J LOGO -
Corvr T(C\)’QISQ umodm'e Aniga, Inc.
!ﬂ (C) lg ar] Sassenra

nnMs reserved.
? I

This window is similar to the other windows that you
have used on the Amiga. You can change its size and
position to suit your fancy. You can also make the
window disappear in order to display the graphics
window beneath. We will discuss the ways to control
windows later.

The command window is also called the Text Screen in
this (and most other) Logo books. Do not confuse the
Logo screens with what the Amiga calls a screen.
Logo screens are really just Amiga windows. The
Text Screen is also used to run the Logo editor. When
the editor is activated the title of the window changes
from COMMAND to EDIT. The editor section will
cover this in more detail.

Entering a Line

From the command window Logo accepts lines of
text and acts on them immediately. A line may be
typed from the keyboard and then entered with the
RETURN key. Pressing RETURN ends the current
line and asks Logo to act on what you typed. This is
called command execution. Logo attempts to execute
whatever command you type.

When Logo is ready to accept a command line, it will
prompt you with a question mark ”?”". Following this
prompt you type your command. Here is an example:

? print “‘victory
VICTORY

Here we typed 'print “victory’ and pressed RETURN.
Logo then executed the Print command and
displayed the result on the next line. Try these
examples:

?show 9 + 1
10

? print [sweet victory!]
SWEET VICTORY!

? show [hello, amiga logo!]
[HELLO, AMIGA LOGO!]

?237*10
370.0

What's this? Where's the Print command in that last
example? There is none. Amiga Logo does not
require a Print (or a Show) for simple commands.
(The Show command is similar to Print, but will print

Using Logo 11

the outer parentheses of a list.) This arrangement
makes it easier for you to use Logo as a calculator:

21 +12 + 4
17

2.3*4*5
60.0

? sine 30
0.5

The results are printed as if Logo had been asked to
do a Show command for each line.

Making Logo Talk

Not only can Amiga logo print what you type , it can
speak too. Use the Say command like you would the
Print command.

? say “hello
? say [Hello, Your wish is my command]

To hear speech, you must have an amplifier or
monitor (with built-in amplifier) connected to the
Amiga audio outputs. The Say command will work
only under Workbench 1.3, and the SPEECH device

must be mounted.

Stopping a Command

12

Using Logo

When you press RETURN, you start a Logo
command executing. Sometimes, you will want to
stop a command before it has finished. In Logo you
do this by holding down the CTRL key while you
press G (CTRL-G we call it). When you do this, Logo
will tell you that it has stopped.

? repeat 10000 [print ‘‘again]
AGAIN

AGAIN
AGAIN
STOPPED
?

Editing a Line

Moving Around

It is convenient to be able to edit a line that has
already been typed. The command window of Amiga
Logo provides you with all of the editing features of
the standard Logo screen editor. You can position the
cursor anywhere on the screen, scroll the window up
or down, insert and delete text anywhere, copy and
move a line, etc. Once you’ve learned the editing
keys, you can use them in both the command and
edit windows. Refer to the enclosed reference card
for a summary of editing keys.

As you have already noticed, typing a character will
print it on the screen at the position of the cursor and
move the cursor forward one position. Pressing
BACKSPACE will delete the character just typed.
There is a restriction though: you can only backspace
to the beginning of a line, no further. To delete the
character under the cursor, press DELETE or CTRL-D
(hold down CTRL and press D). You can only delete
characters to the end of a line.

To move backward without deleting a character, use
the LEFT-ARROW or CTRL-B. To move forward use
RIGHT-ARROW or CTRL-F.

To move to the beginning of a line (even if it wraps
around the edge of the screen) press SHIFT-LEFT-
ARROW or CTRL-A. To move to the end of a line (the
last printed character on a line), use SHIFT-RIGHT-
ARROW or CTRL-E.

To move to the previous line, press UP-ARROW or
CTRL-P. To move to the next line, press DOWN-
ARROW or CTRL-N.

Another way to quickly move the cursor is with the
mouse. Position the mouse pointer anywhere on the
text screen and press the left mouse button. The
cursor will jump to the space nearest the mouse
pointer.

Using Logo 13

Scrolling

Deleting a Line

To scroll forward a half page, use SHIFT-DOWN-
ARROW or CTRL-V. To scroll back a half page,
SHIFT-UP-ARROW or CTRL-R. If you want to center
your current line on the page, try CTRL-L.

To erase all characters from the cursor to the end of a
line, type CTRL-K. To delete an entire line, type
CTRL-A, CTRL-K. Typing CTRL-K at the end of a line
will join the next line to the end of the current line.

Copying and Moving a Line

Splitting a Line

Use CTRL-K to cut characters and put them into
memory. To recover or paste those characters onto
the screen, move the cursor to the desired position
and type CTRL-Y. CTRL-Y yanks back the latest
group cut by CTRL-K.

To split a line into two parts, use CTRL-J or CTRL-O.
To join two lines, use CTRL-K at the end of the first
line.

Re-entering a Line

14

Using Logo

Amiga Logo will accept a command line from
anywhere on the screen. You never need to retype a
line. If you move your cursor to a previous line and
press RETURN, Amiga Logo will accept that line as if
you typed it yourself. This feature makes it easy to
experiment and try new ideas without retyping the
commands each time. It's also a good way to fix a line
after an error.

You need not restrict yourself to just entering
previously typed lines. Amiga Logo will accept any

Long Lines

Erasing Text

text that is on the screen, even the output of previous
operations. For example, typing:

? print (1024 + 37]
would result in:

? print [1024 + 37]
1024 + 37
?

If you move up a line (UP-ARROW or CTRL-P) and
press RETURN, the result would be:

? print [1024 + 37]
1024 + 37

1061

?

The second line is entered as a command: the
numbers are added together and printed.

A line of text can be longer than the width of the
screen. When Logo detects such a line, it will
automatically wrap it to the beginning of the next
line. To indicate that the line is continued, an ! will be
printed on the right side of the text window. Long
lines can be edited just like any others.

Logo restricts a long line to no more than 240
characters in length. If you require more than this,
use a procedure and divide the line up into multiple
lines.

To erase all text in the text window, type ““ClearText”
or “CT”. Everything in the text window will be
erased and the text cursor will be positioned to line
one. When you execute “ClearText,” all of the
memory used by text is freed for reuse in Logo.

Using Logo 15

Reference Card

Included with this manual is an Amiga Logo
Reference Card. This card includes a summary of the
control keys described above.

Above the text window, there is another window
called the Graphics window. This is the window
where all your graphic images are drawn. It has a
fixed size (it is always the full size of the screen) and it
cannot be moved about on the screen.

The Graphics
Window

=SS

8 B

There are many ways to expose the graphics window:

® You can type the command FullScreen (or just FS)
in the command window.

- ® You can select the FullScreen item from the
SCREEN menu. If necessary refer to your Amiga
user’s manual for instructions on using menus.

® You can press CTRL-T. This will flip you back and
forth between the fullscreen text and graphics
windows.

16 Using Logo

Mouse Draw

® You can close your text window by clicking the
close box (in the upper left corner) with the left
mouse button.

® You can resize your text window by dragging the
gadget in the lower right corner of the window.

Any of these methods will work. Find the one that
you prefer and practice using it. To reopen the Text
window:

® You can type the command TextScreen (or just TS)
and hit RETURN. This may be hard to do because
you won’t be able to see what you type.

® You can select the TextScreen item from the
SCREEN menu.

® You can press CTRL-T. This will flip you back and
forth between the text and graphics windows.

With the graphics window exposed you will be able
to watch as Logo draws your images. In addition, you
can draw your own images directly with the Amiga
mouse. We call this ability Mouse Draw.

To draw a line with the mouse, position it within the
graphics window and press the left mouse button.
While holding the button down, move the mouse and
watch what happens. If the pen is in its down
position, a line will be drawn using the current pen
color (see the graphics tutorial section for more
information).

Using Logo 17

Draw free-hand G\
graphics using
the mouse

don’t kiow hov to "CE

? clearscreen
2 ht
2 st

@

SRR

=
']

Load,Save,Erase

Once you become familiar with Logo, you may want
to save your new programs to disk. A saved program
can be loaded back into Logo, restoring all your
procedures and variables. If you do not save your
program it will be lost when you exit Logo or turn off
your machine.

To save all procedures and variables that you have
created, move the mouse to the top border of the
screen, click the right mouse button, and select the
Save item from the PROJECT menu.

w16t 1060 - Coma =

18 Using Logo

A requestor will appear. Type the name of your file in
the space provided, press RETURN, and click on
OK!.

PRI g
elect a Nawe a Nane
Anigalogo [Filenane |
2540

Dra
oo -

Logo. Help Disk

|Mi§al.on: |
Include: []
Exclude: [®info |
oK? Icnml Kex
———
78

If you would like to save a file from the command
window, type:

? save "“filename

where, filename is the name for your file. Do not
forget to put the quote in front of the name (but do not
put a quote at the end of the name). You will learn
more about quotes in the next chapter. Note that the
save command saves the program only and not the
program mode (such as screen resolution and
number of colors). Pictures made with the mouse are
saved as screen dumps.

Once a file has been saved, it can be loaded back into
Logo in a similar fashion. Select the Load item from
the PROJECT menu.

Using Logo 19

20

Using Logo

AMIGA LOGO - COMMAND

H

! %

Select or type the name of the file to load.

= [@0]
- LOAD 10GO FILE -
£ a Nawe

o Or Type a Nane
“-nm.'::-

S

Exclude; [*.info |

[orr | [omen E j —

oy

You can also load your file from the command
window by typing:

? load ““filename

Whenever you run Logo, a start-up file called INT
will be automatically loaded. This file can contain :
utility procedures or variables that you desire. It ¢
also execute start-up commands. This file can be
modified with the Logo screen editor and the Edit]
command. See the Mastering Logo chapter for mor
detail.

It is not always convenient to save all procedures and
variables to a single file. Sometime you will want to
store a group of related procedures and variables as a
single unit. This can be done with packages. See the
Mastering Logo chapter for more detail.

To erase a Erocedure that you have saved, move the
mouse to the top border of the screen, click the right
button, and select the Erase item from the PROJECT
menu. A requestor will appear similar to the load and
save requestors. Type the name of the file (or click on
its name) press RETURN, and click on OK. Note that
you CANNOT recover a file that has been erased, so
use caution and make sure you erase only the files
you want to erase.

Exiting Logo

To exit Logo, select the Quit item from the PROJECT
menu, or type Exit from the command window.
Before exiting, don’t forget to save any changes that
you made (see the Save command).

Using Logo 21

Elements of Logo

Now that you have some ideza of how to use Logo,
this chapter will acquaint you with the main
components of the Logo programming language.
This section will cover primitives, procedures,
graphics, words, numbers, lists, variables,
properties, flow of control, and external inputs.

Primitives

Abbreviations

Synonyms

A primitive is a command or operation provided as a
built-in feature of Amiga Logo. For example the Print
and Show commands are both primitives. So are +
for addition, — for subtraction, * for multiplication,
etc. In fact, there are more than 160 system primitives
provided in Amiga Logo.

To make them easier to type, many Logo primitives
have an abbreviated spelling. For example most of
the graphics commands have two letter abbreviations
that mean the same thing:

FD for Forward
BK for Back

PU for PenUp
PD for PenDown

So you could type FD if you didn’t want to type
Forward, and it would mean exactly the same thing.
Unfortunately, it would also be more difficult to read.

Some primitives also have a synonym (an alternate
spelling that means the same thing). Synonyms are
usually provided just for compatibility with other

Elements of Logo 23

Logos. For example, the Scrunch synonym is the old
way of saying Aspect. They do exactly the same
operation.

Amiga Logo Help

Inputs

Your Amiga Logo program has built-in help
messages. If you do not know or remember the
function of a primitive, press the Help key (or
manually type “Help”, quotation marks ("), and the
name of the primitive in question.

HELP "'CLEARSCREEN
CLEARSCREEN is a protected primitive
Clear the graphics screen and home the turtle.

Logo will print out a message describing the function
and usage of the primitive in question.

Many of the system primitives require inputs for
additional information. These inputs are a way of
passing objects the primitives use during their
execution. For example the Forward command
requires one input, a number, to indicate the distance
to move the turtle:

? forward 37

Other primitives will require more than a single
input, and some do not need any inputs. The
reference part of this manual indicates the number of
inputs for each primitive.

Inputs usually follow to the right of the primitive
being used. However, for some primitives it is more
natural to put the inputs on each side. Logo permits
this for a few of the arithmetic primitives: + — */ =
< >, We call these types of primitives infix
operators. We are used to seeing expressions like:

142
rather than:

+12

24 Elements of Logo

Optional Inputs

Variable Inputs

Even so, Logo will accept the inputs either way. The
first is easier to read. The second is consistent with
how all other primitives are used. It really doesn’t
matter which you decide to use, but it is recommended
that you don’t mix the two together.

A small number of primitives accept an input, but do
not require it. This is called an optional input. For
example you could type

catalog “devs:
or just

catalog
To understand what happens when an optional input
is not provided, you must look up the description for

the particular primitive in the reference part of this
manual.

Some primitives will accept a variable number of
inputs, and apply their function to each input
provided. To indicate that there are a variable
number of inputs, enclose the operation and its
inputs in parenthesis. For example Print will accept
more than one input when typed like this:

? (print “testing 1 2 3)
TESTING 123

You can add the first five whole numbers with:
1+2+3+4+5
or with

(+12345)

Elements of Logo 25

Outputs

In addition to inputs, some of the system primitives
output a result when they have finished executing.
This output can be passed along as an input to
another primitive.

? print sine 30
0.5

In this example, Sine returns its output as the input
to Print. In this way we can chain several primitives
together, passing the output of one to the input of the
next.

Primitives that emit an output are often called
operations. Primitives that do not are just called
commands.

Optional Outputs

Primitives that execute lists of commands (Run,
Repeat, If, etc.) may or may not output a result. If the
list they execute results in an output, they will pass it
back as their own.

Procedures

As we described at the start of this chapter, primitives
are the built-in commands and operations used to
make things happen in Logo. It is also possible and
useful for you to create your own commands and
operations. These are called procedures.

A procedure is a list of command lines that you group
together to perform whatever function you desire.
When you give this list a name, you are defining a
procedure.

26 Elements of Logo

Making a Procedure

Suppose you wanted to draw a box of a certain color.
These command lines would do the job:

setpencolor 2
repeat 4 [forward 80 right 90]

0G0 - COMMAND

ICI[AIGA L
?

7 setpencolon 2]

?' repeat 4 [forward 88 right 981
.

g

If you wanted to draw the box several times, you
would have to re-enter these lines each time. An
easier way would be to give these lines a name by
making them a procedure:

to box

setpencolor 2

repeat 4 [forward 80 right 90]
end

Here the To word tells Logo that you want to define a
new procedure called box. You could just as easily
call it mybox or box80. It really doesn’t matter much
to Logo so long as you don’t give it the name of a
Logo primitive. It is a good idea to give it a name that
means something and is easy to read.

If you try typing this example into the command
window, something strange will happen. Just as soon

Elements of Logo 27

as you've entered the To box line, the text window
will clear itself and print:

rrg]'ox L0GO
END
Logo Screen

Editor H

and the title of the window will change to EDIT. You
are now in the Logo screen editor. The commands for
moving the cursor are the same as those you've
learned for the command window. However, when
you press RETURN in the editor, the command is not
executed; the cursor just moves to the next line.

The End word simply tells Logo where your new
procedure ends. It must be the last line of your Logo
procedure.

Just like the command window, you can move the
cursor around the edit window to correct any
mistakes you've made. When you've finished, exit
the editor and enter your new procedure by pressing
CTRL-C. The command window will return just as
you left it.

To run your box procedure, type it as if it were a
command:

? box

To view the results, you may need to expose the
graphics screen by pressing CTRL-T. To return to the
command screen, press CTRL-T again.

28 Elements of Logo

Editing a Procedure

Inputs

Let’s say you want to modify your procedure to make
it draw a larger box.. With the Logo editor, this is
simple. Just type:

? edit “'box

Notice that you need to put quotes (") in front of the
procedure name. If you didn’t do this, Logo would
execute the procedure before starting the editor.

If you know that box is the last thing you edited, you
can return to edit it again by typing:

? edit
The editor will display:

TO BOX

setpencolor 2

repeat 4 [forward 80 right 90]
END

Use your cursor keys and the BACKSPACE or DEL
key to change 80 to 100. Press CTRL-C. Your
modified procedure is now defined.

Suppose you wanted to modify your procedure to
draw a box of any size. Just like with primitives,
procedures can have inputs.

To define an input for a procedure, place the name of
an input variable in the title line. For example:

TO BOX :size

would tell Logo that you want box to accept a single
input, and that within the procedure, this input will
be accessed with the size variable. The actual name of
the variable is up to you, but just as with other
variables, it’s a good idea to give it a name that is easy
to read and understand.

Elements of Logo 29

30

With the editor, modify your example to match this:

TO BOX :size

setpencolor 2

repeat 4 [forward :size right 90]
END

Notice the size variable appears in two places: where
it is defined as an input, and where it is used as a
distance to Forward.
Whatever number you now supply as input to box
will be supplied to Forward. This will allow you to
draw boxes of various sizes: Try these to create boxes
of different sizes:

? box 30

? box 46

? box 65

Adding another input is similar to adding the first.
Let’s say we want to add a color input:

TO BOX :size :color
setpencolor :color
repeat 4 [forward :size right 90]
END
Then we could type:
? box 30 1
? box 55 3
?box 722

Here the second input is the color of the box.

Elements of Logo

Local Variables

Name Conflicts

A local variable is like any other Logo variable, except
that it only exists when Logo is running in the
procedure that defined it. The value of a local variable
cannot be referenced from outside of its procedure.

There are two types of local variables. You are already
familiar with one: the input variable. The other is a
variable defined with the Local command within a
procedure:

to grid :size
local "“angle
make “‘angle 10

end
Here both :size and :angle are local variables in a
procedure called grid. The :size variable gets its value

from the input passed to grid when it is used. For
example:

? grid 10

will set :size to 10. The :angle variable gets its value
from the Make command inside grid. Both these
values are private to the grid procedure. They cannot
be accessed from outside grid.

A variable that is not local is called a global variable.
Such variables can be accessed from the command
level or from any procedure.

What happens when a local variable has the same
name as a global variable? Logo takes care of this
situation by saving the value of the global variable
before setting-up the local variable, and it will restore
the global’s value when the procedure has finished.
Thus, the global value will not be affected by the local
use of the variable.

Elements of Logo 31

32

This may seem confusing, so an example might help.
Create a procedure that changes the value of :a and
then prints it:

to printit
make ‘'a 2
print :a
end

Then it makes sense for these results:

? make “‘a 1
? printit

2

? print :a

2

Now edit the procedure to add just one line that
makes :a a local variable:

to printit
local “a
make “‘a 2
print :a
end

Now try this:

? make “‘a 1
? printit

2

? print :a

1

The variable has maintained its global value outside
of printit. It was equal to 2 only while inside the
procedure.

Elements of Logo

Output

What would the value of :a be if we called another
procedure within printit? Try this:

to printagain
print :a
end

to printit
local :a
make :a 2
print :a
printagain
end

Now run it:

? make “‘a 1
? printit

2

2

? print :a

1

The value of :a in printagain remains as it was in
printit! It turns out that a local variable’s value exists
within its procedure and within any procedure invoked
by that procedure.

Procedures, like primitives, can also output values.
The Output primitive makes this possible:

to double :num
output :num + :num
end

This procedure would double its input value and
output the result:

? print double 3
6

Elements of Logo 33

Building Up

? print double double 4
16

The value passed as input to Output will be the result
of the current procedure, and execution of the
procedure will be stopped.

If you simply want to stop a procedure without
returning a value, the Stop command will do so. No
output will be returned.

As you become more experienced in Logo, you will
build many different procedures. Some of these
procedures you will save and reuse in new programs.
After a while your procedures will in turn call other
procedures, which may call yet other procedures, etc.
This is how large, complex programs are written.

Each procedure will eventually depend on the
features of other procedures, just as they would the
features of the Logo primitives. Once a procedure has
been created and debugged, you should think of what
it does and not how it does it. This relieves your mind
of trying to remember too many details. In your mind
you automatically relate the name to the action. This
is called abstraction. It is the essence of good
programming.

You will want to give your procedures good names
to reflect what they do. In addition you should
minimize the side effects of each procedure—avoid
the use of variables that are not local to the
procedure. If you do these things, you will rarely
need to look at procedure definitions to figure things
out.

Last of all, make your procedures simple. Opt for a
greater number of simple procedures, rather than a
lesser number of complex procedures.

34 Elements of Logo

Graphics

The Screen

One of the primary features of Logo is its ability to
easily draw color images on the computer’s screen.
This section will describe the basic ideas for creating
your own images in Logo.

As described above in the section The Graphics
Window, the FullScreen (FS) and SplitScreen (SS)
primitives are both ways to display the graphics
portion of the screen. You can return to the full text
command and editor windows with TextScreen (TS).
These primitives can also be selected in the SCREEN
menu bar at the top border of the screen.

You can also press CTRL-T to switch between text
and graphics screens.

The screen is made up of little dots called pixels. The
number of pixels in the vertical or Y direction and the
number of pixels in the horizontal or X direction
determine the resolution of the screen. In turn, the
width and height of a graphics image is determined
by the resolution of the screen. The most common
screen resolution on the Amiga is 640 X 200, which is

Elements of Logo 35

36

also its default resolution. Other possible values
include: 320 X 200, 320 X 400, and 640 X 400. The
screen resolution can be changed with the SCREEN
menu Screen Size item.

-JIAHIGA LOGO - COR4AND ——————

? i

Points are drawn on the screen using an imaginary
grid. For every point there is a horizontal and vertical
position that can be used to describe it. The
horizontal position is often called the X coordinate,
and the vertical is called the Y coordinate. You need
both X and Y to indicate a position on the screen,
such as X at 10, Y at 20, or in the form of a Logo list
[10 20]. The X coordinate is always first in the list. The
point [0 0] is at the center of the screen. To the right,
X is positive. To the left, X is negative. Y is positive
upward, and negative downward.

4,y
« [10 20)
+[-20 10)

X [00] +X

4
v

+[10 -14]

*[-25 -25
(-25 -25] 5

v

[0 0] is called the origin or home position.

Elements of Logo

The range of Xand Y in each direction depend on the
screen resolution that you are using:

Scrn Res. - X +X -Y +Y

320 X200 -—-160 +160 —122 +122
320 X400 -—-160 +160 —-122 +122
640 X200 —320 +320 —-244 +244
640 X 400 —320 +320 —244 +244

The width and height of a graphics image may also be
altered by using the SetAspect primitive to change
the ratio of the number of units in the Y direction for
each unit in the X direction. This will be explained in
more detail at the end of this section.

The Turtle

= Logo’s graphics may also be called Turtle Graphics.
This is because of a small image that functions as a
cursor to let the user know where the pen is. This
image is called a turtle and actually looks like a turtle
in Amiga Logo. While the pen is down the turtle will
draw a line on the graphics screen wherever it is told
to go.

The turtle is usually visible on the graphics screen
and will move according to the commands tyg)ed on
the text screen or wherever the mouse goes if the
button is pushed down. It rotates so that its head is
pointing the direction that it will move next.

The turtle always starts in the same place on the
screen when Amiga Logo is started. This place on the
screen is called home. When the user wants to place
the turtle back to its original position the Home
primitive will accomplish that without disturbing the
rest of the graphics screen. The user can also clear the
graphics screen and home the turtle by using the
Clearscreen primitive. One more option is to clear the
graphics screen without moving the turtle by using
the Clean primitive.

The user may not always want the turtle to be visible.

Elemer:ts of Logo 37

The Pen

Logo provides three primitives to give the user
flexibility. The ShowTurtle primitive causes the turtle
to be shown on the graphics screen, and the
HideTurtle primitive causes the turtle to disappear.
The Shown? primitive returns a TRUE or FALSE
depending on whether the turtle is showing or not.

Here is an example of these primitives:

? hideturtle
? shown?
FALSE

7 showturtle
? shown?
TRUE

The concept of a pen is very similar to what you are
used to drawing with. This pen is attached to the
turtle instead of your hand. The position and
direction of the pen are shown by the turtle. The pen
can be either up or down. Just like when you draw
with your hand if the pen isn’t down you don’t make
any marks. It is important to remember that being
able to see the turtle does not reflect the up or down
position of the pen.

The pen is put into the down position so it can draw
with the PenDown command. To put the pen into the
up position, use the PenUp command. After putting
the pen into the up position, the turtle will move
around the screen but no lines will be drawn until the
pen is put into the down position again.

PenErase will change the pen into an eraser. While
set to this, the pen will erase any line or area it moves
over. You can stop erasing with PenUp or PenDown.

You can select any of the above commands by typing
them in the command window or by accessing the
Pen menu at the top border of the screen and
selecting an option with the mouse.

38 Elements of Logo

Heading

PenReverse will set the pen to reverse any colors that
it passes over. On the Amiga, we call this the
complement mode of graphics. The reverse of a color
depends on the number of colors you are using. See
the color section below. You can return to normal pen
operation with PenUp or PenDown.

The direction the turtle is pointing is called its
heading. This is the angle measured in the clockwise
direction from straight up. Headings are always
expressed in degrees with zero degrees being straight
up.

The heading angle increases as the turtle rotates in
the clockwise direction. When the heading hits 360, it
is automatically reset to zero.

To turn the turtle to a heading clockwise from its
current position use the Right command. To turn
counterclockwise use the Left command. Both of
these cause the turtle to rotate relative to the current
turtle heading. So if the turtle were heading 40
degrees, and you rotated right by 30, its new heading
would be 70 degrees.

bov

40

right 40

30 right 30

+X

Elements of Logo 39

40

It is easy to lose track of the exact heading of the
turtle. The Heading operation will always return the
current turtle heading. We know that Home faces the
turtle up, which is zero degrees:

? home
? heading
0

You could tell the turtle to rotate 90 degrees to the
right with:

? right 90
and the heading would become:

? heading
90.0

Doing this again:

? right 90
? heading
180.0

The turtle now points straight down. To rotate back a
bit try:

? left 30
? heading
150.0

Notice that changing the heading will cause the turtle
to rotate on the screen. The turtle will always be
pointing in the approximate direction of its heading.
But also notice that rotating the turtle does not draw
any lines (that’s in the next section below).

Remember that Right and Left rotate the turtle by a
relative amount. Right adds to the heading. Left
subtracts from it. With the SetHeading primitive you
specify an absolute angle that will become the new
turtle heading.

Elements of Logo

Movement

? setheading 230
? heading
230.0

One more convenient primitive is Towards. If you
know a position on the screen in terms of its X and Y
coordinates, you may want to know what heading
angle points you there. Towards will return the
heading required to point in a given direction. From
the home position:

? towards [10 10]
45.0

? towards [-30 0]
270.0

You can input this angle to SetHeading;:

? setheading towards [-30 0]
? heading
270.0

With Towards a new heading can be established
without knowing the angle.

To actually move the turtle forward you use the
Forward command. This will move the turtle a
specified distance relative to its current position. The
turtle will move in the direction of its heading. If the
pen is down, a line will be drawn.

? home pendown
? forward 30

Elements of Logo 41

42

LU 162 LTG0 O e ————————————

7 howe pendown ‘
3rorm kL] ‘

2§ g

The heading is 0 after a Home, so the turtle will move
up by 30 units. The pen is down, so a line will be
drawn.

? right 90
? forward 100

Turn right and move forward 100 units.

B

Back will move the turtle in the direction opposite the
heading:

? back 200

In this case, the turtle will move to the left.

Elements of Logo

ANIGA LOGO - COMMAND
7 howe pendown

o 3

ght 98

To determine the turtle’s position, the Position
operation will output a list of the current X and Y
coordinates:

? home
? position
(00]

? forward 30
? position
[030.0]

The position and heading of the turtle are two
different things; do not confuse them. The Right and
Left primitives have no effect on the turtle’s position,
only its heading.

To place the turtle in a particular location on the
graphics screen use SetPosition. This moves the
turtle to an absolute position; it doesn’t matter where
the turtle came from.

? setposition [10.0 20.0]
? position
[10.0 20.0]

You can set the X and Y positions separately with
SetX and SetY.

Elements of Logo 43

Colors

? setx 40
? position
[40.0 20.0]

?sety 0
? position
[40.00.0]

It is also possible to obtain the X and Y coordinates
separately with XPos and YPos:

? Xpos
40.0

? ypos
0

Color is an essential part of Logo as it enriches the
creativity of the user. The Amiga has the capability of
displaying 4096 different colors, and Amiga Logo
permits the full use of these colors.

The number of colors actually displayed at one time
depends on the amount of memory used to hold the
graphics image. The more memory used, the more
colors displayed.

Amiga Logo can display 2, 4, 8, 16, or 32 colors at the
same time. Of course one color is always used for the
background, so this leaves 1, 3, 7, 15, and 31 colors
for your use. Amiga Logo starts out with 4 colors. The
number of colors is set with the Number of Colors
item in the SCREEN menu.

44 Elements of Logo

?
?
?
?
?
?

B

The ability to use 31 colors is also dependent on your
screen resolution. If your horizontal resolution is
greater than 320, Logo will restrict you to 16 colors at
most. You will notice that the menu does not include
the 32 color option in such cases.

You may not always have enough memory to display
all colors. If you are running other programs on your
Amiga at the same time glou run Logo, they will
decrease the amount of free memory available. If you
need to, run Logo alone.

In Logo, colors are assigned to the pen by number.
Depending on the number of colors you selected
there are 1 to 31 different colors numbers. When Logo
starts running it assigns a color to each number. The
first 4 initial colors are:

0 black (background)

1 white
2 green
3 violet

These numbers are used by both the background
and pen to determine their color. Initially, the
background color is zero and the pen color is one.
Color number zero is a special color that always
represents the color of the background. For a
complete list of Logo’s default colors, turn to p. 172.

Elements of Logo 45

46

To change the color of the background, you can
assign a different color number with SetBackground:

? setbackground 2

Notice that the entire screen and its borders change
color. To determine the color number of the
background:

? background
2

To change the color number of the pen, SetPenColor:

? setpencolor 3
? pendown forward 20

And, to determine the pen color number:

? pencolor
3

On the computer screen all colors are made from
three primary colors: red, green, and blue. These
colors are mixed in varying quantities to get the
desired color. For example, yellow is a mixture of
green and red. Purple is a mixture of red and blue.
You can mix your own colors by selecting the Modify
Colors item from the SCREEN menu.

PROJECT 0 Sk ¢ :
Split Screen
Text Screen
Full Screen
Clear Screen

“No Title Bar
B TV B ey

Sl

ors

-‘N'u-‘l'li);él‘ of C;c;l
Screen Size

Each color can have 0 to 15 units of red, green, or
blue. A yellow color might have 14 of red, 13 of
green, and no blue. 8 of red, 8 of green, and 8 of biue
would make a grey.

Elements of Logo

Use rgb
sliders to
change colors

-o~e-o-o-o~oi

With the SetRGB command you can change the color
displayed by a particular color number (with the
exception of color number zero). For example, you
might decide to change color number three from
purple to yellow:

? setrgb 3 [14 13 0]

The input list is the amount of red, green, and blue
(RGB) that you want to mix together to make color
number three. Notice that all lines already drawn with
this color number on the screen change from purple
to yellow. You are changing the actual color assigned
to the color number.

To obtain the RGB values for an existing color:

?rgb1
[14 14 14]

?rgh 2
[0110]

Elements of Logo 47

If you modify colors under program control, you can
create some interesting effects:

to colorize

local “‘new.pc

make “new.pc 1 + random 14

setrgb :new.pc (list random 15 random 15 random 15)
setpencolor :new.pc

setposition list random 300 random 200

end

? clearscreen pendown
? repeat 1000 [colorize]

thsies
% repeat l mmm

: .

Run this example with 16 colors in 640 horizontal
resolution.

Filling Areas

Often when creating images it is desirable to make an
item a solid color. There are two commands, Fill and
Fillln, which can be used to accomplish this.

To use Fill, draw an object that has a closed border
such as a circle or square. Position the turtle inside
the object and type Fill. The whole object will become
the same color as the pen.

48 Elements of Logo

? ¢s setpc 1

? repeat 4 [fd 80 rt 90]
? penup setpos [10 10]
? pendown

2 ill

ARIGA LOGO - COMMAND
25

7
£ R
R

>

?
?

The fill will begin at the current pen position, and
flood outward until it hits a pixel on the screen that is
the same color as the pen. If you change the pen
color, you will end up with a different result. Also,
the pen should be down for this command to work

properly.

If you forget to position the turtle inside your object,
the Fill would paint the space outside of the object
instead.

? ¢s setpe 1

? repeat 4 [fd 80 rt 90]
? penup setpos [-10 10]
? pendown

? fill

Elements of Logo 49

50

AHIGA LOGO

[CI]AMIGA LOGO - COMMAND
? ¢s setpe |

7 pepeat 4 [fd 88 nt 98]
? penup setpos [-18 -18]

? fe_ndnn

2 il

1 |

If your object is not completely enclosed, the fill will
leak out and color the whole screen the color of the
pen. When this happens, it may look like the
background color has been changed, but it has simply
been colored over.

Fill colors the area bounded by the current pen color.
It does not matter what other colors are inside this
area they will be washed over. This feature is not true
of the Fillln command. Fillln will fill to any
boundary, regardless of its color, as long as it is a
different color than the color on which the fill started.
The following example would create a green diamond
with a white border:

? ¢s setpc 1

? repeat 6 [fd 60 rt 60]
? penup setpos [10 10]
7 setpc 2

? pendown

? fillin

Elements of Logo

Turtle Bounds

ANIGA LOGO

ICI[AMIGA LOGO - COMMAND

7 pepeat 6 [fd 68 rt (8]
; penup ;GVPOS 18 18]
se

g

Another way to access the Fill and Fillln commands
is by using the mouse. Click the right mouse button
at the top border of the screen to access the Pen
menu, and select the item of your choice.

RNy

The turtle can move freely around the graphics
screen, but what happens when it tries to cross the
edge? It depends. You have three choices.

The Fence command directs Logo to limit the turtle to
the screen only. If the turtle tries to go beyond the
edge, an error message will be generated, and the
turtle will be halted at the edge of the screen as if it
were fenced in.

Elements of Logo 51

Aspect Ratio

? home fence
? forward 250
Turtle out of bounds

The Wrap command directs Logo to let the turtle
move off the screen on any side and reappear on the
opposite side as though the edges were connected.

? home wrap

7 forward 450
? position

[0.0 -39.08397]

The Window command specifies that the turtle can
move off the screen into an imaginary space.

? home window

? forward 1000

? right 90 forward 2000
? position

[2000.0 1000.0]

Fence is the initial mode when Logo is started.

Amiga Logo has a built-in Aspect correction for
different screen resolutions. If this were not true, on a
640 X 200 screen a vertical line would seem nearly
twice as long as a horizontal line of the same length.
This distortion is caused by the difference in the
number of pixels vertically when compared to the
number of pixels horizontally. To produce accurate
images, where a square looks like a square and not a
rectangle, Logo adjusts the aspect ratio. This ratio
controls the scale of the Y axis compared with the X
axis.

The Aspect operation returns the current aspect ratio
of the screen. This is the number of units in the Y
direction for each unit in the X direction. Normally it
is set to 1:

7 aspect
1.0

52 Elements of Logo

Drawing Text

To set the aspect ratio to a new value, use SetAspect.
? setaspect 0.5

This will make each vertical unit half the size of a
horizontal unit.

SetAspect helps compensate for different screen
resolutions and monitor brands. If your circles look
like ellipses and squares look like rectangles, the
aspect ratio can correct these.

We have discussed how to draw lines on the screen,
but what about text? The GraphicsType command
will print its input on the graphics screen as text.

? ¢s setpc 1
7 graphicstype ‘‘home

ANIGA LOGO

[1{AHIGA

7 s

7 os sefpe 1
zrﬂmtm “"hone

Text will be printed at the current turtle position but
the pen position will not change.

The text will be printed in the current pen color and
will be affected by the pen’s state (up, down, erase,
and reverse) just like when drawing a line.

? penup setpos [-57 20] penreverse
? graphicstype [there's no place like]
? penerase graphicstype [there's]

Elements of Logo 53

Graphics Projects

Here are some more procedures that generate
interesting Logo graphics. Try typing these
procedures, saving them to disk, and experimenting
with different inputs to achieve different effects.

Explode

cs explode 5

TO EXPLODE :SIZE

ne

wvo

IF :SIZE=200 [STOP]

HT

REPEAT 36([FD :SIZE BK :SIZE RT RANDOM 10]
SETPC RANDOMS

EXPLODE :SIZE + 5

END

Execute this procedure in 640 x 200 resolution with 8
screen colors. You may want to change the procedure
by altering the inputs.

Spiro

cs spiro 4 122 200

TO SPIRO :SIZE :ANGLE :NUMBER

IF :NUMBER = 0 [STOP]

FD :SIZE

RT :ANGLE

SPIRO (:SIZE + 10) :ANGLE (:NUMBER - 1)
END

Run this program in window mode. Have fun
experimenting with this procedure; you have three
inputs to play with. Notice how the graphic changes
as you increase the size of the angle.

C

csc310

e b L] o L
" :i._.i: [

TO C :LEN :LEVEL

IF :LEVEL = 0 [FD :LEN STOP]
C :LEN :LEVEL - 1

RT 90

C :LEN :LEVEL -1

LT 90

END

Run this program in window mode to prevent out of
bounds error messages from appearing. Notice how
increasing the level number makes the graphic more
complex.

Sunburst

cs sunburst

TO FOURSIDE
REPEAT 2 [FD 60 RT 30 FD 60 RT 150]
END

TO SUNBURST

HT

REPEAT 72 [FOURSIDE RT 5]
END

Notice how this graphic is composed of two
procedures: FOURSIDE and SUNBURST.

Fan

¢cs fan

TO FAN

PU

RT 20

PD REPEAT 3[RARC 50 60 LARC 50 90 BK 50 LT 90]
FAN

END

TO LARC :RAD :DEG
REPEAT 0.0174603 * :DEG * :RAD [FD 1 LT 57.27273 / :RAD]
END

TO RARC :RAD :DEG
REPEAT 0.0174603 * :DEG * :RAD[FD 1 T 57.27273 / :RAD]
END

House

i

\%

L%ﬁ

AN ,\ A{i Aﬂ H\F \ i B:\; A A Ah?:n AA HA {

The proce dures for the HOUSE graphic are too long
to print in the manual; however, you may view them
by double clicking on the HOUSE icon in the Logo
drawer of your \mn,a Logo system disk. Notice how
a number of procedures have been packaged together
within the main procedure.

Snowflake

cs snowflake 200 5

TO SNOWFLAKE :LEN :LEVEL
REPEAT 3 [SIDE :LEN :LEVEL RT 120]
END

TO SIDE LWN LEVEL

IF :LEVEL = 0 [FD :LEN STOP]
SIDE :LEN / 3 :LEVEL -1

LT 60

SIDE :LEN / 3 :LEVEL - 1

RT 120

SIDE :LEN / 3 :LEVEL - 1

LT 60

SIDE :LEN / 3 :LEVEL - 1

END

I'he snowflake graphic is composed of two
procedures: SNOWFLAKE and SIDE.

Polygon

cs polygon 3 34

TO POLYGON :SIDES :LENGTH

HT

IF :SIDES = 30 [STOP]

PD

REPEAT :SIDES [FD :LENGTH RT (360/:SIDES)]
PU HOME PD

REPEAT :SIDES [FD :LENGTH LT (360/:SIDES)]
POLYGON :SIDES + 1 :LENGTH

ST

END

Run this program in window mode to prevent out of
bounds error messages from occurring. Notice how
the polygons approximate the shape of a circle as
they grow larger.

Car

To view the procedures for the CAR graphic, double
click on the CAR icon in the Logo drawer of your
AmigalLogo disk, and type EDIT “CAR"” in the
command window. Notice how each procedure
draws a different part of the car.

Words

Words are the primary data element used in Logo.
Words are used for numbers, for symbols, and for the
names of variables, primitives, and procedures.
Several words can be combined to form a sentence or
a list.

A word is simply a sequence of characters. For
example

plum

Al

star.fish

X32Y70

victory!

what?

37

3.14159
are all words.
When a word is preceded by a quote (") character, it
is a literal word. Logo will not attempt to do anything
special with the word. It will accept it literally as just a
collection of letters. Notice that only a starting quote

is needed.

? print “‘plum
PLUM

? “‘what?
WHAT?

Elements of Logo 55

If a quote is not present, Logo will interpret the word
as if it were a primitive or procedure. If there is no
such thing, an error will occur:

? print plum
| don't know how to PLUM

Numbers do not require a quote. They will always be
interpreted as words. |

? print 123
123

? print 123 !
123 \

Special Delimiters

56

A word normally ends with a space. The space is said
to delimit the end of the word. There are other
delimiters that also will end the word. They are + —
*/ =< >[]()and ~. Occasionally you may want to
use one of these characters in a word. To do so, you
must precede the character with a backslash \. This
tells Logo that the next character should be accepted
as part of the word.

? print “time™\ — out
TIME-OUT

? print “a*b
A*B

? editfile "‘s:startup™\. — sequence
? print "\[
(

However, the \ is not needed if the special character
is the first in the the word.

? print "*here
*HERE

? catalog "*.info

Elements of Logo

Blank space can also be put into a word using these
same rules. For example, to print an empty line type a
quote followed by a space:

? print "
?
Notice the space between the two prompt lines.

Words as Values

Most values in Logo are words or lists of words.
Some words have special meaning to Logo. For
example, words made up of digits 0 through 9 are
numbers. The words “TRUE and “FALSE are special
words to indicate logical truth. You can even give a
word its own special meaning. You might want to use
the word “INVALID to indicate an improper input or
such. The word “INVALID does not need to be
anything special. It does not need to be a variable or a
procedure. It simply represents a value. You can
write your own procedure that usually outputs a
number, but in an error case might output “WRONG.

Words are also commonly used as strings of
characters. In this sense they are similar to strings
used in other languages. You would use Logo words
to communicate with the user on the screen:

? print “‘hello
HELLO

? print [enter your name]
ENTER YOUR NAME

Words as Names

Words are more powerful than just representing
values or providing strings of characters. In Logo a
word can be the name for something.

A word can be the name of a variable, procedure, or
primitive. A word can be manipulated as a series of
characters, sliced apart and recombined in many

Elemenits of Logo 57

Operations

|
ways, and the result can be used to reference a
variable or execute a procedure. This ability gives Logo
power beyond most other programming languages!

Logo will discern the intended use of a word by the
punctuation you provide. Words may be quoted
(with a ”’), unquoted, or dotted (preceded with a
colon "":").

\
You have learned that quoted words and numeric
words are literal values:

"victory “cat ‘“'true 737 52.5 \

Unquoted words invoke procedures and primitives
(unless the words are within a llst — see the section
on lists below):

Forward Back Print . . .

Dotted words reference variables!

.color :size :length

Logo supplies a number of word operations. A word
can be broken down into separate pieces (which are
themselves words), or several words can be
combined to make a new word.

The First operation will return the first character of a
word:

7 first “logo
L

To get the rest of the word ButFirst does the job:

7 butfirst “logo
0GO

58 Elements of Logo

Last and ButLast work in a similar fashion on the last
character of a word:

? last “logo
0

? butlast "logo
LOG

To get a specific character in the word:

? item 3 "'logo
G

To count the number of letters in a word:

? count “logo
4

New words can be created with FirstPut and LastPut:

? firstput ““I “ogo
LOGO

? firstput “amiga “logo
AMIGALOGO

? firstput 1 234
1234

? lastput ‘s “friend
FRIENDS

? lastput ““‘mania ‘amiga
AMIGAMANIA

The Word operation is similar to FirstPut, but with
the use of parentheses, any number of words can be

joined:

? word “‘news ‘‘letter
NEWSLETTER

Elements of Logo 59

? (word "‘PORK “'U "PINE)
PORKUPINE

? (word "‘anti “‘dis “‘establish ‘‘ment)
ANTIDISESTABLISHMENT

There are also a number of predicates to use with
words. They output either TRUE or FALSE.

? empty? “victory
FALSE

? word? “‘victory
TRUE

Two words are equal only if they contain the same
characters in the same order.

7 equal? “victory “‘theater
FALSE

7 equal? “‘abc word “‘a "“bc
TRUE

Another predicate will determine whether a word
contains a particular character:

? member? “'Z “ZIP
TRUE

Numbers
In Logo a number is a special type of word made up of

the digits 0 through 9, and often may include a
decimal point, minus sign, or exponent indicator.

60 Elements of Logo

Numbers in Logo may be expressed in various ways.
For example:

37

10000

973
are integer numbers, whereas

37.45

-45.37

0.75

34.0

.62

8300.
are decimal numbers. Notice that integers do not
include a decimal point. Also, negative numbers
should have no space after the minus sign (or Logo
will think that you want to perform an operation like
subtraction or negation).
Very large or very small numbers can be represented
in a exponential form that is similar to scientific
notation. For example:

3.7E8

-3.7E5

3.7N4

are just a ways of saying;:

Elements of Logo 61

Operations

370000000.0
-370000.0
0.00037

The letters “E” and “N” are used to indicate the
exponent, which is ten raised to the power of the
number entered. The "N indicates a negative
exponent.

For the most part Logo treats all types of numbers
alike. You can mix and match types as you desire.
When it is necessary, Logo will automatically convert
a number from one type to the other. For example
Logo would convert the input to the Sine primitive:

? sine 30
0.5

from a 30 to 30.0 before performing the operation.

In Amiga Logo numbers have about eight digits of
precision. Exponents can range from + 18 to -20.
When a series of calculations exceeds the precision,
the resulting number will not be exact. You may see
this occurring from time to time:

? 876543210 /5 * 5/ 876543210
1.0

? (876543210 / 5) * (5 / 876543210)
0.9999999

Keep this in mind, as it could create a problem when
comparing two numbers for equality.

Logo provides many built-in operations for numbers:
addition, subtraction, multiplication, division,
trigometric functions, comparison, random, etc.

62 Elements of Logo

As mentioned above in the section about primitives,
many of the arithmetic operations are more natural
when expressed with the operator between its inputs
(rather than in front of them). For example:

712 + 3
seems more natural than
+ 123

It really doesn’t matter which one you use—just don’t
mix the two together; it might be confusing.

Addition is performed with either + or Sum. It
normally takes two inputs: the numbers to be added.

7120 + 5
125

?3.25 + 60.2
63.45

?7sum3 52.3
55.3

Many of the number primitives will accept a variable
number of inputs. To indicate the this, enclose the
operation and its inputs in parenthesis.

(+12345)

(sum 102.3 34.5 76 —29.46)

Subtraction (—), multiplication (*), and division (/)
operate in a similar fashion to addition:

210 -3
7
?10*3.3
33.0

Elements of Logo 63

?12/4
3.0

7(*234)5)
120.0

Care must be taken when specifying subtraction.
There must be a space between the minus sign and the
number being subtracted. If you forget to put a space,
Logo will think you are just indicating a negative
number:

? (print 10 — 3)
will print a 7, but:
? (print 10 - 3)

will print a 10 and a —3. Logo thinks that the —3is a
numeric value, and it will not treat the minus as an
operation.

The minus sign can also be used with a single input to
determine the negative value of a number. Again, to
indicate that you intend an operation, separate the
minus from the input with a space:

? print -60
-60

? print - cosine 60
-0.5

Amiga Logo supports the common trigometric
functions:

? sine 30
0.5

? cosine -45
0.7071069

? tangent 27
0.5095255

64 Elements of Logo

? arctangent 100
89.42706

There are operations to compare numbers. You can
determine whether a number is greater than, less
than, or equal to another number. These operations
are predicates and only output a TRUE or FALSE
value.

710 >3
TRUE

213 =7
FALSE

?10.3 <10.1
FALSE

If you want to test for a number being greater than or
equal, you would need to write an expression like:

?not (10 < 0)
TRUE

This would be equivalent to saying: return TRUE if 10
is not less than zero. In other words, return TRUE if
10 is greater than or equal to zero. Similarly:

? not (100 > 200)
TRUE

? not (32.5 = 17.4)
TRUE

would represent less than or equal and not equal.

There is also a predicate to let you test if an input
value is a number:

? number? 10
TRUE

? number? “‘hello
FALSE

Elements of Logo 65

Precedence

You can generate random numbers with the Random
operation:

? random 10
7

? random 1000
376

(Your output in these examples will differ because the
numbers are random!) The input indicates the limit to
the random number produced. All your numbers will
be less than this limit.

When performing a calculation, you will often want
to mix several operations within the same line.
Normally Logo expressions are evaluated from the
left to the right. However, arithmetic operations may
be evaluated differently. The multiplication (*) and
division (/) operations will be evaluated before
addition (+) and subtraction (-). The * and / have a
higher precedence:

?print3*4 +5
17.0

?print5 + 3*4
17.0

Notice that both expressions perform the * first. The
result is 17 not 32 (8 * 4).

You can force Logo to evaluate expressions in a
different order by grouping your expressions with
parentheses.

?2print (5 + 3) * 4
32.0

66 Elements of Logo

Logo evaluates expressions in parentheses first. This
can be very important in calculations like:

? (cosine 10) * 6
5.908847

? cosine (10 * 6)
0.5

Lists

In Logo a list is a collection of objects. These objects
may be words (numbers included) or other lists. Lists
are a convenient way to group related values together
as a single object. Logo uses lists extensively for even
its own internal operations.

When typing and printing lists, square brackets [] are
used to indicate what elements are included in the
list. Everything enclosed by brackets becomes part of

the list. Individual elements of a list are separated by
a space.

[toby]

[abcde]

[37 -54 72.4]

[address [100 main street] |

[[vellow banana] [green grape] [red apple]]

tal

Like literal words, these are literal lists. They contain
just literal objects; everything within them is a literal.
Their contents are not evaluated. Words within literal
lists do not need to be quoted.

Elements of Logo 67

A list that contains valid Logo commands can be
executed. Such a list is called a run-list. For example

[forward 40 right 90]
[print “tobina]

Several Logo primitives accept run-lists as input.
They are essential to writing programs in Logo and
will be discussed in a later section.

Primitives
Logo supplies several list operations. The individual
elements of a list can be extracted, new elements can
be added to a list, or several lists can be combined
into one.

The First operation will return the first element of a
list:

7 first [peach fig cherry]
PEACH

To get the rest of the list use ButFirst:

? butfirst [peach fig cherry]
[FIG CHERRY]

Notice that the output is itself a list.
Last and ButLast work in a similar fashion:

? last [peach fig cherry]
CHERRY

? butlast [peach fig cherry]
[PEACH FIG]

To get a specific element of the list:

? item 2 [peach fig cherry]
FIG

? item 3 [[yellow banana] [green grape] [red apple] |
[RED APPLE]
68 Elements of Logo

To count the number of elements in a list:

? count [peach fig cherry]
3

? count [[yellow banana)] [green grape] [red apple]]
3

The List operation provides a way to create a new list
by joining input objects.

? list 12 ““trains
[12 TRAINS]

? list “'gems [diamond ruby emerald]
[GEMS [DIAMOND RUBY EMERALD]]

? list [red crab] [gray whale]
[[RED CRAB] [GRAY WHALE] |

When enclosed in parentheses, this operation will
join any number of inputs:

? (list 4 "little “'yellow ''bugs)
[4 LITTLE YELLOW BUGS]

? (list [red crab] [gray whale] [green mac])
[[RED CRAB] [GRAY WHALE] [GREEN MAC]]

Sentence is an operation similar to List. It joins input
objects together, but will strip the outer brackets off
of any lists that may have been input.

7 sentence [red crab] [blue whale]
[RED CRAB BLUE WHALE]

? (sentence [there are] 4 “‘inputs “‘here)
[THERE ARE 4 INPUTS HERE]

FirstPut and LastPut will add elements to the
beginning and end of a list:

? firstput “'lion [tiger cheetah]
[LION TIGER CHEETAH]

Elements of Logo 69

? firstput [32 74] [23 89)
[[32 74] 23 89]

? lastput “‘keyboard [computer display mouse]
[COMPUTER DISPLAY MOUSE KEYBOARD]

There are also a number of predicates to use with
lists. They output either TRUE or FALSE.

? empty? [cindy sean]
FALSE

?empty? []
TRUE

7 list? [cindy sean]
TRUE

? list? [carl]
TRUE

? list? 45
FALSE

Two lists are equal only if all of their elements are
equal.

? equal? [ab] [d e]
FALSE

? equal? [a b] list “a ''b
TRUE

Another predicate will determine whether a list
contains a particular element:

? member? “‘toast [pancake egg bacon toast]
TRUE

70 Elements of Logo

Printing Lists

When a list is printed, its outermost brackets may or
may not be shown, depending on the command
used. The Print command will not print the outer
brackets. The Show command will.

? print [good morning, sean]
GOOD MORNING, SEAN

? show [orange peach]
[ORANGE PEACH]

Use the command that makes the most sense for
what you are trying to print.

Variables

A variable is used to name a value. That is, a variable
lets you refer to a value through the use of a name,
rather than directly as a constant. This ability turns
out to be of prime importance in computing. For
example, the command:

7 name 10 “ten
would bind the word ""ten’” to the number 10.

Another, more common way to create a variable
name for a value is with the Make command:

? make “‘ten 10

Make is identical to Name except that the order of the
inputs is reversed.

We can now refer to this number with its name “ten”,
rather than its value. To access the value we ask Logo
for the “thing’” associated with a name:

? print thing *'ten

10

Elements of Logo 71

72

Here Thing is a primitive that outputs to Print the
value of a variable. It turns out that this operation is
so common that Logo provides a shorthand way of
obtaining the value of a variable. By placing a colon

R

77 in front of a variable’s name, we refer to its value:

? print :ten
10

Of course, this variable is not very practical because
we normally think of 10 as being ten. But, suppose
we wanted to give names to the various colors used
in Logo graphics? Logo refers to its colors as
numbers. To help us remember the colors, we might
give them names:

? make “‘black 0
? make “‘white 1
? make “‘green 2
? make “‘purple 3

We could then set the color of the Logo drawing pen
with:

? setpencolor :green

So we no longer need to remember what number
represents green.

Of course, the values named with variables don’t
need to be just numbers. A name can be given to any
type of Logo object: words, numbers, lists, and
procedures. Say we want to remember the name of
your favorite fruit:

? make “‘favorite.fruit “‘lemon
or a list of fruits:

? make ““fruits [apple lemon orange banana]

So far our examples have shown variables with
constant values, but this is not the only way of using

Elements of Logo

variables. As the name suggests, the value of a
variable can actually vary. This means we can change
the value of something without changing its name.

For example, if your favorite fruit were no longer a
lemon, you could change the value of the variable to
indicate this:

? make ““favorite.fruit “plum

There is no limit to the number of times the value of a
variable can be changed. This means that a variable
can be used to save the current state of something:

? make “‘num 1
? repeat 4 [print :num make “num :num + 1]
1

2
3
4

Here the value of the num variable gets changed each
time we execute the list. Its new value is created by
adding one to its previous value, so the num variable
indicates the number of times we have executed the
list.

Properties

A property is a special type of value that can be
attached to a Logo word. The properties of a word
have names and values, just as variables have names
and values.

Any number of arbitrary properties (up to the limits
of memory) can be associated with a given word. This
makes properties useful as a form of data base. With
properties it is easy to store and retrieve useful
information about an object. For example, let’s say
you want to store information about various trees.

Elements of Logo 73

74

You could start by defining the properties of a
Redwood tree:

? putprop “‘redwood ‘‘height 350

7 putprop “‘redwood “color “‘red

? putprop “‘redwood “‘location [California Coast]
? putprop ‘‘redwood ‘‘leaves “‘evergreen

Here the PutProp primitive lets you assign tree
properties and their values to the Redwood tree. The
first input to PutProp is the name of the object
(redwood) to which the property is attached. The
second input is the name of the property (height,
color, location, etc.), and the third is the property
value (350, ““red, “evergreen, etc.). As you see, the
value can be any type of object: number, word, list,
etc.

You could define similar properties for other trees:
maple, oak, fir, etc.

Once the tree properties are defined, you can retrieve
their values with GetProp:

? getprop “‘redwood *‘location
[CALIFORNIA COAST]

? getprop “‘redwood ‘‘height
350

If you want to remove a particular property there is a
primitive called RemProp:

? remprop ‘‘redwood “'leaves

All other properties will remain intact.

Elements of Logo

PropList will output a list containing all properties
and property values for a word:

? proplist ““redwood
[LOCATION [CALIFORNIA COAST] COLOR RED HEIGHT 350]

Don’t depend on the order of the properties in this
list. They may change as the list is modified. Notice
that they are in a different order than how they were
entered.

If you wanted to change an existing property use
PutProp without removing the property:

? putprop “‘redwood “‘color [red brown]

This will replace the redwood’s color property value
with [red brown]. The old value is lost.

Flow of Control

Run

Commands in a Logo program are normally executed
one after another. Each command is read and
executed, proceeding through the whole program.
This sequence of command execution is called the
flow of control. It is the order in which your commands
are executed. Like most other computer languages,
Logo has commands to redirect the flow of control.
Much of the power of computers stems from this
ability.

We have seen lists used to hold values such as words,
numbers, and other lists. In Logo, lists can also be
executed. For example the Run command will
execute whatever list is given to it as input:

? run [print “running]
RUNNING

At first this doesn’t seem too useful, but stop for a
moment and think about the possibilities. With list

Elements of Logo 75

76

operations like List, First, FirstPut, Last, LastPut,
etc., you can construct new lists from other Logo
objects. Instead of thinking of lists as input data to
other procedures, view them as executable
commands.

? run list “*print [victory theater]
VICTORY THEATER

? run lastput [what where when who] [print]
WHAT WHERE WHEN WHO

Run is more than just a command. When the last
thing it executes is an operation, Run acts like an
operation and outputs a result:

? run (list first [+ — * /] 2 item 2 [13 56.4 37])
58.4

Here is an example of using Run to create a
procedure that selects between one of many lists to
execute depending on a number input:

to select :selector :lists
if :selector > count :lists [stop]
if :selector < 1 [stop]

run item :selector :lists
end

Here’s an example of the select procedure at work:

? select 2 [[type “hello] [print “hi] [show “‘greetings] |
HI

? select 3 [[penup] [pendown] [penerase] [penreverse] |

This procedure is programmed to ignore invalid
numbers.

Elements of Logo

Repeat

When programming you will often want to execute
a set of commands several times. The Logo Repeat
command provides an easy way to do this. Just like
the Run command, it accepts an executable list as
input. It also accepts an integer that specifies the
number of times to execute this list.

For example, a square has four equal sides. To draw

one, you could type four identical lines:
forward 50 right 90
forward 50 right 90
forward 50 right 90
forward 50 right 90
or you could use Repeat:
repeat 4 [forward 50 right 90]

If you wanted to create a procedure to draw any
regular polygon:

to polygon :sides
repeat :sides [forward 30 right (360 / :sides)]
end
S0
? polygon 4
would draw a square, and

? polygon 3

would draw a triangle.

Elements of Logo

77

Occasionally, you may want to keep track of how
many times you have repeated the execution of a list.
This can be accomplished with a variable:

? make “‘cnt 1
? repeat 3 [print :cnt make “‘cnt 1 + :cnt]
1

2
3

Each time you repeat, the cnt variable gets bound to a
new value which is one greater than its old value. If
you use this technique, remember to set the initial
value each time, or you might be in for a surprise.

If you utilize the power of Logo, you could think up a
better way to do this. Try this:

to thru :var :cnt :do

local :var

make :var 1

repeat :cnt [run :do make :var 1 + thing :var]
end

With this new thru command, all of the details are
handled for you. You can now concentrate on what
you want to get done and not worry about how to do
it.

? thru *i 3 [type :i type " show rgb :i]
1[14 14 14

2[0110]

3[(10010]

Another procedure called for is similar to thru, but
the starting number can be specified:

to for :var :lo :hi :do

if :hi < :lo [stop]

local :var

make :var :lo

repeat 1 + :hi-:lo [run :do make :var 1 + thing :var]
end

78 Elements of Logo

Conditional
Execution

So, counting from -2 to 3 would be:

? for “i-2 3 [print :i]
-1

0

1.0

2.0

3.0

With thru you could create a procedure called foreach
that executes a command using each element from a
list as input:

to foreach :Ist :proc
thru "'n count :Ist [run se :proc item :n :lst]
end

When the input to thru executes, Se (Sentence) will
build yet another list to execute, and it is this list that
is executed with Run to generate the final result.

? foreach [“peach “‘pear “‘plum] “print
PEACH

PEAR

PLUM

Earlier in this chapter we introduced you to the idea
of predicate primitives that return only True or False.
The output of a predicate can be the input to a
primitive which will control the flow of your
program. You can choose to have commands
executed only if certain conditions are true or false.

The work horse of these control primitives is the If
command. It accepts a condition, and either one or
two lists as input. If the condition is True, the first list
is executed. If the condition is False, the first list will
be skipped, and the second list (if present) will be
executed.

Elements of Logo 79

80

?if 1 < 2 [print “less] [print “‘greater]
LESS

? if “'true [print *hi]
HI

? showturtle
? if shown? [print [turtle is visible]]
TURTLE IS VISIBLE

If the condition is FALSE and there is no second list,
nothing happens.

Notice that the second and third inputs must be a list. If
you forget this, Logo will evaluate these inputs and
expect their results to be a list. This may cause a
rather confusing error message to occur. For example:

?if 2 > 1 print “greater
GREATER
PRINT did not output to IF

Can you spot what has happened here? The Print
command was executed, and its result was input to
the If (which was expecting a list to execute). Because
Print does not supply an output to If, the error
occurs. This is a very important and powerful
property of Logo. You could, for instance, supply a
variable as the list to execute:

? make “‘then.list [print “'greater]
?if 2 > 1 :then.list
GREATER

Here, Logo evaluates the variable and inputs the
resulting list to the If command.

Other languages often provide a “while’”” command
which will continually execute a list while a condition
remains TRUE. With the recursion available in Logo,

Elements of Logo

such a function is not required often, but you can
always define it yourself:

to while :condition :do
test run :condition

if false [stop]

run :do

while :condition :do
end

The inputs are two lists named condition and do. The
first list will be executed to determine the condition.
If the condition is FALSE, the procedure will stop. If
the condition is TRUE, the second list will be
executed, and the while procedure will be executed
again. This technique of a procedure calling itself is
called recursion. Here the last command is a call to
itself. This is called tail recursion and is used
frequently in Logo. ‘

The line
? while [not button? 0] [print "“up)
will print UP until the mouse button is pressed.
Catch and Throw

Catch and Throw are special control primitives that
let you pass control back to a previous point in your

program.

Catch is used to handle exceptions to the normal flow
of control in your program. Exceptions are generated
with the Throw command or as the result of a
program error.

The first input to both Catch and Throw is a name. To
transfer control back to a particular Catch, its name
must match that used in the Throw.

The second input to Catch is a list to execute. If it
encounters a Throw during the list’s execution,
control returns to the line following the Catch.

Elements of Logo 81

82

A simple example would be:

to catch.x

cs

catch “‘bounds [repeat 10 [move.x 20]]
print pos

end

to move.x :x

setx (xpos + :x)

if or (xpos > 80) (xpos < -80) [throw '‘bounds]
end

? catch.x
100.00

In this example, Throw sends control back to the
Catch when x exceeds 80. This happens before the
Repeat has finished all ten repetitions.

The Catch command must occur before the Throw or
you will receive an error message from Logo.

? throw “‘bad.apples
Cannot find catch for BAD.APPLES

With the Catch command errors can be trapped by a
program before theg are printed and processed by
Logo. This is done by using the name error for your
Catch:

catch “error [repeat 4 [fd 100 rt 90]]

within one of your procedures. When an error
occurs, control will be transferred back to this
command before an error message is generated. You can
then use the Error primitive to determine what error
occurred. See Error for more information.

With Throw control can be passed from your
procedure, all the way back to the top level
(command level) of Logo:

throw “toplevel

Elements of Logo

Wait

This is provided for compatibility with previous
Logos. In most cases it is easier to just invoke the
TopLevel primitive:

toplevel

to return to the top level of Logo.

If you ever want to delay program execution for a few
moments, the Wait primitive will be of interest. It will
cause Logo to stop executing for a given period of
time. This period is measured in sixtieths of a second
(1/60), so typing:

? wait 60
will delay for one second.

On the Amiga, this method of waiting is much
preferred to other ways of “spinning your wheels”
where you might execute a command over and over.
The Amiga is multitasking, and it can be doing other
things while your program is waiting. The Wait
command lets it do so.

The Wait command also accepts the special word
”Frame as input. When this is done, Logo will wait
until the video circuitry has started its retrace
(blanking) before continuing. Using Frame helps
prevent many of the flicker effects that occur when
drawing to the screen. Compare

? showturtle home
? repeat 90 [right 23]

with

? showturtle home
? repeat 90 [right 23 wait '‘frame]

The second will appear to rotate the turtle in a much
smoother fashion.

Elements of Logo 83

Reading Inputs

84

When designing interactive programs it is often
necessary to read inputs from the keyboard or

mouse. Logo provides a few operations to help you
do this.

The ReadChar operation will return the next
character ready from the keyboard. If a character has
already been pressed, it will return immediately,
otherwise it will wait until a key is pressed. When
executed from a procedure, ReadChar will not print
the character to the screen.

? readchar
Z (2" was typed)
? if equal? readchar 'Y [print “yes]

ReadList will return an entire list from the keyboard.
It prints the list as it is being typed, and it will let the
user edit the list until the RETURN key has been
pressed. ReadList will properly handle words,
numbers, and lists.

? readlist
(kathy stan] [tammy pete] [donna jon] (RETURN)
[KATHY STAN] [TAMMY PETE] [DONNA JON]

? last readlist
37 74 [hup hup] hike (RETURN)
HIKE

Since both of these primitives will wait for a user’s
input your program should prompt the user for
input.

Did you notice that the ReadChar waited for a single
character to be typed but the ReadList accepted as
many as you wanted and waited for a RETURN to
signal the end?

Elements of Logo

Mouse returns the current X and Y coordinates of the
mouse.

? mouse
[0 0] (if the mouse is at home)

Button? returns TRUE if the mouse’s left button is
pressed.

? button? 0
false

? repeat 200 [print button? Q]

FALSE

FALSE

FALSE

TRUE (mouse button pressed)
TRUE

TRUE

FALSE (mouse hutton released)

If you take a minute, you can probably think of some
game that could use these primitives.

Elements of Logo 85

Mastering Logo

This section will help you understand a few of the
more advanced features of Logo.

Workspace Management

Packages

The workspace is where Logo keeps the names,
definitions, and values for your procedures and
variables. The workspace is a part of the computer’s
memory, and it exists only while you are running Logo.
When you exit Logo or turn off your computer,
everything in the workspace is lost. If you want to
keep your workspace for later, you must save it on
disk as a file (see Load and Save section in the Using
Logo chapter).

When you start to write larger programs, you will fill
your workspace with many procedures and variables.
There will be times when you will want to gather
together several procedures and variables into a
single package that can be treated like a unit. A
package can by hidden from workspace commands
like PrintOutAll, Save, EraseAll, EditAll, etc. A
package can be saved to disk, loaded from disk,
edited, and printed to the screen. A package is like
having a separate, independent workspace.

Suppose you have several procedures that you would
like to keep together in a graphics package. You could
create a package called “graphics and add the
procedures to it:

? package ‘“‘graphics ‘'draw.box
? package ‘“‘graphics "‘draw.arc
? package "‘graphics “‘draw.circle

86 Mastering Logo

Or you could add them all at once with a list:
? package ‘‘graphics [draw.box draw.arc draw. circle]

You could also make the entire workspace become
the graphics package:

? pkaall ““graphics
Once you've done this, you can perform several
operations on this graphics package as a group: print,
bury, save, edit, and erase. All you have to do is
specify the package name along with the command.
So

? poall "'graphics

will print the entire contents of the graphics package,
and

? save “‘graphics “'graphics
will save the package to a file called GRAPHICS.
To hide the contents of a package so that it won't be
affected by most of the other workspace commands,
use Bury:

? bury “‘graphics
You can now forget about all the graphics procedures
and variables, and you won't see them, edit them, or

accidentally erase them, unless you want to.

To expose a package that has been buried, just
Unbury it:

? unbury "‘graphics

This will make the graphics package visible in the
workspace.

Mastering Logo 87

Printing Out

Most of the workspace primitives deal with packages:

Bury Save Load

EditAll EditNames EditProcs
EraseAll EraseNames EraseProcs
PrintOutAll PrintOutNames PrintOutProcs
PrintQutTitles

See the primitives reference chapter for more details
about specific commands.

Logo provides a number of commands for printing
out the procedures and variables stored in your
workspace.

PrintOut (PO) prints the name and definition for a
procedure, and the name and value for a variable. It
accepts the name of a procedure or variable as inlput,
but it also accepts a list of procedures and variable
names. Supplying no input will result in an error
message.

All procedures and variables are printed in a format
that can be directly entered into Logo. Procedures
will include both the To and End words. Variables
will be preceded with the Make word.

PrintOutAll (POALI) is similar to PrintOut but
handles an entire package containing many
definitions and variables. It accepts the name of a
package or a list of packages as input. Supplying no
input will default to printing all unburied procedures
and variables in the workspace.

PrintOutNames (PONs) is similar to PrintOutAll but
handles just the variables within a package. It accepts
the name of a package or a list of packages as input.
Sugplying no input will default to printing all
unburied variables in the workspace.

88 Mastering Logo

Erasing Names

|

1
PrintOutProcs (POPs) is similar to PrintOutAll but
handles just the procedures within a package. It
accepts the name of a package or a list of packages as
input. Supplying no input will default to printing all
unburied procedures in the workspace.

PrintOutTitles (POTs) is similar to PrintOutProcs but
prints just the titles lines (the first line of a To
definition) of procedures within a package.
PrintOutTitles accepts the name of a package or a list
of packages as input. Supplying no input will default
to printing all procedure titles in the workspace.

. | s . y
If you are using Logo for a long period of time, it may
become cluttered with a 1ot of old procedures and
variables. These can be easily erased with a few
workspace commands. |

Erase removes the definition of a procedure or value
of a variable. It accepts the name of a procedure or
variable as input. It will also accept a list of
procedures and variable names.

7 erase “‘box

7 erase [box square circle]

EraseAll (ErAll) is similar to Erase but handles an
entire package containing many definitions and
variables. It accepts the name of a package or a list of
packages as input. Supplying no input will default to
erasing all unburied procédures and variables in the
workspace.

EraseNames (ErNs) is similar to EraseAll but handles
just the variables within a package. It accepts the
name of a package or a list of packages as inrut.
SuEplying no inFut will default to erasing al
unburied variables in the' workspace.

EraseProcs (ErPs) is similar to EraseAll but handles
just the procedures within a package. It accepts the
name of a package or a list of packages as inrut.
Supplying no input will default to erasing al
unburied procedures in the workspace.

Mastering Logo 89

Editor

In Logo new procedure definitions are usually
created with the special word To. When a procedure
is defined with To from the command window, the
Logo screen editor is invoked. The editor will place
you into the edit window, insert the procedure title
line, and an End. You can then fill out the body of the
procedure as you wish.

The edit window accepts all of the same editing keys
as the command window. You are free to move and
edit anywhere in the edit window. The big difference
between the command and edit windows is in the
effect of the RETURN key. From the command
window a RETURN informs Logo to execute your
line. In the edit window RETURN creates a new
blank line.

When you have finished typing a procedure
definition, press CTRL-C to exit the editor. Logo will
read what you have typed and save it. If you've
edited procedures, the procedures will be redefined.

If you want to exit, but don’t want to save your
changes press CTRL-G. The changes that you have
made while in the editor will remain in the editor’s
buffer. The difference is that Logo will not interpret
the changes and will not update the workspace. You
can return to the editor buffer as modified by typing
Edit without any inputs.

To edit an existing procedure, use the Edit command,
followed by the procedure name (remember the
leading quote):

? edit “‘box

To resume an existing Logo editor session you need
not supply the name of the procedure:

? edit

This is handy for switching back and forth between
the command and editor windows.

90 Mastering Logo

Mouse Pointing

Normal Keys

Backspace

L

Edit will also accept a list of procedure and variable
names as input:

\
? edit [box square circle]

You can edit more than just procedures and variables
in the editor. If you type one or more command lines
that are not part of a procedure definition, they will
be saved when you press CTRL-C. A word of
caution, however: do not attempt to execute editor
commands from within the editor itself. Logo would

not understand.
\

The mouse can be used to position the text cursor
anywhere within the command or editor windows.
This is a handy and quick/way of moving the cursor
position. Simply move the mouse pointer to the
desired position, then click the left mouse button.
The cursor will jump to its new location.

To access text off the top or bottom of the screen, you
can use the normal scrolling keys or hold the left
mouse button down and move the mouse to the top
or bottom of the screen.

This section describes a few of the normal keys used
within the editor and command windows. They are
all available on the standard keyboard, and do not
require the CTRL key be held down.

Move cursor back, deleting the previous character.

When using BACKSPACE at the toplevel, the cursor
will not back-up over the prompt.

Characters deleted with BACKSPACE cannot be
recovered with CTRL-Y.

If the line wraps off the right edge of the screen, the
cursor will move to the wrap point on the previous
line.

Mastering Logo 91

92

This key will not delete back further than the
beginning of a line. If you want to join two lines, use
CTRL-K.

CTRL-H performs the same operation as
BACKSPACE.

Del Delete the character under the cursor.

This key does not move the cursor back like
BACKSPACE.

If the cursor is at the end of a line, this key will not
cause the next line to be joined to the current line. If
you want to join two lines, use CTRL-K.

Characters deleted with DEL cannot be recovered
with CTRL-Y.

CTRL-D performs the same operation as DEL.
Aeturn Enter a line and begin a new line.
If RETURN is pressed in the Command window, the

line is evaluated by Logo. In the Edit window, a new
line is created.

The RETURN key will not split lines, nor do you need
to have the cursor at the end of a line in order to enter
the entire line.
Tab Tab forward to the next tab stop.
Logo will fill with spaces to the next tab stop.
BACKSPACE will move the cursor back a single
space, not to the previous position.
Tab stops are set to every four positions.

Up-Arrow Move cursor to the previous line.

I} If there are lines off the top of the screen, when the
| cursor reaches the top, the screen will scroll down.

Mastering Logo

Down-Arrow

P

z‘é’f!

Left-Arrow

—

Right-Arrow

—

Shift-Up-Arrow

T

o

* Shift-Down-Arrow

L

4{2‘&; =

Shift-Left-Arrow

!

Move cursor to the next line.

If there are lines off the bottom of the screen, when
the cursor reaches the bottom, the screen will scroll

up.
Move back one character.
Move over the character, do not delete it. If the left

edge of the screen is reached, the cursor will wrap to
the previous line.

Move forward one character.

If the right edge of the screen is reached, the cursor
will wrap to the next line.

Move back a half page.

If there are lines off the top of the screen, scroll the
page down.

Move forward a half page.

If there are lines off the bottom of the screen, scroll
the page up.

Move to the beginning of a line.

This moves the cursor to the beginning of the text
line, even if the line wraps across the edge of the
screen.

Move to the end of a line.

This moves the cursor to the end of the text line, even
if the line wraps across the edge of the screen. If the
cursor is past the end of the line, this key will move
the cursor back to the end of the text line (ignoring
spaces).

Mastering Logo 93

Control Keys

94

Ctrl-A

Ctrl-B

Ctri-C

Ctrl-D

Ctrl-E

|
These keys combine the CTRL key and another key.
Press CTRL and hold it while you type the other key.
Then you can release the CTRL key.

Move to the beginning of a line. |

This moves the cursor to the beginning of the text
line, even if the line wraps across the edge of the
screen.

Move back one character. |

Move over the character, do not delete it. If the left
edge of the screen is reached, the cursor will wrap to
the previous line. |

Exit the editor and evaluate all changes.

Upon exiting, all lines in the editor buffer are re-
entered into Logo, just as if the lines were typed from
the Command window.

Delete a character.

The character under the cursor is deleted. This key
does not move the cursor back like BACKSPACE or
Ctrl-H.

If the cursor is at the end of a line; this key will not
cause the next line to be joined to the current line. If

you want to join two lines, use CTRL-K.

Characters deleted with DEL cannot be recovered
with CTRL-Y. :

CTRL-D performs the same operaﬁon as DEL.
Move to the end of a line.

This moves the cursor to the end of the text line, even
if the line wraps across the edge of the screen. If the

Mastering Logo

Ctrl-F

Ctrl-G

Ctrl-H

Ctri-I

cursor is past the end of the line, this key will move
the cursor back to the end of the text line (ignoring
spaces).

Move forward one character.

If the right edge of the screen is reached, the cursor
will wrap to the next line.

Cancel operation.

When in the Edit window, exit the editor, and do not
evaluate changes.

When in the Command window, stop the current
operation.

Move cursor back, deleting the previous character.

When using CTRL-H at the toplevel, the cursor will
not back-up over the prompt.

Characters deleted with CTRL-H cannot be recovered
with CTRL-Y.

If the line wraps off the right edge of the screen, the
cursor will move to the wrap point on the previous
line.

This key will not delete back further than the
beginning of a line. If you want to join two lines, use
CTRL-K.

Tab forward to the next tab stop.

Logo will fill with spaces to the next tab stop.
BACKSPACE will move the cursor back a single
space, not to the previous position.

Tab stops are set to every four positions.

Mastering Logo 95

96

Ctrl-J

Ctrl-K

Ctrl-L

Ctrl-M

Ctrl-N

Start a new line.

Terminate the current line and start a new line. If the
cursor is inside the line, the line will be split.

Kill to end of line.

Kill (delete) all text from the cursor to the end of the
line. This text is placed in the kill buffer, and may be
replaced or inserted elsewhere with Ctrl-Y.

If CTRL-K is pressed when the cursor is at the end of
a line, the next line will be joined to the end of the
current line. This is as if the CTRL-K deleted the line
separation character.

To delete an entire line of text, press CTRL-A, CTRL-
K, CTRL-K.

Center a line.

Scroll the screen up or down until the current line is
in the center.

Enter a line and begin a new line.

If CTRL-M is pressed in the Command window, the
line is evaluated by Logo. In the Edit window, a new
line is created.

The CTRL-M key will not split lines, nor do you need
to have the cursor at the end of a line in order to enter
the entire line.

Move cursor to the next line.

If there are lines off the bottom of the screen, when
the cursor reaches the bottom, the screen will scroll

up.

Mastering Logo

Ctrl-0

Ctrl-P

Ctrl-Q

Ctrl-R

Ctrl-S
Crl-T

Ctrl-V

Ctrl-w

Ctrl-Y

Ctrl-Z

Open a line.
A new line is created at the current cursor position.

If this is done inside an existing line, the line will be
split into two parts.

Move cursor to the previous line.

If there are lines off the top of the screen, when the
cursor reaches the top, the screen will scroll down.

Move back a word.
Move back a half page.

If there are lines off the top of the screen, scroll the
page down.

Reserved. Does nothing.
Toggle between text and graphics windows.
Move forward a half page.

If there are lines off the bottom of the screen, scroll
the page up.

Forward a word.

Yank back text.

Insert the text deleted with Ctrl-K.

This is how lines are moved and copied in the editor.

Pause. See the explanation for Pause.

Mastering Logo 97

Editing Packages

Editing Files

EditAll is similar to Edit but handles an entire
package containing many definitions and variables. It
accepts the name of a package or a list of packages as
input. Supplying no input will default to editing all
procedures and variables in the workspace.

EditNames is similar to EditAll but edits only the
variables withir a package. It accepts the name of a
package or a list of packages as input. Supplying no
input will default to editing all variables in the
workspace. !

l
EditProcs is similar to EditNames but edits only the
procedures within a package.

EditFile lets you edit a Logo file or a simple text file
directly. It accepts the name of a Logo disk file as
input. For example: |

? editfile “'init
Will edit the file INIT.

When you exit with CTRL-C the contents of the
editor will be executed, but the file will not be written
back to disk. To save your changes back to disk, use
SaveEdit (SaveFile):

? savefile “‘init

If you exit with CTRL-G the contents of the editor will
not be executed. Any procedures' will be left
unchanged. ‘

|
Suppose you want to run a procedure called box that
is stored with a file named BOX. The BOX file already
contains the text (as the result of a Save):

to box
repeat 4 [forward 50 right 90]
end

98 Mastering Logo

then you would type:
? editfile “'box

which would enter the editor. Add the word box to
the end of the file:

to box
repeat 4 [forward 50 right 90]
end

box

Exit the editor with CTRL-G (so as not to execute the
editor buffer causing box to run right now), and type:

? savefile “‘box

to save your change. The next time you load the box
file, Logo will run the box procedure automatically.
From the Amiga’s Workbench, if you click on the
BOX icon, Amiga Logo will load the box procedure
and run it.

Do not attempt to execute EditFile from within the
editor itself. Logo will not allow it.

If you no longer require a particular file, you can use

the EraseFile command to erase it permanently from
disk:

? erasefile *'junk

Use this command with care. Erased files cannot be
recovered.

Printing Hardcopy

Depending on whether you use Workbench 1.2 or
1.3, there are different methods for printing with
Amiga Logo.

If you have Workbench 1.2:

Open up the CLI by double clicking on the CLI icon
in the System drawer. Copy the printer driver(s) of

Mastering Logo 99

100

your choice from your Workbench disk to the devs/
printers directory of your Logo disk. Go into
Preferences on the Logo disk and change your printer
to the one desired and save the setting. Now when
you boot with the Amiga Logo disk, the correct
printer driver will be installed.

If you have Workbench 1.3:

Run the InstallPrinter program to copy printer drivers
from the Extras 1.3 disk to the Amiga Logo disk.
Select the correct printer driver in the Change Printer
window of Preferences, and save the setting.

If you boot with Workbench 1.2 or 1.3, and then load
Amiga Logo, Logo will use the printer driver installed
on the Workbench disk.

Amiga Logo supplies commands for printing both
text and graphics to your printer.

The DumpText (DT) command will print the entire
contents of your text window (including lines off the
top and bottom) to the printer.

? cleartext pots

? dumptext
The DumpEdit (DE) command will print the entire
contents of your editor buffer to the printer. For
example, let’s say you want to print the contents of
the INIT file:

? editfile “init

<press ctri-G when the editor window comes up>

? dumpedit

The DumpGraphics (DG) command will print the
graphics window to the printer. The quality of the
output will depend on your printer and your choices
of colors. Use the Amiga preferences program to
select a printer and set its graphics printing options.
Note that you will need to install printer drivers from
the AmigaDos Extras Disk to the Amiga Logo system
disk.

Mastering Logo

Advanced Procedures

Definition Lists

There is an alternate way of defining procedures that
does not require the editor. The Define primitive will
create a new procedure from two inputs, a name and
a definition list. This command can be performed
within another procedure, so procedures can create
other procedures.

Here is an example of using Define:
? define “'box [[size] [repeat 4 [rt 90 fd :size] |

The first input is the new procedure name. The
second input is a tprocedure definition list. Its first
element is a list of input names to the procedure.
These names do not need a ":" before them. If there
are no inputs, a [] should be used. The rest of the
definition list contains the executable lines of the
procedure definition. Each line is itself a list.

Define lets you piece together your procedure under
the control of Logo:

? make “‘def [[size color] [fd :size]]
? make “'def lastput [setpc :color] :def
? define "line :def

The Text operation will output the definition for an
existing procedure.

? text “line
[[SIZE COLOR] [FD :SIZE] [SETPC :COLOR]]

This gives you another source of valid input to
Define.

7 define "'1ine90 lastput [rt 90] text “line

What power!

Mastering Logo 101

Copying Definitions

Procedures as
Variables

CopyDef is a simple way to make a copy of a
procedure definition. The new copy is given a name
with which it can be executed or edited just like any
other procedure.

For example you could copy the procedure defined
previously:

? copydef “square “'box
Now you have an identical procedure named square:

? text "'square
[[SIZE] [REPEAT 4 [RT 90 FD :SIZE]]

If you edit the procedure for square the box
procedure will not change.

Amiga Logo tries not to distinguish between names
for variables and names for procedures. Unlike other
Logos, the same name cannot be both a value and a
procedure at the same time. Within a procedure
definition a local variable can have the same name as
a procedure, but you would not be able to call that
procedure.

In Amiga Logo, you can make a variable with a value
that is a procedure—not the output of a procedure—an
actual procedure. If you type:

? make “'bx :box

you are asking Logo to create a variable named bx
with the value of the variable box. With the colon (:),

102 Mastering Logo

you are asking for a value, not an execution. Since
box is a procedure, bx is now a procedure as well:
P ’ P

? text “'bx
[[SIZE] [REPEAT 4 [RT 90 FD :SIZE]]

? bx 30

Although it is less useful, this also works for
primitives:

? make *‘fwd :forward

? fwd 40

S0, you can now give your own names to primitives.

Mastering Logo 103

REFERENCE

Reference

As you are learning to program with Logo, you will
need to refer to this section for information about the
function of various primitives, required and optional
inputs, correct syntax, the meaning of error
messages, etc. While other books about Logo will
serve well in teaching you the basics of Logo
programming, this section is your complete reference
guide to Amiga Logo.

The Introduction (page 104) describes the basic parts
of a Logo primitive definition.

On pages 105 and 106 you will find a definition list of
all inputs used with the Logo primitives.

Pages 106-195 contain detailed descriptions and
examples of each Logo primitive arranged in
alphabetical order, beginning with mathematical
operators.

A summary of error messages is provided on pages
196-202.

Included with the Amiga Logo package is a quick
reference card which gives short definitions of Logo
primitives. The card has been designed to allow you
easy access to a reference source. Since you may
sometimes need a more detailed description about a
certain primitive, each entry on the reference card has
been cross referenced to the appropriate entry in this
reference section.

Introduction

This reference section describes each of the Logo
inputs and primitives in alphabetical order.

The following example shows the different parts of a
primitive description:

104 Reference

Inputs

angle

character-word

color-number

column

directory

distance

file
input

label

list

name

name-list
number
object

package

package-list

As mentioned above, the inputs to a primitive are
shown to the right. An italicized word is used to
represent the type of input required. The possible
types are listed below:

An angle in degrees.
A single character as a word.
A number representing a color.

Horizontal position of a character in
the text window.

An AmigaDOS directory name or
path.

A number representing a distance
on the graphics screen.

A disk file name.
The input to a procedure definition.

A word representing a position in a
procedure.

A set of items enclosed as a unit.

A word representing a variable or
procedure.

A list of names.
A decimal or integer number.
A word, number, or list.

A word representing a group of
variables and procedures.

A list of packages.
Reference 105

pen-state The state of the pen: up, down,
erase, Or reverse.

period Time in 1/60ths of a second.

pred A TRUE or FALSE value.

property A word representing a property of a
name.

row The vertical position of a character

in the text window.

run-list A list containing objects that can be
executed by Logo.

word A sequence of characters.

X The horizontal position on the

graphics screen.

y The vertical position on the graphics
screen.

Indicates more of the same input

type.

Primitives

+ number + number
+ number number
(+ number number . . .)

sum number number
(sum number number . . .)

Output the sum of the input numbers.

722+ 5
74

22 +5+7+10
24

Add the inputs together and output their sum.
106 Reference

This operator can be used in a prefix fashion, where
both inputs follow the operator. This format is
perhaps a little more difficult to read, butis consistent
with how all other Logo functions are used.

?2+25
7

Normally only two inputs can be supplied to this
operation. However, when enclosed in parentheses,
the operation will be applied to any number of
inputs.

?2(+ 25710)
24
- number
number - number
- number number

(- number number . . .)

difference number number
(difference number number . . .)

Output the difference of the input numbers.

?75-3

2
75-3-4
2.0

Subtract one input from another and output their
difference.

Notice that there must be a space between the minus
(-) and its second input. If this were not done the
second input would be read as a negative number,
and there would be no operator, so an error might
result.

?75-3

5
| don't know what to do with -3

Reference 107

108

Reference

This primitive can also be used to negate a number.

=10
-10

This operator can be used in a prefix fashion, where
both inputs follow the operator. This format is
perhaps a little more difficult to read, but is consistent
with how all other Logo functions are used.

?7-52
3

Normally only two inputs can be supplied to this
operation. However, when enclosed in parentheses,
the operation will be applied to any number of
inputs.

?2(-534)
2.0

number * number
* number number
(* number number . . .)

product number number
(product number number . . .)
Output the product of the input numbers.

22*%3
6.0

1223%1D
60.0

Multiply the inputs and output their product.

This operator can be used in a prefix fashion, where
both inputs follow the operator. This format is
perhaps a little more difficult to read, but is consistent
with how all other Logo functions are used.

?7*23
6.0

Normally only two inputs can be supplied to this
operation. However, when enclosed in parentheses,
the operation will be applied to any number of
inputs.

2(*2310)
60.0

number | number
/ number number
(/ number number . . .)

quotient number number
(quotient number number . . .)

Output the quotient of the input numbers.

?210/2
5.0

?210/2/5
1.0

Divide the inputs and output their quotient.

This operator can be used in a prefix fashion, where
both inputs follow the operator. This format is
perhaps a little more difficult to read, but is consistent
with how all other Logo functions are used.

?7/102
5.0

Normally only two inputs can be supplied to this
operation. However, when enclosed in parentheses,
the operation will be applied to any number of
inputs.

2(/1025)
1.0

Reference 109

110

Reference

number < number
< number number

Output TRUE if first number is less than second
number.

72 <3
TRUE

72 <1
FALSE

This operator can be used in a prefix fashion, where
both inputs follow the operator. This format is
perhaps a little more diff?cult to read, but is consistent
with how all other Logo functions are used.

7<23
TRUE

number > number
> number number

Output TRUE if first number is greater than second
number.

22>
TRUE

72>3
FALSE

This operator can be used in a prefix fashion, where
both inputs follow the operator. This format is
perhaps a little more difficult to read, but is consistent
with how all other Logo functions are used.

7>:21
TRUE

Abs

object = object
= object object

Equal? object object
Output TRUE if an object equals another.

72 =2
TRUE

? “apple = “peach
FALSE

? [grape banana] = [grape banana]
TRUE

This operator works for numbers, lists, and words.
Numbers are equal if they are numerically the same.
Words are equal if they have the same characters in
identical order. Lists are equal if their elements are
each equal.

This operator can be used in a prefix fashion, where
both inputs follow the operator. This format is
perhaps a little more diffcult to read, but is consistent
with how all other Logo functions are used.

?7=1212
TRUE

The Equal? primitive performs the same operation.
Abs number

Output the absolute value of a number.

?abs -10
10

? abs 10
10

? abs -3.1
3.1

Reference 111

And

112

Reference

Notice that regardless of whether you input a
negative or positive number, the output will always
be a positive number.

Here is a graphics example where this might be
useful:

? home left 90 forward 25
? pos

[-25.0 0]

? abs first pos

25.0

And pred pred
(And pred pred . . .)

Output TRUE if all inputs are TRUE.

? and '"true “true
TRUE

? and “'true “false
FALSE

The inputs to And are called predicates. They must be
either TRUE or FALSE.

For example, the comparison of two numbers outputs
either TRUE or FALSE, so this could be used as input
to And:

2.and (1 < 10) (40 > 20)
TRUE

ArcTangent

If you attempt to input something other than TRUE
or FALSE, Logo will inform you that you made a
mistake:

?and 34
3 is not true or false

Normally only two inputs can be supplied to this
operation. However, when enclosed in parentheses,
the operation will be applied to any number of
inputs.

? (and “true "true ‘‘false “‘true)
FALSE

Here is an example of how And might be used in
graphics:

? setpos [45 72]

? make ‘'x first pos

? make "'y last pos

? (and (:x > 0) (:x < 160) (:y > 0) (:y < 100))
TRUE

ArcTangent number
ArcTan number

Output the angle whose tangent is the input number.

? arctan 1.0
45.0

This function does the inverse operation of Tangent: it
outputs the number of degrees whose tangent is the
input number. This is called the arc-tangent.

? arctan tan 80
80.0

Reference 113

ASCII ASCI| character-word

Output the ASCII number representing a character.

? ascii “'a
65
? ascii ''?
63

ASCII only outputs the number for the first letter of
the input. If a longer input is used, all other letters of
the input word will be ignored.

? ascii ‘‘starfish
83

? ascii 123
49

Note: Logo shifts lowercase characters to uppercase
during input. This means that inputs of ‘a” and "A’
will produce the same output.

ASCII performs the reverse operation of Char (see
the description below):

? ascii char 40
40

? char ascii “a
A

Aspect Aspect
Scrunch

Output the aspect ratio of the screen.

7 aspect
1.0

114 Reference

Back

Aspect returns the current aspect ratio of the screen.
This ratio controls the scale of the Y axis compared
with the X axis. It is the number of units in the Y
direction for each unit in the X direction.

The screen aspect ratio can be changed with
SetAspect.

SetAspect and Aspect are provided to compensate for
different screen resolutions and monitor brands. If
your circles look like ellipses and squares look like
rectangles, the aspect ratio can correct these.

For example, to make each vertical unit half the size
of a horizontal unit, an aspect ratio of 0.5 would be
used.

Scrunch is the old word for Aspect.

Back distance
BK distance

Move the turtle backward a distance.

? back 40

If the pen is down, draw a line on the graphics
screen.

Back will move the pen in the direction opposite the
current turtle heading. It will not affect the turtle
heading.

? clearscreen pendown
? back 40

? pos

[0 -40.0]

? right 90

? back 20

? pos

(-20.0 -40.0]

Reference 115

Background

116

Reference

Back is the reverse operation of Forward (described
below):

? home
? forward 40 back 40
? pos
[00]
Background
Bg

Output the color number of the screen.

? background
0

The color number output is an index into the screen
color table. This number can be set with
SetBackground.

The actual background color displayed depends on
the color setting for this color number. For more
information see the explanation for RGB.

For example:

? setpc background

would set the pen color to that of the background.
This would, in effect, make the pen erase.

Bury

ButFirst

Bury package

Hide a package from various workspace commands.
? bury “'my.graphics

All procedures and variables defined within the
specified package will be “hidden’” from certain
workspace commands. This is a good way to hide
procedures and variables that you have finished.
Often you will want to save utility procedures for
reuse in several different programs, and you don’t
want all these utility procedures to get in the way of
the program you are developing.

The following workspace primitives are affected by
Bury:

Save PrintQutTitles

EditAll EditNames EditProcs
EraseAll EraseNames EraseProcs
PrintOutAll PrintOutNames PrintOutProcs

A package will remain buried until an Unbury
command is given. For additional information, see
Package.

ButFirst object
BF object

Output all but the first element of an object.

? butfirst [book pen ruler]
[PEN RULER]

Reference 117

ButLast

118

Reference

? butfirst ““fish
ISH

? butfirst 1234
234

? butfirst butfirst [red green blue]
[blue]

This operation works for both lists and words. If the
input is a list, the output of ButFirst will be the same
list, without the first element. If the input is a word,
all but the first character are output. Keep in mind
that numbers are words as well.

[t is an error for the input object to be empty:

? butfirst []
BUTFIRST does not like [] as input

ButLast object
BL object

Output all but the last element of an object.

7 butlast [book pen ruler]
[BOOK PEN]

? butlast "‘fish
FIS

? butlast 1234
123

? butlast butlast [red green blue]
[red]

Button?

Catalog

This operation works for both lists and words. If the
input is a list, the output of ButLast will be the same
list, without the last element. If the input is a word,
all but the last character are output. Keep in mind
that numbers are words as well.

It is an error for the input object to be empty:

7 butlast []
BUTLAST does not like [] as input

Button? number
ButtonP number

Output TRUE if the mouse’s left button is pressed.

? button? 0
FALSE

Button? will output TRUE as long as the mouse
button is held down. When the button is released, it
will output a FALSE.

The number input indicates what mouse input port to
check. A zero indicates the primary mouse port. A
one is for the secondary mouse port.

? repeat 300 [print button? 0]
FALSE

FALSE

FALSE

TRUE (button pressed)

ButtonP is the old way of spelling Button?. We
include it for compatibility. The “P" stands for the
word “‘predicate” which indicates that a TRUE or
FALSE will be output.

Catalog
Catalog directory

Print the names of all files in a directory.

Reference 119

Catch

120

Reference

? catalog

DEMO
DEMO.INFO

INIT

INIT.INFO
AMIGALOGO
AMIGALOGO.INFO

Catalog takes an optional input to specify the disk file
directory to print. If an input is not specified, the
current directory will be printed. When specified the
input may include a disk name and directory path.
For example:

? catalog “‘df0:devs

would print the names of files in the DEVS directory
of floppy disk DF0.

Catch name run-list
Trap an error or the result of a Throw.

Catch is used to handle exceptions to the normal flow
of control in your program. Exceptions are generated
as the result of an error, or they can be generated by
using the Throw command.

The first input is a name used to identify this Catch to
its corresponding Throw. The Throw command
should specify the same name.

The second input is a list to execute. If it encounters a
throw during its execution, control returns from this
command.

With the Catch command errors can be trapped by a
program before they are printed and processed by
Logo. This is done by using the word “Error as the
catch label. When an error occurs, control will be
transferred to the most recent catch of this type. See
Error for more information.

Char

Clean

Char number

Output the letter which is the ASCII character for a
number.

? char 65
A

? char 52
4

The input must be a number between 0 and 255. The
output will be a word which contains the
corresponding ASCII character.

Char performs the reverse of the ASCII operation.

? char ascii "X
X

Clean

Clear the graphics screen without affecting the turtle.

? setpos [10 10]

? clean

? pos

[10.0 10.0]
This command erases everything on the graphics
screen, but does not affect the turtle’s position,
heading, color, or penstate.
The commands:

? home

? clean
? pendown

Reference 121

ClearScreen

ClearText

Continue

122

Reference

would produce the same result as ClearScreen.

ClearScreen
CS

Clear the graphics screen and home the turtle.

? clearscreen
The entire graphics screen will be erased, and the
turtle will be positioned at its home position (the

center of the screen). Its turtle heading will be set to
zero (north) and its pen will be put down.

ClearText
CT
Clear the text window, and home the text cursor.
? cleartext

Everything in the text window will be erased and the
text cursor will be positioned to line one.

All text including that which is off the top or the
bottom of the text window will be erased. This is a
handy command to keep the screen from becoming
too cluttered.

When a ClearText is executed, all of the memory
used by text is freed for reuse in Logo.

Continue
Co

Resume execution after a pause.
? continue
Both the Pause command and CTRL-Z let you stop

the execution of a procedure. Continue will resume
execution from where the pause occurred.

CopyDet

Cosine

CopyDef name name

Copy a procedure definition to a new name.

?copydef “newstar “‘oldstar
CopyDef is a simple way to make a copy of a
procedure definition. The copy is given a new name
with which it can be executed or edited just like any
other procedure.
Suppose you had a procedure named “box:

? define “'box [[] [repeat 4 [rt 90 fd 20]]]
You could copy it:

? copydef “‘square '‘box

and now you have an identical procedure named
“square:

? square

? text ''square

([] [REPEAT 4 [RT 90 FD 20]]]

If you edit the procedure for “square, the “box
procedure will remain unchanged.

Another way to make a copy of a procedure is with
the Make primitive.

Cosine angle
Cos angle

Output the cosine of an angle.

? cos 60
0.5

Reference 123

Count

124

Reference

Given an input number representing an angle in
degrees, Cosine will output its cosine value. The
cosine of an angle will always be in the range of 1 to 0
to -1.

? cosine 0
1.0

? cosine 90
0

? cosine 180
-1.0

The cosine of an angle is very useful for many types
of graphics operations. For example:

? clearscreen

? right 75 forward 80

? home

? forward (80 * cosine 75)

Both lines will be drawn with the same distance in the
Y direction.

Count object
Output the number of elements in an object.
? count [apple orange grape]
3
? count “‘grape
5

? count 1234
4

? count []
0

Cursor

Define

Count works for both lists and words. If the inputis a
list, the number of items in the list is output. If the
input is a word, the number of characters in the word
is output. Keep in mind that numbers are words as
well.

Cursor
Output the position of the text cursor.

? cleartext
? cursor
(01]

Cursor outputs a list containing the row and column
positions of the cursor within the text window.

The upper left cursor position of the text window is
[0 0]. The maximum values for the row and column
of the text cursor will depend on the size of the text
window.

The text cursor can be positioned with SetCursor.
Define name list

Make a definition list into a procedure.

? define "'box [[size] [repeat 4 [rt 90 fd :size]]
? box 50

Define will create a procedure from a list. This
command can be executed within another procedure
or at the top level the Logo editor is not required.

The first input supplied to Define is the new
procedure name.

The second input is a list which specifies the
procedure. The first element is a list of input names to
the procedure. These names do not need a ":" before
them. If there are no inputs, a [] should be used.

Reference 125

Define?

Difference

126

Reference

The rest of the list is the executable part of the
procedure definition. Each procedure line is itself a
list.

? define “south [|] [setheading 180]]
? define “‘segs [[a size] [repeat 8 [rt :a fd :size]]]

The Text command can be used to output a
procedure definition.

Define? object
DefineP object

Output TRUE if the input object is a procedure.

7 define? “‘box
TRUE

? define? "‘forward
FALSE

? define? 12
FALSE

DefineP is the old way of spelling Define?. We
include it for compatibility. The “P” stands for the
word “predicate’”” which indicates that a TRUE or
FALSE will be output.

difference number number
(difference number number . . .)

- number

number - number

- number number

(- number number. . .)

Output the difference of the input numbers.

0o

See the description for

Dir

Dot

Dir
Dir directory

Output the names of all files in a directory.

7 dir
[DEMO DEMO.INFO INIT INIT.INFO AMIGALOGO . . .]

Dir takes an optional input to specify the disk file
directory to print. If an input is not specified, the
current directory will be printed. When specified the
input may include a disk name and directory path.
For example:

? dir “‘df0:devs

would print the names of files in the DEVS directory
of floppy disk DFO.

Due to the 240 character limit, DIR cannot list all of a
long index or directory; it will stop when it has
reached its limit.

Dot/ xy]

Put a dot at an X,Y position without affecting the
turtle.

? dot [-50 50]
Dot expects a position list as input. The first element
of the list is the x position, the second is the y
position.
As in other drawing commands, the dot will be

drawn in the color of the graphics pen. Dot is not
affected by other pen settings.

Reference 127

DumpEdit

DumpGraphics

DumpText

128

Reference

DumpEdit
DE

Dump the contents of the edit buffer to the printer.

? dumpedit
DUMPING TO PRINTER

The DumpEdit (DE) command will print the entire
contents of your editor buffer to the printer. So, for
example, you could print the contents of the INIT file
with:

? editfile ““init
<press ctrl-G when the editor window comes up>
? dumpedit

DumpGraphics
DG

Dump the graphics screen to the printer.

? dumpgraphics
DUMPING TO PRINTER

The DumpGraphics (DG) command will print the
graphics window to the printer. The quality of the
output will depend on your printer and your choices
of colors. Use the Amiga preferences program to
select a printer and set its graphics printing options.

DumpText
DT

Dump the entire text window to the printer.

? dumptext
DUMPING TO PRINTER

The DumpText (DT) command will print the entire
contents of your text window (including lines off the
top and bottom) to the printer.

? cleartext pots

? dumptext

Edit

Edit

Edit name
Edit name-list
Ed

Ed name

Ed name-list

Start or resume a Logo editor session.
? edit

This command is described in detail in the tutorial
section of this manual.

Briefly:

Edit accepts the name of a procedure or variable as
input. It will also accept a list of procedure and
variable names as input. Supplying no input will
return you to the previous edit session.

To exit the editor, type CTRL-C to save the contents
of the editor buffer or CTRL-G to escape without
saving.

For example:

? define "“fish [[] [make "goldfish “‘yellow]]
? edit ““fish

Logo then switches to the editor window and prints:
TO FISH
MAKE “'GOLDFISH "YELLOW
END

Do not attempt to execute Edit from within the editor
itself. Logo will not allow it.

Reference 129

EditAll

EditFile

130

Reference

EditAll

EditAll package
EditAll package-list
EdAII

EdAll package
EdAIl package-list

Edit everything in the workspace, a package, or
packages.

? editall

EditAll is similar to Edit but handles an entire
package containing many definitions and variables.
EditAll accepts the name of a package or a list of
packages as input. Supplying no input will default to
editing all procedures and variables in the
workspace.

To exit the editor, type CTRL-C to save the contents
of the editor buffer or CTRL-G to escape without
saving.

See the editor tutorial for more information.

Do not attempt to execute EditAll from within the
editor itself. Logo will not allow it.

EditFile file
EdF file

Edit a Logo file.
? editfile ““init

EditFile lets you edit a Logo file directly. It accepts
the name of a Logo disk file as input.

To exit the editor, type CTRL-C to execute the
contents of the editor buffer or CTRL-G to escape
without executing.

EditNames

EditFile does not automatically save your file changes
back to disk. To save your changes back to a file you
must use the SaveEdit (SaveFile) command.

See the editor tutorial for more information.

Do not attempt to execute EditFile from within the
editor itself. Logo will not allow it.

EditNames
EditNames package
EditNames package-list

EdNs
EdNs package
EdNs package-list

Edit all variables in the workspace, a package, or
packages.

? editnames

EditNames is similar to Edit but handles all variables
within an entire package. EditNames accepts the
name of a package or a list of racka es as input.
Supplying no input will default to editing all variables
in the workspace.

To exit the editor, type CTRL-C to save the contents
of the editor buffer or CTRL-G to escape without
saving.

See the editor tutorial for more information.

Do not attempt to execute EditNames from within the

v editor itself. Logo will not allow it.

Reference 131

EditProcs

Empty?

132 Reference

EditProcs
EditProcs package
EditProcs package-list

EdPs
EdPs package
EdPs package-list

Edit all procedures in the workspace, a package, or
packages.

? editprocs

EditProcs is similar to Edit but handles all procedures
within an entire package. EditProcs accepts the name
of a package or a list of packages as input. Supplying
no input will default to editing all procedures in the
workspace.

To exit the editor, type CTRL-C to save the contents
of the editor buffer or CTRL-G to escape without
saving.

See the editor tutorial for more information.

Do not attempt to execute EditProcs from within the
editor itself. Logo will not allow it.

Empty? object
EmptyP object

Output TRUE if an object has no elements.

? empty? []
TRUE

? empty? [apple grape]
FALSE

? empty? “‘banana
FALSE

Empty? checks to see if the object has any elements. It
works for both lists and words. If the input is a list, it

Equal?

checks for list elements. If the input is a word, it
checks for characters.

EmptyP is the old way of spelling Empty?. We
include it for compatibility. The “P" stands for the
word “predicate” which indicates that a TRUE or
FALSE will be output.

End
Terminate a procedure definition.

End tells Logo that there are no more expressions to
execute in the current procedure. It must be placed at
the end of every procedure.

End should not be used within the body of a
procedure (see Stop and Output).

This command can only be used within a procedure.
Equal? object object
EqualP object object
object = object
= object object
Output TRUE if the input objects are equal.
See the description for "=’ above.
Erase name
Erase name-ist

Er name
Er name-list

ErN name
ErN name-list

Erase a procedure or variable from the workspace.

Erase removes the definition of a procedure or value
of a variable. It accepts the name of a procedure or
variable as input. It will also accept a list of
procedures and variable hames.

Reference 133

EraseAll EraseAll package

EraseAll package-list

ErAll package
ErAll package-list

Erase everything in the workspace, a package, or
packages.

EraseAll is similar to Erase but handles an entire
package containing many definitions and variables.

EraseAll accepts the name of a package or a list of
packages as input. Supplying no input will default to
erasing all unburied procedures and variables in the
workspace.

EraseFile EraseFile file

134

ErF file
Erase a file from the disk.

? save "‘work
? erasefile “‘work

EraseFile requests Logo to erase a disk file. Once
erased a file cannot be recovered.

The file name can also include a device name and
directory path. For example:

7 erasefile *‘df0:logo™\ test

If the file cannot be found, Amiga Logo will produce
an error message:

? erasefile “‘works
File WORKS not found

Reference

EraseNames

EraseProcs

Error

EraseNames
EraseNames package
EraseNames package-list

ErNs
ErNs package
ErNs package-list

Erase all variables in the workspace, a package, or
packages.

EraseNames is similar to EraseAll but handles just
the variables within a package. EraseNames accepts
the name of a package or a list of packages as input.
Supplying no input will default to erasing all
unburied variables in the workspace.

EraseProcs
EraseProcs package
EraseProcs package-list

ErPs
ErPs package
ErPs package-list

Erase all procedures in the workspace, a package, or
packages.

EraseProcs is similar to EraseAll but handles just the
procedures within a package. EraseProcs accepts the
name of a package or a list of packages as input.
Supplying no input will default to erasing a
unburied procedures in the workspace.

Error
Outputs information about the last error.

Error outputs a list containing information about the
most recent error that occurred. This list contains

® the error number;

® the name of the procedure in which the error
occurred (or [] if the error did not occur in a
procedure);

Reference 135

Exit

Fence

136

Reference

® the name of the primitive that caused the error;
® the input value possibly in question;
® the procedure line being executed (optional).

With the Catch command errors can be trapped by
the program before they are printed and processed by
Logo. See the Catch command.

Exit
Quit

Exit from Logo and return to Workbench or CLI.
? exit

Exit will terminate this session of Logo and return
you to the Workbench, the CLI, or whatever the
program was that started Logo.

Prior to exiting Logo you may want to save your
changes. See the Save and SaveFile commands
below.

Fence

Restrict the turtle to moving only on the graphics
screen.

? fence

Fence forces the edges of the screen to act as a
boundary that stops the turtle. If you attempt to
move the turtle beyond the edge of the screen, Logo
will inform you:

? fence

? clearscreen

? left 30

? forward 1000
Turtle out of bounds

The fence can be removed with the Window and
Wrap commands.

Fill

Fillin

Fill
Fill an area bounded by the current pen color.
? fill

This command will flood-fill a portion of the screen
with the current pen color. It fills in all directions an
area that is already enclosed by lines of the current
pen color.

The fill will begin at the current pen position, and
flood outward until it hits a Ipixel on the screen that is
the same color as the pen. If you change the pen
color, you will end up with'a different result. Also,
the pen should be down for this command to work

properly.

PenDown, PenErase and PenReverse apply to the
Fill command similar to the pen.

? ¢s setpc 1

? repeat 4 [fd 80 rt 90]
? setpos [10 10]

2 fill

If the area being filled is not closed, the fill may “leak-
out” and cover the entire screen.

Fiflin
Fill an area bounded by a color.

? fillin

This command will flood-fill a portion of the screen
with the current pen color. It fills an area that is
already closed or filled in. The fill will start to the
immediate right of the current pen position and
spread out in all directions until it hits a line or area of
a color different to that in ' which it started the fill.

The reason the fill starts to the immediate right of the
pen position is to avoid filling a line just drawn by the

Reference 137

pen. If Fillin does not seem to work, try moving to
the starting position with the pen up, then put the
pen down immediately before the fill.

PenDown, PenErase and PenReverse apply to the
Fillin command similar to the pen.

If the area being filled is not closed, the fill may “leak-
out”” and cover the entire screen.

? ¢s setpe 1

? repeat 4 [fd 80 rt 90]
?rt 45 pu fd 10 pd setpc 2
? fillin

First First object
Output the first element of an object.

? first [book pen ruler]
BOOK

? first "'fish
F

? first 1234
1

? first first [red green blue]
R

This operation works for both lists and words. If the
input is a list, the output of First will be the first
element of the list. If the input is a word, the first
character is output. Keep in mind that numbers are
words as well.

It is an error for the input object to be empty:

? first []
FIRST does not like [] as input

138 Reference

FirstPut

Forward

FirstPut object object
FPut object object

Output the first object combined to the front of the
second.

? firstput “*book [pen ruler]
[BOOK PEN RULER]

? firstput “'f “ish
FISH

? firstput 1 234
1234

FirstPut outputs a new object containing the second
object appended to the first. This operation works for
both lists and words. If the second input is a list, the
first input will be added to the front of the list. If the
second input is a word, the letters of the first word
will be added to the word. Keep in mind that
numbers are words as well.

Forward distance
FD distance

Move the turtle forward by a distance.
? forward 40

If the pen is down, draw a line on the graphics
screen.

Forward will move the pen in the direction of the
current turtle heading. It will not affect the turtle
heading.

? clearscreen pendown
? forward 40

? pos

[0 40.0]

Reference 139

FullScreen

GetProp

140

Reference

? right 90

? forward 20
? pos

[20.0 40.0]

Back is the reverse operation of Forward:

? home
? forward 40 back 40
? pos
[00]
FullScreen
FS

Display the graphics window only.
? fullscreen

The text window will disappear and the full display
area will become available for graphics.

To bring back the text window use the TextScreen or
SplitScreen commands or type CTRL-T.

GetProp name property
GProp name property

Output a specified property of a name.

? putprop “william "‘age 12
? getprop “william “age
12

GetProp outputs a property previously input with
PutProp. The first input is the variable name to which
the property is related. The second input is the name
of the property being accessed. This name must be
the identical to that specified with PutProp.

? putprop “‘william “‘height [60 inches]
? getprop “‘william “‘height
[60 inches]

Go

GraphicsType

Go /abel
Go to the specified label.

Go transfers control back to the line following a
matching Label command. The input to Go is a word
which matches that of the Label command.

Go can only be used in a procedure and both the Go
and the Label commands must be in the same
procedure.

to yes.no

print “y\./n?

label “‘again

make “‘c readchar

if :c = "Y [output “true]

if :c = “N [output “false]
print [please answer y or n]
go “again

end

There are often better ways to obtain the same results
without using Go.

GraphicsType object
GrType object

Print text to the graphics screen.

? clearscreen
? graphicstype [This is home.)

GraphicsType is similar to Type, but prints its input
to the graphics screen rather than to the text window.
Like other graphics commands, the text is drawn
with the current pen color at the current pen position.
The pen’s state (up, down, erase, and reverse) also
affects the text printed.

The pen position is not affected by this command.

Performing the same command again will strike over
the previous text.

Reference 141

Heading

142

Reference

This example will print the the word “"HOME” in two
colors and then erase it:

? ¢s pendown

? setpc 1 graphicstype [home]

? setpc 2 graphicstype [home]

? penerase graphicstype [home] pendown

This example prints the position of the pen in several
places:

? home pendown
? repeat 5 [fd 20 grtype pos]

Heading
Output the heading angle of the turtle.

? clearscreen
? heading
0.

Heading outputs the turtle’s direction as an angle
measured clockwise from straight up. This angle will
range from zero up to (but not including) 360
degrees. Zero is straight up.

It is the turtle heading that determines the direction
of lines drawn with the graphics line drawing
commands Forward and Back.

The turtle heading can be modified with Right, Left,
SetHeading, and Towards. The heading is returned
to zero with Home and ClearScreen.

? right 90
? heading
90.0

? left 40
? heading
50.0

HideTurtle

Home

? setheading 192
? heading !
192.0 '

| HideTurtle
HT

Remove the turtle pointer from the screen.
|
? hideturtle
? showturtle

HideTurtle makes the turtle invisible, but does not
affect its drawing abilities. This operation is useful for
programs that do not need nor desire the turtle
pointer.

The ShowTurtle commandé can be used to make the
turtle visible again. Shown? will indicate whether the
turtle is visible or not.

? hideturtle
? shown?
FALSE

? showturtle
? shown?
TRUE

Home
Center the turtle on the screen and zero its heading.

? home

? heading
0.
? pos
[00]

This command moves the turtle to the center of the
graphics screen [0 0] and sets its heading to zero
(straight up). This action does not change the state of
the pen (up, down, erase, reverse) or its color.

|

Reference 143

IfFalse

144

Reference

If pred run-list
If pred run-list run-list

If pred is TRUE, execute the first list, else execute the
second.

2if “true [print “*hi]
HI

7 if “false [print 'hi] [print ‘bye]
BYE

If conditionally selects and executes lists. The first
input must be a predicate that returns either TRUE or
FALSE. If it is TRUE, the first list is executed. If it is
FALSE, then the second list will be executed if it is
present. If the second list is not present, nothing is
done and control goes to the next expression.

?if 3 > 1 [print ““greater] [print [not greater]]
GREATER

? showturtle
2 if shown? [print [turtle is visible]]
TURTLE IS VISIBLE

Notice that the second and third inputs must be a list. If
you forget this, Logo will evaluate these inputs and
expect their results to be a list. This may cause a
rather confusing error message to occur. For example:

?if2 > 1 print “greater
GREATER
PRINT did not output to IF

The Print command was executed, and its result was
input to the If (which was exrectmg a list to execute).
Because Print does not supply an output to If, the
error occurs.

|fFalse run-list
IfF run-list

If a Test was FALSE, execute the list.

IfTrue

Integer

Item

7test1>2
? iffalse [print [not greater]]
NOT GREATER

IfFalse conditionally executes a list if the result of the
most recent Test command was FALSE. If the test
was TRUE, control is passed to the next expression.

[fTrue run-list
IfT run-list

If a Test was TRUE, execute the list.

?test0 < 10

? iftrue [print [less than]]

LESS THAN
[fTrue conditionally executes a list if the result of the
most recent Test command was TRUE. If the test was
FALSE, control is passed to the next expression.

Integer number
Int number

Output the integer part of a number.

? integer 3.7
3

? integer -8.5
-8

This operation removes the decimal portion of a
number and returns just its integer value. The
number is not rounded to the nearest integer (see
Round).

Item number object
Output an element of an object.

? item 2 [book pen ruler]
pen

Reference 145

Key?

146

Reference

? item 3 ““fish
S

? item 1 4321
4

? item 2 item 1 [red green blue]
E

This operation works for both lists and words. The
first input indicates the position of the element within
the second input.

There must be enough elements in the object or an
error will occur:

? item 5 ““fish
Too few items in FISH

Key?
KeyP

Output TRUE if there is a character ready to be read.

? key?
FALSE

Key? will output TRUE whenever a character is
waiting to be read from the keyboard. The output will
remain TRUE until all waiting characters have been
read. Characters are read from the keyboard with
ReadChar and ReadList.

? repeat 300 [pr key?] if key? [pr readchar] [pr [no char]]
FALSE

FALSE

FALSE

TRUE('X’ key pressed)

TRUE

X

Label

Last

KeyP is the old way of spelling Key?. We include it
for compatibility. The “P" stands for the word
“predicate’”” which indicates that a TRUE or FALSE
will be output.

Label name

Associates a name with a line in a procedure for use
with Go.

Label marks a point to which control can be
transferred with a Go command. The input is a word
used to identify this point in your program. Go must
use this same word to transfer control to this point.

Label can only be used in a procedure and both the
Go and the Label commands must be in the same
procedure.

to yes.no

print “y\ /n?

label ‘again

make '‘c readchar

if :.c = 'Y [output “true]

if :c = N [output “‘false]
print [please answer y or n]
go “‘again

end

There are often better ways to perform the same
results without using Go and Label.

Last object
Output the last element of an object.

? last [book pen ruler]
RULER

? last ““fish
H

Reference 147

148

LastPut

Reference

? last 1234
4

? last last [red green blue]
E

This operation works for both lists and words. If the
input is a list, the output of Last will be the last
element of the list. If the input is a word, the last
character is output. Keep in mind that numbers are
words as well.

It is an error for the input object to be empty:

? last []
LAST does not like [] as input

LastPut object object
LPut object object

Output the first object combined to the end of the
second.

? lastput “'ruler [book pen]
[BOOK PEN RULER]

? lastput “‘h “fis
FISH

? lastput 4 123
1234

LastPut outputs a new object containing the first
object appended to the second. This operation works
for both lists and words. If the second input is a list,
the first input will be added to the end of the list. If
the second input is a word, the letters of the first
word will be added to the end of the second word.
Keep in mind that numbers are words as well.

Left

List

Left angle
LT angle

Rotate the turtle counter-clockwise.
? left 45

Left turns the turtle heading to the left (counter-
clockwise). The input specifies the number of degrees
to turn. The X-Y position of the turtle is not affected.

? home

? left 45
? heading
315.0

? clearscreen
? repeat 6 [forward 60 left 144]

List object object
(List object object. . .)

Output a list containing the input objects as
elements.

? list ‘apple “‘grape
[APPLE GRAPE]

? list 123 456
[123 456]

? list [sean alex] [cindy caryn]
[[SEAN ALEX] [CINDY CARYN]]

This operation creates a new list with each of the
input objects as elements.

Normally only two inputs can be supplied to this
operation. However, when enclosed in parentheses,
the operation will be applied to any number of
inputs.

? (list “‘apple “‘orange ‘‘banana ‘“‘grape)
[APPLE ORANGE BANANA GRAPE]

Reference 149

List?

Load

150

Reference

List? object
ListP object

Output TRUE if an object is a list.

? list? [peach grape]
TRUE

? list? “‘grape
FALSE

? list? 123
FALSE

List? will output TRUE whenever its input is a list.
Other types of inputs will output a FALSE.

ListP is the old way of spelling List?. We include it for
compatibility. The "P" stands for the word
“predicate’”” which indicates that a TRUE or FALSE
will be output.

Load file
Load a file into the workspace or a package.
? load "init

Load requests Logo to read and execute expressions
from a disk file rather than from the keyboard. The
file will be read until either the end is reached or an
error occurs. It can contain procedure definitions,
variable bindings, and direct commands and
expressions.

The file name can also include a device name and
directory path. For example:

? load "'df0:logo™\ test
If the file being loaded was saved as a package (see

Save), it will be loaded as a package (see Package
below).

Local

If the file cannot be found, an error will occur:

? load "‘banana
File BANANA not found

Local name
(Local mame name . . .)

Make a name local to a procedure.

This command makes a variable private to a
procedure. With it new variables can be defined that
only exist during the execution of the procedure in
which they were declared to be local. This is a good
way to use variable names that have the same name
either globally or in another procedure. It also offers a
way to “"hide” data within a procedure, and reduce
the overall complexity of a program.

Local can be used only in a procedure and it must be
performed prior to the use of the local variable (for it
to take effect).

to “example
local “"angle
make “‘angle 45

end

When a procedure stops or outputs a value, the local
variable values are lost. Any existing variables using
the same name will retain their previous values.
Input names are also local variables.

Normally only one input can be supplied to this
operation. However, when enclosed in parentheses,
the operation will accept any number of inputs.

to “example
(local “angle “‘distance *‘hue “state)

end

Reference 151

Logo Logo
Output the welcome banner for Amiga Logo.
? logo

AMIGA LOGO, Version 1.00

Copyright (C) 1989 Cornmodore Amiga, Inc.
Copyright (C) 1989 Carl Sassenrath

All rights reserved.

Make Make name object
Make a variable and give it a value.
? make “one 1

This command creates a new variable with a specified
name and binds a value to it.

Once created a variable can be accessed by placing a
colon "’ (called "“dots”) in front of its name.

? print :one
1

The effect of a Make depends on the environment in
which it was executed. If a Make specifies the name
of a global variable (which has not since been made
local), a new variable is created (with the same
name), and the old value can no longer be referenced
with this name. However, the old value can be
retained by using Local (see above) prior to the
Make.

Member? Member? object object
MemberP object object
Output TRUE if the first object is a member of the

second.

? member? “‘grape [apple orange grape]
TRUE

152 Reference

? member? ‘g “‘grape
TRUE

? member? 3 1234
TRUE

Member? detects the presence of a particular element
within an object. The first input is the element to
find. The second is either a list or a word. For lists a
TRUE will be output if the element is present in the
list. For words, a TRUE will be output if the character
is present in the word.

Note that Member? only searches the first level of a
list. It does not search individual elements of a list.
For example:

? member? ‘‘grape [apple orange [grape banana]]
FALSE

Grape is not a member of this list even though there
is an element that contains the word grape.

MemberP is the old way of spelling Member?. We
include it for compatibility. The “P” stands for the

word “‘predicate” which indicates that a TRUE or
FALSE will be output.

Mouse
Output the X,Y position of the mouse.

? mouse
[310 71] (depends on where the mouse is)

Mouse returns the position of the Amiga mouse
pointer within the screen. The mouse button does not
need to be held down for this to work.

Name object name

Attach a value to a variable name.

? name 5 “'blue

Reference 1563

Name?

154

Reference

This command creates a new variable with a specified
name and binds a value to it. Name is identical to
Make, except the order of its inputs is reversed.

Once created a variable can be accessed by placing a
colon " (called “dots”) in front of its name.

? setpencolor :blue

? pencolor
5

The effect of a Name depends on the environment in
which it was executed. If a Name specifies the name
of a global variable (which has not since been made
local), a new variable is created (with the same
name), and the old value can no longer be referenced
with this name. However, the old value can be
retained by using Local (see above) prior to the
Name.

Name? object
NameP object

Output TRUE if an object has a value.

? make “‘blue 5
? name? "‘blue
TRUE

? name? 120
FALSE

Name? will output TRUE whenever its input is a
name representing a value (a variable).

NameP is the old way of spelling Name?. We include
it for compatibility. The “P" stands for the word
“predicate” which indicates that a TRUE or FALSE
will be output.

Nodes

Not

Nodes
Output the number of free memory nodes.

7 nodes
660

The value returned indicates how much free memory
is available for use by Logo. This value will fluctuate
depending on many factors. Occasionally Amiga
Logo will collect garbage memory and reuse it (see
Recycle). Whenever this happens the number of free
nodes will increase.

Some of the memory nodes included in the output
from this operation are also available to other
programs on the Amiga. If you are running other
programs at the same time, they may greatly reduce
the number of free nodes available to Logo.

Not pred
Output TRUE when FALSE, and FALSE when TRUE.

? not “‘true
FALSE

? not ““false
TRUE

The input to Not is called a predicate. It must be either
TRUE or FALSE. Not will output the opposite value.

Not is quite useful for reversing the logic in
comparisons:

? not (1 > 10)
TRUE

would be equivalent to “is 1 less than or equal to 10?”

Reference 165

Or

156

Number?

Reference

If you attempt to input something other than TRUE
or FALSE, Logo will inform you that you made a
mistake:

?not 3
3 is not true or false

Number? object
NumberP object

Output TRUE if the input is a number.

? number? [peach grape]
FALSE

? number? *‘grape
FALSE

? number? 123
TRUE

Number? will output TRUE whenever its input is a
number. Other types of inputs will output a FALSE.

NumberP is the old way of spelling Number?. We
include it for compatibility. The ““P” stands for the
word “predicate” which indicates that a TRUE or
FALSE will be output.

Or pred pred
(Orpred pred . . .)

Output TRUE if any inputs are TRUE.

? or ““true “‘true
TRUE

? or “true “‘false
TRUE

? or “false “false
FALSE

The inputs to Or are called predicates. They must be
either TRUE or FALSE.

Output

For example, the comparison of two numbers outputs
either TRUE or FALSE, so this could be used as input
to Or:

2 or (1 > 10) (40 > 20)
TRUE

If you attempt to input something other than TRUE
or FALSE, Logo will inform you that you made a
mistake:

?20r34
3 is not true or false

Normally only two inputs can be supplied to this
operation. However, when enclosed in parentheses,
the operation will be applied to any number of
inputs.

? (or "false “‘true ‘‘false “'true)
TRUE

Here is an example of how Or might be used in
graphics:

? setpos [45 72]

? make “x first pos

? make "'y last pos

? (or (:x < 0) (:x > 160) (y < 0) (:y > 100))
FALSE

Output object
OP object

Return an object as the output from a procedure.

This operation can only be used in a procedure.
When it is executed, the current procedure will be
terminated, and the input to Output will become the
procedure’s output. Any type of object can be output:
numbers, words, lists, predicates, etc.

Reference 157

Package

PackageAll

158

Reference

For example, the procedure:

TO FOUR
OUTPUT 4
END

will always output a four:

? four
4

Package package name
Package package name-list

Put the named procedures or variables into a
package.

? package ‘‘work “‘my.proc
? package “‘work [my.proc my.varl my.var2]

Package lets you bundle together related procedures
and variables to be saved, loaded, printed, edited,
buried (hidden), and erased as a single unit. The first
input is the name of the package. The second is a
procedure or variable name (or a list of them).

If a name being packaged already belongs to another
package, it will be transferred to this package.

Packages are helpful for writing utilities that you use
in a number of other programs.

PackageAll package
PkgAll package

Put all unpackaged procedures and variables into a
package.

? packageall “‘'work
PackageAll performs a Package command over all

procedures and variables in the workspace. See
Package for more detail.

Pause

Pen

PenColor

Pause
Suspend execution of the current procedure.

This command can only be used in a procedure.
When it is executed, the current procedure will be
saved, and control will return to the Logo command
level. Pressing CTRL-Z during the execution of a
procedure has the same effect.

To continue execution of the paused procedure, type
Continue.

Pen
Output a list of the pen state and the pen color.

? setpencolor 1
? penerase

? pen
[PENERASE 1]

The output from Pen is a two element list. The first
element describes the state of the pen (up, down,
erase, reverse), and the second indicates its color.

PenColor
PC

Output the color number of the pen.

? pencolor
1

PenColor outputs a color number that indicates the
current color of the pen. The actual pen color
depends on the color setting for this number (see
RGB). The number may range in value from zero to
30.

The color of the pen can be set with the SetPenColor
command.

Reference 159

PenDown

PenErase

160

Reference

? setpencolor 2
? pencolor
2

When Logo is started, it establishes certain colors.
The first 4 colors are:
0 (background)

1 white
2 green
3 violet

These colors were picked to be compatible with most
Logo textbooks. They can be modified with the
SetRGB command (below). See the RGB entry for a
complete list of colors.

PenDown
PD

Put the pen into its draw state.

? pendown
PenDown starts the turtle drawing. The next time the
turtle is moved, a line will be drawn in the current
pen color.
The PenDown drawing mode can be stopped with
the PenUp command. Other commands PenErase

and PenReverse also stop PenDown.

? home penup

? forward 30
? pendown
? forward 30
PenErase
PE

Put the pen into its erasing state.

? penerase

PenReverse

PenUp

PenErase puts the pen into an erase mode. The next
time the turtle is moved, it will erase whatever it
passes over.

The PenErase mode can be stopped with PenUp ,
PenDown, or PenReverse.

? home pendown
7 forward 30

7 penerase

? back 20

PenReverse
PX

Put the pen into its reverse state.
? penreverse

PenReverse puts the pen into its reversing mode.
When the pen moves it will complement the color it
asses over: that is, it will draw where there are no
ines, and erase where there are lines (of the same

color).

The PenReverse mode can be stopped with PenUp ,
PenDown, or PenErase.

? home

? repeat 4 [pendown fd 20 penup fd 10]
? penreverse

? back 80

PenUp
PU

Put the pen into its no-draw state.
? penup
PenUp stops the turtle from drawing, erasing, or

reversing. When the turtle moves, the pen does
nothing.

Reference 161

Pri

162

Position

mitive?

Reference

PenUp turns off PenDown, PenErase, and
PenReverse.

? repeat 12 [penup fd 10 rt 30 pendown fd 10]

Position
Pos

Output the position of the turtle as an XY list.

? home
? position
[00]

Position outputs the current position of the turtle as a
list of two numbers. The first number is the x
position; the second is the y position.

? home

? forward 20
? position

[0 20.0]

? right 90 fd 30
? position
[30.0 20.0]

Primitive? object
PrimitiveP object

Output TRUE if the input is the name of a Logo
primitive.

? primitive? “pen

TRUE

? primitive? “one
FALSE

Primitive? will output TRUE whenever its input is a
Logo primitive. Other types of inputs will output a
FALSE.

Print

PrintOut

PrimitiveP is the old way of spelling Primitive?. We
include it for compatibility. The “P” stands for the
word “predicate” which indicates that a TRUE or
FALSE will be output.

Print object
Pr object
(Print object object. . .)

Print an object, then start a new line.

? print “hello
HELLO

? print [this is logo]
THIS IS LOGO

Print prints an object to the text window then starts a
new line. When lists are printed, their outermost
brackets will be removed.

The Type command is similar to Print, but does not
start a new line. The Show command is also similar to
Print, but will include the outermost brackets when
printing.

Normally only one input is supplied to Print.
However, when enclosed in parentheses, it will be
applied to any number of inputs.

? (print “apple 123 [orange peach])
APPLE 123 ORANGE PEACH

PrintOut name
PrintOut name-list

PO name
PO name-list

Print the named procedures and variables.

? define ““south [[] [setheading 180]]
? printout “'south

TO SOUTH

SETHEADING 180

END Reference 163

PrintOutAll

PrintOutNames

164

Reference

7 make “‘red 7
? printout “‘red
MAKE “'RED 7

PrintOut prints the name and definition for a
procedure, and the name and value for a variable.

PrintOut accepts the name of a procedure or variable
as input. It will also accept a list of procedures and
variable names. Supplying no input will print an
€rror message.

PrintOutAll
PrintOutAll package
PrintOutAll package-list

POAII
POAII package
POAIl package-list

Print everything in the workspace, a package, or
packages.

PrintOutAll is similar to PrintOut but handles an
entire package containing many definitions and
variables.

PrintOutAll accepts the name of a package or a list of
packages as input. Supplying no input will default to
printing all unburied procedures and variables in the
workspace.

PrintOutNames
PrintOutNames package
PrintOutNames package-list

PONs
PONs package
PONs package-list

Print all variables in the workspace, a package, or
packages.

PrintOutNames is similar to PrintOutAll but handles
just the variables within a package. PrintOutNames

PrintOutProcs

PrintOutTitles

accepts the name of a package or a list of packages as
input. Supplying no input will default to printing all
unburied variables in the workspace.

PrintOutProcs
PrintOutProcs package
PrintOutProcs package-list

POPs
POPs package
POPs package-list

Print all procedures in the workspace, a package, or
packages.

PrintOutProcs is similar to PrintOutAll but handles
just the procedures within a package. PrintOutProcs
accepts the name of a package or a list of packages as
input. Supplying no input will default to printing all
unburied procedures in the workspace.

PrintOutTitles
PrintOutTitles package
PrintOutTitles package-list

POTS
POTs package
POTs package-list

Print procedure titles in the workspace, package, or
packages.

PrintOutTitles is similar to PrintOutProcs but prints
just the title line (the first line of a To definition) of
procedures within a package. PrintOutTitles accepts
the name of a package or a list of packages as input.
Supplying no input will default to printing all
procedure titles in the workspace.

Reference 165

Product

PropList

PutProp

166

Reference

product number number
(product number number . . .)

number * number
* number number
(* number number . . .)

Output the product of the input numbers.

1%

See the description for

PropList name
PList name

Output a list of all properties associated with a name.

? putprop “william “age 12

? putprop “william “‘height [60 inches]
? proplist “william

[HEIGHT [60 INCHES] AGE 12]

PropList outputs a list of properties previously input
with PutProp. The input is the variable name to
which the properties are related.

Note that the order of items output in the property
list is not the same as the order in which they were
added.

PutProp name property object
PProp name property object

For a name, create a property with a given value.

? putprop “bill “address (68000 guru way]

? putprop “'bill “city [amigaville]

? putprop “'bill “'state [ca]

? putprop “'bill “country [usa]

? proplist **bill

[COUNTRY [USA] STATE [CA] CITY [AMIGAVILLE]
ADDRESS[68000 GURU WAY]]

PutProp creates a property for a variable name and
binds a value to it. If the variable name already has
this property, the old value will be replaced with the
new one.

Quit

Quotient

Random

The property can be accessed with GetProp and
erased with RemProp.

Quit
Exit

Exit from Logo and return to Workbench or CLIL
? quit

Quit will terminate this session of Logo and return
you to the Workbench, the CLI, or whatever the
program was that started Logo.

Prior to exiting Logo you may want to save your
changes. See the Save and SaveFile commands
below.

quotient number number
(quotient number number . . .)

number | number
/ number number
(/ number number . . .)

Output the quotient of the input numbers.
See the description for “/”.

Random number
Output a random number.

? random 10
4

?random 100
79

This operation outputs a random integer number.
The input specifies the upper limit of the number.
The output will be greater than or equal to zero but
less than the input number.

7 repeat 100 [home rt random 360 fd random 80]

Reference 167

ReadChar

ReadList

168

Reference

Random will always generate the same sequence of
random numbers each time Logo is started. This
sequence can be started again with the Rerandom
command.

ReadChar
RC

Output a character typed on the keyboard.

? readchar
A ("'a" was typed)

ReadChar outputs the next character typed on the
keyboard. If there are no characters ready to be read,
ReadChar waits until one is typed.

ReadChar does not require that the user type a
RETURN after each character.

Characters being read with ReadChar are not printed
to the screen when they are typed. You must use a
Print to echo them back to the user.

? repeat 4 [print readchar]

P ("p" was typed)
E ("e" was typed)
A ("a’" was typed)
R ("'r'" was typed)

? if readchar = *'Y [print "‘yes] [print *‘no]
yes ("'y"" was typed)

ReadList
RL

Output a list from a line typed on the keyboard.

? readlist
rj caryn [alex robyn] (typed on keyboard)
[RJ CARYN [ALEX ROBYN]

ReadList accepts a line of characters from the
keyboard, converts them to a list, and outputs the
list.

Recycle

Remainder

The keyboard characters are converted to a list in the
same fashion as all Logo text entry (see tutorial
section).

Characters will be printed as they are typed and the
line can be edited just like any other Logo line. A
RETURN is required to enter the line.

? if number? first readlist [print “number]
1234 (typed on keyboard)
NUMBER

Recycle
Free garbage memory nodes for reuse.
? recycle

Recycle forces Logo to reuse old garbage memory
nodes. This normally happens automatically when
Logo exhausts its supply of nodes, but Recycle forces
it to happen immediately.

Depending on how much memory is involved, a
recycle may take some time. It is usually seen as a
pause during the execution of a procedure. It can be
very noticeable during graphics drawing sequences.
Using Recycle you can force a garbage collection at a
more convenient time and often make the pauses less
visible.

Remainder number number
Output the integer remainder of a divide.

? remainder 10 2
0

? remainder 5 2
1

Reference 169

RemProp

Repeat

Rerandom

170

Reference

Remainder performs an integer division and outputs
the remainder of the division. The first input is
divided by the second.

This function is often called the Mod function in
other languages.

RemProp name property
Remove a property and its value from a name.

? putprop “william “age 12
? getprop “‘william ““age
12

? remprop “‘william “‘age

RemProp removes a property previously input with
PutProp. The first input is the variable name to which
the property is related. The second input is the name
of the property being removed. This name must be
identical to that specified with PutProp.

Repeat number run-list
Execute a list a number of times.

? repeat 3 [print “‘hello]
HELLO
HELLO
HELLO

Repeatedly execute the same list a number of times.
The first input is an integer which specifies the
number of time to repeat. The second input is the list
to execute.

Rerandom
Restart the sequence of random numbers.
? rerandom

? repeat 5 [(type random 100 ")]
4779 88 40 95

RGB

? rerandom
? repeat 5 [(type random 100 ")]
47 79 88 40 95

Rerandom is used to reset the random number
sequence to that found when Logo is first started.
After executing Rerandom the same inputs to
Random will produce the same outputs as before.

RGB color-number

Output a list of the RGB components of a color
number.

?2rgb 1
(14 14 14

Given a valid color number as input, this operation
will output a list of three numbers which are the red,
green, and blue (RGB) components of the color.

Color numbers are used to set the screen colors for
the pen and background. They may range in value
from one to 30. Color zero cannot be modified
directly, you must assign it to a color number, then
modify the color number.

The RGB components indicate how much of red,
green, and blue are mixed to make a given color. Each
of the RGB components should be a number between
0 and 15. So:

[1273]

would be 12 units of red, 7 of green, and 3 of blue.
The resulting color would be orange-gold.

Reference 171

When Logo is started, it establishes RGB color values
for all color numbers. The colors are:

0 (background)
1 white

2 green

3 violet

4 orange

5 blue

6 black

7 red

8 yellow

9 grey

10 pink

11 navy blue
12 peach

13 brown

14 forest green
15 cyan

16 dark brown
17 olive green
18 mustard
19 bright red
20 bright green
21 bright blue
22 dark purple
23 dark grey
24 dark blue
25 hot pink

26 sky blue

27 royal blue
28 aqua green
29 silver grey
30 lawn green
31 soft pink

These colors were picked to be compatible with most

Logo textbooks. They can be modified with the
SetRGB command.

172 Reference

Right angle
RT angle

Rotate the turtle clockwise.
? right 45

Right turns the turtle heading to the right
(clockwise). The input specifies the number of
degrees to turn. The X-Y position of the turtle is not
affected.

? home

? right 45
? heading
45.0

? clearscreen
? repeat 6 [forward 60 right 144]

Round number
Output a number rounded to the nearest integer.

? round 10.9
11

? round 10.35
10

? round -3.45
-3

Round outputs the input number rounded to the
nearest integer.

Run run-list
Execute a list.

2 run [print “hello]
HELLO

Execute the list given as input. Output a value if
executing the list outputs a value.

Reference 173

Save

SaveEdit

174

Reference

This operation is useful for running Logo code that
was itself created by a Logo program. For example:

? make "‘box.side [fd 40 rt 90]
? run (list “‘repeat 4 :box.side)

Save file
Save file package

Save the workspace or a package to a file.
? save “‘work

Save requests Logo to save the workspace or a
package to a disk file. All procedure definitions and
variable bindings will be saved.

The file name can also include a device name and
directory path. For example:

? save '‘df0:logo’\ /test

Save also accepts an optional package as input. If

specified, all procedures and variables defined in the

Eackage (instead of the workspace) will be saved. The
ury state of the package will also be saved.

If the file already exists, Amiga Logo will remove the
old file first, then save the new one. No error
message will occur.

SavekEdit file
SaveFile file

Save the editor buffer to a file.

? saveedit “‘work
SaveEdit requests Logo to save the entire editor
buffer to a disk file. Everything within the editor

buffer will be saved, including commands,
comments, and incomplete lines.

Say

Scrunch

SaveEdit is a useful command for saving text edited
with the EditFile command. For example:

? editfile ‘'s:startup_-sequence
(make changes, then exit editor with CTRL-G)
? saveedit “'s:startup_-sequence

It is also useful for adding direct commands to a file
that has already been saved:

? save "‘work

? editfile “'work

(add some commands to the file, exit with CTRL-G)
? saveedit “‘work

Say word
Say list

Make the Amiga talk.
? say “hello

Say will generate Amiga speech. You can give it
either a word or list for input.

? say [there is no place like home]

To work correctly, the Say command requires
Workbench 1.3 and the Speak device must be
mounted (see DOS manual).

To hear speech, you must have an amplifier or
monitor (with built-in amplifier) connected to the
Amiga audio outputs. The Amiga itself does not
contain a speaker.

Say will output garbled speech when in 16 color 640
mode.

Scrunch
Aspect

Output the aspect ratio of the screen.

See the description for Aspect.
Reference 175

Sentence

SetAspect

176

Reference

Sentence object object
(Sentence object object . . .)

Se object object
(Se object object . . .)

Output a list containing the words of the input
objects.

? sentence “apple “‘grape
[APPLE GRAPE]

? sentence 123 456
[123 456]

? sentence [cindy caryn] [sean alex]
[CINDY CARYN SEAN ALEX]

This operation creates a new list with each of the
input objects as elements. It is similar to the List
operation, but strips the outer brackets off any inputs
that are lists.

Normally only two inputs can be supplied to this
operation. However, when enclosed in parentheses,
the operation will be applied to any number of
inputs.

? (sentence "apple ‘‘orange [banana grape])
[APPLE ORANGE BANANA GRAPE]

SetAspect number
SetScrunch number

Set the aspect ratio of the screen.
? setaspect 1

SetAspect accepts as input the desired aspect ratio of
the graphics screen. This ratio controls the scale of
the Y axis compared with the X axis. It is the number
of units in the Y direction for each unit in the X
direction.

SetBackground

SetCursor

SetAspect is provided to compensate for different
screen resolutions and monitor brands. If your circles
look like ellipses and squares look like rectangles, the
aspect ratio can correct these.

For example, to make each vertical unit half the size
of a horizontal unit, an aspect ratio of 0.5 would be
used:

? setaspect .5

The current screen aspect ratio can be found with
Aspect.

SetScrunch is the old word for SetAspect. It is
included for compatibility with other Logos.

SetBackground color-number
SetBg color-number

Set the screen to the color of a color number.
? setbackground 4

The input is a color number. This number is used as
an index into the screen color table. The actual
background color displayed depends on the color
setting for this color number. For more information
see the explanation for RGB.

Note that color number zero is the same as the
background. Setting the background to zero does
nothing. Amiga Logo restricts RGB operations that
are performed on color zero directly.
SetCursor [column row]
Set the text cursor position.
? setcursor [0 10]

? cursor
[012]

Reference 177

SetHeading

178

Reference

SetCursor accepts as input a list containing the
column and row positions of the cursor within the
text window, and moves the cursor to that position.

The upper left cursor position of the text window is
[00]. The maximum values for the column and row of
the text cursor will depend on the size of the text
window.

The position of the cursor can be found with Cursor.

SetHeading angle
SetH angle

Set the heading angle of the turtle.

? home

? setheading 45
7 heading

45.0

SetHeading sets the turtle’s direction as an angle
measured clockwise from straight up. The input
angle can range from zero (straight-up) to less than
360 degrees. Angles greater than 360 wrap back to
zero at 360.

? setheading 400
? heading
40.0

It is the turtle’s heading that determines the direction
of lines drawn with the graphics line drawing
commands Forward and Back.

The turtle heading can also be modified with Right,
Left, and Towards. The heading is returned to zero
with Home and ClearScreen.

? home

? right 90
? heading
90.0

SetPen

SetPenColor

? left 45
? heading
45.0

? setheading 192
? heading
192.0

SetPen [pen-state color-number |
Set the pen to a new state and color.

? setpen [penup 5]
? pen
[PENUP 5]

SetPen accepts a two element list as input. The first
element is the state of the pen and the second
indicates its color. The state of the pen must be one of
the four words: PenUp, PenDown, PenErase, or
PenReverse, and should not be abbreviated.

The list input to SetPen is the same as the list output
from Pen.

SetPenColor color-number
SetPC color-number

Set the pen to the color of a color number.

? setpencolor 3
SetPenColor accepts as input a color number that
indicates the desired color of the pen. The actual pen
color depends on the color setting for this number
(see RGB). The number may range in value from zero
to 30.

The current color of the pen can be found with the
PenColor command.

? pencolor
3

Reference 179

SetPosi

SetRGB

180

tion

Reference

When Logo is started, it establishes certain colors.
The first 4 colors are:

(background)
white
green
violet

WN=RO

If you input a number greater than the number of
colors selected, Amiga Logo does a modulo to
determine a selectable option. This means that the
number is divided by the number of colors, with the
remainder determining the number of a selectable
color.

These colors were picked to be compatible with most
Logo textbooks. They can be modified with the
SetRGB command.

SetPosition [x y |
SetPos [xy]

Move the turtle to an X,Y position.

? setposition [30 60]
? position
[30.0 60.0]

SetPosition accepts as input a new turtle position as a
list of two numbers. The first number is the x
position; the second is the y position.

The current position of the turtle can be found with
Position.

SetRGB color-number [red green blue |
Assign a color number to an.RGB color.
? setrgh 5 [12 7 3]

?2rgb 5
[1273]

SetScrunch

? clearscreen
? setpencolor 5
? repeat 6 [forward 60 right 144]

SetRGB sets the red, green, and blue (RGB)
components of a screen color. The first input is the
color number to set. The second input is a list of three
numbers which are the red, green, and blue (RGB)
components of the color.

Color numbers are used to set the screen colors for
the pen and background. They may range in value
from one to 30.

The RGB operation can be used to get the current
RGB settings for a color number.

The RGB components indicate how much of red,
green, and blue are mixed to make a given color. Each
of the RGB components should be a number between
0 and 15. So:

[127 3]

would be 12 units of red, 7 of green, and 3 of blue.
The resulting color would be orange-gold.

When Logo is started, it establishes RGB color values
for all color numbers. The first 4 colors are:

0 (background)
1 white
2 green
3 wviolet

These colors were picked to be compatible with most
Logo textbooks. See the RGB entry for a complete list
of Logo colors.

SetScrunch number
SetAspect number

Set the aspect ratio of the screen.

See the description for SetAspect.
Reference 181

SetX

SetY

Show

182

Reference

SetX x
Set the X position of the turtle.
? setx 40

The input is a number indicating the X coordinate
position. This is the position of the turtle horizontally
from the home position. The positive direction is to
the right; negative is to the left. The turtle’s Y position
does not change.

If the screen is in the Window mode, the position
returned might be greater than can be displayed on
the screen.

SetY y

Set the Y position of the turtle.
? sety 40

The input is a number indicating the Y coordinate
position. This is the position of the turtle vertically
from the home position. The positive direction is to
the right; negative is to the left. The turtle’s X position
does not change.
If the screen is in the Window mode, the position
returned might be greater than can be displayed on
the screen.

Show object
(Show object object . . .)

Print an object, then start a new line.

? show “‘hello
HELLO

? show [this is logo]
[THIS IS LOGO]

Shown?

ShowTurtle

Show prints an object to the text window then starts a
new line. It is similar to Print, but it includes the
outermost brackets when printing a list.

Normally only one input is supplied to Show;
however, when enclosed in parentheses, it will be
applied to any number of inputs.

? (show “‘apple 123 [orange peach])
APPLE 123 [ORANGE PEACH]

Shown?
ShownP

Output True if the turtle pointer is showing.

? showturtle
? shown?
TRUE

Shown? will output TRUE as long as the turtle is
visible on the graphics screen. It will output a FALSE
if the turtle is hidden (see HideTurtle).

? hideturtle
? if not shown? [print [turtle is hiding!]
TURTLE IS HIDING!

ShownP is the old way of spelling Shown?. We
include it for compatibility. The “P” stands for the

word “predicate” which indicates that a TRUE or
FALSE will be output.

ShowTurtle
ST

Display the turtle pointer.
? showturtle
ShowTurtle makes the turtle visible (if it’s on the

screen). The turtle is made invisible with the
HideTurtle command.

Reference 183

Sine

184

Reference

Shown? will indicate whether the turtle is visible or
not.

? showturtle
? shown?
TRUE

If the Window mode is set, the turtle may be off the
edge of the screen, and it will not be displayed, but
Shown? will still return TRUE.

Sine angle
Sin angle

Output the sine of an angle.

? sine 30
0.5

Given an input number representing an angle in
degrees, Sine will output its sine value. The sine of
an angle will always be in the range of 1 to 0 to -1.

? sine 0
0

? sine 90
1.0

? sine 270
-1.0

The sine of an angle is very useful for many types of
graphics operations. For example:

? clearscreen

? right 75 forward 80 print xpos

? home right 90

? forward (80 * sine 75) print xpos

Both lines will be drawn with the same distance in the
X direction.

SplitScreen

SqRt

SplitScreen
SS

Display both the graphics and text windows.
7 splitscreen

Split screen allows you to see both text and graphics
at the same time. The text screen is made smaller, and
the graphics can be seen behind it.

When the screen is split, the text window can be
moved by dragging its title bar with the mouse. It can
also be resized with the sizing gadget in the lower
right of the window. (See your Amiga Workbench
manual for more information on using windows.)

The TextScreen command will return you to a full
text screen or the FullScreen command will give you
the full graphics display.

SqRt number

Output the square root of a number.

?sqrt 25
5.0

?sqrt 2
1.414214

SqRt outputs the square root of its input. The square
root is that number which when multiplied by itself
equals the original input.

A negative input to SqRt causes an error:

? sqrt -36
Number is out of range

The square root operation is useful for calculating
distances in graphics procedures.

Reference 185

Stop

Sum

Tangent

186

Reference

Stop
Return from a procedure.

This operation can only be used in a procedure.
When it is executed, the current procedure will be
terminated without producing an output. (The
Output operation lets you perform a Stop and
produces an output.)

For example, the procedure:

TO CHECK.IT :A
IF :A < 0 [STOP]
PRINT :A

END

will not print :A if it is less than zero.

sum number number
(sum number number . . .)

number + number
+ number number
(+ number number . . .)

Output the sum of the input numbers.
See description for “+".

Tangent angle
Tan angle

Output the tangent of an angle.

? tangent 45
1.0

Given an input number representing an angle in
degrees, Tangent will output its tangent value.

? tangent 0
0

Test

Text

? tangent 89
57.28996

? tangent 135
-1.0

The tangent of an angle is useful for some types of
graphics operations.

Test pred
Save a condition for later use in IfFalse and IfTrue.

? showturtle

? test shown?

? iftrue [print [turtle is showing]
TURTLE IS SHOWING

Test works in conjunction with the IfTrue and IfFalse
commands. The first input must be a predicate that
returns either TRUE or FALSE. It is saved by Logo
until another Test command is executed.

Text name
Output a procedure definition as a list of lists.

Text will output a procedure definition as a list. The
format of this list is identical to that input to the
Define command.

The first element is a list of input names to the
procedure. These names do not have a colon "’ before
them. If there are no inputs, an empty list [] is
printed.

The rest of the list is the executable part of the
procedure definition.

? define '‘segs [[a size] [repeat 8 [rt :a fd :size]]]

? text "‘segs
[[A SIZE] [REPEAT 8 [RT :A FD :SIZE]]]

Reference 187

TextScreen

Thing

188

Reference

TextScreen
TS

Display the text window only.
? textscreen

Display the text window making it the full size of the
screen.

The SplitScreen command will let you see both text
and graphics. The FullScreen command will give you
all graphics.
Thing name

Output the value or definition of a name.

? make “one 1

? thing “‘one

1
Thing is used to access the value of a variable. The
input is a word which is the name of the variable to
access. This input word can be constructed from
other words, or can be the value of a variable itself.
For example, a simple variable:

? print :one
is equivalent to:

? print thing “one

Here is an example of a variable which holds the
name of another variable:

? make “‘unity “‘one
? print :unity

ONE

? print thing :unity
1

Throw

Throw name
Pass control back to the matching Catch.

Throw causes control to be passed back to the
matching Catch statement.

The input is a name used to identify the Catch that
will receive this throw.

to do.this

print “hello

if key? [throw “‘key.pressed]
do.this

end

? catch “key.pressed [do.this]
HELLO
HELLO

until a key is pressed.

The target Catch command should have been
executed already, and it must specify the same name.
If a catch with the same name cannot be found, an
error will occur:

? throw “‘bad.apples
Cannot find catch for BAD.APPLES

With Throw, control can be passed from your
rocedure all the way back to the top level (command

evel) of Logo:

throw “‘toplevel
This is provided for compatibility with other Logo
implementations. In most cases it is easier to just
invoke the TopLevel primitive:

toplevel

to return to the top level of Logo.

Reference 189

To

TopLevel

190

Reference

To name
To name input
To name input input . . .

Define a procedure; invoke the editor if necessary.
? to “proc

TO PROC
END

(press CTRL-C to exit the editor)

To defines a new procedure. If invoked interactively
(from the keyboard) Logo will transfer you to the
editor, and allow you to define the procedure. If
invoked from a file, the lines of text following To will
be entered as the procedure definition.

The first input is the name of the procedure to define.
It should begin with a quote ”. Any remaining inputs
will become the inputs to the new procedure. These
words should begin with a colon .

For more about using the editor and defining
procedures, see the tutorial section of this manual.

Procedures can also be defined with the Define
command.

TopLevel
Pass control back to the top level of Logo.
toplevel
This command will abort the current procedure and
all other procedures that called it, and then return to
the command level of Logo. This command is

sometimes used with Throw to accomplish the same
end.

Towards

Type

Unbury

Towards [xy |

Output the heading angle needed to face an X,Y
position.

? home
? towards [10 10]
45.0

Towards outputs the heading angle in degrees that
the turtle needs to face a given position from the
current position. The input is an X, Y list specifying
the position.

By using Towards with SetHeading, a new heading
can be established without an angle being specified.

Type object
(Type object object . . .)

Print an object (but do not start a new line).

? type ““hello type “‘there
HELLOTHERE

? (type “‘every "‘one)
EVERY ONE

Type is similar to Print. It prints an object to the text
window, but does not start a new line (Print does
start a new line). When lists are printed, their
outermost brackets will be removed.

Normally only one input is supplied to Type.
However, when enclosed in parentheses, it will be
applied to any number of inputs.

? (type "“apple 123 [orange peach])
APPLE 123 ORANGE PEACH

Unbury package

Expose all procedures and names hidden in a
package.

Reference 191

Version

192

Reference

This command undoes the effect of a Bury. All
procedures and variables defined within the specified
package will be visible to certain workspace
commands.

Bury is a good way to hide procedures and variables
that you have finished. Often you will want to save
utility procedures for reuse in several different
programs, and you don’t want all these utility
procedures to get in the way of the program you are
developing.

The following workspace primitives are affected by
Bury:

Save PrintOutTitles

EditAll EditNames EditProcs
EraseAll EraseNames EraseProcs
PrintOutAll PrintOutNames PrintOutProcs

For additional information, see Package.

Version
Output the version number of Amiga Logo.

? version
1.0

Version outputs the version of Amiga Logo as a
decimal number. As Logo is updated over time, this
version number will change.

A decimal number is output whose integer part is the
system version (indicating major releases), and
decimal part is the revision (for minor changes).

? (print [major version is] integer version)
MAJOR VERSION IS 1

Wait

Window

Word

Wait number

Delay execution for a number of 60ths of a second
intervals.

? wait 60

Wait will stop Logo execution for a given period. The
input specifies the duration of this period in 60ths of a
second.

? clearscreen penreverse
? repeat 60 [fd 50 bk 50 rt 6 wait 60]

The Wait command also accepts the special word
“Frame as input. When this is done, Logo will wait
until the video circuitry has started its retrace
(blanking) before continuing. Using Frame helps
prevent many of the flicker effects that occur when
drawing to the screen.

Window
Give the turtle unrestricted movement.
? window

Normally when the turtle hits the edge of the screen,
an error is generated. This command puts the turtle
into a special mode where the turtle can be moved
anywhere within an imaginary space including
completely off the screen.

? window

? clearscreen

? left 30

? forward 10000

? position

[-5000.001 8660.253]

Word word word
(Word word word . . .)

Output a word composed of the input words

combined.
Reference 193

Word?

194

Reference

? word “‘amiga “‘logo
AMIGALOGO

?word 12 34
1234

This operation creates a new word from each of the
input words joined together.

Normally only two inputs can be supplied to this
operation. However, when enclosed in parentheses,
the operation will be applied to any number of
inputs.

? (word “‘anti “‘dis “‘establish “ment)
ANTIDISESTABLISHMENT

Word? object
WordP object

Output TRUE if an object is a word.

? word? 100
TRUE

? word? “‘grape
TRUE

? word? [peach grape]
FALSE

Word? will output TRUE whenever its input is a
word. Other types of inputs will output a FALSE.
Remember that numbers are considered to be words.

WordP is the old way of spelling Word?. We include
it for compatibility. The “P” stands for the word
“predicate” which indicates that a TRUE or FALSE
will be output.

Wrap

XPos

YPos

Wrap

Make turtle movements wrap at the edge of the
screen.

? wrap

Normally when the turtle hits the edge of the screen,
an error is generated. This command puts the turtle
into a special mode: when the turtle is moved off the
screen, it will wrap around to the other side. The
turtle will never leave the screen.

? wrap

? clearscreen

? left 30

? forward 10000
? position.

[120.0 -134.3511]

XPos
XCor

Output the current X position of the turtle.

? home
? print xpos
0

This is the position of the turtle honzontally from the
home position. The positive direction is to the right;
negative is to the left.

If the screen is in the Window mode, the position
returned might be greater than can be displayed on
the screen.

YPos
YCor

Output the current Y position of the turtle.

? home
? print ypos
0
Reference 195

This is the position of the turtle vertically from the
home position. The positive direction is upward;
negative is downward.

If the screen is in the Window mode, the position
returned might be greater than can be displayed on
the screen.

Error Messages

196

Reference

Logo error messages are meant to help you quickly
locate and understand the problems in your program.
When an error occurs take a minute to carefully
examine the error message.

This message will contain a string describing what
error happened. If the error occurred in one of your
procedures, Logo will also tell you the procedure
name and print the erroneous line.

This section lists error messages by category. The
categories are:

Undefined Objects
Procedure Definition
Procedure Inputs
Procedure Outputs
File Related
Arithmetic

Other

In the text below, error messages are printed in bold
letters. The non-bold portions of the message are
dependent on the actual error.

Note: Some types of errors will throw you completely
out of Amiga Logo back to the Workbench screen. If
this occurs, it is often possible to return to Amiga
Logo simply by pressing the LEFT-AMIGA-M key
sequence, or by clicking on the screen depth
arrangers located in the upper right portion of your
workbench screen (make certain that you are clicking
an arranger for the screen, not a window).

Also, there is a class of errors, called Internal Errors,
from which Logo cannot recover. If an internal error
occurs, you will need to start Logo over. If you
experience a particular type of internal error
happening often, please report it to Commodore-
Amiga.

Undefined Objects
These error messages will occur if you refer to a
procedure, name, label, or catch before it has been
defined (or in some cases after it has been erased).
If you are confused about the error, try using PONs
or POTs to verify that the name you are using is
defined and spelled as you thought.
I don’t know how to something
You are trying to use a procedure that does not exist.
A procedure name must be defined before you
attempt to execute it.

You will also get this =tror if you misspell a primitive
name. For example:

SETRGB2 [0 10 0]

| don’t know how to S 3GB2

Reference 197

Something is undefined

You are trying to use a variable that does not exist. A
variable must be defined before you attempt to access
its value.

Cannot find label label

Logo cannot find the label you referred to in a Go
command. Remember that you must put the label in
the same procedure as the Go instruction; you can
not use Go to jump from one procedure to another.

Cannot find catch for something

Logo cannot find the Catch name which corresponds
to the Throw name you specified. You may have put
the Catch in the wrong place; perhaps you did not
execute the Catch prior to the Throw.

Procedure Definition

198

Reference

These error messages are related in some way to the
definition of procedures.

Something is already defined

You are trying to create a procedure with a name that
already exists. The name may not necessarily belong
to another procedure; it may be a variable name. You
will either need to name your procedure something
else, or erase the existing name and try again.

Procedure is a primitive

You are trying to create a procedure with a name that
is used by a Logo primitive. You will need to name
your procedure something else (primitives cannot be
erased).

Something can only be used in a procedure

Some commands can only be used inside a
procedure: Output, Stop, End, Go, Label, Local. You
attempted to use one of these commands outside of a
procedure.

Procedure Inputs

These errors deal with wrong or missing procedure
inputs.

Not enough inputs to procedure

You have not provided enough inputs to the
specified procedure or primitive.

Procedure does not like object as input

The wrong type of object was input to the primitive.
Object is not true or false

Logo expected a true or false, but got another value.
Object is not a word

In this case you are trying to use something as a word
that is not a word. Check your typing.

Too few items in object
There are not enough elements in an object to satisfy
arequest. For example, this could happen if you used
Item on a list that was too short.

Procedure Outputs
These messages deal with procedure outputs.

| don’t know what to do with something

A procedure output a value that was not input to
anything.

Procedure did not output
Logo was expecting the procedure to output a value

to be used as input by another procedure, but
nothing was output.

Reference 199

File Related

Arithmetic

200

Reference

File filename was not found

You attempted to load or erase a file that does not
exist in the current directory.

Have you specified the correct device name and
directories? If file is not in the current directory, you
must use a proper path name. You may want to use
Dir or Catalog to help locate the file name.

File filename already exists

You asked Logo to save a file that already exists. To
correct this, you may either erase the file and resave
it, or save it with a different name.

File filename is locked

You attempted to erase a file that was locked. This
means the file is being accessed by another program,
and you are not allowed to change it.

File filename is wrong type

The file you specified contains data which does not
look like a Logo file. Check your file name.

Cannot divide by zero

You attempted to divide a number by zero. This is not
allowed; dividing by zero is undefined.

Number is out of range
You are dealing with a number that is too large for

Logo, or is invalid for a particular primitive. Check
your arithmetic.

Other

These are the remaining error messages.
Cannot something from editor

This error occurs when you put editing commands
within the text you are editing. If you do this and exit
the editor, Logo attempts to execute the editing
command, but to do so would interfere (and possibly
erase) the current contents of the editor.

For example, executing an Edit command within the
editor will cause this message.

Parentheses enclose too many expressions

If you get this message, you tried to put parentheses
around more than just an expression. Parentheses are
only used to group related expressions.

Unexpected ')’

Logo found a)" without a matching ’(". Check your
typing.

Turtle out of bounds

This message indicates that you tried to move the
turtle beyond the edge of the display while in the
Fence mode. If you want to move the turtle off-screen
you must use the Window mode. If you want the
screen to wrap around, use the Wrap mode.

Remember that the edge of your screen is also
determined by the screen resolution. Running at a
lower resolution will reduce the working boundaries
for the turtle.

Out of space

This message happens when you have used up
nearly all available Amiga memory. To continue, you

Reference 201

202

Reference

will need to free some space by erasing procedures,
names, Or properties.

If you are executing other programs on your Amiga,
they will be using up memory as well. You may want
to try running Logo alone.

Also, the more colors or higher screen resolution you
use, the more memory required. Try reducing the
number of colors or resolution.

Cannot use printer

The printer is not available for use. Do you have it
properly installed? Perhaps it's being used by some
other Amiga task.

Printer did not work

For some reason the printer could not print what you
requested. Check that the printer is on-line and has
paper. If you were thrown back to the workbench
screen, press LEFT-AMIGA-M to return to the Logo
screen.

SPEAK device not available (Workbench 1.3)

This message occurs when you use the Say
command. This command requires you to use a
Workbench 1.3 system which has the SPEAK device
present. If the SPEAK device is not mounted (not
present in the system) this error will occur. SPEAK is
normally mounted as part of the Amiga startup-
sequence file. If you removed the line from this file
that said “mount speak:”, this may be the problem.

+ oprimitive 106
< POV, v iom wowes mamanssisios s 107
EPHMINVE isvav mser s S T 108
TDOIMIBYEY o darvis 3 015008500055 pressissmsens pnssiosnse 109
S PIMIMVEL o oussis sinammssnoms s 110
= PEMIKIVE conumnniasa savossii 111
SEPIMMYE < oo it S b svitlnonamesl 110
ADE PRANIHVE. o wioiee ssummsssoenivesmas 111
Advanced Procedures 101
And primitive i o ie sy sanissas e 112
ArcTan (see ArcTangent)

ArcTangent primitive. 113
ASCIT primibive: o ameimsiimms 114
Aspect primitive.c.ooeeiereevnans 52,114
ASPect 1ali0 s s i S 8
Back primitive...............o0.000 42,115
Backgroundl 116
BACKSPACE smmasoios smmmman s s 13
Backup Coples: s sk e s i 5
BF (see ButFirst)

BK (see Back)

Position primitive.................. 43, 162
BL (see ButLast)

BOry prMIHYES . <00 o s onisdonn siesoes 117
ButFirst primitive.................. 58, 117
ButLast primitive 59, 118
Button? primitiveouevesseinns e 119
Catalog primitivec..oo... 119
Catchand Throwuee 81
Cateh PHMIBIVe . . o vo.ocoome®h0in oo aiaisias 120
Char primitive .. < oos sovsisalhiatiid 121
Clean primitive.................... 37,121
ClearScreen primitive 37,122
ClearText primitive 15, 122
COlors . Nl e as s man SR HENAR IES 44
GO0l e Bl =L Sl 172
Command window 10
Conditional Execution 79
Continue primitive.................... 122
Control Keys -« voiis sl aduihin 84 94-97
Copyinga-Line ... uadaln i O 14
Copying Definitions. 102
CopyDef primitive000 123
Gopying thedisk' .. ivvasivenvavin 4,5
Cos (see Cosine)

Cosine PAMIVE ..« o« oocont s Vo w50 123
Countiprimitive:. . . o Jiveawni ol 124
CS (see ClearScreen)

CT (see ClearText) . . v ve s swniasans 15
CIRE-A st anvssnanha bbb 13
CIRESA; CIRLIK <.« civine viomin Ho0 5 e iy 14
850 07 TP N SO e 13
CIREAT, viisiiuin sasons msssisianiaisaan Goaniag 28
QEREADL viiaian cdsiivmmanindm Soaniionsin 13
(5 1§ 5 NN AR T U o 13

KEERESES, oo ooisrmnmmmise s ienesaissssopsvivamsnsh 13
L . 12
CIREA] o imaaasimsiesi 14
CEREA, oo o sis e o BT e i BT 14
CTRLL s cvensnnsavmasssess s 14
CTREN wnienimean simas s 13
CIREO st ey 14
CIRERL oovemosmmupeemmersmsssms o 13
ETREL R a0t s i e ta m s A it 14
CIRL:T soivivnvanssiiismesnreastetes 16
Y { I S 14
CIERLAY oy st T e 14
Cursor primitivec...ou.. 125
DE (see DumpEdit)

Define primitive .. viwsvsesizeanmvesin 125
Define? primitive 126
PEHRINON I\ v.meircemonens naRat bbb 101
BBEBTES. . cotmmimssrntiimon Sy sons g 13
Deleting a ldne .. owiiaianine yvavi it 14
DEME BrinTHVE: oo oovvosins dorse s bse oy 1
DG (see DumpGraphics)

Difference primitive................... 126
LB,y ey D T S o J 1N el o 127
8o b R K L & 127
DOWN-ARROW: .. viiis sinnesnvsiaeih 13
DT (see DumpText)

DumpEdit primitive................... 128
DumpGraphics primitive 128
DumpText primitive. 128
EdAll (see EditAll)

EdF (see EditFile)

Editprimilive s . i iiniviee s sashiags 129
BCIEWARHOWIRE %o oo szvii sinanleispmin o/ 88 28, 90
EditAll primitive 130
EditFile primitiveuiia saiais it 130
Editing ailine 5 cicvs saennsisaiv e soisionisials 13
EditNames primitive 131
B0 s lesatumanto enidamnssoatiwonmeogs 90
EditProcs primitive. 132
EdNs (see EditNames)

EdPs (see EditProcs)

Empty? primitive: i .. o o ws s 132
213 ek oy oo L SIS U ol 133
Equal? primitive 0000 133
EqualP (see Equal?)

ErAll (see EraseAll)

Brose primitive . « vescoe e s csiblodhes 133
EraseAll primitive.o0o... 134
EraseFile primitive 134
EraseNames primitive 135
EraseProcs primitive 135

ErNs (see EraseNames)

ErPs (see EraseProcs)

BXYOr MESSAGES . o5« osc vionsess caivwiodoidts 196
Error messages—Arithmetic............ 200

Error messages—File Related. 200

Error messages—Other................ 201
Error messages—Procedure Definition . .198
Error messages—Procedure Inputs. 199
Error messages—Procedure Outputs. .. .199
Error messages - Undefined objects. 197
Error primitive........................ 135
BXIE i swnmmrenmsnesemsismsm s 21, 136
FD (see Forward)

Fence primitive.................... 51, 136
Fill prmtVE. ... sovvosossnossese 48-50, 137
Fillln primitivec000u0ee 50, 137
First primitive 58, 138
FirstPut primitive 59, 139
Flow.of Control..:uuanussvsnimainm 75
Forward primitive 41,139
FPut (see FirstPut)

FPut (see FirstPut)

Framecoooiiiiiiiiiinn, 83
FS (see FudIScreen) ..cocvosinnesmmvivmses 16
FullScreen primitive 16, 140
GetProp primitive..................... 140
Global variables.covvvveniininns 31
Go primitive i cassisisessavensviniae. 141
GProp (see GetProp)

Graphicswindowoooviunn.. 16
GraphicsType primitive 53, 141
GrType (see GraphicsType)

HeadIng st iisis st odassmae sd oaaiing 39
Heading primitive 40, 142
H D N Ty e U LA 24
HideTurtle primitive 38, 143
Home primitive..... .. c.ouiiiemadvvisioe 143
HT (see HideTurtle)

TEPHMUEVE s, < oc s suescmsmsisesio i 144
IfFalse primitivecccoiviiens 144
JETEOE PRItV o o o 5.0 0510 510 o0 sR e ety 145
1N E A e e 4,20
INPULAYPeSs. i i vnmeisaiiies o 105
T e P~ T 1 s 24-25
INSIANBHON vioicimivsvnmmmeseiemiiioenfads 4
Integer primpftive csraaiimaaes 145
T PHIIBVEL L. oo . oloe diien smnimdesicns 145
Key? primitive. . ..cov oo emvieenainsvies 146
Keys (Nommal) .« .o o cavwsaiiniaias 91-93
Label'prindtive . . v.ivv. o L0880 onid 147
LASTPODHHVE oo . v oeisisioss s@nanigsin o 147
LastPut primitive 59, 148
Leftprmitivecccoececiceass 39, 149
LEET-ARROW. ... «.cocoimvionohiensisnre Shnee o 13
Linelengthe oot Bomng 15
st pommitive . .. oo coitooasoteadboth 149
LIStHDOIMIBOR.. . o s oniosvesvaimaititcy 150
LIStE T2 5o oS Vo e T e v 67
Load prigitive. ..o . oniawatdovesss 150
LOGHL PEIRIBVE s :occovimnvibiosionbogmionsios 151
Local vanables.c.vnmmuvivviveria 31
LOgoprimiive: ..o sty nssanaiin 152
LPut (see LastPut)

LPut (see LastPut)

LT (see Left)

Make primitive 152
MathTrans.Librarycoouun. 4
Member? primitive.................... 152
MemberP (see Member)

Modify €olors i ..vinvswamsnisvisvasanis 46
Mouse DIaw ... ccovcevcscsnasnnossesscs 17
Mouse primitiveooiaial 153
Name conflicts: cuvvnnasin assanvaaiaiig 31
Name primitive.........ovvveemecnenesss 153
Name? primitive...............0.ounn. 154
Nodes primitivec00vvnnnn 1556
NOEPHMOYE: o v s s cimsinaas dntbins 155
Numberof Colors 44-45
Number Operations.................... 62
Number? primitive.................... 156
NUMDBEIS..o:oorovinem amisisssmewasmmsmesenss 60
Or primibive ;.o svammiiviamss 156
Output primitive. 157
Output primitive............cooeivuan 33
QURPULS i« iarssusinsi S 26
Package primitive..................... 158
PackageAll primitive 158
Pacdkages .. s sssmainaine el saey 86
Pause primitive............coovvnunn. 159
PD (see PenDown)

PE (see PenErase)

| T B o e W S 38, 159
PERIMENUC . covviins s orms o oo avinsstibaasnis 51
PenColor primitive.................... 159
PenDown primitive 38, 160
PenErase primitive................. 38, 160
PenReverse primitive 39, 161
PenUp'primitive...oove0eseis e 38, 161
PList (see PropList)

PO (see PrintOut)

POAII (see PrintOutAll)

PONSs (see PrintOutNames)

POPs (see PrintOutProcs)

POS (see Position)

RBOBOON. o s oo wisiainieisiais s s e atalorsings 162
POTs (see PrintOutTitles)

PProp (see PutProp)

PRecedence. oosvaneioestis sap g 66
Primitive? primitive 162
Ty LA e e 23
Print primitive .. «.covo c oesomessiosisanss 163
T e R P e L 9
Printing Oul: . . ¥ ne oote o tn e o0l 88
PrintOut primitive 163
PrintOutAll primitive. 164
PrintOutNames primitive.............. 164
PrintOutProcs primitive 165
PrintOutTitles primitive 165
Procedure INputs. . ..o v aoenmpoenonnt 29-30
Procedureoutput 33
Procedures. .oy visinm s svniviidiid 26
Procedures as Variables................ 102
Product primitiveoco000e 166

PROJECT menilivasosmssisssimsinsisos 18

o7 Lo A S T O e e A L Yo 19, 20

PrOPETHES .. oo sonomnsoiom e ciyisopisieiommmy 73
PropList primitive..................... 166
PU (see PenUp)

PUtPIOD PIIMINYVE., . .o gi0um g miewipions wisiors oiers 166
PX (see PenReverse)

Quits s s searn i i 21
Quotient primitive0..... 167
Random primitive, 167
ReadChar primitive 168
RC (see ReadChar)

Reading INPuS: ... v nmomwnnasmonansiise 84
ReadList primitive 168
Recycle primitive 169
Remainder primitive 169
RemProp primitive.................... 170
Repeat priniitiveo e snvnsasssinses 170
Rerandom primitive................... 170
RETURN Ky suavin vaimsmannanicsvmss 11
Re-enteringaline 14
) 171
Right primitivecoivainiaiaii 39,173
RIGHT-ARROWcoooivninn... 13
RL (see ReadList)

Round primitive0e0. 173
RT (see Right)

RU PRIV /oo nsmos o vrosssminisstosin 173
AV e s S e R e e P taardrs 18, 174
Save package primitive 174
SaveRdit primitive ..« vive osveoininsvsissie 174
Say pAMIBve 2. s aivaa s deR et 12
Screeny BAIRO v <7l o isie: carsiosm s slpialssivys 28
SCREBINONOI . <o v o oo o isretiiiie atsieierdins 36
Screen resolutioniiiiiiiiiiiiien 36
OOTEOTY LB T, S ile ol sreiaoiois i sty ate alws st 36
SCOMUNG o xvieiovinia 515 s 0imis bmiss iwrsfe st 14
Scrunch primitiveocoiiiinn. 175
Se (see Sentence)

Sentence primitiveoviniiieiienes 176
SetAspect primitive 53,176
SetBackground primitive 46,177
SetBG (see SetBackground)

SetCursor primitiveoouvuiiuninns 177
SetH (see SetHeading)

SetHeading primitive 40, 178
SetPC (see SetPenColor)

SetPen PRIILIVE o o5 o oivs vsls o sioniss sinadis 179
SetPenColor primitive.............. 46, 179
SetPos (see SetPosition)

SetPosition primitive............... 43, 180
SetRGB primitive 47, 180

SetScrunch primitive 181
SetX primitive.. ... covnueninannn.. 43, 182
) 43, 182
SHIFT-DOWN-ARROW 14
SHIFT-LEFT-ARROW 13
SHIFT-RIGHT-ARROW.0ee 13
SHIFT-UP-ARROW00eaaiieviivais 14
Show PrMItIVE .o vv0 cocnivinsiwominionans 182
Shown? primitivecccciveiiiinen 183
ShowTurtle primitive 38, 183
Sin (see Sine)

Sine prMItVE wove covvvms s 184
Special Delimiters. 56
SplitScreen primitive 35, 185
Splitting:a LI i v s ovsimsmmamisiammas 14
SqREpomitive i v sis v 185
Square brackets.cchvinieiniann 67
SS (see SplitScreen)ccievieainian 35
ST (see ShowTurtle)

Stop primitive.............iiun.. 34, 186
Stoppinga Commandooooun 12
Suan PHDBVE: . e s s e s 186
SYSHONYHIa NN - 5 X S s aiesnieiaps 23
Tan (see Tangent)

Tangent primitive..................... 186
ACSEPRIINTe. 2ok &0 M o e e s 187
TEXEPIIMUBVE . oo on o siviim pmasijois siaainsor e 187
TextScreen primitive 17, 188
Thing PrmItvet e, &0 L 0o sl e Sl 188
Throw primitivecuveveeaienerives 189
A G o A TR W B ST 190
TopLevel primitive.................... 190
Towards primitive 41, 191
TS (gee TeXtSCrean) ...« wsivviinant 17
9t B e e S T 37
TYPePIMILVE. .« oo vnvarvstan s s son 191
Unbury primiiveoveaveaaaionis 191
CIP=ARROW et dlyiehs oo sianionnts S maioiats 13
Variables:o oo vomsessomscnscues 71
Version primitive 192
Waib DrimItve s s, & S e ol diinte o v e 193
Window primitive 52,193
Word Operationsccueevaveiiees 58
Word prumiiver sl . o b oasaisee s 59,193
Wotd? PRmibvVeo osisomosionemae 194
Words ot D S s ze s St e 55
Wordsas Names.ovvvninns 57
Wordsas Values....................... 57
Worksplice /% <oviasincton D Oamiuivas 86
Wrap primitive s oo ovaiisvessdiyssyomass 52
AE08 PEMILVE ..o o o/svioie 000 n scoipininissiazns 195

YPOS PrimitIVe; .voc v asnmaiaiiliveeai 195

363111-01
Rev. A Printed In USA

