- 28 sinclsir |

' USER MANUAL

 TIMEX IE R ="— =

2008
PERSONAL
COLOR COMPUTER

USER MANUAL

AAAAAA

Graphic Design

I e =]
Special Acknowledgements

Charles F. Durang
Author
N. Attleboro, MA

Judith Richland
Graphic Design

Cambridge, MA

and contributions:

Bruce Brown

Connecticut Computer
Society

West Hartford, CT

Barbara Cobbol
Naugatuck, CT

Gregory Coffin, Ph.D.
and Staff

Urban Schools
Collaborative

Northeastern University

Boston, MA

Nancy Gardner
Cambridge, MA

Jack Hodgson

Sinclair/Timex User
Group

Boston Computer Society

Boston, MA

Larry Johnson
Boston Museum School
Boston, MA

Timex personnel.

Susan C.T. Mahoney
Project Manager

Richland Design Associates

We would like to acknowledge the many
pecple who gave us their feedback, comments,

Monique and Marcella
Paris
Waterbury, CT

Bill Russell and
Central Pennsylvania
Users Group

Centre Hall, PA

Serif & Sans, Inc.
Typography
Boston, MA

Jackie Strassberger
Belmont, MA

Russ Walter

The Secret Guide to
Computers

Boston, MA

Ellen Weinberger
Medford, MA

and especially
Steven Vickers and
Robin Bradbeer,
from whom we
learned much.

plus the letters from the consumers and a very special
thanks for all of the time and effort contributed by

Timex Computer Corporation

©1983 by Timex Computer Corporation
©1982 by Sinclair Research Limited

This equipment generates and uses radio frequency
energy and if not installed and used properly, that is,

| in strict accordance with the manufacturer's instruc-
tions, may cause interference to radio and television

{ reception. It has been type tested and found to com-

i ply with the limits for a TV Interface Device in
accordance with the specifications in Subpart H of
Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference in a

| residential installation. However, there is no guaran-
tee that interference will not occur in a particular
installation. If this equipment does cause interference
to radio or television reception, which can be deter-
mined by turning the equipment off and on, the user
1s encouraged to try to correct the interference by one
or more of the following measures:

« reorient the receiving antenna

« relocate the computer with respect to the receiver

* move the computer away from the receiver

« plug the computer into a different outlet so that
computer and receiver are on different branch
circuits.

If necessary, the user should consult the dealer or an

experienced radio/television technician for additional

suggestions. The user may find the following booklet

prepared by the Federal Communications Commission

helpful: “"How to Identify and Resolve Radio-TV Inter-

ference Problems"'. This booklet is available from the

US Government Printing Office, Washington, DC

20402, Stock No. 004-000-00345-4.

WARNING: This equipment has been certified to
comply with the limits for a TV Interface Device,
pursuant to Subpart H of Part 15 of FCC Rules. Only
peripherals (computer input/output devices, termi-
nals, printers, etc,) certified to comply with the TV
Interface limits may be attached to this computer.
Operation with non-certified peripherals is likely to
resuit in interference to radio and TV reception.

90-Day Limited Warranty

Congratulations
on the Purchase of Your
Timex Sinclair Computer!

We hope you'll take the time to read the owner's manual. This will help you to use
your Timex Sinclair Computer most effectively and with the greatest of pleasure.

Your new Timex Sinclair Computer, incorporating the latest electronic technology,
has been manufactured under stringent quality control standards. Yet, no matter
how well designed and constructed, your computer may at some time require
service.

To assure that you enjoy the traditional satisfaction of owning a Timex product,
Timex computer repair service offers:

* 90-DAY LIMITED WARRANTY

* LOW COST 12-MONTH SERVICE CONTRACT
* FACTORY REPLACEMENT PARTS

¢ RELIABLE REPAIRS

* PROMPT RETURN OF YOUR COMPUTER

The Timex Computer Club

The Timex Computer Club is an exclusive group of Timex Sinclair Computer
Owners. Membership in the Timex Computer Club will allow you to increase your
enjoyment of your Timex Sinclair computer. As a member, you will receive regular
early notice of Timex Computer Corporation technological advances, new hardware
and software products, creative programming ideas and special products and soft-
ware offers. You will also be able to share computer ideas and achievermnents with
other club membkers all over the country! For enrollment see card in back of book.

NOTE: The 90-Day Limited Warranty on your Timex Sinclair Computer is in no
way affected if you choose not to send us the Purchase Information Card. However,
we must have the information to enroll you in the Timex Computer Club.

90-Day Limited Warranty

Basic Coverage: This Timex Sinclair Computer is warranted to the owner for a
period of 90 days from date of original purchase against defects in manufacture.
This Limited Warranty is given by Timex Computer Corporation—not by the dealer
from whom it was purchased.

What Timex Will Do: If a defect in manufacture of the Computer is discovered
within 90 days from date of original purchase, Timex Computer Corporation will,
at its option, repair or replace the defective unit.

What You Must Do: You must return the Computer, with sales receipt, indicating
date of purchase, to Timex Product Service Center with a written explanation of the
reason for the return. It is recommended that you include both cables, TV/Computer
switch, and Power Plug with your shipment.

Return your unit, postage pre-paid to:
Timex Product Service Center
FO. Box K
7004 Murray Street
Little Rock, AR 72203

To protect against in-transit loss, we recommmend you insure your Computer.

Limitations:

THE ABOVE REMEDY IS EXCLUSIVE. TIMEX COMPUTER CORPORATION
LIMITS THE DURATION OF ANY WARRANTY IMPLIED BY STATE LAW,
INCLUDING THE IMPLIED WARRANTY OF MERCHANTARBILITY, TO 90 DAYS
FROM THE DATE OF ORIGINAL PURCHASE. TIMEX COMPUTER CORPORATION
IS NOT LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGE.

This warranty gives your specific legal rights, and you may also have other rights
which vary from state to state. Some states do not allow limitations on how long an
implied warranty lasts, or the exclusion of limitation of incidental or consequential
damages, so the above limitations or exclusions may not apply to you.

This warranty is void if the Computer has been tampered or ill-treated or if the
defect is related to servicing not performed by us.

Join The Club!

Get the Most out of Your
Timex Sinclair Personal Computer

Join the Timex Computer Club!

The Timex Computer Club is an exclusive group of Timex Sinclair Computer
Owners. As a member you will receive early notices and up-dates of Timex
Computer Corporation technological advances, new hardware and software
products, creative programming ideas and special offers. You will also be
able to share computer ideas and achievements with other club members
all over the country!

To enroll in the Timex Computer Club, simply fill out the card in the back of

this manual and mail it to the address printed on the card. We welcome you

and are looking forward to hearing from you.

Also, if you need to know:

* The location of the closest Timex Computer retailer

* How to get in touch with a local Timex Computer User Group or how to
start one

* More technical information about Timex Computer Corporation (TCC)
Products and Services

Contact our Toll Free ‘‘Hot-Line'’ 1-800 24 Timex
8:00 A.M. to 8:30 P.M. Monday-Friday Eastern Time
(subject to change)

Table of Contents

I Getting Started
Introduction:
Chapter 1:
Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

II Programming
for Beginners

Chapter 8:

Chapter 9:

You and the Timex Sinclair 2000
How To Set Up the Computer

1
5

Finding Your Way Around the Keyboard 11

ENAEEEDELETE
CAPSSHIFT CAPS LOCK

SYMBOL SHIFT
TRUE VIDEO
INVERSE VIDEO

Telling the Computer What To. Do
PRINT ENTER
“' Strings SQR

Using Ready-To-Run Programs
Timex Command Cartridges
LOAD RUN SAVE VERIFY
LINE MERGE
REM Report Codes

Using Colors
INK PAPER BORDER
Drawing Lines and Circles
PLOT DRAW CIRCLE
Sound
BEEP
Writing a Program

NEW Line#s GOTO
scroll? BREAK CONT

Arranging Output on the Screen
; . ATTAB : ti
EDIT

37

55

59

65

7k

79

Table of Contents

e e e S ——— T
Chapter 10: Saving Time and Space with Variables 39
LET = Variables

$ String Variables

CLS CLEAR

Chapter 11: Mathematics with the T/S 2000 95
+ = 1 o ()
RND RAND INT

Chapter 12: Programs That Ask for Information 103
INPUT STOP
READ DATA RESTORE

Chapter 13: Programs That Repeat: Looping 113
FOR...TO NEXT STEP
LIST

Chapter 14: Programs That Decide: Branching 121
IF... THEN <<= >
>= <>

Chapter 15: Programs mthm Programs:
Subroutines 133
GOSUB RETURN

Chapter 16: Arrays 143
DIM Subscripts

String Slicing

SAVE DATA

IIT Special
Features of
the T/S 2000

Chapter 17: Graphics 151
SCREEN$

Chapter 18: User Defined Graphics 163
BIN POKE USR

Chapter 19: Time and Motion 169
INKEY$ PAUSE STICK

Table of Contents

Chapter 21:

Chapter 22:

Chapter 23:

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix G:
Appendix H:

Color
BRIGHT FLASH OVER
INVERSE

Sound and Music
SOUND

Checking Up
POINT ATTR FREE
CODE CHR$

Using the Printer
LPRINT LLIST COPY

Input and Output
PEEK IN OUT OPEN CLOSE

FORMAT ERASE MOVE CAT
RESET

Review of T/S 2000 BASIC
The Character Set
Display Modes and Memory
The System Variables
Using Machine Code
Keyword Table

Index

Report Codes

177

185

197

203

211

217
239
247
261
267
271
279
287

Additional commands covered in Appendices:

PEEK ON ERR DEF FN FN STR$ VAL

VAL$ LEN EXP SGN SIN COS TAN

LN PI ASN ATN

You and the Timex
Sinclair 2000

Chapter Preview Throughout this manual,
the term T/S 2000 is used
torefer to any of the mod-
elsin the Timex Sinclair
2000 series of computers.

What Is a Computer Good For?

Your new Timex Sinclair 2000 computer is a very
special instrument. [t is a tool that can increase
the power of your mind as a hammer or a wheel-
barrow assists your muscles. For the beginner,

it is easy to use, and easy to understand. For

the expert, it is an extremely sophisticated and
powerful device.

Let's explore the comparison we have suggested:
the Timex Sinclair as a tool, like a hammer or
wheelbarrow.

From the beginning of time, humans have
invented tools to help extend their reach, supple-
ment their power, and increase their stamina. For

almost as long, we have supplemented our minds
with tools.

Introduction: You and the Timex
Sinclair 2000

I 1 YR A N R~ JO L I S ==~
It was hard for us to remember a large number of
things, or specific numbers, so we kept track of
the sheep in our flock with notches on a stick, or
pebbles in a bag. We invented writing to keep
records, in words and numbers.

It was hard for us to manipulate many or large
numbers, so we devised written mathematical
systems, and increasingly complicated machines,
leading eventually to the “adding machine'’ or
calculator.

We also found it difficult to perform boring
operations over and over again without making
mistakes, so again we invented machines and
systems (like "‘accounting’’) to help us keep
track.

The computer is the ultimate machine to assist
our minds. It can remember—and find—vast
amounts of information. It can manipulate this
information in ways beyond what we can do "'in
our heads.” It can perform tedious repetitions of
simple tasks over and over and never make a
mistake. It can do for us all the things we have
trouble doing, and it can do some things for us
much more quickly than we could do them alone.

Just as we cannot drive nails with our hands, but
can with a hammer, and cannot carry hundreds
of pounds of garden soil in our arms, but canina
wheelbarrow . . . so the computer helps us do
things we can't do alone.

But humans have to guide the hammer and
wheelbarrow in their work. And we must decide
what problems need solving with a computer,
and how we must go about solving it. The com-
puter is a good laborer, but you are the foreman.

Some of our other tools have more than one
use—you can pull nails out as well as drive them
in with a claw hammer—Dbut the computer has

Introduction: You and the Timex
Sinclair 2000

thousands of uses. It is as much a "'generalist” as
a human being, and can do all kinds of startlingly
different things. . . as long as you tell it how.

Let's begin by looking at some of the things your
Timex Sinclair 2000 can do, and how you guide it
in its efforts.

Using Your Timex Sinclair 2000

The Timex Sinclair 2000 is a machine you can
use for many different purposes, in many differ-
ent ways. You can start in just a few minutes
with pre-recorded programs to

keep household records

play games

supplement your child's education
assist in your work

and learn more about computing.

We said that the computer could do many things,
but only if you showed it how. In Part II, we will
show you how to write your own programs—lists
of instructions for the computer. And we will go
on from there to more advanced programming;
with this and other books, you can become as
skilled with the computer as you choose. The
Timex Sinclair 2000 can go with you as far as you
decide to go on this journey: unusual for a home
computer, it can handle up to 16 megabytes— 16
million characters—of information . It can

play music you compose through up to four
individually controllable sound channels. And it
has advanced color and graphic capabilities,
including a dual screen mode for animation, a full
width mode and Extended Color Mode.

Note: 64 characters, plus two 8 character-wide
margins exactly fills a standard 80 column format
page for word processing applications.

But one of the best things about using the T/S
2000 is that you don't have to invent your own
programs. If you write a program, you can save it

Introduction: You and the Timex
Sinclair 2000

e ||
to be used by the computer over and over, when-
ever you need that particular job done. So it fol-
lows that programs written by other people can
also be used by the computer. This means you
can put the T/S 2000 to many uses with programs
that have already been written.

Just as you can insert a special wheel into a
sewing machine and have it do a particular
stitch, you can insert a program into your com-
puter and have it perform a certain task: run
through educational drills for the kids, provide
the environment for an “adventure’” game, save
and adjust quantities in recipes, help you with
your tax records. . .all without your having to
learn to write programs!

We hope you'll eventually want to learn how

to write your own programs—it's good thinking
practice even at the beginning level—but first we'll
talk about how you can use your Timex Sinclair
2000 immediately, with prerecorded programs
that are widely available.

Part I of this book gets you started, setting up
the computer and learning the keyboard. It also
shows you how to use prerecorded programs. In
Part IT we study the basics of programming, and
in Part Ilf some of the special features of the

T/S 2000.

The Appendices include useful information you
may want to refer to at any time, and they also
contain some material that is addressed to
experts who know computing well and need
details of how the Timex Sinclair 2000 functions
internally.

Congratulations on joining the Computer Age!
‘You will surely find it enjoyable, useful and
educational.

How To Set Up 1
the Computer

Chapter Preview This chapter shows you
how to connect the T/S
2000 to your TV and
cassette recorder, and
start using it right
away.

In the box, we've provided everything you need
to start using your Timex Sinclair 2000 computer
immediately, with your own (color, preferably) TV
set and an inexpensive cassette recorder.

Here's what you should have:

Chapter 1: How To Set Up

the Computer

g

Bottom of computer

e

T T
Joystick attachment onioff

Left side of computer

(=
TV cable

—_ 0~ D —(P

TV cables with adapter

Computer
ﬂ Q l":—*%_c‘%‘fc

O‘I“\."

Transfer switch box

———

Dual audio cable

1. The Timex Sinclair 2000 itself. Though
tiny, it is as powerful as computers that filled
a room only ten years ago.

On the top is the keyboard; on the bottom
you'll find a switch labelled Ch. 2/Ch. 3. More
about that in a moment.

On the back you'll see sockets marked TV,
POWER, MIC, EAR, and MONITOR, and a
long slot where you can attach "'peripheral
devices' like the Timex 2040 Printer.

| o
000 @ Ij—l
| 1 —
Peripheral Connector Maonitor EAR MIC Power TV

Rear view of computer

On the left side you'll find the ON/OFF
switch, and sockets on both left and night
sides where you can plug in joysticks.

2. A television cable—ecither a long one with
the larger plugs at the ends or two shorter
cords, approximately 4 foot lengths—to con-
nect the computer to your TV set. If you have
the two 4 foot cables, use the double female
adapter to join them.

3. A transfer switch box, allowing you to
switch between receiving television programs
through the antenna and using the T/S 2000.

4. A shorter dual audio cable—the one with
two smaller plugs at each end—for connecting
the computer to your tape cassette recorder.

Chapter 1: How To Set Up
the Computer

5. A power supply unit, with a plug for the
wall socket and one for the computer.

Power supply unit
6. This manual.

7. Some free software to help you get
started.

Here's how to quickly connect your Timex Sinclair
Manual 2000 (turn page for details):

The illustration shows how you can usea TV or a
monitor with the T/S 2000. Only a television will
be necessary to operate this computer.

Cassette recorder

wall outlet Television

Chapter 1: How To Set Up
the Computer

.- - . |
VHF First, disconnect the VHF TV antenna wires
from your television set (you can leave the UHF
wires alone).

Connect the wires from the transfer switch box

to the terminal screws on your TV set instead, and
connect the antenna wires to the screws on the
transfer switch box.

Connect to antenna

Plug the long connecting cable into the transfer
switch box and into the TV socket on the T/S 2000.

If you already have a transfer switch box on the
TV, for a TV game or another computer (like the
Timex Sinclair 1000), try leaving it on; they all work
pretty much the same, and chances are you can
use the existing one. Then you can use the one
that came with your T/S 2000 for a second TV set
and connect either of your computers to either set.

~([[B=-C

Connect transfer switch box
to VHF terminals on TV

Note: If you have cable TV, or a 75-ohm antenna
lead (a round wire ending in a screw terminal), you
will need a small device to convert this to the flat,

; two-wire lead that connects to the transfer switch
ﬁ?ﬁ;ﬁﬂe‘?m“mg box. There are several versions of this device, which
may be called a “UHF/VHF matching transformer,”
"75-t0-300-ohm converter,"" “‘cable adaptor'’ or
“"VCR adaptor.” Someone at your local electronics
store will be able to help you; the cost will be from
three to ten dollars. You may have to contact your
cable company if their wire goes into your set
instead of being attached to the back.

Second, plug the power supply into the wail
and into the POWER socket on the computer.

Power supply to Power socket

Chapter 1: How To Set Up

the Computer

Channel 2/(Channel 3

21982 Sinclair Research Ltd
1983 Tinex Conmputer Corp

computer tape recorder

jI‘ -..

== poo d o

f

Connect EAR to EAR
Connect MIC to MIC

;‘\—(ooouo

)

Third, turn on the TV. Set it to channel 2 or chan-
nel 3, whichever one is not being used for broad-
casting in your area. Turn the sound all the way
down. Make sure the switch on the bottom of the
T/S 2000 is set to the same channel. Use a ball
point pen or similar instrument to set the channel
switch to the desired channel.

Now, turm on the computer with the switch on
the left side.

You should have a picture like this on the screen:

The copyright notice at the bottom of the screen
means the computer is ready for action.

Fourth, connect your recorder to the computer
with the dual audio cable. Connect the earphone
socket on the recorder to the EAR socket on the
computer in order to load a program from a cas-
sette into the computer, and the microphone socket
of the recorder to the computer's MIC socket to
save programs you've added information to, or writ-
ten yourself. Make sure you use the same color
plugs for the EAR to EAR connection and for the
MIC to MIC connection. More about this in
Chapter 4.

Note: The picture on your TV screen should
be clear; if you are getting interference, try the
following steps in order:

1. Adjust the tuning control on the set (be sure
the Automatic Fine Tuning is off), then try the
brightness, contrast, and horizontal hold (hor-
izontal is usually on the back of the set).

2. Make sure the computer is set to the same
channel as the TV set, and is turned on.

Chapter 1: How To Set Up
the Computer

I S S S e P!

3. Move the computer away from the TV set or,
if possible, place it lower than the set.

4. Plug the computer into a different outlet from
the one being used for the television set. Often
outlets on opposite walls of a room are on dif-
ferent branch circuits.

5. You may wish to try a longer (shielded) cable
between the switch box and the computer to
move the T/S 2000 still farther away from
the TV.

6. Consult an experienced radio/TV repairman;
your set may need adjusting.

Now you are ready to use your Timex Sinclair 2000.

10

Finding Your Way 2
Around the Keyboard

Chapter Preview How the cursors—[3, [,
[J—andcars
SHIFT and SYMBOL
SHIFT keys help you use
all the functions on all
the keys. We investigate
DELETE, CAPS LOCK,
TRUE VIDEO and
INVERSE VIDEO, and
learn how the left and
right arrows work.

You make the Timex Sinclair 2000 perform by
pressing the keys on its keyboard (notice we didn't
say “‘typing,’’ because it's easier than that, as we

wfgj&;ﬂ o)
o . =I‘.ﬁ Hl ' .-I I = - [

R T ol '
FN LINE OPEN & CLOSE & MOVE ERASE POINT

C5 TAN INT RAND STRS CHRS

—

OATA

11

Chapter 2: Finding Your Way
Around the Keyboard

12

C ’SI.W(|WVIKD D!L!Yl
O'EN . CLM! l IIDVE (Mu
.
{55

shall see). At first glance, the keyboard looks im-
possibly complicated—each key has five or six
labels—but you'll quickly learn how to use it.

By the end of this chapter, in fact.

If you do know how to type, you'll notice that the
largest labels on the keys—the letters and num-
bers, in most cases—are arranged just like a
typewriter's keyboard.

The good news, for typists and non-typists alike,
is that you won'’t have to type in your commands
to the computer. Instead, you'll find they are indi-
cated by complete words on and around the keys.
In many cases, these “keywords"' are written above
or near the key for the letter that the word begins
with. For example, notice the word PRINT on the
P key, and POKE and PEEK on and above the key
just to the left of it. Look at the keywords on or
above the D, F and G keys, too.

All of these words and symbols on and around
each key mean, of course, that each key can per-
form many different functions as you give instruc-
tions to the computer.

What a key "“means"’ to the computer when you
press it depends on two things:

1. Which “cursor” is on the TV screen (we'll see
a cursor in a moment) and

Chapter 2: Finding Your Way
Around the Keyboard

1982 Sinclair Research Ltd
©1983 Timox Computer Corp

2. Whether you press either CAPS SHIFT or the
SYMBOL SHIFT key while you press another
key.

Let's do a few things with the keyboard to see
how to get all the different meanings from the
keys. First, we'll ask you to do EXACTLY as we
tell you. Then, we'll have a chance to experiment.

The [Cursor. . . Words on the Keys

Set up and turn on the computer and television
set as we did in the last chapter. You should now
have the copyright notice in the lower left hand
corner of the screen.

Press the key marked ENTER.

Now, instead of the copyright notice, you have

a flashing [in the lower left-hand corner of the
screen. (It is actually alternating between a black-
on-white K and a white K in a black square. Adjust
the tuning on your TV if you need to, to get it clear))

We'll use, for our examples, the keys you'll use
most often on your Timex Sinclair 2000. Start
with the P key, near the upper right hand corner
of the keyboard.

With the | cursor on the screen, press and release
the P key.

13

Chapter 2: Finding Your Way
Around the Keyboard

14

PRINT i

Press and release the P key

PRINT p[i

Two things have happened: the word PRINT has
appeared at the bottom of the screen, and the
cursor has changed to a flashing .

[means KEYWORD. Whenever the [is on the
screen, pressing a key will cause the “'keyword"’
on the key (like PRINT, POKE, INPUT, eic.) io
appear on the screen.

The cursor has also moved 1o a point after the
word PRINT. The cursor marks the spot on the
screen where the next item will be printed; in a
while we'll see how to move the cursor so as to
put items where we want them, or to get to items
we want to change.

The [Cursor. . .the Main Characters
on the Keys

Now press and release the P key again.

You will get a lower case p, and the screen will
look like this.

Incidentally, we keep saying *‘press and release'
because the T/S 2000 keyboard has an "'auto-
repeat’”’ feature. If you hold down a key for more
than a second or so, it will repeat the character
for as long as you press the key. Keep this in mind,
and just press the key briefly if you need a single
character or keyword.

E3@PRINT

Chapter 2: Finding Your Way
Around the Keyboard

PRINT puijk543[l

While holding CAPS SHIFT,
press the P key

PRINT puijkS43p[l

PRINT puijk543pLOKJH

EJcAPS SHIFT, ¢

Press a few more letter keys, and a few
number keys.

B means LETTER. When the [} is on the screen,
pressing a key will produce the main symbol on
the key. . . the letter or number just above the
keyword,

The CAPS SHIFT. . . Capital Letters
Notice, at either end of the bottom row of keys, a
key marked CAPS SHIFT. While holding it down,
press the P key again. Aha, a capital P!

Try this with a few other letter keys. But not the
number keys, yet.

Let's look at the number keys. The words and
symbols just above the keys (but below the
names of colors) are obtained by holding CAPS
SHIFT and pressing the keys. For instance:

15

Chapter 2: Finding Your Way
Around the Keyboard

16

While holding CAPS SHIFT,
press 5,6,7 or 8 for arrows

PRINT puijk543pL0KJ[H

PRINT puijk543PLOMKJH

Start with the "arrow’' keys: b, 6, 7 and 8. Hold-
ing CAPS SHIFT, press 5. Notice the cursor mov-
ing to the left, in among the letters. Try it a few
more times. Try holding it down (while still hold-
ing down the CAPS SHIFT.)

Try this: hold CAPS SHIFT, press 5 and then—
while holding b—let up on CAPS SHIFT.

Do the same with the 8 key and move the cursor
the other way. Move it back and forth a few times.

Chapter 2: Finding Your Way
Around the Keyboard

While holding CAPS SHIFT,
press the 0 key

PRINT puijk543pLokd il

PRINT puijk543PLOKJ[l

¥ DELETE

Try the 6 and 7 keys,

The screen blinks, but the cursor doesn't move.
These keys are used to move between lines in
BASIC programming, and we'll discuss that
much later.

The DELETE Key

Move the cursor nack to the end of the line, us-
ing CAPS SHIFT and the 8 key. Then hold CAPS
SHIFT, and press the 0 key. You can DELETE a
character at a time, in reverse! If you hold it, you
can erase many characters in a row. (Keywords
are erased with one stroke, as they are printed.)

Note: DELETE works somewhat differently
when the [cursor is on the screen. This will be
explained in detail in Chapter 15. For now, note
that if you use the auto-repeat feature (holding
down the key) to erase an entire line of text, you'll
eventually get back to the [cursor. Then DELETE
will appear on the screen as a keyword . . . which
you can then delete!

This is very important. Now you know how to
“erase,"" if you have something on the screen you
don't want.

Try using the 5 and 8 keys to move the cursor to |
a particular letter in the middle of the line, and
then DELETE it. Remember, it deletes the char-
acter to the left of the cursor.

17

Chapter 2: Finding Your Way
Around the Keyboard

‘The SYMBOL SHIFT key

ng#>= T0 THEN t+[i

Press CAPS SHIFT while
pressing 2

18

Now is a good time to practice the “auto-repeat’
feature. Hold down a key until its character is
printed several times on the screen. Then hold
down CAPS SHIFT and DELETE until the charac-
ters are erased.

SYMBOL SHIFT. . . Words & Symbols in
Black Bands on Keys

Near the right-hand CAPS SHIFT key is a key
marked, in a black box, SYMBOL SHIFT (actually,
it's abbreviated SYMBL SHIFT to fit on the key).
Can you guess what you get by holding SYMBOL
SHIFT down and then pressing a key?

The black band is the clue: you get the word or
symbol in the band on the key. Try a few, and
erase them using DELETE.

CAPS LOCK. . .the [§] Cursor

Try holding CAPS SHIFT and pressing 2. Notice
that the cursor changes to a flashing [Now try
typing a few letters. And a few numbers. The
CAPS LOCK feature locks you into capital letter
mode, just as on a typewriter, but it lets you use
the numbers, too.

DELETE, SYMBOL SHIFT, CAPS LOCK, [

Chapter 2: Finding Your Way
Around the Keyboard

PoIUYTH

The CAPS LOCK feature
locks you into capital letter
mode but allows use of
numbers

Press CAPS SHIFT while
pressing the 5 and 8 keys

CAPS SHIFT, CAPSLOCK

You can still get the words and symbols above
the numbers with CAPS SHIFT. Try holding CAPS
SHIFT and pressing the 5 and 8 keys. (For now,
don't use the 1, 3, 4, or 9 keys with CAPS SHIFT.
We'll get to them.)

Try pressing CAPS SHIFT and the 2 key again.

It changes back to the | cursor. Press it again
(holding CAPS SHIFT). It turns the CAPS LOCK
on and off, alternately. (Unlike using a typewriter,
you can't release the CAPS LOCK by just press-
ing CAPS SHIFT)

All the letters you type when the B cursor is on
the screen will be capitals.

19

Chapter 2: Finding Your Way
Around the Keyboard

Remember, the @ key deletes
the character to the left of
the cursor

Press CAPS SHIFT while
pressing 4

PRINTpoiuyPOTUSGETL

20

Probably by now you have a long line of miscel-
laneous characters on your screen, maybe even
two lines’ worth. Better DELETE them all.

Remember: CAPS SHIFT and the 0 key DELETE
the character or keyword to the left of the cursor;
CAPS SHIFT with the 5 and 8 keys move the cur-
sor to the left and the right respectively.

Now you're back to the [cursor. Experiment
some more, if you like. You can always use DELETE
to get back to the beginning.

INVERSE VIDEO and TRUE VIDEO

There are a few other labels above the top row

of keys we want to investigate. Hold CAPS SHIFT
and press 4, to get INV VIDEO (the cursor will not
change). Then type a few characters.

This is the INVERSE VIDEO mode. Characters are
printed in white on a black background. Unfortu-
nately, no cursor tells you that you are in this mode
if you forget. Of course, you can always DELETE
unwanted characters. See what you get with
CAPS LOCK on and off.

[INVERSE VIDEO

Chapter 2: Finding Your Way
Around the Keyboard

Press CAPS SHIFT while
pressing 3 for TRUE VIDEO

PRINTpOT UYL

PRINTpO uyr BBl PO USA 7,

INV VIDEO, TRUE VIDEC

To get out of INVERSE VIDEO mode and back to
“normal,” press CAPS SHIFT and 3; TRUE VIDEO.

Something funny happens if you go back, with
the cursor, to the middle of a line of INVERSE char-

acters and press TRUE VIDEO: the rest of the line
changes!

If you then press INVERSE VIDEO, it all changes
back again.

To insert characters in TRUE VIDEQ in the mid-
dle of a line of INVERSE characters, move the
cursor to the spot where you wish the insertion,

press TRUE VIDEO,

type the characters,

then press INVERSE VIDEO again to return the
rest of the line to white-on-black.

You'd follow the same steps to insert INVERSE
characters into the middle of a TRUE sequence.

21

Chapter 2: Finding Your Way
Around the Keyboard

| BEEr INK

Press CAPS SHIFT while
pressing 9 for the graphic
mode

The [f] Cursor. . . Graphics Mode

On the number keys in the top row of the key-
board, you'll see small graphic symbols. To print
them on the screen, you must switch to graphics
mode. Holding CAPS SHIFT, press the 9 key.

Notice that the cursor has changed to a flash-
ng @

Now, if you type any of the keys with a graphic
symbol on them (the numbers 1-8 keys), you'll
get that symbol. Try some.

Note: The symbol you will obtain is shown by
the gray, or key-colored, portion of the square on
the key—not the black portion. At this point it
may seem odd that the black part of the design
on the key does not correspond to the black figure
on the screen. Later, however, we will see that the
symbol on the screen is not always black, but
“INK colored," and the part of the square that

is key-colored is also INK-colored.

Try a few.

You can obtain 16 different graphics from the
eight keys. The inverse of each symbol — the por-
tion of the square in black on the key —is obtained
by holding either CAPS SHIFT or SYMBOL SHIFT
while you press the key. You can see the difference
most easily by pressing the 3 key, first unshifted
and then SHIFTed.

(If you are in INVERSE VIDEO mode, an
unSHIFTed key will give you the portion of
the square in black on the key.)

The lower three rows of keys—without graphic
symbols—will give you capital letters for A through
U, and a curious mix of symbols for W-Z. None of
this is very useful just now, but later on, in Chapter
18, we will use the A-U keys to design our own
graphic symbols!

Chapter 2: Finding Your Way
Around the Keyboard

Press CAPS SHIFT while
pressing SYMBOL SHIFT for
extended mode

Extended mode

Try to DELETE. Notice you don't need to hold the
SHIFT down in order to DELETE in graphics mode.

To leave graphics mode and return to the
cursor, press 9. (To re-enter graphics mode, you
must press 9 while holding CAPS SHIFT.)

By the way, you cannot change from TRUE VIDEO
to INVERSE VIDEO (or vice versa) while in the
graphics mode. You must leave the graphics
mode to do it.

When the [g cursor is on the screen, you can get
the graphic symbols on keys 1 through 8.

The [J Cursor. . . the Words above the Keys
Press CAPS SHIFT and SYMBOL SHIFT at the
same time. The cursor changes to a flashing
This is called the extended mode. When the
cursor is on the screen, you can obtain the words
written on the keyboard above each key.

23

Chapter 2: Finding Your Way
Around the Keyboard

TAB

’

PRINT

- | .
RESET

TAB

;

24

Since these are commands or mathematical
functions, the [changes back to [after you
press one key. It works like the keyword g cur-
sor. Try a few.

The top row of keys is a special case. As we saw,
the words just above the keys were reached from
the [cursor, using CAPS SHIFT. The extended
mode is used to select colors. This works well in
programs, as we will see. But if you play with TRUE
VIDEOQ, INVERSE VIDEO, CAPS and SYMBOL
SHIFTS, and the various color keys, you'll find

the results in the immediate mode are largely
unsatisfactory and often unreadable. Don't worry
about it for now.

SHIFT Keys With [Cursor...

Words & Symbols under Keys

If you enter the extended mode by pressing
CAPS SHIFT and SYMBOL SHIFT, then hold
SYMBOL SHIFT while pressing another key,
you'll obtain the function or command written
under the key. Once again, the cursor returns
to . |
(Most of the time you can use CAPS SHIFT instead
of SYMBOL SHIFT to obtain functions written under
keys. In this manual, however, we'll refer only to
SYMBOL SHIFT.)

By the way, if you enter extended mode by mis-
take and decide you want to get out of it without
typing anything, just press both CAPS SHIFT and
SYMBOL SHIFT at the same time again.

When the || cursor is on the screen, you get the
keywords above the keys or, by pressing SYMBOL
SHIFT, the keywords under the keys.

By now, you ought to feel reasonably comfortable
with the keyboard. There are a lot of commands
and characters available on it, but most of the

EJ CAPS SHIFT, SYMBOL SHIFT

Chapter 2: Finding Your Way
Around the Keyboard

STR$ |

time you will be in the [mode. Here is a reminder
diagram showing the cursors and SHIFT keys
needed to obtain the different symbols on the keys:

__——R4 Cursor
| _———H cursor (y)

RETRN-!
1

[—

L

Cursor or [Cursor with CAPS SHIFT (Y)
3 Cursor

| —~——E3. P or @ Cursor with SYMBOL SHIFT

B Cursor with SYMBOL SHIFT

There are three symbols that do not even show
on the keyboard, but are available for usel!
They are:

© —the copyright symbol. Under the P key,
when you enter extended mode (the g cursor)
from keyword mode (the [cursor) you obtain the
command RESET as shown on the keyboard by
pressing the P key while holding either SHIFT
key. When you enter extended mode from letter
mode (the [cursor), the © symbol appears
when you press P with a SHIFT key.

{—the left bracket. Obtained the same way,
instead of ON ERROR, from the F key.

}—the right bracket. The same, instead of
SOUND, from the G key.

We have not covered all the commands and sym-
bols on the keyboard. Some you will know from
mathematics, some you will know if you have
programmed other computers in BASIC, and
some are for use with the special features

of the Timex Sinclair 2000 and the peripheral
devices that can be connected to it.

Repeat this chapter any time you like, or use the
Timex Sinclair 2000 Keyboard Tutorial program
supplied.

You are well on your way!

25

Chapter 2: Finding Your Way
Around the Keyboard

26

Note: Appendix F, the Keyword Table, can be
very helpful to you in your programming. (You may
want to glance at it now.) It tells you how to obtain
any of the available keywords and single-key func-
tions on the T/S 2000.

The Keyword Table can be useful if:

1. You want to use a certain keyword and can't
locate it on the keyboard.

2. You aren't sure if a certain word in a program
is a keyword.

3. You are having trouble entering a program line
(you receive a syntax error marker) or running
a program (a report code stops the program at
a particular line)—it may be that you have
typed in a word, letter by letter, that you
should have entered as a keyword.

It is especially easy to make this mistake with the
keywords AT and TO, and the Keyword Table can
remind you to look for the keyword.

Telling the Computer 3
What To Do

Chapter Preview PRINT and ENTER help
you start giving orders
to the T/5 2000. Learn
how to put words and
numbers on the screen.
We look at the quotation
marks, "“strings,"’ and
how to use functions
like SOR.

As we have said, the computer is a very versatile
machine. It can do many things, as long as it is
told what to do. But it has to be told in words it can
understand, and in small steps it can execute.

Now you can use your knowledge of the key-
board to start giving directions to your computer.

The Timex Sinclair 2000 is built to understand
orders given to it in BASIC (which stands for
"Beginner's All-Purpose Symbolic Instruction
Code"). Invented at Dartmouth College, BASIC
looks more like English than other computer lan-
guages and is very easy to use.

The keywords above the keys, which are com-
mands to the computer, are in English. They are
also in BASIC, which means each word always
means exactly the same thing.

Chapter 3: Telling the Computer
What To Do

28

For example, the keyword we will probably use
the most is PRINT. In English, this can mean

1. Make letters on paper with a writing instru-
ment held in your hand,

2. Transfer letters from a printing press to paper,
or

3. Publish.

There are probably several other meanings you
could think of, slightly different from these.

In BASIC, PRINT means only one thing:

1. Print on the screen whatever follows the word
PRINT.

Let's have some more practice at giving the
computer commands and see how it performs.

Start by setting up the computer so the screen
looks like this:

Now we'll have the computer figure out the sum
of 2 and 2, and show the result on the screen.

First, type PRINT. Press the P key, and the word
PRINT appears. Remember, although you can
spell out the word P,R,I,N,T, you give the T/S 2000
its orders using the keywords above the keys.
These appeatr if you press a key while the [cursor
is on the screen.

In case you haven't noticed, we are indicating
keywords in this manual by printing them in
BOLD FACE TYPE.

Besides the word PRINT appearing on the screen,
you see the cursor has changed to .

PRINT

Chapter 3: Telling the Computer
What To Do

L

Next, type 2. The 2 appears on the screen, and the
B moves to the right. Notice, by the way, that
there is a space between the PRINT and the 2 on
the screen. Timex/Sinclair BASIC keywords come
with their own spaces, and you don't have to put
PRINT 2[l them in (it won't do any harm if you do put in
extra ones).

Third, type a plus symbol (+). Remember how
we obtained symbols that are in the black bands
on the keys—using SYMBOL SHIFT. Hold down
SYMBOL SHIFT and press the K key.

PRINT 2+[1

Next, type another 2. The screen will look like
this:

PRINT 2+2[0

Finally, press ENTER. Whenever you are finished
with a line or a command, and want the com-
puter to do something, you signal this by press-
ing ENTER.

The computer will compute and display the an-
swer. Of course, you don't need a computer to
figure that one out, but you can use it for more
difficult math (see Chapter 11).

SYMBOL SHIFT, ENTER 29.

Chapter 3: Telling the Computer
What To Do

pressing P

PRINT

2+2

o4

Let's try something else. The 0 OK report code

is hiding a |f§ cursor—if you press a key while a
report code is on the screen, you'll get a keyword
just as if a [f§ was showing. So press P again, and
get PRINT.

It's okay that the answer to the previous calcula-
tion is still on the screen.

Now, using SYMBOL SHIFT, get quotation marks
by pressing P again.

And press 2. And + (using SYMBOL SHIFT
again). And another 2.

Finally, close the quotation (SYMBOL SHIFT P).
The screen should look like this:

Now press ENTER.

Aha. Let us examine why the difference. The first
time, when we typed

PRINT 2+ 2

we were telling the computer to evaluate a
mathematical expression and print the answer.

The second time, when we typed
PRINT "2+ 2"

we were telling the computer, “Don't do any cal-
culation, just print whatever is in quotes."

P TRt}

Chapter 3: Telling the Computer
What To Do

Try this (remember that, inside the quotes, you
will have to put in spaces where you want them,
using the space bar at the bottom of the keyboard):

PRINT ""ANYTHING THAT APPEARS IN QUOTES
NO MATTER HOW LONG IT IS"

FRINT “ANYTHING THAT APPEARS IN
EUDYES RO MATTER WOMW LONG IT 15"

Don't forget to press ENTER when you are done.

ARYTHING THAT APPEARS IN QUOTES
NO MATTER MOW LONG IT IS

31

Chapter 3: Telling the Computer
What To Do

e — = o A |
Here's some computer jargon for you: anything
we put in quotes is called a string. This sounds
odd at first, but it essentially means that the en-
tire “‘string’’ of characters within the quotes is
treated by the computer as a single item.

Now, press
NEW ENTER

This erases the sentence from the screen. You
can use NEW anytime you want to clear every-
thing from the computer and start over as if you
had just turned it on.

You can also pretend the copyright notice is a [§
cursor, just as you can with a report code.

What To Do If You Make a Mistake

If you make a mistake, you can erase it with the
DELETE key (CAPS SHIFT 0). Pressing DELETE
erases the character or keyword just to the left of
the cursor.

And, you can move the cursor to where you want
to make a deletion by using the left and right arrow
keys (CAPS SHIFT 5 and CAPS SHIFT 8).

Type this in

PRINT b5 — «2

PRINT 5-*2[1

(Use SYMBOL SHIFT J for the minus sign, SYMBOL
SHIFT B for the *—the T/S 2000's multiplication

sign)
and press ENTER.

pressing J
5 DELETE, § #

Chapter 3: Telling the Computer

What To Do

Press SYMBOL SHIFT while
pressing B

PRINT S-g+2[

e

s - MK
Press CAPS SHIFT while
pressing 5

PRINT S-»[l2

PRINT S5-[@x2

The screen will look like this:

The B is the syntax error marker. It means that
the T/S 2000 cannot execute that command (it
can't tell if you want to subtract or multiply). Sup-
pose we meant PRINT 5+2. Let's make the correc-
tion, the way we did in Chapter Two.

First, we need to move the [cursor to the scene
of the crime. Press the left arrow (CAPS SHIFT 5,
holding down the CAPS SHIFT key while press-
ing the 5 key). The cursor moves one place to the
left.

| still holding down CAPS SHIFT, press the left arrow

again, which puts the cursor in the proper position.

33

Chapter 3: Telling the Computer

What To Do

PRINT S[*2

Now press DELETE (CAPS SHIFT 0) and we have
this on the screen.

Now, we can press ENTER. We don't need to
move the [cursor back to the end of the line;
it doesn’t matter where it is, as long as the rest
of the line is correct. The cursor is just a place
marker, for your eyes only.

You can also make insertions, as we did in Chap-
ter Two, by moving the cursor to the desired loca-
tion and then typing the character(s) you want to
insert.

Time for practice:

Try typing in PRINT '* and then any sentence you
like. Don't forget to close the quotes at the end.
But don't press ENTER yet.

Practice moving the cursor backwards and for-
wards through the line with the left and right
arrow keys.

Make any corrections you like, before pressing
ENTER. Besides correcting errors you may notice,
try adding new words by moving the cursor to
the spot where you want to insert them and then
typing the words.

Now, press ENTER.

Practice making up a line of graphics, by press-
ing PRINT " and then getting into graphics mode
with CAPS SHIFT 9. Remember you have to use
CAPS SHIFT 9 (GRAPHICS) again to get out of
the graphics mode in order to close your quotes
and ENTER the line.

B¢, DELETE

Chapter 3: Telling the Computer
What To Do

In case you are mathematically inclined, here's
a quick early hint on the use of functions. Press
PRINT, then enter the extended mode by press-
ing both CAPS SHIFT and SYMBOL SHIFT simul-
taneously.

With the | cursor on the screen, press the H key,
giving you SQR (for square root).

Then press 2 and ENTER. (You don't need
quotation marks.)

CODE PEEK TAB

Chapter 3: Telling the Computer
What To Do

36

PRINT sar 2[i

1.4142136

5. NEW clears the computer to start over.

The computer evaluates the mathematical expres-
sion and prints the square root of 2—1.4142136—
on the screen.

We won't spend much time on the other func-
tions in this manual, except to mention them in
Chapter 11 and list them in Appendix A. If you
are a mathematician, you will recognize the abbre-
viations over and under the keys. If not, don't
worry about them.

Summary

1. PRINT (keyword command located on the P
key) tells the computer to print something on
the screen.

2. If a number follows PRINT, the number will
be printed on the screen, if a mathematical
expression (like 2 + 2) follows PRINT, the
expression will be evaluated and the result
printed (for example, 4).

3. Anything in quotation marks after PRINT will
be printed on the screen exactly as it appears.
The material in quotes is called a string
because it is a string of characters.

4. When you press ENTER, you signal the com-
puter that you are finished writing your com-
mand and would like it carried out.

PRINT' "', ENTER, SOR, NEW

Using Ready-To-Run

4

Programs

Insert the cartridge with the
label side up

Chapter Preview How to use ready-to-
run programs on Timex
Command Cartridges or
cassette tape, and store
your own programs with
LOAD and SAVE. We look
at RUN, REM, LINE,
MERGE, and VERIFY.

As we mentioned eatrlier, you can use programs
which have been written by other people to operate
your T/S 2000. Timex publishes many programs—
games, household applications, business subjects,
and home education programs—and others are
available from many software publishers.

Timex Command Cartridges

When you buy programs on Timex Command
Cartridges, all you have to do is insert them, with
the label side up, in the cartridge port to the right
of the keyboard. These programs are self-starting,
and no programming knowledge is needed. You
just follow the directions to use the program.

Chapter 4: Using Ready-To-Run
Programs

38

()

M i RN b s,
W s Lllise

To insert a Timex Command Cartridge, follow
this procedure:

1. Turn off the T/S 2000.

2. Lift the cartridge door.

3. Insert the Command Cartridge, with the label
side up.

4. Close the cartridge door.

5. Turn on the T/S 2000.

6. The program will begin.

1f the program does not begin, repeat all steps in
order. Always turn your T/S 2000 off before insert-
ing or removing a cartridge.

Programs on Tape Cassettes

You can also purchase programs recorded on tape
cassettes, and ''load” them into the computer using
a suitable cassette recorder.

Sometimes you will need to load a program into
the computer from a tape. When you are done and
turn off the computer, it will disappear from the
T/S 2000's internal memory but, of course, you will
still have it on tape to load and use again.

Often you will type in a program from a listing in
a book in order to use it, and then will save it onto
a tape cassette. The next time you want to use it,
you won't have to type it in; instead you can simply
load it from the cassette.

And sometimes there will be programs you will
load from a tape, add data to, and then save the
program with the new data on another part of the
tape, separate from the original program.

Let's look at how each of these tasks is done.

Loading a Program from Tape

Important: Before using a tape recorder with
your computer, please read the enclosed sheet

entitled ""Timex Sinclair 2000 Compatible Cas-

sette Recorders.”” This sheet contains the latest
recorder recommendations.

Chapter 4: Using Ready-To-Run
Programs

fEuaessass L B B = — e =
Every program should have a name, and any
cassette that has more than one program on it
should provide you with an index listing the names
of all the programs on the tape.

With all the components of your system connected
and turned on, as discussed in Chapter 1, make
sure that your tape is rewound to the beginning,
and that the | cursor is on your TV screen.

Connect the EAR socket on the computer to the
earphone socket on the tape recorder. Turn the
volume control on the tape recorder to about three-
quarters of the maximum volume. If it has tone
controls, adjust them so that treble is high and
bass is low. (With a single control, set it at high,
which will give maximum treble and mini-

mum bass.)

Then press
LOAD

which is what you get when you press the J
LOAD key while the [cursor is showing (remember,
whenever the [cursor is on the screen, pressing
any key will give you the keyword command on
that key). '

You'll notice the cursor has changed to [f§. This
means the computer will now give you the main
symbol on any key you press, or—if you hold
SYMBOL SHIFT down while you press another
key—the shifted symbol, which is in the black
band (the same color as SHIFT) on the key.

You need to tell the computer the name of the
program you want to use, so you must put the
name in quotes. Suppose you want to run a pro-
gram for a game, called STAR ZAP.

LOAD 39

Chapter 4: Using Ready-To-Run
Programs

Loap "

LOAD “'STAR ZAP[

marks.

Hold down the SYMBOL SHIFT key and press the
P key, and you'll get quotation marks.

Then type in the name of the program, making
sure you have it exactly right.

A program name can have up to ten characters
including spaces. If there are spaces in the name,
you must include them.

The computer makes a distinction between capital
letters and lower-case letters. You must have the
name in all capital letters if that's how the index
shows it, or in lower case letters, or capitals and
lower case if it is listed that way.

Then type SYMBOL SHIFT P again for quotation

LOAD

Chapter 4: Using Ready-To-Run

Programs

LOAD "STAR zap"[i

Searching Pattern

Program Found

LOAD

Your screen will look like this.

Now press the PLAY button on your cassette
recorder, and then press

ENTER

on the computer keyboard. (LOAD is a command
that tells the computer what you want it to do,
"STAR ZAP" tells it what to do it with, and ENTER
is the signal that the instructions are finished, and
the T/S 2000 should start the job.)

The border of the TV screen will altemate between
pale blue (cyan) and red, during the time the com-
puter is searching for the program on the tape.

When the program has been found, the screen
border will show a pattemn of lines in the same
shades of blue and red, and shortly the name of
the prograrm will appear on the screen.

41

Chapter 4: Using Ready-To-Run

Programs

Loading Pattern

90K, 0:1

Report Code

e

N ON ERR SOUND

Press RUN and ENTER

42

Next, as the program itself is being loaded into the
computer, the border pattern will become thinner,
faster moving yellow and dark blue lines.

When the computer has finished loading the
program, one of two things will happen:

1. Most commercial programs will begin running
automatically, usually with a “title screen’’ or
instructions to the user. (A title screen may in-
dicate that the tape is still loading; if not, you
should stop the tape immediately at this point
so as to be in the proper position to load the
next program if you wish.)

2. The screen will be blank, except for a 0 OK, 0:1
in the lower left hand cormner. This is a report
code and means that the computer has suc-
cessfully loaded the program (there is a list of
report codes at the very back of this book; they
are the T/S 2000's way of telling you that it
has finished a job, or that it has encountered
some problem).

Again, stop the tape immediately. To execute
the program, then, you press

RUN
and
ENTER

This will start the program.

RUN

Chapter 4: Using Ready-To-Run
Programs

If you are using a cassette with more than one
program on it, and wish to load a program that is
not the first one, you will see the searching and
loading patterns more than once. Each program
that goes by will cause a “loading’’ pattern on
the screen—and the name of the program will be
written on the screen—even though the computer
is not loading it. The T/S 2000 will only start actually
loading when it comes to the program you have
named.

If you want to find out what programs are on a
tape, you can type

LOAD "GEORGE"

LOAD "GEORGE"M/ | ifyou know there is no program named GEORGE
(or any other name you make up) on the tape. Then,
as it searches for GEORGE, the T/S 2000 will print
on the screen a list of the programs which are ac-
tually on the tape.

You can also make up your own index to a tape
by setting the tape counter to 000 before starting
this process, and noting the number showing
when each program name is entered on the screen.

Occasionally a program will fail to load properly,
and you'll have to investigate the reason and/or
try again. You'll know a LOAD has misfired if

1. The i cursor comes back on the screen.

2. The "'searching’’ pattern comes back on the
screen after the ‘loading’’ pattem (if you are
certain that loading pattern was for the program
you wish to load, and not just another program
going by).

3. You see the report code

R, Tape loading error

R, Yape loading error

Chapter 4: Using Ready-To-Run

Programs

A

b
L=_]

NVERSE

,_

The *‘tape loading error'"” report means that the
T/S 2000 found the program (was able to read its
title), but couldn’t load it because of errors within
the program (for instance, interference might have
added or deleted just one bit of information, thus
throwing the entire '‘reading'’ off).

If the B is on the screen, you don't have to do any-
thing except rewind the tape in order to try again.

If the searching and loading patterns are still
going on the screen, you need to press the BREAK
key to stop the process. Then you'll be ready to
check into the problem.

The most likely problem is that the volume level
is too high or too low.

The best adjustment is to tum the volume up

as loud as it will go without causing the silent
spaces on the tape to be noisy; you can check
this by disconnecting the plug in the recorder’s
earphone socket and listening to the tape on the
speaker. If the silence is very noisy, you may have
other problems:

Some tape recorders can record a 60 cycle AC
hum. This can be avoided by operating them on
batteries.

Some tape recorders—especially old, wom ones—
are intrinsically noisy, and produce a lot of extrane-
ous noise on their tapes. You may have to invest
in another recorder.

You may have to wiggle the plug in the earphone
socket; on some recorders contact is lost if the plug
is pushed in too far. If you pull it out just a bit, you
may feel it settling into a more secure position.

Chapter 4: Using Ready-To-Run

Programs

LOAD " u

LoAD

Itis possible that you have a tape that was recorded
(SAVEd) on another recorder, and the recording
heads on that machine are out of alignment. This
is likely if the program can be loaded from that
recorder, but not from yours. If you have trouble
with a lot of tapes, including commercial ones,
your recorder's heads may need adjusting. It is
even possible that both recorders are slightly out
of adjustment—not enough to keep them from
saving and loading their own or commercial tapes,
but enough that they cannot use each other's tapes.

Itis possible to load a program without using its
name. If you type

LOAD "

(that is, press the J key and then SYMBOL SHIFT
P twice—do not put a space between the two
quotation marks), then start your recorder on
PLAY and press ENTER, the T/S 2000 will load
the first program it comes to. This is useful if you
have only one program on a tape, if you know
you want the first one, or if you know you want
the next one but have forgotten its name.

45

Chapter 4: Using Ready-To-Run
Programs

T S |
Typing In a Printed Program

and Saving It on Tape

Many shorter programs are available in books
and magazines. You can use them by simply typing
them in. Type them exactly as they appear in the
publication, making sure your spellings are correct,
and all punctuation and spaces as well.

You can check your listing by comparing what
you have on the screen with the printed version.
See Chapter 2 for how to easily make corrections.

Beware—it is possible for the original listing in
the book or magazine to have errors! You may
type it correctly and still have trouble.

When you've finished typing the program in,
execute it by pressing

RUN and ENTER
" as above. When you've finished using it—either
- !l - l you reach the end, or you interrupt the program

e T _UsR by pressing the key marked BREAK together with
J E the CAPS SHIFT key—you can get the listing
back on the screen by pressing

ENTER

again. Then, after verifying (by using it) that the
program works and that you've typed it in correctly,
you can save it for future use on tape. (You can
save a program even if it doesn't work, in order to
come back toit and fix it, or “debug’’ it.)

46 RUN

Chapter 4: Using Ready-To-Run

Programs

Saving a Program on Tape

As we said earlier, every program should have a
name. The T/S 2000, in fact, won't save a program
on tape without a name. You can make up a name
for a program you invent, use the name of a pro-
gram you have typed in as above, or even change
that name to something you like better. Whatever
you call the program when you save it will be the
name you have to ask for to load it later.

Remember: the program name can be up to ten
characters long. It can be more than one word,
but any spaces count toward the ten-character
Limit.

Note: It is a good idea to put the name of a
program into the listing of that program, so you
can doublecheck that you have the right one. The
easiest way is to use a REM line at the beginning.

You'll notice that most programs are numbered
in multiples of 10, so if a program doesn't already
have a line giving its name in the listing, you can
just type

5 REM PROGRAM—STAR ZAP ENTER

using a line number lower than the lowest in the
listing (the computer will then automatically put
it at the beginning) and, of course, the actual name
of your program.

A program line that begins with REM (for
REMark or REMinder) is disregarded by the com-
puter when executing the program. It appears in
the listing as an aid for the user.

Connect the MIC socket, of the computer to the
microphone socket of the recorder. Position the
tape in a part that is blank, or a part that you are
prepared to overwrite. Type:

47

Chapter 4: Using Ready-To-Run
Programs

SAVE “STAR ZAP"

SAVE ''STAR ZaP''[l

using the keyword SAVE on the S key. Then press
ENTER

The computer will then print on the screen:

Start tape then press any key.

Start tape then press any &

Start the cassette recorder, in RECORD position,
and touch any key on the T/S 2000's keyboard.

Watch the TV screen. You'll see a pattern of ines—
similar to the “loading” patterns—and eventually
the screen will show @ OK, 0:1 which in this case
means ‘‘the SAVE is complete."

Saving Pattern
48 SAVE

Chapter 4: Using Ready-To-Run
Programs

VERIFYing a SAVE

As a check on whether the recorder has received
the program correctly, you can use the VERIFY
function, located under the R key.

First, rewind the recorder to the place where you
began the SAVE.

computer tape recorder
— Second, be sure the EAR sockets—on the com-

P puter and on the recorder—are connected.

o

e

+]

[+]

(=]

]

]
y

Third, type VERIFY "STAR ZAP" (to get VERIFY,
press CAPS SHIFT and SYMBOL SHIFT simul-
taneously, producing the g cursor, then press
SYMBOL SHIFT R).

Chapter 4: Using Ready-To-Run
- Programs

VERIFY ''STAR zar'' [

Fourth, start the cassette player—in PLAY mode—
and press

ENTER

PLAY button

The computer then compares the program on
the tape with the program still in its memory. If it
finds the title, it will print on the screen

Program: STAR ZAP

and then go on to display the same kind of border
patterns as a LOAD. If the program is verified, the
report code @ OK will appear at the lower left corner
of the screen.

If there is a mistake on the tape, the report will be
R Tape loading error; you should try the SAVE again.

If the program name does not appear on the
screen, the SAVE did not take place at all. You
need to check:

1. That the plugs were correctly connected.

2. That the volume setting on the recorder was
high enough.

3. That you were not attempting to record on
the “leader” at the beginning or end of the tape.

50 VERIFY

Chapter 4: Using Ready-To-Run

Programs

SAVE “STAR ZAP™ LINE 100

SAVE, LINE

4. That the RECORD tabs are in place on the
cassette.

L] l_l

—

Finally, if the program name appeared, but the
computer did not stop with @ OK after the LOAD
pattern and instead continued to search: it is likely
that you have made a spelling error in the program
name either in the SAVE or the VERIFY command
(if they do not match exactly, the computer will
not recognize them as the same name).

Saving for Automatic Start

You can save your own programs in such a way
that they “‘self-start.”” All you need to dois add the
command LINE and the line number where you
want the program to start (usually, but not always,
the first line of the program). For example:

SAVE "STAR ZAP" LINE 10

LINE is the function located under the 3 key: you
need to press CAPS SHIFT and SYMBOL SHIFT to
obtain the [cursor, then press SYMBOL SHIFT 3.

When you LOAD any program you save this way,
it automatically starts running at the line number
you've entered.

Saving Programs with Your Own
Data Entered

Some programs are meant for you to enter your
own data into—saving lists, figures, etc. These
are easily used by following the same procedures
we've just discussed.

51

Chapter 4: Using Ready-To-Run

Programs

LOAD "CALCULATOR"[

SAVE "FINANCES"[

VERIFY "FININCES"!

MERGE "FINANCES"[

b2

1. LOAD the program as we've described.
2. RUN the program, entering your own data as
it is called for.

3. SAVE the program with the data in it, using a
new name to distinguish it from the original
program. If, for example, you load a program
called “Calculator’’ and then fill in your personal
financial records, you may want to save the
filled-in version under the name '‘Finances."

4. VERIFY the saved program.

Loading Programs with MERGE

The MERGE command can be used instead of
LOAD, if you wish to combine two programs.
Where LOAD clears all previous program data
out of the computer before loading in the new
one, MERGE leaves the old one in while loading
the new.

However, if any of the same line numbers appear
in both programs, the new lines will take prece-
dence over—and erase—the old ones. This means
that to MERGE programs requires careful planning.
(If you save a program using LINE, and load it
with MERGE rather than LOAD, it might not
jump to the appropriate line number and start
automatically.)

MERGE

Chapter 4: Using Ready-To-Run
Programs

e e ey

As you can see, there are many ways to use your
Timex Sinclair 2000 without, learming computer
programming. But if you'd like to look into it, try
the next chapters and see how you like it.

Summary

1. Many programs are available for use with the

Searching Pattern Timex Sinclair 2000 computer, and you don't
have to know how to program to use them.

2. The LOAD command followed by the name
of a program in quotes causes the computer
to load that program from a tape cassette.

3. LOAD followed by two quotation marks with
nothing between them causes the T/S 2000
to load the next program on the cassette tape.

4. The SAVE command followed by the name of
a program in quotes tells the computer to send
that program to a cassette recorder running
in recording mode, saving the program on
the tape.

5. You must have a name for the program when
using SAVE, but you can make up any name
you like—up to ten characters long, including
spaces—and change the names of alternative
versions of the same program (like a program
into which you put information that is updated
periodically).

6. If youadd LINE and a line number to a SAVE
command, the program will automatically start
at that line number when you LOAD it

7. The VERIFY command checks the program
saved on tape against the program in the
computer’s memory, o you are sure the pro-
gram is safely on tape before you clear it from
the T/S 2000.

8. When you load a program with MERGE instead
of LOAD, a program already in the computer is
not erased. Line numbers that appear in both
programs, however, are eliminated from the
old program, so you must be careful that pro-
grams are designed to be MERGEA.

Loading Pattern

Saving Pattern

LOAD, SAVE, LINE, VERIFY, MERGE 53

Using Colors

5

BORDER

Chapter Preview Learn how to use
the INK, PAPER, and
BORDER commands to
do some colorful
computing.

When you first turn on the Timex Sinclair 2000, it
is set up to print black letters on a white screen.
(To start this chapter, turn off the computer briefly
or DELETE everything on the screen and then
press NEW and ENTER. This will assure that you
are starting fresh.)

You can change to any of eight colors—for the
screen color, a border around the screen, and for
any characters you put on the screen.

Press BORDER—the B key, with the i cursor (or
the copyright notice if you've just turned on the

55

Chapter 5: Using Colors

BORDER 1

56

T/S 2000) on the screen. Then press the 1 key.
You will have this on the screen:

BORDER 1

(It's spelled BORDR to fit on the key, but BORDER
on the screen.)

Now press the ENTER key. Isn't that a welcome
change from black and white? You should have a
dark blue on the screen—the same color as is
written above the key you pressed.

By the way, it goes without saying that you'll only
see the colors we are describing on a color TV set.
But if you go through this chapter on a black and
white set, you'll find that the colors from 0 to 7 are
arranged in order from black through shades of
gray to white.

Let's look at some other colors. Press
BORDER 2 ENTER

and so on up through BORDER 7. When you hit
BORDER 7 (white), the border will again match
the screen. Don't forget black, though: BORDER 0.

Now, suppose we want to change the color of the
business area of the screen. Look below the X and
C keys in the bottom row of the keyboard: the
keywords INK and PAPER are there.

We call the screen area PAPER because you print
on it, and the color you print with is INK. Let's try
to change the PAPER color first.

Remember how to get the keywords under the
keys?

Chapter 5: Using Colors

pressing SYMEOL SHIFT

Press both CAPS SHIFT and SYMBOL SHIFT at
the same time, producing the [cursor on the
screen. Then hold SYMBOL SHIFT and press the
C key: you'll get PAPER. Press 1, so the screen
shows

PAPER 1

then press ENTER. Hmmm. Press ENTER again.

You have to press ENTER twice to see your choice
of paper color. We'll come back to this in Chapter
Twenty, and explain why.

Go through the colors as you did for BORDER.
When you get to @, you'll have an all-black screen.

Try out whatever combinations you like: you can
select a BORDER color and then a PAPER color,
or change one but not the other.

Now, let’s get back to a white screen, with PAPER
7 (it doesn't matter what color you want to leave
the border).

Press both SHIFTSs to get the [cursor, then hold
SYMBOL SHIFT and press the X key:

57

Chapter 5: Using Colors

-~ INK

o | se 1 % | try the 1 key, so the screen shows

L
@ INK 1 ;
: @ then press ENTER. Not much happening, eh?

Well, we'll have to come back to INK, in the next
chapter. You have to put something on the
screen to make the INK color show.

By the way, if you select the same color for PAPER
and INK, you won't be able to see anything!

Before going on to the next chapter, you may
wish to return the screen to its original black-on-
white. You can again briefly turn off the computer,
Or you can press

BORDER 7 ENTER

PAPER 7 ENTER (twice)
INK O ENTER .
Summary

1. BORDER allows you to set the color of the
border around the screen, using the colors
above the top row of keys on the keyboard.

2. PAPER allows you to specify, using the same
keys, the color of the area of the screen on
which things will be printed.

3. INK specifies the color of the symbols you will
place on the screen.

Drawing Lines 6
and Circles

Chapter Preview This chapter shows you
how to do easy artwork
anywhere on the screen
with PLOT, DRAW,
and CIRCLE.

Another of the outstanding features of the Timex
Sinclair 2000 is its high resolution graphics capa-
bility. Later in the manual, we will address a
number of topics in graphics, but just for fun, let's
go through two of the simplest and most powerful
commands, DRAW and CIRCLE.,

Fist, to get oriented, you need to know that the
TV screen is 256 positions across and 176 positions
high—there are 45,056 positions through which
you can draw graphics. Each of these positions is
called a pixel, for picture element. (See the chart
in Chapter 17.)

Let's illustrate by starting with the DRAW com-
mand. With either the copyright notice or a i
cursor on the screen (we consider the copyright
notice to “‘hide" a g cursor), press the W key.

59

Chapter 6: Drawing Lines
and Circles

T R e B e |
You'll see the keyword DRAW appear on the screen.

Type 50, then a comma (SYMBOL SHIFT N), and
then 100. The screen should have this on it:

DRAW 50, 100
plot position (which when we start out is in the

lower left comner of the screen), to a point 50 posi-
8 0K, 8:1 tions to the right and 100 positions up.

/ Press ENTER. That line was drawn from the last

Leave this on the screen and let's try something
else. Remember from the last chapter how to get
the INK command? Press

INK 2 ENTER
Now press
DRAW 100,50 ENTER

Ahal! This time, the line went from the end of the
previous line to a point 100 positions over and 50
positions up—and it was drawn in INK color 2, red.

Again, leave what you've drawn on the screen. In
fact, during this chapter don’t clear the screen or
type NEW unless we ask you to. (Some of the com-
mands we use as examples will run off the screen
if they don't begin at the proper location on the
screen.)

Let's try another:

INK 1 ENTER
DRAW 0, - 75 ENTER

@ OK, ©:1 The line is blue, the @ meant it stayed in the same
position horizontally on the screen, and the minus
75 drew the line 75 positions down.

60 DRAW, INK

Chapter 6: Drawing Lines

and Circles

DRAW, INK, CIRCLE

How would you draw a line leftwards. . . horizon-
tally. . .in green?

INK 4 ENTER
DRAW -75,0 ENTER

Let's see if we can change the color of the screen.
First, press

BORDER 2 ENTER
Okay, a red border. Now

PAPER 6 ENTER ENTER

Oops! We have a yellow screen, all right, but
we've erased all our drawings. We will find out
more about this, as we've said, in Chapter Eight.
For now, let's remember that you can’t change
the screen color without clearing the screen of

anything on it.
Now let's try

DRAW 100,100 ENTER

The line is green, because the INK color is still
the last color we chose. Press ENTER again.
Another way to erase! There are some things to
beware of.

Let's change the ink color again:
INK O ENTER

Now let's draw a circle. Press CIRCLE, the key-
word under the H key (SYMBOL SHIFT, with the
A cursor on the screen). Then you need three
numbers—the first two locate the center of the
circle across the screen from the left and up from

61

Chapter 6: Drawing Lines
and Circles

the bottom, and the third for the radius of the cir-
cle. Position 125 is about halfway across the screen,
position 90 is about halfway up, and 50 seems
like a sensible size for a circle. So:

CIRCLE 125,90,50 ENTER

How about a smaller, different colored circle
around the same center?

INK 2 ENTER
CIRCLE 125,90,20 ENTER

And maybe a great big one:
CIRCLE 125,90,100 ENTER

If you try to draw a cixcle that will go off the
screen, you get this report:

B Integer out of range

This would be a good time to clear everything
from the computer, using:

NEW ENTER
and practice any kind of drawing you'd like, with
DRAW, CIRCLE, INK, PAPER, and BORDER.

Two more things you may wish to try:

1. You can choose the position to start to DRAW
a line. Use the PLOT command.

PLOT 50,100 places a small dot on the screen
fifty positions over and 100 positions up from
the original lower-left cormer position, or from
the end of any previcus DRAW line or the right-

62 CIRCLE, PLOT

Chapter 6: Drawing Lines
and Circles

most point on any previous circle. The next
DRAW command would start from there.

PLOT 12787 ENTER
puts you in the center of the screen. Start from

there to do the next exercise.

2. You can draw an arc by adding a third number
to the DRAW command. Once you have your
starting point, the first two numbers after DRAW

U still select the ending point, but a third num-
ber selects a portion of a circle (by describing
0 0K, ©:1 the angle covered by that arc in radians).

DRAW 58,0,PI ENTER

(PI is the keyword over the M key, obtained with
the | cursor) draws a half circle to a spot 50
positions to the night on the screen.

Why is it the bottom half of a circle instead of the
top half? Because all circles are drawn counter-
clockwise on the T/S 2000.

What would happen if you then entered

DRAW -50,0,PI ENTER

Try it and see. Then ry
DRAW 50,0 ENTER

A complete circle would be drawn by having the
third number be 2+P1. A quarter circle would be
.5+PI Since the starting and ending positions of
the arc are specified, a smaller portion of a circle

PLOT, DRAW 63

Chapter 6: Drawing Lines

and Circles

would produce an arc from a larger circle. Try a
few to prove it to yourself:

DRAW 50,0, .8+PI ENTER
DRAW -50,0,.5+PI ENTER
DRAW 50,0,.3+PI ENTER

What do you get with

INK 1 ENTER
PLOT 125,0 ENTER
DRAW 0,175 ENTER

Try it and find out. Keep trying things as you go
through this manual. We will, as we get into the
BASIC programming material, spend little time
considering colors. You should experiment with
adding INK, PAPER and BORDER commands to
the programs we cover.

(What you should get is a blue line in the center
of the screen.)

Summary

1. PLOT places a dot on the screen at a location
you specify with two numbers, the first choos-
ing a position across the screen from the left
and the second placing the dot up from the
bottom. The plot position (0,0 when the com-
puter is turned on) is moved to the location of
the dot.

2. DRAW draws a line from the current plot posi-
tion to a location specified by two numbers:
across from, and up from, the plot position. Add-
ing a third number allows you to draw an arc.
(The plot position moves to the new location.)

3. CIRCLE draws a circle at a location specified
by two numbers (as in PLOT), with a radius
specified by a third number.

DRAW, INK, PLOT

Sound

7

beEP

Press CAPS SHIFT while
pressing SYMBOL SHIFT

Chapter Preview In this chapter, we learn
to compose and play
music with the BEEP
command.

Your Timex Sinclair 2000 has both simple and
complex ways of making sounds. With the SOUND
command, located under the G key, it can play
music through three different channels—can
harmonize with itself! We won't get into that until
late in this book, as it is quite complicated. But
for now, let's use a simpler command: BEEP.

Press both the CAPS SHIFT and the SYMBOL SHIFT
keys to obtain the [cursor.

65

Chapter 7: Sound

Press SYMBOL SHIFT while
pressing £

Press SYMBOL SHIFT while
pressing N

66

Then press SYMBOL SHIFT and the Z key and
you'll get the keyword under that key:

BEEP

Then press 1. Holding SYMBOL SHIFT, press the
N key for a cornma. And press 0. The screen should
look like this:

BEEP 1,0

BEEP needs two numbers after it, separated by
a comma. The first number is the duration of the
note in seconds, and the second is the pitch: @ is
the middle C. Press ENTER and get middle C for
one second.

Brief Music Lesson: Our eight-note scale is
constructed of twelve halftones (trust me} with
two halftone steps between each note except for
one step between 4 and b (FA and SOL) and be-
tween 7 and 8 (or TI and DO).

Chapter 7: Sound

For notes below middle C,
press SYMBOL SHIFT while
pressing J

For colons, press SYMBOL
SHIFT while pressing Z

BEEP

If you want notes above middle C, count a half-
tone for each number. Notes below middle C are
counted as negative numbers (using the minus
sign, SYMBOL SHIFT J).

You can use colons (SYMBOL SHIFT Z) to string a
number of commands together. So, you can make
a scale (DO, RE, MI and so on) by typing:

BEEP 1,0:BEEP 1,2:.BEEP 1,4:BEEP 1,6:BEEP
1,7BEEP 1,9:BEEP 1,11:BEEP 1,12

(You can speed this process up if you realize that,

after the second number in each pair, you can hold
SYMBOL SHIFT and rapidly press Z, CAPS SHIFT

and Z again to get the colon and the next BEEP.)

Then you can "‘play" the T/S 2000 by pressing
ENTER.

1f you like, you can try out various tones at various
durations; you can use decimal points to play frac-
tions of seconds and fractions of tones (if you like
Indian or Oriental music). Try

Chapter 7: Sound

68

B Integer out

of range ,

0:i

BEEP .5,9.77
BEEP 1.89,14

You'll find that 10 seconds is the longest note you
can play with BEEP, 69 is the highest and — 60
the lowest. If you enter any other figures, you'll
see the report code

B Integer out of range, 0:1

The tones played by BEEP can be heard not only
through the T/S 2000's internal speaker, but also
through the MIC socket. You can connect an am-
plifier to MIC and play the sound through large
external speakers.

Here are two diagrams relating the pitch num-
bers to the piano keyboard and the treble clef on
a music staff. Let there be music!

-2 c’|n® pflE 13 15
1 3
c D | E F A B C |
-3 -1 (] 2 4 5 7 9 11 12 14 16
é One cctave
Middle C

Add 12 to each value to repeat one octave higher.
Subtract 12 to repeat one octave lower.

BEEP

Chapter 7: Sound

G19

E16

c12

A9

F5

Middle ¢

B-1

Add 1 for a sharp (#) on a line or space in the key
signature or in front of a note.
Subtract 1 for a flat (b)

Summary

1. BEEP foliowed by two numbers separated
by a comma sounds a musical tone. The first
number is the duration of the note in seconds
(decimals are allowed). The second identifies

the pitch: @ is middle C, positive numbers select

halftones above C, negative numbers go below
C (again, decimals are allowed).

69

Whriting a Program

Chapter Preview How to start with NEW,
repeat with GOTO, stop
with BREAK, and
continue with CONT.

We are now ready to write our first computer
program.

In the last chapter, we were operating in what is
called the immediate mode, which means that the
computer executed each command immediately
(after you pressed ENTER).

When we write programs, we give a number of
caommands and the computer executes them, in
order, when we tell it to. Until we tell it to execute—
and afterwards, for that matter, the T/S 2000 remem-
bers all the commands.

Although we will start small, there are programs
of many thousands of lines, which direct computers
to carry out lengthy and complicated procedures.
The power of computing is in the ability of the
machine to receive, store and carry out many dif-
ferent complex programs.

8

71

Chapter 8: Writing a Program

72

[e

muzvmtoruwuo -

Press NEW to clear the
screen and the computer’s
mernory

PRINT "HELLO,SUE"l

HELLO,SUE

18 PRINT "HELLO,SUE"!

Let's get started. If you are just plugging in the

computer to start this chapter, you should have
the i cursor in the corner of the screen—or the
copyright notice, which “hides” a [f§ cursor.

If you are continuing from the last chapter, press
NEW

(the A key, while the [cursor or any report code—
which also “hides'" a [f§ cursor—is showing), and

ENTER
This clears both the screen and the computer’'s

memory, so it is ready to start a NEW program.
Type in

PRINT “HELLO, SUE"

and press ENTER. Just as in the last chapter, the
computer executes the command immediately.
(By the way, you can use your own name, if it
isn't Sue. . .)

Now type in
10 PRINT “HELLO, SUE"

Notice that the [[§ cursor doesn't change as you
type the 1, and then the 0. This is why there are
no keywords over the number keys: so you can
put in program line numbers. It changes to
after the keyword PRINT.

NEW, ENTER, PRINT

Chapter 8: Writing a Program

Press CAPS SHIFT while
pressing 2, for CAPS LOCK

10>PRINT "HELLO,SUE"

29 6oTo 1ol

CAPS, LOCK,},GOTO

If you are a typist, be careful to use the numeral

1 and not the lower case L for a 1. Each character,
like each keyword, can only mean one thing to the
T/S 2000.

In fact, let's write all our programs in capital
letters. Press CAPS SHIFT 2 to obtain CAPS LOCK
and leave it there when writing programs. You'll
still have access to the numbers and will be able
to use CAPS SHIFT and SYMBOL SHIFT to obtain
other symbols and punctuation. As we said in
Chapter Two, in CAPS LOCK mode, all your letters
will be capitals.

Also, be careful to use the numeral @ (zero) and
not the letter O. We will show zeros with the slash
mark through them to distinguish them from letter
O's (this is common in computing).

Now press ENTER. Notice that the entire program

line has appeared at the top of the screen. . .in-
stead of just the words HELLO, SUE.

You will also notice a symbol between the 10 and
the PRINT. This is the program cursor. It is placed
at the line most recently entered into the program.

The only difference between the first line we typed
and the second was the line number. When we
put a number in front of a command, it becomes
a program line and is not immediately executed.

The cursor is ready again at the bottom of the
screen.

Type this:

20 GOTO 10 ENTER

73

Chapter 8: Writing a Program

10 PRINT 'HELLO,SUE"
20>60T0 10

D BREAK--CONT repeats, 10:1

74

Note that GOTO is a keyword (on the G key) and
should not be spelled out (in fact, it appeared as

soon as you pressed the G). Notice, also, that the
program cursor now shows at Line 20.

Now you have a complete, if brief, program. The
command in line 20 simply tells the computer to
go back to line 10 and start over. Can you guess
what will happen when you execute the program?

Let's try it and see. To execute a program, you
simply press

RUN
(the keyword on the R key), and
ENTER

How about that? That's a lot of stuff on the screen
for such a short program. As we said, the computer
is not very smart. But it is fast, accurate, and tire-

less when doing repetitive work.

One of the most powerful commands in BASIC is
GOTO, which directs the computer to a particular
program line, rather than the next line in numerical
order. GOTO is sometimes used to tell the computer
to go back to an earlier line and repeat a process
over and over again.

The question *'scroll?" at the bottom of the screen
informs you that the screen is full and asks you if
you want to continue printing. If you press either
N (for 'no'’) or BREAK, the program will stop with
the report code

D BREAK—CONT repeats, 10:1

GOTO, RUN

Chapter 8: Writing a Program

20

Press CAPS SHIFT while
pressing BREAK

CONT, BREAK

If you then press CONT (for CONTinue)—the C
key—ryou'll see the bottom entry flicker for a
while, and then it will stop with the “scroll?”
question again.

What is actually happening is that 22 more lines
of "HELLO, SUE" are being printed, and the screen
is being scrolled upwards.

This is also what happens if you press any key
other than N or BREAK in answer to “scroll?"

(Incidentally, this is much more useful in a program
where the information is changing—such as a
counting program where each 22 lines are of higher
totals—than it is where the information is simply
being repeated.)

Here's something else. Stop the program with
BREAK, then restart it with RUN and ENTER. While
the computer is running “HELLO, SUE" down the
side of the screen, press the BREAK key (CAPS
SHIFT must be pressed simultaneously) and notice
that the list stops at whatever point it was when
you pressed BREAK.

You have to be fast. Tty pressing RUN, then holding
CAPS SHIFT while you touch ENTER and then,
quickly, BREAK.

The computer checks after doing every program
line to see if anyone has pressed BREAK; if so, it
stops the program.

(You can also use BREAK to stop a runaway
program—1Iike an “‘endless loop,"’ about which
we'll say more later—-or a misfired LOAD from a
tape cassette. If BREAK doesn't work, you may
have to resort to turning the power switch off and
then on again which, of course, means you lose
any information in the computer.)

Note that when you want BREAK you have to press
CAPS SHIFT, too.

Chapter 8: Writing a Program

76

1¢>PRINT "GOODBYE, SUE™
2@ 60TO 1

CONTinue lets you-continue when the screen is
full, when you interrupt the program with BREAK
or STOP, or when the program itself interrupts with
the STOP command. (STOP—SYMBOL SHIFT A—
is used rather than BREAK within a program, or
when the program is waiting for input—yes,
we'll be talking about STOP later, too—and BREAK
is used while a program is in full gallop.)

Okay. After you've had your fill of fooling around
with BREAK and CONT, let the program stop with
a full screen, press BREAK and press ENTER again.

Your program is back on the screen again. You can
RUN it again (go ahead, press RUN and ENTER).

You can also leave it in the memory and go on to
something else. It will stay there until you erase it
or unplug the machine.

But there is one caution. Let's look into it. Get the
program listing back on the screen, by pressing
BREAK, then ENTER when it stops.

Now, type in

1@ PRINT "GOODBYE, SUE."
and press ENTER.

The new line 10 replaces the old line 10 in the
program. (And the program cursor shows that
line 10 was the last one you entered, even though
it is not the last one in numerical order in the list-
ing on the screen.)

There can only be one line 10 and any time you
enter a new one, you lose the old one. This means
that, if you leave a program in the T/S 2000 (instead
of restarting with NEW), you run the risk of having
the new program erase the old one. Or, worse, of
having some lines from the old program inter-
woven with lines from the new one.

Chapter 8: Writing a Program

e B e e e e

GOODBYE, SUE
GOODBYE, SUE
GOODBYE, SUE
GOODBYE, SUE
GOODBYE, SUE
GOODBYE, SUE
GOODBYE, SUE
GOODBYE, SUE

scroll?

5 REM PROGRAM-GOODBYE
1@ PRINT "GOODBYE,SUE"
15>PRINT “SEE YOU LATER"™
20 60TO 19

REM

Try this:
5 REM PROGRAM —GOODRYE

(and press ENTER).

Program line 5 has been inserted into the program
where it belongs in numerical order. This is why
we usually number the lines in multiples of 10: it
gives us room to insert new lines if we find we
need them.

Now press RUN and ENTER.

The program line (5) beginning with the key-
word REM doesn't “do” anything in the program.
Any line beginning with REM—for REMark or
REMinder—appears in the listing to help the user
understand the program—but is disregarded by
the computer when running the program. Remem-
ber that capitals and lower case letters are different
to the T/S 2000; it is wise to use the same kind of
letters in the REM statement as you use in the
actual program name for LOADing and SAVEing,
as a REMinder. . ..

As another example, try typing
15 PRINT "'SEE YOU LATER"

(and ENTER)

77

Chapter 8: Writing a Program

e
and RUN the program. Then press BREAK to stop
it and ENTER again to show the listing. Can you see
why the program does what it does?

SEE YOU LATER

SEE YOU LATER

scroll?

Now you might want to try to write a few simple
programs of your own, using lines of strings to
print or of mathematical calculations. Or even
mixing the two (remember, the computer will

do exactly what you tell it to do, even if the result
doesn't make any sense).

Summary

1. NEW erases everything that might have been
typed into the computer, to make room for a
new program.

2. When you put line numbers in front of com-
mands, they become program statements and
are not executed immediately. Instead, they
are carried out in numerical order in response
to the RUN command.

3. GOTO is a very powerful BASIC command. It
directs the computer to a line in the program
other than the next one in numerical order,
and allows the computer to repeat sequences
of program lines over and over.

4. BREAK stops a program while it is executing.

5. CONTinue restarts a program that has stopped
for certain reasons, most often because BREAK
has been pressed or the screen is full.

6. "Scroll?” is a question the computer asks when
the screen is full; you decide whether to stop
or to continue the execution of the program.

Arranging Output

9

on the Screen

5 REM PROGRAM--GOODBYE
18 PRINT “GQODBYE, SUE"™
15 PRINT "SEE YOU LATER"
2056070 1@

Chapter Preview This chapter shows you

how to use EDIT, AT,
TAB, commas, and
semicolons to move
things around. We use
the up and down
arrows.

You can do wonders with punctuation marks in a
T/S 2000 BASIC program. For instance, let's start
with the program we wrote in the last chapter:

5 REM PROGRAM—GOODBYE
10 PRINT "GOODBYE, SUE"
15 PRINT "SEE YOU LATER"
20 GOTO 10

The Program Cursor and

the EDIT Command

We'll add some punctuation. If you retyped that
program for this lesscn, you'll see the program
cursor, which looks like this—> —at line 2@, which
was the last line you typed in. Press the up arrow
(CAPS SHIFT 7) and it will move to line number 15.
Press the up arrow again and the cursor moves to
line 10,

Chapter 9: Arranging Output on
the Screen

ﬂ
(If you are starting this chapter right after finishing
the last one, the program cursor is at line 15. Press
the up arrow just once to move it to line 10.)

Then press EDIT (CAPS SHIFT 1) and line 10 will
appear in the workspace at the bottom of the
screen.

5 REM PROGRAM--GODDBYE Co .
:g>:§§:; ::gggn:;ﬁ, Li?é;"' Now move the cursor to the end of the line by
26 60TO 19 repeatedly pressing the right arrow (CAPS SHIFT

8). Then type in a comma (SYMBOL SHIFT N) and
ENTER.

The program doesn 't look much different. But
press RUN and ENTER.

The T/S 2000 screen is 32 characters wide (they
:3ue 3ezvou taree) | are numbered 0-31 instead of 1-32, by the way),

. SUE
SUE

T SuE and the comma moves the print position to the

« SVE

L fuE s e beginning of the next half screen.

L SUE
« SUE
SUE

- If you then add a comma to the end of line 15 in

suE SEE YOU LATER :
creltr the same way, the output on the screen will not
change. A PRINT statement with no punctuation
moves the PRINT position to the beginning of the
next line, and a comma after a PRINT statement
that finishes in the second half of the screen also
moves the PRINT position to the beginning of the
next line.

G
G
60
G
14
&
&
60
&
L]
5

A comma at the end of the print statement moves
the print position to either column #16 (the right
half of the screen) or position #0 (the beginning
of the next line), whichever is next.

Reminder: A comma inside quotation marks is
printed as a comma. A comma outside quotation
marks moves the print position to the beginning
of the next half screen.

The Semicolon

Using the same technique as before (arrows, cur-
sors, EDIT key) and the DELETE key, replace the
comma at the end of line 10 with a semicolon.

80 EDIT, b, DELETE, , ;

Chapter 9: Arranging Output on

the Screen

e e St

5 REM PROGRAM--GOODBYE
1% PRINT "GODDEYE, SUE ";
15 PRINT "SEE YOU LATER"
28 G070 1@

GOODEYE,
GOODEYE,
GOODBYE,
GOODBYE,
GOODBYE,
GOODBYE,
GOODBYE,
GODDBYE,
GOODBYE,
GODDBYE,

scroll?

SUESEE YOU LATER
LATER
LATER
LATER
LATER

SUESEE YOU LATER
SUESEE YOU LATER
LATER
LATER

SUESEE

1@ PRINT "GOODBYE,

«,a,EDIT, b, DELETE, ;

Move the program cursor to line 10 with the up
and/or down arrows (CAPS SHIFT 6, CAPS
SHIFT 7).

Bring the line down into the work area with EDIT
(CAPS SHIFT 1).

Move the cursor to the end of the line with the
right arrow (CAPS SHIFT 8).

Erase the comma with DELETE (CAPS SHIFT 0).

Add a semicolon (SYMBOL SHIFT O—the letter
O, not a zero).

Press ENTER.
Now RUN the program.

Hmmm. What have we here?

A semicolon moves the print position to the next
space after the end of the previous statement.

We have to figure out a way to leave a space
between the two phrases.

The way you do it is to add a space inside the
quotation marks. Same way as before:

Press ENTER to get the program listing.
Move the program cursor to line 10.
Press EDIT to bring it down.

Move the cursor with the right arrow to a position
Just before the last quotation marks.

81

Chapter 9: Arranging Output on
the Screen

m
Type a SPACE. It is inserted at the point of the
Cursor.

18 PRINT “GOODBYE, SUE [@";

Press ENTER.
5 REM PROGRAM--GOODBYE
19>PRINT "GOODBYE, SUE ";
15 PRINT "SEE YOU LATER™
29 s0TO 1@
Press RUN and ENTER.
Note: if, for any reason, you want to separate
SO0DBTE: two numbers, you have to add spaces in quotes,
e ah which means you have to add the quotes, too.
SooneTE! 2uE
parally PRINT 1234 prints 1234
PRINT 12 34 prints 1234
PRINT 12;" ;34 prints 1234

Don't forget the semicolons. . .

The Apostrophe

There is one more punctuation mark that doubles
as a '‘control character'' to move the PRINT posi-
tion. The apostrophe (SYMBOL SHIFT 7) moves the
PRINT position to the beginning of the next line.
So, instead of typing

10 PRINT "Hello"
20 PRINT "‘there"

you could type

10 PRINT "'Hello" ' “'there" and get the same effect.

82

Chapter 9: Arranging Output on

the Screen

CHAPTER NINE

PUNCTUATION ANG THE SCREEN

INFORNATION

INFORNATION
scroll?

5 REM PROGRAN--CHNAPNINE
18 PRINT INK 1;7AD 19;"CHAPTER

N

28 PRINT AT 5,3;"PUMCTUATION A
NO_THE SCREEN"

398 PRINT

69 PRINT
70 PRINT INK ZiTAB 5;"INFORNAT

N
890 GOTO Te

REM, TAB, AT

There are other ways to position printing on the
screen. Let's try them.

TAB and AT
First, let’s clear the computer by pressing NEW
and ENTER.

Then, type in this program:

5 REM PROGRAM—CHAPNINE

10 PRINT INK 1; TAB 10; “CHAPTER
NINE"

20 PRINT AT 5,3; “PUNCTUATION AND
THE SCREEN"

30 PRINT

40 PRINT

50 PRINT

60 PRINT

70 PRINT INK 2; TAB 5;" INFORMATION"’

80 GOTO 70

Press RUN and ENTER. Nice page, eh?

Reminder: If you press the N key (for “'no’’) or the
BREAK key in response to the question ‘‘scroll?"’
at the bottom of the screen, the screen will not
scroll, and you can do something else.

If you press any other key, the program will scroll
to print the next 22 lines. You must stop the scroll-
ing with N or BREAK before you can do anything

else.

Let's examine the program, line by line. Press
ENTER to get it back on the screen.

Line 5 is just our standard REM statement, con-
taining the name of the program (the same name
we use to LOAD or SAVE it). This is not required,
but is probably a goed habit to get into.

83

Chapter 9: Arranging Output on

the Screen

s we
10 PRINT INK 1;TAR 19;"CMAPTER

NINE™
20 PRINT AT 5, 3; PUNCTUATION A
NO_THE SCREEN"

REN PROGRAM==CNAPNI

68 PRINT
T PRINT AT 10, 5; " INFORNATION"
80 6070 70

Line 10 prints beginning at column 10 across the
screen—just like the TAB key of a typewriter,
except that you specify the column number in
the program line. Remember to obtain TAB from
the extended mode (press both SHIFT keys, then
the P key) rather than spelling it out.

Notice the semicolon after TAB 10. TAB 10 puts
the “‘print position’ at the 10th column, but a
comma would move it to column 16 and defeat
the purpose of the TAB statement. And no punc-
tuation at all would result in a syntax error marker.
For the same reason, the INK command is followed
by a semicolon.

PRINT, “JOE' (with the comma before "JOE"') is
the same as PRINT TAB 16; “JOE"—you can put
the comma ahead of the PRINT item.

Line 20 prints AT a location defined by the two
numbers—the first is the line number, the sec-
ond is the column number (five lines down, three
columns across). AT is also a keyword, SYMBOL
SHIFT on the I key. Notice, again, the semicolon.

Since INK 11in line 10 was in a print statement, it
specified the ink color for only that statement.
Line 20 returns INX to the normal, or “'default”
value of 0, black.

Lines 30-60 each print a blank line, effectively
moving the print position down by four lines,
before line 70.

Line 70 prints, on the next line and at the specified
TAB location, its information, in INK color 2, red.

Line 80 causes line 70 to repeat until the screen
is full.
Could you change line 70 to read

PRINT AT 10,5; "INFORMATION"'

TAB, AT

Chapter 9: Arranging Output on
the Screen

_—

TAB

CHAPTER NINE

PUNCTUATION AND THE SCREEN

INFORMATION

5 REM PROGRAM-~CNAD)
18 PRINT INK 1748 u cunel

20 PRINT n $.3;"PUNCTUATION A

78 PRINT AT 18,5 "INFORMATION™
15 PRINT INK 2TAB S;"INFORNAT

Io soro 75

CHAPTER NINE
PUNCTUATION AND THE SCREEM

NFORMAT 10

NFORMAT IOM
NFORMAT (O
NFORMAT [ON

MFORNAT LOW
HE

Try it and RUN the program.

Hint: You'll have to use BREAK to stop the pro-
gram. This is because lines 70 and 80 form an
“endless loop”’ that is never stopped by a full
screen, since line 70 keeps returning the PRINT
position to line 10.

Does it make any difference if you add a comma
at the end of line 70? Why or why not?

How about if you add a line 75 that reads like the
original line 70, and change the GOTO in line 80,
like this:

70 PRINT AT 10,5; "INFORMATION"'
75 PRINT INK 2; TAB 5, “INFORMATION"
80 GOTO 75

Then RUN and ENTER.

How To Print Quotation Marks

You may be wondering, if quotation marks tell
the computer where to start and stop a string,
how can you print quotation marks themselves
on the screen?

If you type two quotation marks together after
you have started a string with a single quotation
mark, the computer will print a quotation mark.

Let's eliminate line 75 by typing 75 ENTER,
change line 80 back to

80 GOTO 70

(just type in the new line 80 and it replaces the
old one), and then change line 70 to look like this

Chapter 9: Arranging Output on

the Screen

REM PROGEAM--CHARM INE
TAB 19; CHAPTER

NINE
20 PRINT 2'1‘ S.3/"PUNCTUATION A

PRII\' INE 15

4 ERINT
T8 PRINT TAB 5p* = INEORNATION"
Be goTo 78

CHARTER WINE
PUMCTUATION AND THE SCRERR

PINFORMAT [ON"

HIMFORMATION"

'III‘O'HI'IIO!"
MFOEMAT

«Ilﬂnﬂllllb

W
“INFORMAT IDR"
"INFORMAT ION"
HINFORMATION"

scroll?

86

70 PRINT TAB5;"' " “INFORMATION"" " "'

(after TAB 5; you type SYMBOL SHIFT P three
times and, after typing INFORMATION, type
three more SYMBOL SHIFT P). You will get a curi-
ous looking arrangement in your program listing
but the right kind of quotation marks when the
program prints it.

Here's something else you may want to try —
you can have multiple PRINT items in one PRINT
statement.

First, we need to remove the CHAPNINE pro-
gram from the computer. Type NEW and ENTER
(this is the last time we'll remind you to do this.. . .).

Then type in the following one-line program—
very carefully!

10 PRINT TAB&; “SUE'"; AT 5,10; "SUE",,, , TAB5;
"SUE"

RUN the program.

It will print the screen shown at the right. TAB5
prints in the first line at column 5, AT 5,10 prints
at line 5, column 1@, the four commas then move
the print position first to line 5, column 16, then
line 6, column @, then line 6, column 16, then line
7, column @, and then the TAB 5 moves it to
column b, still on line 7.

Try a few arrangements yourself.

TAB, AT

Chapter 9: Arranging Output on
the Screen

[e e T
Multiple Statement Lines: The Colon

You can also have more than one program state-
ment on a line, separated by a colon. We did this
with commands (without line numbers) earlier in
the manual.

Generally, keeping each statement on a separate
line makes it easier to understand and to edit—
make changes in—a program.

But you can sometimes save memory space
without sacrificing understanding if you combine
closely related statements on a line. Press NEW
and ENTER, then try this:

10 PRINT “SUE": GOTO 10
ENTER
RUN and ENTER

1@ PRINT "SUE":6070 1ef

Summary

1. After a PRINT command with no punctuation
following, the print position for the next PRINT
command moves to the beginning of the next
line on the screen.

PRINT "SUE"

2. A comma after a PRINT command moves the
print position to the middle of the screen, or to
the beginning of the next line, depending on
whether the end of the item that has just been
printed is in the left- or right-hand half of the
screen. You can use more than one comma to
move the print position as far as you like by
half-lines.

PRINT "SUE",,,

PRINT, ;’, TAB, AT 87

Chapter 9: Arranging Output on
the Screen

=—— - |
3. The semicolon moves the print position just
one character space to the right.

PRINT “SUE";

4. The apostrophe moves the print position to
the beginning of the next line.

PRINT "“SUE"'

5. TAB sets the print position at the column called
for by the number following TAB. Remember,
column 0 is really the first column, column 9
is really the tenth, and so on.

PRINT TAB 10, "SUE"

6. AT sets the print position according to two
numbers as co-ordinates, separated by a com-
ma: the first is the line number (counting down
from the top of the screen) and the second is
the column number (counting across from the
left edge).

PRINT AT 5,15; "SUE"

7. TAB and AT move the print position before
printing what is on their program line; the
comma and semicolon move the print posi-
tion after, in preparation for the next line, so
you could have both:

PRINT AT 5,15; "SUE",,

8. You can print quotation marks inside a string
by typing two quotation marks in order to
print one.

9. The colon allows you to put multiple staterments
on one line; after a colon, the [cursor returns,
allowing you to start a new command with a
keyword.

88 m}A ' darr

Saving Time and

Space with Variables

10

LET

Chapter Preview You learn to use the LET
command to name
numbers, words or
sentences. We clear the
screen with CLS and the
memory with CLEAR,
and introduce
“variables."

10LET A =5328
20LET A% = "FRED"
30PRINT A

40 PRINT AS

Type in the above program. Remember the
SYMBOL SHIFT key for §, =, and "'. Then press
RUN and ENTER. Can you see what has happened?
Press ENTER again, and your program listing will
be back on the screen.

88

Chapter 10: Saving Time and
Space with Variables

—
Lines 10 and 30 have the same effect as if you had
LET As2328 .\ | typed PRINT5328. The letter A, when preceded

PRINT A by LET and followed by =, becomes a varable. In
PRINT AS

the program above, of course, it takes more time
and more memory space in the computer todo it
this way. But if you had a program where the num-
ber was printed several times, using the variable
A instead of the entire number 5328 each time
would be easier to type, and would save precious
memory space in the computer.

In some programs, as we will see later, the num-
ber A stands for changes during the program;
that's why A is called a variable.

The program statement
LET A =5328

is called an assignment statement because it as-
signs a value (6328) to a variable. The letter A is
called a vaniable name.

A variable name does not have to be a single let-
ter. It can be any length and contain letters or
numbers but the first character must be a letter.
The statement could be written

LET NUMBER = 5328 or
LET THIS NUMBER = 56328 or
LET A5328 =5328

and so forth.

Lines 20 and 40 do the same thing as lines 10

and 30, except that A$ is a string variable. (A$

is pronounced “‘A string’’ rather than ‘A dollar
sign.”)

Strings can be any length—whatever is between
quotation marks— but the name of a string variable
must be one letter followed by $. You could write

Chapter 10: Saving Time and
Space with Variables

(o e

o

CLS, NEW, CLEAR, LET

LET A$ = "HELLO"

LET B$ = “WAY DOWN UPON THE SWANNEE
RIVER"

LET C$="5328"

Now we have the program on the screen. Press
the V key, which in keyword mode will give you
CLS, and press ENTER.

CLS stands for CLEAR SCREEN. The program

is gone. Butif your press ENTER again, it comes
back. It was taken off the screen, but it stayed in
memory.

Now press the A key, for NEW, and ENTER. Then
press ENTER again. The program, this time, is
gone. NEW erases everything in the computer
and on the screen, and readies the T/S 2000 for

a NEW program.

Let's go back to the immediate mode and try
something else. Type

LETA=5 ENTER

then press ENTER again. No program. Nothing in
the computer? Try

PRINT A ENTER

Well, what do you know? The computer saves
variables! Now this can get cluttered after a
while, so there is a command to clear variables
out of the memory. Press

CLEAR ENTER
then
PRINT A ENTER

We see the screen report code 2, Variable not
found. That's because we took the variable A and
its assigned value out of the memory with CLEAR.

Chapter 10: Saving Time and
Space with Variables

10 PRINT AS
2¢ GOTO 1@

2 variable not found, &0:1

LET As="TIMER SIRCLATR 2000 @

TIMEX SINCLAIR 2000
TIMEX SINCLAIR 2000
TIMEX SINCLAIR 2000
TIHEX SINCLAIR 2000
TIMEXK SINCLAIR 2000
TIHEX SINCLAIR 2000
TIHEX SINCLAIR 2000
TIMEX SINCLAIR 2000
TIMEX SINCLAIR 2000
TIMEX SINCLAIR 2000
TIMEX SINCLAIR 2000

scroll?

92

Let's try something else. Type this program.

10 PRINT AS
20GOTO 10

remembering, of course, to press ENTER at the
end of each line.

From now on, we're not going to talk about ENTER!
But you must remember to press ENTER after every
comimand or program line.

Can you guess what will happen when we RUN
this program? Try it.

(Did you remember ENTER?)

A "2 Variable not found" report code again —
because we didn't define the variable A$. Press
ENTER to bring back the program. Now type, with-
out a line number,

LET A% = "TIMEX SINCLAIR 2000"

(or any other words if you prefer). Press ENTER
again to get the program back on the screen and
notice that the assignment statementisn't init
(because we didn't give it a line number).

Now type
GOTO 10

GOTO 10 started the program running, and it used
the varable that was stored in the computer's
memory. Why did we use GOTO 18 instead of RUN?
Try to execute the program using RUN.

LET, GOTO, RUN

Chapter 10: Saving Time and
Space with Variables

When you use RUN to execute a program, in ef-
fect you are saying CLEAR the variables and then
GOTO line 1— the beginning of the program. This
is so that leftovervariables do not gum up the pro-
gram. But if you want to use previously entered
variables, just start a program with GOTO.

Enter a new string value for A$, using the LET
statement. Run the pregram again, using GOTO.
Then press CLEAR. Get the program back again
with ENTER. Run it with GOTO again.

CLEAR eliminates variables, but leaves the pro-
gram in the T/S 2000.

Summary:

1. LET assigns values to variables.

2. Numeric variable names begin with a letter
and can be any length.

String variable names are a single letter and $.
String variables can be any length, enclosed
by quotes.

CLS clears the screen.

CLEAR erases variables from the memory.
RUN starts a program after clearing variables.
GOTO starts a program (at any line number
you choose) without clearing the variables.
NEW clears everything from the computer.

- w

PNoo

©

LET, CLS, CLEAR, RUN, GOTO, NEW 93

Mathematics with 11
the T/S 2000

Press CAPS SHIFT while
pressing DELETE

Chapter Preview You can add, subtract,
mulitiply, divide, and use
built-in functions like
RNDand INT.

If you have used a calculator, you are used to
typing in something like this

242=

and getting the answer. Try this on your T/S 2000.
Nothing happens. Press ENTER. A syntax error
marker appears.

This doesn't look promising. Press CAFS SHIFT 0
(DELETE) until you get rid of it all.

Chapter 11: Mathematics with
the T/S 2000

You can use your computer as a calculator, but
& you have to ask the right questions. Try this:

PRINT 2 + 2 ENTER

¢ 0K, 0:1 Okay, that's more like it. You can use any math-
ematical operation in the same way. The signs are

+ SYMBOL SHIFTK addition

SYMBOL SHIFTJ subtraction
SYMBOL SHIFT B multiplication
SYMBOL SHIFT V division

SYMBOL SHIFTH raising to a power

The addition and subtraction signs are the ones
you are used to. Division uses a sign you have
probably seen, because the computer does not
have the + sign in its character set. And an as-
terisk is used to stand for multiplication because
the X is being used as a letter.

_y\,‘,l

Raising a number to a power is a special case.
The T/S 2000 cannot insert or understand super-
scripts, which is what we call our usual notation,
so we use the 1 symbol, which is common
mathematical notation.

32 = 3squared = 312
33 = 3cubed = 313
34 = 3tothe fourth power = 34
310 = 3tothe tenth power = 3110

All of these mathematical operations can take
place in programs, of course.

Priorities and Parentheses

1f you have a program line containing a number
of mathematical operations, the Timex Sinclair
2000 will perform them in this order:

Fixst, it will work out any powers, starting with
the left end of the line and working to the right.

Second, it will do all multiplication and division,
again working from left to ight.

96 "'v—'.'/rf

Chapter 11: Mathematics with

the T/S 2000

e T g e

Finally, it will do all addition and subtraction,
once again from left to right.

These are called the priorities, and are part of
the way the computer is designed. Just as the
character set includes more than just the letters
of the alphabet, in fact, the priority rankings go
well beyond the basic mathematical operations—
a complete table can be found in Appendix A.

You may want to have operations performed in
an order different from the computer's way, and
you can arrange this by using parentheses: any-
thing in parentheses is done first (left to right)
and the result is treated as a single number.

For example
3+4+3=15

because 3*4 = 12 (multiplication before
addition) and then 12 + 3 = 15. But

3«4+ 3) = 21

because 4 + 3 =7 (parentheses first) and then
3+7=21.

You can go further, putting parentheses inside
parentheses. The innermost parentheses will
be done first, and then the computer will work
its way out from there.

Scientific Notation

Sometimes, when a number is going to be more
than 14 spaces long, the T/S 2000 will print it in
scientific notation instead. This is a number with
one digit to the left of a decimal point, some digits
to the right of it, and then an E (for exponent), a
+ (or sometimes a minus) and a number which
multiplies the rest of the expression by powers
of 10.

Chapter 11: Mathematics with
the T/S 2000

ﬂ
' For example,

2.34E+14

is 2.34 times 10 to the 14th power.

Try typing in any number more than 14 digits
long (after a PRINT statement), like

PRINT 2345678923456789

and see what happens.

You can also use scientific notation in entering
numbers, and the computer will convert the num-
ber to an ordinary expression—until it gets to
be more than 14 digits long, and then it will go
into scientific notation itself. Try

PRINT 2.34E0 ENTER
PRINT 2.34E1 ENTER
PRINT 2.34E2 ENTER

and so on. (You don't have to use the + sign,
although the computer does.) At what point
does the computer start returning scientific
notation?

Rounding Errors

All computers have a problem with rounding
errors—answers which are sometimes slightly
incorrect due to the “‘rounding off”’ process. This
is inherent in the binary-to-decimal conversion
operation. (Most large computers have editing
routines to correct for this built into their math
handling procedures.)

If you were to write

100 LETA=1.01-1
110 PRINT A

98

Chapter 11: Mathematics with

the T/S 2000

you would get an answer from the computer of
0.0099999998, when the correct answer is, of
course, .01.

You can correct for this by adding
105 LET A =INT(A+100 + .5)/100

(INT is the function located above the R key,
and obtained with the | cursor.)

Functions

Many mathematical functions are built into
Sinclair BASIC. To take the square root of 9, for
example, you would type

PRINT SQR 9

using the function SQR above the H key.

We will not spend any more time on functions at
this time; you'll find them all defined in Appendix
A. Aswe said back in Chapter Three, mathema-
ticians probably know them anyway and the
rest of us probably don't need them. . .

The Random Number Generator

There is one function we want to discuss a bit
further, because it is very useful in programming
educational exercises and games. That is the
random number generator.

The function RND, located above the T key, gives
you a number between @ and 1. Try a few of them:

PRINT RND

Chapter 11: Mathematics wzth

the T/S 2000

100

- "Picking a number between 1 and 6" simulates

Now, this may not seem terribly useful, but you
can use it to obtain whole numbers in any range
you want. For example, if you want the computer
to “‘pick a number between 1 and 6,"' you type

PRINT INT (RND+6) + 1

INT (for integer) is the function above R, conven-
iently close to RND. You have to dip into extended
mode twice to do this. Here's what is happening:

1. RND+6 is generating a decimal fraction
between 0 and 1, and multiplying it by 6.

2. INTisrounding that number down to a whole
number. If it's 3.09345622, it becomes 3. Ifit’s
0.97888545, it becomes 0. If it's 5.8760, it
becomes 5.

3. That gives you a whole number between @
and b, and you wanted one between 1 and
6, sowe add one (+ 1). This step is necessary
because the INT function rounds down,
not up.

You may want to write that formula down some-
where, because you'll use it a lot.

the roll of a die. Do it twice and you have a dice
roll.

The value returned by a RND function can be
assigned to a variable—

LET A=INT (RND*32)

—and used for all kinds of things, including
deciding where on the screen some symbol is
to be placed!

One last thing: RND is actually not a true random
number generator, but only a ‘‘pseudo-random”’
function. It actually gives you, one at a time, num-
bers from a long table that has been randomly
generated. The table is so long that you won't
be able to memorize it, but you can memorize
RND, INT

Chapter 11: Mathematics with

the T/S 2000

RND, RAND, +, - ,*,/,1

the first few numbers, which will always be the
same the first time you turn on the computer.

Prove it. A couple of times, turn it off and then
on again and try

PRINT RND
a few times. It's the same sequence!

To get away from the early part of the list, you
use the RAND keyword, on the T key. When you
first plug in the computer, or within a program,
before any RND functions, type

RAND 0

When you use the @, RAND (which stands for
randomize) finds a place to start in the table
based on how long your computer has been on
(how many frames have been sent to the TV),
which is about as random as you'll need.

On the other hand, if you use any number other
than 0, RAND starts using the table at a certain
point based on that number, so that

RAND 50

will always start RND with the same number.

Try it out.
Summary

1. The T/S 2000 will carry out the mathematical
operations of + (addition), — (subtraction),
* (multiplication), / (division) and 1 (raising to
a power).

2. This can be done anytime within a program;
in the immediate mode, you need to use a
PRINT command to see the result.

PRINT 2 +2

101

Chapter 11: Mathematics with
the T/S 2000

3. Mathematical operations are carried out in
a particular order of priority; you can circum-
vent the priority ranking by using parentheses.
Operations in parentheses are executed first.

4. The Timex Sinclair 2000 can understand
scientific notation, and will use it with large
numbers.

5. The computer has a number of built-in math-
ematical functions, which can be accessed
with single keys in function mode.

6. The function RND generates pseudo-random
numbers.

102 RND

Programs That Ask

for Information

12

Chapter Preview This chapter covers the
use of the INPUT com-
mand to enter informa-
tion into a program, and
how the READ, DATA,
and RESTORE commands
let the computer look
information up.

10 REM PROGRAM — TIMES TABLE

20 INPUTINK 1;"HELLO. WHAT'S
YOUR NAME?"; A%

30PRINT INK 2;"GIVEME A NUMBER, ':A$," " AND
I'LL GIVEYOU A TIMES TABLE.",,

40INPUT A

SO PRINT 2;" TIMES ";A;" EQUALS "";2+A

60 PRINT 3;" TIMES ",A;" EQUALS "3+ A

70 PRINT 4;" TIMES ";A;" EQUALS ";4+A

B0 PRINT 5;" TIMES "";A;" EQUALS '";5*A

Programs can be written so that they will stop
and ask for infermation to work on. One way they
do this is with the INPUT statement.

103

Chapter 12: Programs That Ask

for Information

e e |

T4 REM PROGAAM-=TINES TADLE
PUT JHE 1;"SELLD. WHAT'S

TUIAS

3¢ PRINT ENK 2;“GIVE WME A NUMB
ER, ";AS,"AND ['LL GIVE TOU A TI
WEE TABLE.Y,,
44 IHPUT A
S8 PRINT 2;% TIRES "ja;"
§ YiZen
&8 PREINT 5;" TIMES "
ilen
T8 PRINT &;° TIMES "“[A;

§ “yieh
S8 PRINT $;% TIMES “jAj*
§ ySen

104

Type in the program above and, before you RUN
it, let's walk through it, line by line:

Line 10 is our standard REM statement, telling us
what the program is.

Line 20 is an INPUT statement. If you simply enter
INPUT A

the program will, when it reaches that line, stop
and wait for the user to enter a number. It will in-
dicate that it is waiting for a number by placing
aflashing cursor (ff or [, depending on whether
CAPS LOCK is engaged) at the bottomn of the
screen.

If you enter, for a program line,
INPUT AS

the computer will indicate that it is waiting for a
string (it could be a single letter) by showing the
or [@ cursor in quotation marks.

And, you caninsert a “prompt'’ to explain the
nature of the input desired by putting a sentence
in quotation marks between INPUT and the varia-
ble to which the input will be assigned:

INPUT "PROMPT"" A

Finally, you can specify an ink color (and a paper
color, if you like) for the prompt, as we have done.
Just be sure each portion of the statement is fol-

lowed by a semicolon.

20 INPUT INK 1;'PROMPT";A$

REM, INPUT

Chapter 12: Programs That Ask
for Information

Line 30is an alternate way of inserting a "'prompt’":
this one will show at the top of the screen. Notice
that, since your name —the variable A$ —will be
printed in the second half of the screen, we put a
comma instead of a semicolon after it, thus start-
ing the next PRINT item on the next line. (By the
way, it is because that PRINT item is exactly 32
characters wide — a full screen — that we use two
commas at the end of the line to position the
times table.)

Line 40 s a simple INPUT statement, calling for
anumber.

Lines 50 through 80 print out a multiplication table.
Notice the spaces inserted inside the quotes, be-
fore and after the words.

You can use EDIT to easily duplicate repetitive
lines like 6(3-80. After entering line 50, press CAPS
SHIFT 1 (EDIT) and line 50 will appear at the bottomn
of the screen. DELETE the line number and type
in 60 instead, then use the cursor arrows and
DELETE to make the other changes needed, and
press ENTER.

NUMBER, &

_ - RUN the program. Notice how the prompts helped
a7 emms e\ | you torespond to the INPUT statements.

T EDUALS 31
7 ROuALS 28

RS 3 The PRINT statements in lines 50-80 print in black
because there was no INK color chosen in that
statement, as there was in lines 20 and 50. But try
this: DELETE the INK 1 from line 20, and insert it
as a separate line:

15INK 1

RUN the program again and see what happens in
lines 5@-80.

INK as a separate statement changes the ““default”
INK color—the one that every PRINT statement
uses unless it has its own INK command.

INPUT, INK 105

Chapter 12: Programs That Ask
for Information

T e R R S TS|
(One exception is the "‘prompt'’ within an INPUT
statement, which always uses black or white—
whichever provides maximum contrast—unless
an INK color is specified also within the INPUT
statement.)

Here's another use of INPUT, asking you to enter
anumber each time the loop repeats:

10 REM PROGRAM — THIRTEENS

20 PRINT "T'LL MULTIPLY EACH NUMBER YOU",
3¢ BhTur ae Tanes 13 15 5an “GIVEMEBY 13"

&9 GOTO 30 30 INPUT A

40CLS

50 PRINT A;" TIMES 1315 "";A#13

60 GOTO 30

19 REN PROGRAN--TWIRTEENS
T UIVLL NULTIPLY EACH W
" “GIVE NE BY 13"
NPUT A

With this program, you input a number, and the
computer shows you the answer.

If you should enter a letter when the computer
wants a number, the program will stop with report
code 2, variable not found (unless, by some chance,
you have a variable in memory named by the letter
youinput. . .).

How do you stop the program when you are tired
of it?

When the cursor is on the bottom of the screen,
waiting for INPUT, enter STOP (SYMBOL SHIFT
A) instead of a number.

To stop a program press
SYMBOL SHIFT while
pressing A

106 INPUT, STOP

Chapter 12: Programs That Ask

for Information

_

H STOP in INPUT, 39:1

Why didn’t we put the CLS command before
INPUT? Logically, it would seem that we ought to
keep the steps in the process of showing the ques-
tion together, and the steps in the process of get-
ting and dealing with the output together. But
change line 40 to line 25 and see what happens.

We want the prompt to stay on the screen until
you can read it, so we don't clear the screen until
after you enter your input.

Try taking out the CLS statement completely.
Type

25 ENTER

and then see what happens when you RUN the
program.
You can use an INPUT statement to control the

speed at which things happen. In that case,
what you input is immaterial and is disregarded.

200 PRINT "PRESS ENTER TO CONTINUE"
210 INPUT AS$
220 the next line

would serve the purpose; the program would
wait for you to press ENTER before proceeding.

READ, DATA, and RESTORE
There is another way for a program to get informa-
tion without having it in the body of the program.

107

Chapter 12: Programs That Ask

for Information

e e — e e e

108

10 REM PROGAAM-=CAPITALS
2¢ READ A
30 PRINT “WHAT 15 THE CAPITAL
OF *.AS;U,,
40 READ B3
38 IKPUT (3
68 PRINT "YOUR ANSWER WAS“, C3
78 PRINT “IME CORRECT ANSWER 1

S8 DATA "NOKTH DAKOTA™, ' BISMAR
" U TSCONSTN™, “NADTSON, “NINNE
TAT MST. PAULY

VAT 15 TeE CAPITAL OF
NORTH BaROIAT

TOUR ANENER wa
ARG

1008 AwsuEn
w401 0K
s comaccr
s iEon
Wt 1S IAL CARIIA
mANEECTAY

-+

The DATA statement is a place to store values—
either numbers or strings, or even both intermin-
gled —with each value separated by commas.

The READ statement inputs those values into the
program, one at a time, until they are gone.

10 REM PROGRAM — CAPITALS

20 READ A$

30 PRINT "“WHAT IS THE CAPITAL OF " ,A$;"?"...,
40 READ B$

50 INPUT C$

60 PRINT "'YOUR ANSWER WAS", C$,..,

70 PRINT “THE CORRECT ANSWER IS"',B$,,,,

80 GOTO 20

90 DATA “NORTH DAKOTA",“BISMARCK",
“WISCONSIN","MADISON"',"MINNESOTA","ST.
PAUL"

Again, the multiple commas at the ends of the
PRINT statements are for spacing on the screen.

RUN the program. It will stop when it has read all
the data.

What is most useful about this program is that
you can change or add data to it and make a real
quiz. (You could even change the question!)

READ, DATA

Chapter 12: Programs That Ask

for Information

sl ' _— . - T

DATA

There can be many DATA statements in a pro-
gram, but they are treated as a single data list. So
you could add to the program:

100 DATA "NEW YORK",ALBANY"',“RHODE
ISLAND","PROVIDENCE", “OHIO", *'COLUMBUS"’
110 DATA “SOUTH DAKOTA",“PIERRE",
"“CALIFORNIA",""SACRAMENTO","FLORIDA"",
"“TALLAHASSEE"

Oor even

120 DATA “"ENGLAND","LONDON",“FRANCE"",
“PARIS","WEST GERMANY"',""'BONN",“NORWAY "',
“OSLO"

You can have any nurnber of items in a DATA
statement. It is simply easier to edit a program if

" youdon't put them all in one long statement. They

can be numbers, which the program reads by
READ A

or strings (one or more letters in quotes), read by
READ A%

And, of course, the data items don't have to be in
pairs; they can be read as individual numbers or
strings, or in any groupings that fit your program.

You may want to use a body of data for a number
of operations and periodically ‘‘reset" the data list
to the beginning (that is, have the next READ state-
ment start over and use the first item again). At
the proper place in the program, then, you would
insert a line like

109

Chapter 12: Programs That Ask
for Information

e e S T
200 RESTORE

You can also reset the data list to a specific line
(not necessarily all of the data) by using RESTORE
with a line number.

For example, if we had added lines 100, 110 and
120 as above, you could use

RESTORE 100

to have the next READ statement start with
“New York' rather than ""North Dakota.” (This is
another reason to use more than one DATA line
in a program.)

If you should want to STOP a program that is tak-
ing string inputs — the cursor at the bottom of
the screen is in quotes—you have to DELETE the
left quote before you press STOP. Otherwise the
program will treat the word STOP as a string
input.

You could also insert this program line
55 IF C$ = ''STOP" THEN STOP

and, if you input the letters STOP in response to
the cursor in quotes, the program will stop.

Summary
1. INPUT stops the program to wait for informa-
tion to be entered by the user.

INPUT A assigns a number to the variable A;
a cursor at the bottom of the screen signals
that the computer is waiting for the input.

INPUT A$ assigns a string to the variable A$;
the cursor is enclosed in quotes to signal that
a string is needed.

110 READ, DATA, RESTORE, STOP

Chapter 12: Programs That Ask
for Information

s o =

2. STOP, in response to the INPUT cursor prompt,
stops the program. If the cursor is in quotes,
the left quote must be DELETEdJ before STOP
is entered.

3. DATA statements hold numbers and/or strings
separated by commas, for use in programs.

There can be many separate program lines
beginning with DATA, but the computer treats
them as a single “‘data list."

4. READ statements input items from the data
list, one at a time in order, for use in the
program.

READ A (or READ AS$) assigns the next item in
the data list to the variable A (or A$).

(If the data doesn't match the READ statement,
an error will result— for example, if READ A
encounters a string.)

READ A B,C reads the next 3 items on the
DATA list and assigns them to variables A,B
and C.

5. The RESTORE statement directs the next READ
statement to the first item in the DATA list.

INPUT, STOP, DATA, READ, RESTORE 111

Programs That

Repeat: Looping

THIS LooP/nG HAS
YO STOP... NOW
1l JUST 1 LET=I...

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

0 oKk, 30:1

— 0BGV N -

FOR, TO, NEXT

Chapter Preview Repetitious work is
easy with FOR, TO,
NEXT, and STEP. We
also use LIST to print
the program on the
screen.

10FORI=1TO 10
20 PRINT "NUMBER", I
30 NEXT I

"Type this program into your Timex Sinclair 2000.
In line 1@, do not spell out TO, but use SYMBOL
SHIFT F. RUN the program.

We said earlier that GOTO was a very powerful
BASIC statement. We used it to make a program
repeat, by telling the computer to GOTO an earlier
line number and execute the same operations
again.

3

113

Chapter 13: Programs That
Repeat: Looping

The process of repeating the same operations a
number of times is called looping, and the part of
the program that repeats is called a loop. When
we simply use GOTO, we have no control over how
many times the program repeats; in fact, it does not
stop (until the screen fills, or we press BREAK).

This is called an endless loop, and is not too useful.

The FOR/NEXT Loop

We need loops that are under our control. In Sin-
clair BASIC, the best way to do this is with what
is called a FOR/NEXT loop. The program above
shows the form of such a loop:

Te FOR I=1 T0 18 Line 10 contains the keywords FOR and TO, two
Al numbers indicating how many repetitions are
desired, and a counter or control vanable. A con-
trol variable in a FOR/NEXT loop must be one
single letter. Computer experts usually use I, but
any letter will do.

Line 20 contains the action that is to be repeated
within the loop. There can be many lines of activ-
ity here, not just one.

Line 30 is necessary to close the loop. It tells
the computer where to stop and go back to the
FOR line.

Try this: get the program back on the screen with
#ihihbit, | | ENTER, thenadd

38 WEAT 1

25 PRINT “

Between the quotes is the graphic symbol on the
3 key. Remember how to get it?

114 FOR, TO, NEXT

Chapter 13: Programs That

Repeat: Looping

2 0%, 3a:t

LIST

After you've pressed SYMBOL SHIFT P for the *,
press CAPS SHIFT 9 to enter the graphics mode,
with the g cursor on the screen. Then press the
3 key 32 times, because the screen is 32 charac-
ters wide. Then press CAPS SHIFT 9 to exit the
graphics mode and, with the [cursor showing,
close the quotes with SYMBOL SHIFT P. (Then
ENTER all that.) RUN the program and you'll see
a dandy bunch of underlining.

Incidentally, another way to determine if you've
got your full 32 characters—a full line on the
screen— between the quotes is to see that the
close quote is one space past the open quote (but
on the next line). Put another way, see that the
material between the quotes would meet if it
were on the same line.

Want some color in the display? Try adding INK 2;

to line 256:

25 PRINT INK 2;"

The LIST Command

Bring back the program with ENTER. You see

the program cursor at line 25— the last line you
entered. We want to EDIT line 10. But instead of
using the cursor arrows, let's look at another
technique.

In most BASICs, pressing ENTER does not bring

back a program listing as it does on the T/S 2000.

The command LIST is required, and you can add
a line number for where to begin the listing.

115

Chapter 13: Programs That
Repeat: Looping

You can also use LIST on the Timex computer. As
you noticed, if you simply press

ENTER

after a program has stopped, the listing appears
on the screen, from the beginning to as many
lines as will fit on the screen. The cursor is at the
last program line entered.

If you press
LIST ENTER

you will see the listing from the beginning, but
two things will be different:

1. The program cursor will be at the first line, and

2. The query “scroll?" will appear at the bottom of
the screen. If you press N (for No), BREAK, or
STOP (SYMBOL SHIFT A), the listing will not
scroll. If you press any other key, the next 22
lines will appear. This can be done until the
entire listing has been shown.

If you type

LIST 90 ENTER

you'll see the program listing beginning with line
90, and the cursor will be at line 90. This is useful
for editing a line in the middle of a long program.

Taroe 101 o e So, in order to edit line 10, instead of using the
pe cursor arrows, type

25 PRINT MK 2

38 REXT 1

LIST 10 ENTER

(in this case, you could just press LIST, of course),
then respond to the “'scroll?"” prompt by pressing
the N key.

116 LIST

Chapter 13: Programs That

Repeat: Looping

10 FOR 121 70 19
29 PRINT "NUMBER™, !

25 PRINT INK 2;
e WEXT 1

10 FOR 1=1 10 19 STEP 20

FOR, TO, NEXT, STEP

Adding STEP to the FOR/NEXT Loop

Now we have the program cursor where we
want it. Press EDIT and bring line 10 down, then
use the right cursor arrow to move to the end of
the line and add STEP 2 (using SYMBOL SHIFT D,
not spelling out STEP):

1@ FORI1=1TO 10 STEP 2

Enter the line back into the program, then RUN.

STEP does just what you'd expect: it “‘counts by"’
the number following the command STEP. How
would you get the program to count 2, 4, 6, 8, 10
rather than 1, 3, 5, 7, 9? Try it.

You can “‘count down'’ with STEP, too. Try
changing line 10 to read

10 FORI=10TO 1 STEP -2

The computer will not count down by ones if you
say

10 FORI=10TO 1

You have to add STEP - 1. Try it and see.

Try re-doing the TIMES TABLE program in
the last chapter to replace lines 50-80 with a
FOR/NEXT loop. Notice that you can make the
table as long as you wish with very little effort.

Hint:
FORI=1TO 10
PRINT. . .I+xA
NEXT I

17

Chapter 13: Programs That

Repeat: Looping

118

Nested Loops

Can you have a loop inside a loop? Certainly. Many
times, you'll want to repeat actions which contain
other actions which you also want repeated. You
can do this up to 26 times before you run out of
letters to use as control variables (remember, a
control variable in a FOR/NEXT loop has a one-
letter name).

That is, you can do it as long as the loops are
properly nested. Try this:

10 FORI=1TOS
20FORJ=1TO5
30PRINTL":"J;" ",
40 NEXT J

50 PRINT

60 NEXT I

Be careful with line 30@: get it just right, and put
a space between the second pair of quotes. And
notice we had to pick a second letter, besides I,
to count for the second loop.

RUN the program.

Effectively, the rows are created by the "'I-loop"’
and the columns by the "'J-loop.”

The PRINT in line 50 serves to move the print posi-
tion to the beginning of the next row to start a
new I loop.

For a nice color effect—and to perhaps aid in un-
derstanding the loops —try adding INK I or INK J
in line 30, as

30 PRINT INK LI;'":"J;" ", or
30 PRINT I,":" . INK J.J;" ",
30 PRINT INK LI;":"/INK J;.J;" ™,

FOR, TO, NEXT

Chapter 13: Programs That
Repeat: Looping

S S VT S |
And, of course, you could always throw in, just for
effect

15 BORDER 6

The loops are correctly nested, because the entire
J-loop is contained within the I-loop. You will have
a problem if the loops overlap. Sometimes you'll
get error messages, sometimes you'll just get in-
comprehensible results. Try exchanging lines 40
and 60, so the program looks like this:

M0 FORI=1TO5
20FORJ=1TO5
30PRINTI,":".J;" ™
40 NEXT 1

50 PRINT

60 NEXT J

RUN it and try to figure out what you have!

One other problem you must be careful of when
using FOR/NEXT loops: you can't jump’’ into the
middle of a loop from the outside by using a GOTO.
When it hits the NEXT command without having
passed a FOR, the trouble will start.

Summary
1 FOR/NEXT loops, using the keywords FOR,
TO and NEXT, and a control variable, give you
controlled repetitions.
2. Control variables are named by any single
letter.
3. STEP is used in a FOR/NEXT loop to count
by anything other than ones, and by negative
numbers.
. Multiple loops must be nested, not overlapped.
. LIST brings a program listing to the screen;
LIST with a line number starts the listing with
that number and places the program curscr at
that line.

O b -

FOR, TO, NEXT, STEF, LIST 119

Programs That

Decide: Branching

14

IF

Chapter Preview IF and THEN are used,
with the mathematical
relations =, <,>, <=,
> =, and <>, tomake
decisions. AND, OR, and
NOT are used to
combine relations.

We've considered three of the four reasons that
the computer is such a powerful and valuable tool:

1. It works fast.

2. It can remember a lot of information, including
its own instructions (programs).

3. It can repeat operations over and over, tire-
lessly (looping).

Now let us look into the fourth:
4. The computer can make decisions.

A program can contain a number of instructions,
some of which are carried out by the computer
under certain conditions and others which are car-
ried out given different conditions. Such a program
is said to branch, or to be a branching program.
The command that makes all this possible is IF.

121

Chapter 14: Programs That
Decide: Branching

Type in the program below but before you RUN it,
let's talk about it—line by line—to review some
earlier points and raise some new ones. THEN,
incidentally, is SYMBOL SHIFT G, not spelled out.

18 PRINT “NUMBER™,''LARGEST SO 10 PRINT “NUMBER“,”LARGEST SO FAR"
" 20 INPUT A
ii Eilgils;::::lt:u LET LARGE 30 LET LARGEST =A
- Tl 40 PRINT A,LARGEST
50 INPUT A

60 IF LARGEST< A THEN LET LARGEST = A
70 GOTO 40

Line 10 is a simple PRINT statement; the comma
between the two strings means they will be printed
at positions @ and 16 on the screen—the left edge
and the middle.

Line 20 is an INPUT statement. It asks for a
number from the user, and assigns the input to a
variable named A. When you RUN the program,
the L cursor at the bottom of the screen signals
you that the T/S 2000 is waiting for your input.

Line 30 sets a variable, LARGEST (notice that the
variable name LARGEST helps you remember
what it is) equal to the variable A.

Line 40 prints those two variables, directly under
the labels printed in line 10 (notice the comma
again).

Line 50 asks you to input another number and
assigns it to A. This number replaces the
previous value for A.

Line 60 is the decision statement. IF the number
that is called LARGEST is less than (<) the new
value for A, the program sets it to be equal to

A. . .the latest input is the “largest so far." If
LARGEST is already larger than A (or equal to it),
it is left alone.

122 IF, THEN

Chapter 14: Programs That
Decide: Branching

I?.IRGE 5T S0 FAR

Press SYMBOL SHIFT while
pressing STOP

STOP, BREAK

Line 70 creates a loop by going back to line 40.
Then only the portion of the program between
lines 40 and 70 are repeated, as often as you care
to keep entering new numbers.

Okay, now RUN the program and enter some
nurmnbers to see how it works.

This program contains the dreaded "‘endless loop."
Fortunately, this is not so serious in a program
that stops periodically to wait for input.

You can stop it by responding to the INPUT state-
ment—when the [cursor is at the bottom of the
screen as a prompt—with STOP (SYMBOL SHIFT
A) instead of a number.

It is also possible to interrupt this program by
pressing the BREAK key, but you have to be fast—
this only works when the program is not waiting
for input. Try it: you have to press BREAX when
the [cursor is not on the screen.

You might want to add a prompt which appears
only when input is being called for—but which is
not on the bottom line of the screen.

Here's a way to add such a prompt. Add a few
lines so the program looks like this (remember,

in lines 15, 40 and 45, AT is the function on the I
key—with SYMBOL SHIFT and is not spelled out):

123

Chapter 14: Programs That
Decide: Branching

T T I N |
5 LETX=3

10 PRINT “"NUMBER","LARGEST SO FAR"

15 PRINT AT X + 5,1,"ENTER A NUMBER"

20 INPUT A

25 PRINT AT X +5,1;"

30 LET LARGEST =A

40 PRINT AT X,0; A, LARGEST

45 PRINT AT X +5,1,"ENTER A NUMBER"

50 INPUT A

55 PRINT AT X +5,1;"

60 IF LARGEST< A THEN LET LARGEST = A

65 LETX=X+1

70 GOTO 40

Line 5 sets X equal to 3; line 40 will print A and
LARGEST on that line. Line 65 will increase X by
one each time through the loop; the numbers will
be printed on line 4, then line 5, and so on.

Lines 15 and 45 print the prompt five lines below
X. The movement of the prompt will call attention
to it for each new INPUT, as it will not be off the
screen for very long when it is erased by lines 25
and 55. (To "erase,’ those lines simply PRINT a line
of blank spaces o replace the words in the prompt.)

Line 40 has to be changed to specify the location
of the printing of the next pair of numbers because
the PRINT AT command in lines 15 and 45 moves
the print positon to line 20. If we did not change
line 40, the next pair of numbers would be printed
on line 21.

Incidentally, doesn't line 65 look odd? What kind
of math is X = X + 1? Well, of course it isn't math
at all but another assignment statement. It means
“let X equal the previous value of X, plus one."

This means you have another way of wnting a
loop. It is a little clumsier than a FOR/NEXT loop,
so we seldom use it. The one advantage it has is
that you could use a more descriptive variable
name in place of X—you might say

124 IF, THEN

Chapter 14: Programs That
Decide: Branching

IF, THEN, GOTO

5 LETLINE=3
65 LET LINE = LINE + 1

where, you will remember, variable names that
count for a FOR/NEXT loop must be only a single
letter.

Try erasing line 65 and see what happens. It is
because X is not increased, and returns to line 3
each time we repeat the loop.

Can you print your prompts in lines 15 and 45 in
inverse letters?

The IF Statement

The IF statement checks to see whether a partic-
ular condition is true; if it is, the rest of the state-
ment on that line is executed. If it is not, the rest
of the line is ignored and the program moves to
the next line.

Often the form of the statement is like
40 TIF A =5 THEN GOTO 100

meaning that if a variable called A is equal to 5,
the program goes to line 100 and starts running
at that line. If A is not equal to 5, the next line
executed would be the one after 40 (probably
50, right?).

In Sinclair BASIC, by the way, we must include
the THEN with IF and GOTO (some BASICs let
you omit it). Among the things THEN does is to
return the [f§ cursor to the screen so you can use
a keyword like GOTO; otherwise you wouldn't
be able to give the computer any commands to
execute IF A=5.

Sometimes—as in the example at the beginning
of the chapter—we have to INPUT the value on
which the decision is made. More often, the value
results from some calculations within the program.
We can even use IF to terminate a loop:

125

Chapter 14: Programs That
Decide: Branching

[e e]
10 LETI=1

20 PRINT [+100

30 LETI=1+1

40 IF 1=6 THEN STOP
50 GOTO 20

126

LET I=1

PRINT 1*100

LET I=I+1

IF I=6 THEN STOP
GOTO 20

9 STOP statement, &d:2

1¢ FOR I=1 70 5
2@ PRINT Ix10¢
30 NEXT I

You could save a line by changing line 40 to read

40 IF I< 6 THEN GOTO 20

and eliminating line 50.

How would you write that program using a

FOR/NEXT loop?

10 FORI=1TO5
20 PRINT I+100
30 NEXTI

The IF statement compares values using these

mathematical symbols:

AV AVAI

Vol

is equal to

is less than

is greater than

is less than or equal to

is greater than or equal to

is not equal to

SYMBOL SHIFT L
SYMBOL SHIFT R
SYMBOL SHIFT T
SYMBOL SHIFT Q
SYMBOL SHIFT E
SYMBOL SHIFT W

=,<,>,< =,> =,<>

Chapter 14: Programs That
Decide: Branching

e . . -
DO NOT assemble a “less than or equal to” sign

by typing SYMBOL SHIFT R and L. You must use

the Q key for the combination. The same goes for
>=and<>.

Comparing Strings

You can also use the symbols to compare strings.
Usually you will do this with = or < > to seeif an
input matches a previously-chosen word. Type in
this program, in which Fred wants you to try to
guess his name.

10 INPUT A$

NPUT AT

3 I e mhen coto o 20 IF A$="FRED'' THEN GOTO 40

48 FRINT AS

30 GOTO 10
4@ PRINT A$

FRED RUN the program. Notice the [cursor at the
bottom of the screen is in quotes, prompting you
to enter a string.

Make a few wrong guesses, then input the right
® 0K, 40:1 auswer

Now try this: add a new line

5LET B$="FRED"

and change line 20 to read

20 IF A3< =B$ THEN GOTO 40

You can use the cursor arrows, EDIT and DELETE
to substitute or you can just type a new line in. You
are replacing “FRED" with B$, and the = sign with

< = (remember: SYMBOL SHIFT Q, not SYMBOL
SHIFT R and SYMBOL SHIFT L).

IF, THEN, GOTO 127

Chapter 14: Programs That
Decide: Branching

Then guess these names: JIM, HARRY, JOE, and
AL. What happened?

The mathematical symbols operate on a string
by comparing the first letter of the string. If the
first letter of A$ comes earlier in the alphabet than
the first letter of B, then A$ is said to be less than
B$. If the first letters of two strings are the same,
® 0K, 40:1 then the second letters are compared, and so on.
So, with strings

earlier in the alphabet is less than
later in the alphabet is greater than

In fact, what the computer actually does is
compare the code numbers of any characters in
the T/S 2000's character set. If you refer to the
Appendix titled the character set, you'll find that
A> 9. The alphabet follows the numerals in the
character set, so any letter is greater than any
numeral.

Test this with Fred's program. Type in a number—
say, 25—in answer to the input request.

How would you add prompts to Fred's program—
like “Guess my name'' and “Wrong. Guess again''?

Hint: you can also change line 40 to read
40 PRINT "RIGHT MY NAMEIS "A$

but only if you have the = signin line 20, not the
< =.

AND, OR, NOT

Wecall =,<,>,< =, > = and<> relations.
We can combine them by using the logical rela-
tions AND, OR and NOT

IF A=B AND C=D THEN GOTO 100

Chapter 14: Programs That
Decide: Branching

S S S 555,

means that if both relations are true the program
goes to line 100. If A is equal to B but Cis not
equal to D, though, the GOTO 100 is not executed
and the program simply continues to the next line.

IF A<BOR C>D THEN GOTO 100

sends the program to line 100 if either A< B or
C>Distrue.

[FNOT A =B THEN GOTO 100

is the same as

IF A< >B THEN GOTO 100

In Sinclair BASIC, unlike some other “dialects, "
you must include both THEN and GOTO in lines
like the above, to enable the unique keyword

system to operate.

But in addition, using both makes the program
clearer and easier to understand.

Let's add a few lines to the name-guessing
program:

10 PRINT "GUESS MY NAME"
20LET =0
30 INPUT A$
40 IF A%$="FRED'" THEN GOTO 110
BOLETI=I+1
60 IF A$< > “FRED" AND I=3 THEN GOTO 90
70 PRINT "WRONG. MY NAME IS NOT ":A$
80 GOTO 30
90 PRINT '"'SORRY, YOU LOSE.”

100 GOTO 120

110 PRINT "THAT IS RIGHT."

120 PRINT ‘MY NAME IS FRED."

I8 PRINT “GUESS WY NAWE™
0 LET e

30 IHPUT A
48 1F ASTUERED™ THEN 8070 11
50 LET =1+
£ If ARSIUFREDT AMD 133 THEW
GOTO 74
T8 FRINT "TURONG, WY NAME 15 WO

T

ke coto 30
¢ PRINT ™
tee Goto 12
T10 PRINT “THAT IS RIGHT.™

120 PRINT “"HY WAME [5 FRED."

SOREY, YOU LOSE."
"

OR, NOT 129

Chapter 14: Programs That
Decide: Branching

RUN the program and try a few guesses. The

GUESS MY NAME

WRONG, MY NAME IS NOT TOM combination of relations in line 60 stops the game
SoRRY, ou'tose.. o eK if you've had three guesses. Trace the logic in the

MY NAME IS FRED.

program and figure out how and why it moves
from one line to another.

Tty to tidy up the screen a bit by adding
15 PRINT

and

75 PRINT

Now we have a confession to make. Did you
discover, when you analyzed the program, that line
60 doesn't need both relations?

Since line 40 transfers the program to line 110 if
A$="FRED" then, logically, A$ must be not equal
to “FRED" if we have reached line 60. So line 60
really only needs to say

60 IF I = 3 THEN GOTO 90

Try it and prove it to yourself. The lesson in this

is to always plan a program carefully in advance
and work out the logic of it so that you do things
in the most direct way. The search for the simplest
solution to a programming problem is what makes
programming fun!

Summary

1. IF/THEN evaluates a condition; if the condition
is true, the program does what is called for after
THEN (usually GOTO another location in the
program); if not, the next line in the program
is executed.

130 IF, THEN, GOTO

Chapter 14: Programs That
Decide: Branching

2. IF evaluates mathematical values using the
relations

equal to

less than

greater than

not equal to

= less than or equal to

= greater than or equal to

V AAN N
A\

3. More than one mathematical relation can be
combined, using

AND (both are true)
OR (either is true)
NOT (a relation is not true)

=,<,>,&> < =,> =, AND, OR, NOT 131

Programs within 15
Programs: Subroutines

Chapter Preview Recycle your program
lines with self-contained
subprograms, using GO
SUB and RETURN.

If you hang around with professional programmers
a great deal, you'll probably hear the phrase “‘struc-
tured programrmning.” Ask any ten of these pros
what that means, and you'll probably get ten
different answers.

One answer that makes good sense is that ‘all good
programiming is structured; that is, it is planned
and well organized.”

Another answer you'll often hear is that structured
programming involves modules within larger pro-
grams: a task is analyzed and broken into sub-
tasks, and then each subtask is dealt with in a
self-contained sub-program within the main
program. This has a number of benefits:

1. The program is easier to understand, when
looked at later by the person who wrote it or
by someone else.

133

Chapter 15: Programs within
Programs: Subroutines

e e T e s R R R |

£
o e) e
s e S

YELLOW WHITE

134

2. The program is easier to change, or "'maintain."

3. When it is first being written, a large-scale
program can be assigned to a number of pro-
grammers, a module to each. This speeds up
the development of commercial software.

4. Finally, the process of subdividing a problem
into subtasks is an aid in thinking through the
process of programming and of problem solving.

All of these benefits, except for number 3, can be
useful to us in working with the T/S 2000.

Using the first definition we noted above, and the
concept of subroutines, we can make our programs
“structured."

A subroutine is a self-contained ‘“‘mini-program"’
which can be “‘called’”’ by the main program (or
by other subroutines, or even by itself, which you'll
have to find in other books), as many times as are
desired. The subroutine performs its function when
called upon, then returns to the main program.

GOSUB and RETURN

There are two very simple commands used for

a subroutine, GOSUB and RETURN. GOSUB, with
a line number, is inserted in the main program
wherever the subroutine is desired; the line number
is that of the beginning of the subroutine. RETURN
(which is spelled RETRN on the Y key) is inserted
at the end of the subroutine itself, and returns the
execution of the program to the line following the
line containing the GOSUB.

What problem would arise if you tried to use GOTOs
instead of GOSUB and RETURN?

GOSUB, RETURN

Chapter 15: Programs within
Programs: Subroutines

e —)

Here's an example:

10 REM THE MAIN PROGRAM
20

30

40 GOTO 1000

50

60

70

1000 REM THE SUBROUTINE
1010

1020

1030

1040 GOTO 50

Suppose you want to call that subroutine from
several different places in the program. . .and
you don't want to GOTO 50 each time when the
subroutine is done.

That's what GOSUB and RETURN are for. GOSUB
1000 sends the computer to line 1000 just as GOTO
1000 does. But it remembers where it came from,

and the command RETURN directs the computer
to the line after the GOSUB command. For instance:

10 REM THE MAIN PROGRAM
20
30
.40 GOSUB 1000
50
60
70 GOSUB 1000
80
90

1000 REM THE SUBROUTINE
1010

1020

1030

1040 RETURN

GOSUB, RETURN 135

Chapter 15: Programs within
Programs: Subroutines

R s S —
In the program model above, the command
RETURN, ending the subroutine, directs the com-
puter to line 50 after the first execution (called by
line 40) and to line 80 after the second go-around
(called by line 70).

GOSUB and RETURN can save work for you, and
space in the computer's memory. But perhaps
more importantly, they help you organize your pro-
grams so that other people trying to use them —
and you, coming back to them after a lapse of
time— can understand how they work.

iR 10 REM PROGRAM — MATH
ADD - PRESS 1 20 LET A = INT (RND+9) + 1
SOV IoE Y PRESS 30 LET B = INT (RND+9) + 1
40 PRINT "'DO YOU WANT TO"
50 PRINT TAB 10; " ADD —PRESS 1"
60 PRINT TAB 10; "SUBTRACT — PRESS 2"
70 PRINT TAR 10; "MULTIPLY — PRESS 3"
80 PRINT TAB 10; “DIVIDE—PRESS 4"
90 INPUT D
100 IF D< 1 OR D> 4 THEN GOTO 40
110 CLS
120 GOSUB D+1000
130 INPUT E
8 140 PRINT AT 10,15;E
150 IF E = C THEN PRINT AT 15,10;"CORRECT""
160 IF E< > C THEN PRINT AT 15, 10;
“SORRY, WRONG NUMBER"’
170 PRINT AT 17,10;“WANT ANOTHER —
Y ORN?"
180 INPUT A$
190 CLS
200 IF A$< > "Y' THEN STOP
210 GOTO 20
1000 LETC=A+B
1010 PRINT AT 10,10;A;" + "B, = ?"
1020 RETURN
2000 LETC=A-B
2010 PRINT AT 10,10:A;" — " B;" = 2"
2020 RETURN

SORRY, WRONG NUMBER
WANT ANOTHER=-Y OR N

136 GOSUB, RETURN

Chapter 15: Programs within
Programs: Subroutines

e —]

3000 LET C = A+B

3010 PRINT AT 10,10;A;"";B;" = 2"
3020 RETURN

4000 LET C = A/B

4010 PRINT AT 10,10,A;"/";B;" = 7"
4020 RETURN

In line 100, use the keyword OR (SYMBOL SHIFT
U), but in line 170, spell out the word OR.

This example program includes a number of con-
cepts we have discussed in previous chapters. It
also illustrates how the use of subroutines can
serve to make a program's structure easy to fol-
low. In fact, this program does not require sub-
routines to get the job done. Why not? (We'll give
you the answer after we call attention to a few of
the other features of the program.)

1. Lines 20 and 30 make use of the random
number generator.

2. Lines 50-80 use TAB to format an indented
column on the screen.

3. Lines 90, 130 and 180 use INPUT.

4. Line 100 is an error trap which repeats the
question if you input any number other than
one of the choices the program can deal with.

5. Line 120, instead of using 4 different lines
with separate GOSUB addresses, uses multipli-
cation to select the subroutine. This technique
can also be done with GOTO.

6. Line 140 uses PRINT AT.

7. Lines 150 and 160 are both necessary, unlike
the example in Chapter Fourteen. Why?

8. Line 200 STOPs the program if any other key
than Y (for yes) is pressed, even though the
screen asks for 'Y OR N?"' This is because,
otherwise, inputting anything other than Y
or N would be an error, causing the program
to “crash.” Could you use an error trap like
the one in line 100 instead?

137

Chapter 15: Programs within
Programs: Subroutines

p————— "~ = =]
9. Each subroutine does a different mathemati-
cal operation, but works on whichever random
numbers have been generated and provides
an answer against which the user's answer
is checked.

10. Rounding errors may give you trouble in the
division subroutine beginning at line 4000.
Can you use the correction routine in Chap-
ter Eleven to remedy this?

The answer to our question is that you could
actually use GOTO D+1000 for each "'subroutine”
and GOTO 130 instead of RETURN at the end of
each one.

Using DELETE To Erase

Entire Program Lines

Before leaving this chapter, let's use this long
program to illustrate another command. First,
though, SAVE the program onto a cassette tape if
you want to keep it—our next topic will erase it!

We've seen the use of DELETE (CAPS SHIFT @) to
remove a single character at a time. This can be
done when the [or [cursor is on the screen.
When the [cursor is showing, something else
happens.

With the program listing on the screen, and a
cursor or report at the bottom, press DELETE.

The word DELETE appears on the screen. Type a
line number, say 4000:

DELETE 4000 ENTER

Line 4000 is deleted. Type

DELETE 2000,2020 ENTER

Lines 2000 through 2020 are deleted. Try

DELETE 1000, ENTER

138 DELETE

Chapter 15: Programs within
Programs: Subroutines

DELETE

Remaining lines from 1000 to the end are deleted.
And

DELETE |70

deletes from the beginning through line 70. Now
you should have only lines 80-210 left. Delete
them—all at once or in chunks—using the
DELETE command.

There is a complication in the use of DELETE
with the i cursor. Type

10 PAUSE 60:

but don't ENTER it!

Suppose you've changed your mind —you don'’t
want the colon. Try to delete it. First you press
DELETE with the [f§ cursor on the screen, and the
word DELETE appears.

Then you press DELETE with the [cursor show-
ing, and you delete DELETE. But now the @ cur-
soris back. . .

It turns out that the auto-repeat key feature is
your solution. With the [cursor showing, hold
the CAPS SHIFT and 0 keys down: the word
DELETE and the colon (and, likely, PAUSE and
some of the line number) will be deleted.

You could also, of course, ENTER the line includ-
ing the colon, then delete the entire line or replace
it with a corrected one.

Making Your BASIC Programs Run Faster
Here's a tip that will help you make your BASIC
programs run much faster; we present it here
because it has a lot to do with subroutines. You
won't need it until you start writing long programs,
but then it could be extremely useful.

139

Chapter 15: Programs within
Programs: Subroutines

e e e L U S
Throughout this manual we discuss writing pro-
grams in what seems like a logical order: first you
set up (initialize) your vanables (LET A =1, etc.),
then you do the main program, then you fill in
the subroutines.

This is true for compilers, but since the T/S 2000
uses an interpreter, the programming logic is
different.

It turns out that the computer searches for a line
number it is directed to by a GOTO or GOSUB
by checking each line number from the
beginning of the program.

This means that if line 10is LET A = 1 (for instance)
and is never used again in the program, it is just
an extra item to be sifted through on every GOTO
or GOSUB.

Logically, then, it ought to be tucked away at the
end of the program. . .as a subroutine! Your first
program line ought to be something like

10-GOSUB 9000

and all your initial housekeeping —vanables
defined, user-defined graphics designed, etc. —
should be put in that subroutine. Then the pro-
gram never looks at it again after the first GOSUB,
and only one line has to be looked at each time
the program goes to search for a new line number.

One exception to this rule is to put all DEF FN
statements at the beginning of the program, since
a program will search for them from the beginning
each time it needs them.

By the same token, your often-called subroutines
ought to be at the beginning of the program —not
at the end. Then comes the main program, then
the less-often-used subroutines. The program
skeleton might lock like this:

140 GOSUB, RETURN

Chapter 15: Programs within
Programs: Subroutines

e = T .

GOSUB, RETURN, DELETE

10 REM TITLE
20 GOSUB 9000
100 SUBROUTINE A
200 SUBROUTINE B
300 SUBROUTINE C
1000 MAIN PROGRAM
5002 SUBROUTINE D
5100 SUBROUTINE E
9000 INITIALIZATION ROUTINES
9900 ENDING FUNCTIONS

You'll have to make sure that each module ends
with a direction (usually a GOTO) if you don't
want the program to proceed to execute the next
line (for example, you'll need a GOTO 9900 at the
end of the main program to get to the ending
functions).

1. Subroutines help you use techniques of *'struc-
tured programming” in BASIC to make pro-
grams easier to use and understand.

2. GOSUB directs the program to a specific line,
as does GOTO, but stores the location of the
program line containing the GOSUB.

3. RETURN, the last line of the subroutine,
directs the program to the next line after the
GOSUB.

4. GOSUB and RETURN must be used together,
like FOR and NEXT.

5. DELETE, when the [cursor is showing, is
used to delete one or more program lines. The
range of lines to be deleted is shown by the
first and last line number separated by a
comma.

6. Long programs will run much faster if seldom-
used portions are placed after the most-used
ones, with each module treated as a subroutine.

141

Arrays

16

Chapter Preview

Organize your data

and save space with
‘‘arrays,’’ using DIM,
subscripts, and string
slicing. SAVE and DATA
work together to store
arrays on tape.

An array is a way of structuring a number of values
and keeping track of them. Each of the values is
called an element of the array. You can think of
an array as looking like a calendar:

SUN MON TUES WED THU FRI SAT—]

13

20

27

14

21

28

1

15

22

29

2

9

16

23

30

3 4 5

10 11 12

17 18 19

Aelry a9y,

24 25| 26

An element

143

Chapter 16: Arrays

e R R — =

144

Array A
M@ @ @4 6

[12] 5] 7 [22]14]

You can assign numeric values to elements of an
array, instead of giving each value a separate
variable name. This can be used simply to save
space, or when there is a relationship between or
among the values.

Suppose you have a row of numbers:
12 L 7 22 14
You could assign the values to separate variables

LETA=12
LETB=5
LETC=7
LETD=22
LETE=14

Or, you can consider the whole row to be an array:

LET A(1) =12
LETAQ) =5
LET AQ3)=7
LET A(4) =22
LET A®) = 14

The number in parentheses is called the subscript.
Picture the array this way:

DIM. . . The Dimension Statement

Before you can assign values to each element in
the array, you have to reserve space for the array
with a dimension statement (DIM). To prepare for
the array above, you would have to enter

DIM A(5)

DiM

Chapter 16: Arrays

e e —__ .-
There are a few rules regarding array variables:

1. An array variable name must be a single letter
(like a control variable in a FOR/NEXT loop).

2. An array variable name can be the same as
the name of a simple variable (there can be
a simple variable named A at the same time
as an array named A, you can tell them apart
because elements of the array variable are
always referred to with the subscript).

3. ALET statement erases a previous simple
variable by the same name. Similarly, when
you create an array with the DIM statement,
you delete any previous array of the same name.
But while you can build a new simple variable
from an old one (as in LET A = A + 1), you would
simply lose an old array by DIMensioning a
new one by the same name. You can, however,
use LET to change an element of an array, as
with

LET A(1)=A(1)+1

Arrays in More Than One Dimension
You can have arrays of as many dimensions as
you care to try to keep track of, as long as you
dimension them propetly at the outset:

DIM A(5,5)
DIM A (5,5)
1 2 345

would set up an array you can think of as looking
like this.

You can think of the first number as identifying
the row, and the second number as identifying
the column. Therefore, location # in the diagram
is A(3.5).

g o W N =
£

What value occupies the location (3,5) in out
calendar?

DIM 145

Chapter 16: Arrays

You can have an array in three dimensions; think
of it as looking like this:

DIM A(5,55)
1 2 345

O B W N =
(&)

And you can have arrays 1n four or more dimen-
sions, but if you can picture them, you are ready
to explain the theory of relativity.

String Arrays
You can assign strings to arrays, as

DIM A$(5,5)

but there are a few rules here, too.

1. When you DIMension the string array, you
delete any previous string arrays AND any
previous simple string variables with the
same name.

2. In two dimensions, you can think of the first
number as being the identifier of each string,
or "word,”" and the second as the number of
letters in each word.

3. Assignment to the string variable elements is
Procrustean, which means that the strings are
filled in from character #1 up through a number
of characters equal to the second subscript, and
a. Ifthe string is too long, it will be truncated —

cut off—from the end,
b. If the string is too short, the space will be
filled in with blanks.

146 DIM

Chapter 16: Arrays

[e = — ===]
Why “Procrustean’'? The method is named for a
legendary innkeeper who wanted to make sure
his guests fit the beds, with no wasted space. If
they were too short, he stretched them on a rack;
if they were too tall, he cut off their legs at the
appropriate length!

Aty A3 You access the strings by using the first subscnpt

1 234 5 only, and individual letters by using the second
1[sTelalplE subscript as well
SHEIEIAIRT PRINT AS(3) returns DIAMO
3ID|I|A|M|O|ND
alclL|ulB (the ND are truncated), and
5|J|O|KX|E|R

PRINT A$(4) returns CLUB

(including a blank space after the B). Also,
PRINT A$(3,2) returns |

—the second letter of A$(3).

PRINT A$(4,5) returns the blank space

You can also use string slicing (more about that
in a moment) to obtain a portion of a string, as

PRINT A$(4,2 TO 4) returns LUB
PRINT AS$(3, TO 3) returns DIA

String Arrays in Three or More Dimensions
You can have string variable arrays in as many
dimensions as you like. However many numbers
(dimensions) are separated by commas, the last
number identifies the number of characters in each
string, and the other numbers serve to specify the
string by its location. In three dimensions:

DIM 147

Chapter 16: Arrays

148

LET AS="HAM AND EGGS"
PRINT AS

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

)
(6)
(1. 70 3)

t 10
(9 10 12)
(9 10)

PRINT A$(3,5,5) would return WHEEL in the array
diagrammed below.

1 2 3465

g W N e
=
)

Again, it is not easy to picture string arrays in
more than three dimensions, but just remember
that the last subscript specifies the number of
characters in each string in the array, while the
other subscripts locate the string.

Slicing Strings
Running the program

10 LET A$ = “HAM AND EGGS"
20 PRINT A$

30 PRINT A$()

40 PRINT A$(6)

50 PRINT A$(1 TO 3)

60 PRINT A$(TO 3)

70 PRINT A$(9 TO 12)

80 PRINT A$(9 TO)

demonstrates string slicing. Line 20 prints the
string. Line 30 shows that empty brackets after the
string variable name means that the entire string
is its own substrng.

Line 40 selects, as a substring, only one character
—the sixth (don't forget to count the spaces in
the string).

Chapter 16: Arrays

Line 50 prints characters 1 to 3 of the string; line
60 shows that you can omit the first digit and the
first character is implied. Line 70 shows how to
print the last four characters, and line 80 shows
that you can omit the last number and "last char-
acter’' is implied.

How would you print “AND" out of that string?

Now, we can use string slicing to save space in

a program by assigning a long string to a variable
name and then cutting pieces out of it, rather than
assigning a lot of variables.

Saving and Loading Arrays on Tape
You can save an array on tape using the SAVE
and DATA commands:

SAVE "TABLE" DATA A ()

would save under the name “TABLE" a numeric
array that has been created and named A; among
other things, this gives you the ability to store
arrays of data under more descriptive names than
the allowed single letter, and to store and find more
than 26 arrays (since you can re-use the letters of
the alphabet).

You need to include the parentheses, though you
don't have to fill in the numbers that are part of
the array's original name.

You reload the saved array with
LOAD "TABLE" DATA A ()

You would normally do this with a program
already in the computer, which will operate on
the data; LOAD with DATA does not erase what
is already in the computer (unless there is another
array with the same letter name).

String arrays are handled the same way except
for using the $ in the array name.

SAVE..., DATA,LOAD. . ., DATA 149

Chapter 16: Arrays

e e]

Summary

1. An array is made up of a number of elements,
all with the same array variable name, and
distinguished from each other by means of
subscripts.

2. The name of a numeric array must be a single
letter; there can also be a simple variable using
the same letter as a name.

3. The name of a string variable must be a single
letter foliowed by $; there cannot be a simple
string variable with the same name in the
computer's memory.

4. Before assigning values to the elements of
an array, you must reserve space for it in the
computer with the DIM statement.

5. You can “‘slice” strings and obtain substrings
by using the TO statement.

6. Data arrays (numeric or string) can be SAVEd
and LOADed using a command including the
DATA statement.

150 DIM, TO, SAVE. .., DATA, LOAD. . ., DATA

Graphics 17

Chapter Preview A complete look at
making pictures on the
screen with the PRINT
and PLOT statements,
and saving them on tape
with SCREENS.

There are several different kinds of graphics you
can employ on the Timex Sinclair 2000. Four of
them, easily accessible to the user, are discussed
in this manual:

1. Using the graphics mode (the [§ cursor), you
can print combinations of the graphic
characters on the number keys.

2. You can design your own graphics and store
them for use by pressing a letter key in
graphics mode. We'll do this in the next
chapter.

3. Aswe saw back in Chapter Four, you can use
the DRAW and CIRCLE functions.

4. You can use the PLOT function, which we
introduced in Chapter Four, and will explore
further in this chapter.

151

Graphics

Chapter 17.

Linesp

® @ N e U AW WN - O

An example: this is the pixel (191,159)
Columns p
30 3

0 1 2 3 4 5 6 7 8 8 1011 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 28
1 168

o [8 I foo fo Jeo s Jss st |2 feo e Q%6 fos Ju2 hao hae (15 144 52 frso fiee [176 184 sz f2o0 208 {216 |24 |232 |240 (248

g

7 |5 Jaa |3 [[&r [ss [es [0 |7 [@ [s5 {103 [arn frae [22 135 (143 fust f1se fae7 1075 163 fagt J198 |27 j21s |23 {2 |29 | 247

Pixel x-coordinates

You cannot PRINT or PLOT
on the bottom two lines.

Pixel y-coordinates p

152

Chapter 17: Graphics

5 REM PROGRAM--BARGRARN
|l FOR 1e7 7O 3
PRINT AT 1 ¥ nrnul JAAuEE
i Cllﬁl(llﬂsl e
38 PRINT AT !.
L8 NEXT]
58 PRINT AT S.9;

|1-u

8 50K 1=1 T0
T8 PRINT H zl B UINTER VALUE

0 To 1sH=i 1 1dm
B8 FOR 8219 Yo Ii‘ A s|v =1

PRINT AT

Three additional graphics modes that really
explore the power of the T/S 2000 are available to
advanced programmers (or anybody really into
graphics) using machine code:

First, you can expand the 32 x 24 display to a full
64 x 24 (or even more than 64 if you design your
own characters) using 512 pixels across the
screen.

Second, you can use two 32 x 24 displays and flip
between them for great animation effects.

Finally, the T/S 2000 will allow, in Extended Color
Mode, up to eight choices of color for each
character position—each row of 1 x 8 pixels can
have a different color. With Extended Color Mode
you can create very high color resolution effects
for some of the best possible home computer
education, entertainment and business graphics
effects. See Appendix C.

Using the Graphics Symbols

with PRINT Statements

The graphic symbols on the number keys are
part of the T/S 2000's basic character set— see
Appendix B. They are placed using PRINT state-
ments, and use the 32 x 24 character screen.

5 REM PROGRAM —BARGRAPH
10FORI=1TO3
20 PRINT AT 5,0; " INPUT LABEL (10
CHARACTERS) #" 1. INPUT A$
30 PRINT AT 1,10*1 - 10;A%
40 NEXT I
50 PRINT AT 5,0,

60 FORI=1TO3
70 PRINT AT 20,0;"ENTER VALUE (0
TO 15)#":1: INPUT A
80FORB=19TO 19— ASTEP - 1
90 PRINT AT B,10+1- 7" [li}"
100 NEXT B
110 NEXTI
120 PRINT AT 20,0;""

"

153

Chapter 17: Graphics

Type in and run the program above. It prints a bar
chart. The graphic symbol in line 90 is the inverse
of the black square that appears on the 8 key.
Here's how you getit, after you've typed the
semicolon:

1. Press SYMBOL SHIFT P for the quotation marks.

2. Press CAPS SHIFT 9 for graphics mode.

3. Press SYMBOL SHIFT 8 for the black square.

4. Press CAPS SHIFT 9o leave graphics mode.

164

Chapter 17: Graphics

5. Press SYMBOL SHIFT P to close the quote.

Other notes on the program:

1. INPUT s spelled out in the prompt in line 20,
and is the keyword on the I keyin lines 20 and 70.

2. The number of spaces between the quotes in
line 50 is equal to the number of characters—
including spaces —in the prompt in line 2,
plus one character for the variable I; that is, 30
spaces.

There needs to be enough spaces in line 120, simi-
larly, to erase all of line 70. Count them to be sure.

This all-purpose program lets you chart almost
JANUARY - FEsRuARY - MARCH\ | any comparison you like. For our illustration,
we've input the names of months as our labels,
and values that could represent anything that
happened each month—sales, expenses, trips to
the zoo—to prepare the chart. Just use your own
inputs; try several executions of the program.

(Later in the chapter we'll see how to SAVE a screen
display like this chart on tape, and in Chapter 23
we'll see how to print it out on a printer.)

Can you figure out how the involved numbers in
the PRINT AT statements, lines 30 and 90, place
the labels and the bars?

Notice the prompts being inserted and erased by
lines 20, 50, 70 and 120.

There is a nested pair of loops late in the program.

Do you see how line 80 prints the bars vertically —
and, for effect, from bottom to top?

Can you change the program to add colors to the
bars?

155

Chapter 17: Graphics

12 REM PROGRAM: GRAPNICS
INT "

PR
“D“

69 _PRINT

7ef6070 20

166

Can you figure out how to make the bars double or
triple width?

How would you print horizontal bars instead?
(Hint: it's easier. . .)

You can use the various keyboard graphic
symbols, in combinations of PRINT statements, to
draw figures on the screen. Try (don’t forget NEW
first to delete the previous program):

10 REM PROGRAM — GRAPHICS
20 PRINT " 3

30PRINT " "
40 PRINT " &
50 PRINT, 1

Hint: In line 20, after the first quotation marks,
enter graphics mode, then SYMBOL SHIFT 3 (for the
inverse of the character that shows on the 3 key)
five times, then exit graphics mode and close the
quotes.

In line 30, again get into graphics mode and use
SYMBOL SHIFT 5 for the lefthand graphic
symbol, then type in three spaces. Finally, type
5—this time without SYMBOL SHIFT —for the
right symbol.

Line 40 repeats 30, and in line 50, you'd use the
graphic on the 3 key, but without SYMBOL SHIFT.

You can also use graphic drawings more than
once in a program. Add, to the above program,
the lines

60 PRINT
70 GOTO 20

Chapter 17: Graphics

Q=UP A=DOWN O=LEFT P=RIGHT

IF, INKEYS, THEN

and RUN it.

What would it look like without line 607 How
about if you GOTO 30 instead?

Try drawing other, more elaborate figures with
the graphic symbols. Notice how they can be
made to fit together.

Try this program, just for fun. (Be sure you're in
mode or it won't run.) Can you alter it so you
can choose the ink color instead of having it
selected by RND?

5 REM PROGRAM — COLORSKETCH
10 PRINT AT 20,0,"Q=UP A=DOWN O=LEFT
P=RIGHT"
20LETA=0:LETB=0
30 PRINT AT A BINKINT (RND+7)+ 1;" "
4DIF INKEY$="Q" THENLETA=A+1
S50IF INKEY$="A"THENLETA-A-1
GO IF INKEY$ = “O" THEN LETB=B -1
70IF INKEY$ = “P" THEN LETB=B + 1
80 GOTO 30

Be careful not to run off the screen in any
direction; not only will the program stop with a
report but you may wind up with a string of
characters (due to auto-repeat) at the bottom of
the screen.

There is a way to overcome that: add lines to stop
the line at the borders:

45IF AKQTHENLETA=0
56IF A>21 THENLET A =21
66 IFB<@THENLETB=0
751F B>31 THEN LET B = 31

(INKEY$—the N key in J mode—is explained
fully in Chapter 19.)

157

Chapter 17: Graphics

—
Try running the program after changing the PAPER
colors. Use different BORDER colors.

High Resolution Graphics with the
PLOT Statement

The format of the PLOT statement is
PLOTx, vy

with x being a number from 0 to 255, from left to
right on the screen, and y being a number from @
to 175, from bottom to top on the screen.

The PLOT command fills in, with a black box so
tiny it looks like a dot, the pixel (picture element)
located by the two co-ordinates.

Here's a program that defines the screen for the
PLOT command, placing a dot at each corner:

10PLOT 0,0

20 INPUT A$

30 PLOT 0,175
40 INPUT A%

50 PLOT 255,0
60 INPUT A$

70 PLOT 255,175

After typing in the program, press RUN and
ENTER and the first dot will be located—you'll
have to look hard to spot it. The program will
wait for an INPUT before plotting each of the
other corners — but notice, it won't do anything
with the input. We can use INPUT this way as a
device until we are ready to proceed. (You can
just press ENTER in response to the INPUT
prompt.)

158 PLOT

Chapter 17: Graphics

-

PLOT

90:1]

? 0K,

Check the locations of your four dots against the
border by pressing

BORDER 4 ENTER

You can locate the x and y axes on the screen
with this little program:

10 REM PROGRAM: X7Y AXES
20 FORX =0TO 255

30 PLOT X,87

40 NEXT X

50 FORY=0TO 175

60 PLOT 127,Y

70 NEXTY

Because the axes cross in the middle of the screen
at 127,87, it becomes a bit complicated to plot
mathematical graphs (for which the point where
the axes cross is defined as 0,0, to allow for nega-
tive numbers below the x-axis and to the left of
the y-axis).

Here's a program to plot a sine wave. Notice that
we incorporate the program above to draw the
axes.

5 REM PROGRAM — SINEWAVE
10 FOR X =0 TO 255
20 PLOT X,87
30 NEXT X
40FORY=0TO 175
50 PLOT 127Y
60 NEXT Y
70 FORI= —20 TO 20 STEP .03
80 PLOT 1«6 + 127,87 + 20+SIN I
90 NEXT I

Line 70 dimensions the graph to fit the screen.
We experimented until we hit on the range — 20
to + 20, and STEP often to place a PLOT point.

159

Chapter 17: Graphics

e S
When you shape a curve for best display on the
screen, you have to be careful to properly label
the x and y axes, so that the values for different
points on the curve are accurate.

The 6 in line 80 is just for convenience in making
the curve easy to see. You need to be sure that
using that number does not distort the graph.
Fortunately, you can dimension the x-axis
according to the period of a sine wave—the
distance between two similar spots in
succeeding cycles. This is 2. You need to mark
the

x-axis accordingly.

The amplitude is 20, since a wave of amplitude
1is y = SIN x. This accounts for the 20 in line 80,
and is the guide for dimensioning the y axis.

The 127 and 87 in line 80 are, of course, to center
the plot points on the center of the screen and of
the axes as drawn.

You can, of course, also graph parabolas, straight
lines, and all kinds of mathematical functions.

Leave the sine wave on the screen; we'll use it to
practice saving a display on tape.

Saving Screen Displays with SCREENS
Any time you have a screen display you want to
save—and this will almost always be some kind
of artistic or graphic display—you can use the
SCREEN$ command.

To save the sine wave graph, you would type
SAVE "Sinewave'' SCREEN$

using the SAVE keyword on the S key, typing the
name of the display— you can give it any name
you like—in cuotes, and then adding the
function SCREENS$ (shifted K with the [cursor
on the screen).

160 SAVE. .., SCREENS$

Chapter 17: Graphics

To recall the display, you would use
LOAD "‘Sinewave' SCREEN$

Except for the addition of SCREENS$, the process
is the same as that outlined in Chapter Four for
saving and loading programs.

LOADing a screen display with SCREEN$ does
not erase a program in the computer.

Note that VERIFY does not work with SCREENS.

Summary

1. Graphic symbols on the number keys (using
both TRUE VIDEQ and INVERSE VIDEO to
double the available symbols) are placed on
the 32 x 22 screen using PRINT statements.

PRINT AT 10,10;" "

2. PLOT places a black— or other INK
color—dot in a pixel (picture element) defined
by two numbers separated by a comma:
@-255 from
left to right across the screen and 0-175 from
bottom to top.

PLOT 255,175

3. SCREENS is added to a SAVE or LOAD
statement in order to store or recall a screen
of
information. The screen can be LOADed by
itself or for use with a program.

LOAD. .., SCREENS, PRINT AT, PLOT, SCREEN$ 161

User Defined 18

Graphics

Chapter Preview You can design your
own symbols and
characters with BIN,
and place them in the
T/5 2000's memory with
POKE and USR, then
recall them using the
graphics mode.

Besides the graphics on the number keys 1-8,
you can create your own graphics and store them
"“under" any of the letter keys A-U. They can then
be accessed by pressing the appropriate key while
in the graphics mode.

With the [cursor on the screen, press CAPS
SHIFT 9 and obtain the [§ cursor. Press any of the
number keys 1-8.

Now press any of the letter keys A-U. The result
is the same as you would get in [mode. But you
can change the characters in those memory
locations.

163

Chapter 18: User Defined Graphics

e e]

Each character — letters, numbers, graphic
symbols—is made up of pixels (miniature
squares)
in an eight by eight matrix. For instance, the
capital Eis

olojejofolo o P You can think of the blacked-in areas as 1's and

oftfifififah the white areas as 0's, and the E is then repre-

@10@@0{@3 sented as

olifilifififed

o[1]ofofofofo b

ol1lofofololo P

ofrfifaifilhh p

olofofofeo o P
Suppose you wanted to place a character that
looks like this in the computer (it is best to design
it first on graph paper):

o 1lalolo]elo o You could translate the black areas to 1's, as we

o[1{ojofol1lo fo did above, and represent the figure as

o/1]{o|of1]olofo

ol 1]ef1]o]e]o o

olof1fel1]olifo]

ol 1lolelilofi o]

ololofol1li]i |

olofolofololl o |
Each eight-digit (eight bit) line of the grid occupies
a specific location in memory. You can place values
like this in memory using POKE.

164

Chapter 18: User Defined Graphics

POKE, the keyword on the O key, is a command
that is usually followed by two decimal numbers,
the first being a memory address and the second,
a number to place at that address.

USR is the function above the L key; with “e”, it
becomes the first number in the POKE command
and refers to the location where the User Defined
Graphic for that key is stored.

BIN (for BINARY), the function above the B key,
simply signals the computer to expect a byte of
binary digits (bits) instead of a decimal number.

POKE USR "e", BIN 01000000

will store the first line of our character at the
address of the first line of the user defined graphics
area for the “e’" key.

It takes a while to enter the entire character. The
next line is entered by

POKE USR "¢ + 1,BIN 01000100

Continue to enter all eight lines, using addresses
up to ‘e’ + 7, and the rows of 1's and 0's from our
chart.

Ty Then, if you press CAPS SHIFT 9 and obtain the
cursor, and press the ““e” key, you'll get your

symbol!

POKE, USR, BIN : 165

Chapter 18: User Defined Graphics

e

166

14 FOR neg TO 7
28 INPUT rew: PO

oy
30 NEXT m

ACS

1 wagenta |
TRUE VIDEO |
LIME

KE WSR “gten, s

INVVIDED
OPEN W
L]

Once you've entered a user-defined graphic
symbol to a letter key, it will be there any time
you press that key in graphics mode, until

(a) you enter a different character, or
(b) you turn off the computer. (NEW or CLEAR
will not erase it.)

You can make it a little easier to enter graphics
by typing in this program:

10FORn=0TO7
20 INPUT row:POKE USR “g" + n, row
30 NEXT n

Then RUN the program and, each time it calls for
INPUT, type in a line. For this example, use

BIN 00010000
for every one of the eight lines.

When the program stops asking for input, get the
cursor on the screen and press the Q key. Can
you guess what you'll get?

Design other graphics and use the program to in-
put them. You'll have to change the "'q"" to some
other letter each time you enter a new graphic.
And you ought to keep a list of what graphic is
on what key.

Since the user graphics disappear whenever

you turn off the computer, you may want to try to
invent a program that contains all your graphics
and enters them automatically. Can you do this?

Hint: Try using READ and DATA.

POKE, USR, BIN

Chapter 18: User Defined Graphics

This was drawn with the
COLORSKET CH program on page

POKE, USR, BIN

With such a program, it is possible to create and
store alternate alphabets (“type faces'’), figures
to place on the screen for games, and symbols
you may need that are not available in the T/S
2000's character set, like the % we just entered.

Summary

1. POKE places information in the computer's
memory; it-is followed by two numbers sepa-
rated by a comma. The first number is the
address, the second is the information.

2. BIN followed by eight binary digits—1's or
0's—creates one of eight lines needed to
make up a user defined graphic symbol.

3. POKEUSR “a', BIN11111111 stores a line
of black—or, actually, INK colored —dots on
the first line of eight as part of a user deﬁned
graphic on the A key. POKE USR “a"
BIN0000000 stores a row of white or blank
spaces on the second line.

167

Time and Motion 19

INKEYS

Chapter Preview This chapter covers
ways to make things
move, including INKEYS
and STICK. PAUSE makes
everything hold still for
a while.

The command INKEY$ is like INPUT except that
it does not wait for you. INKEY$ scans the key-
board to see which key is being pressed—if any—
and the computer then takes action according to
the program.

The program below is a game of tag. Lines 20-70
place a target square in the center of the screen
(to get the INK-colored square in line 70, press
GRAPHICS and then CAPS SHIFT 8; get out of
graphics mode to close the quotes), and put you
in control of a checkered square (graphic 6) in the
upper left hand corner.

169

Chapter 19: Time and Motion

I S
5 REM PROGRAM — TAG
10 BORDER 0: PAPER 0: CLS
20LETX =15
30LETY=11
AQLETA=0
S5QLETB=0
60 PRINT AT A,B;" "
70 PRINT AT Y, X; INK INT (RND+7) + 1;"l"
80 FORN=1TO 17
90 NEXT N
100 PRINT AT Y, X; INK0;"
110 PRINT AT A B: INK 0;"
120 LET C = INT (RND+4) + 1
130IF C=1AND X< =29 THEN LET X = X + 2
140TFC=2ANDX> =2THENLETX=X-2
150 IFC=3ANDY<=19THENLETY=Y +2
160IFC=4ANDY> =2THENLET Y=Y -2
170 IF INKEY$ = "O" AND B> = 1 THEN LET
B=B-1
180 IF INKEYS$ = A" AND A< =20 THEN LET
A=A+1
190 IF INKEY$ = 'Q"' AND A> = 1 THEN LET
A=A-1
200 IF INKEY$ = “P'"' AND B< =30 THEN LET
B=B+1
210IF A=Y AND B = X THEN GOTO 900
220 PRINT AT Y, X; BRIGHT 1: INK INT (RND+6)
+2"'m
230 PRINT AT A,B; INK 7; "M
240 GOTO 80
900 FORN =1 TO 50: PRINT AT 0,0: PAPER 7; INK
2,"YOU WON!"'
910 BORDER 0
920 PRINT AT A B:; BRIGHT 1; INK INT (RND+6)
+2.FLASH 1;"&"
930 PRINT AT A.B; INK 7, FLASH 1;"'B"
940 BORDER 2
950 NEXT N
960 PAUSE 1000: STOP

170

Chapter 19: Time and Motion

Lines 120-160 use a random number generator
to move the black square, two spaces at a time in
any direction.

Lines 170-200 move the checkered square, accord-
ing to your direction. You can only move one space
at a time, but presumably you are moving more
purposefully.

The second portion of each line from 130 to 200
keeps your square and the target square from
going off the edge of the screen.

Lines 220 and 230 print the two squares in their
newly-calculated locations, after lines 100 and
110 “erase’" the squares from their old locations
(by printing over them with an INK color—black—
the same as the PAPER color of the screen).

Lines 80 and 90 introduce a short pause in the
proceedings while the computer, in effect, counts
to 17—very quickly. You can use an empty
FOR/NEXT loop in this way.

Line 210 and the celebration routine at line 900
are executed if you “tag’’ the black square with
your checkered one; that is, if their coordinates
are the same.

When you play this game, remember that INKEY$
checks the keyboard to see what key is being
pressed when that program line comes by. Rather
than tapping the keys, you ought to hold down
the key that corresponds to the direction you
wish to move to close in on the black square.

To play, you press the following keys:

Q to move up
A to move down

INKEYS 17m

Chapter 19: Time and Motion

172

O to move left
P to move right

(Note that you could designate any four keys you
feel comfortable with to move your square—the
arrow keys 5,6,7,8 or any pattern of other keys.)

Don'’t press two keys at once (for instance down
and left) because INKEY$ can only read one at a
time.

Since the letters INKEY$ will react to in lines 170-
200 are capitals, you must be in C mode—CAPS
LOCK on—when you play this game.

Here's a short program to show you that INKEY$
waits for no one. If you don't type a character
(press any key) very quickly, the computer prints
a blank space and scrolls merrily onward and
upward. Use the BREAK key when you want to
stop it.

10 PRINT INKEY$
20 GOTO 10

PAUSE
The PAUSE command does just what you'd expect
it to, and you can set it using a numerical value.

PAUSE 60 is about one second. More is a higher
number and less is lower. Add to the above
program:

15 PAUSE 60

and it will be a lot easier to keep up with the
scrolling.

A PAUSE command will be terminated if a key is
pressed; notice that the program will move as fast
as you do, and not wait for a full second between
entries.

INKEYS, PAUSE

Chapter 19: Time and Motion

10 REN
20 LET T=6
!l LET AS=CHRS INT (RND*1d+c0D

Plnclln ~ECHO

")
Ll PRINT AS
50 PAUSE T
69 LET BS=INKEY
79 IF 8S=, AS|YN(. GOY0 1ee
=Te

119 GOTO 30

PAUSE, STICK

Simulate a typewriter by adding a semicolon at
the end of line 10.

Here is a diabolical program that changes the
length of PAUSE in response to your success at
the game! Your task is to “‘echo’’ the computer's
output on the screen. When the computer prints a
random digit between @ and 9, you have to type that
digit before the computer goes on to the next one.

The good news is that, if you miss some, the
computer will slow down for you. The bad news
is that, if you get some right, the pace will speed up.

10 REM PROGRAM —ECHO
20 LET T =60
30 LET A$ = CHR$ INT (RND+10 + CODE "“0")
40 PRINT A$
50 PAUSE T
60 LET B$ = INKEY$
70 IF B$ = A$ THEN GOTO 100
B8O0LETT=T+1.1
90 GOTO 30

100 LET T =T+0.9

110 GOTO 30

STICK

The STICK command (located under the S key
and accessed with either SHIFT while in extended
mode) "'reads’ the position of a device connected
to the T/S 2000's joystick port. It treats the input
much as INKEY$ does for keyboard input.

This is most useful if you want to write your own

graphic games (or other software), and generally

will be used to move a cursor or other object with
the IF command.

IFSTICK (1,2)=1THENLET X =X +1

173

Chapter 19: Time and Motion

e e e R 1
would move a figure on the screen upwards by
one print or plot position (assuming you were
using x to define the position of the character on
the vertical axis).

The STICK function requires two numbers in
parentheses after the word STICK. The first number
specifies the “device type"’ you want to check—1
is the joystick itself, 2 is the pushbutton.

The second number identifies the "“player” (in

other words, which of two joysticks is being inves-
tigated)—1 or 2. You may think of 1 as the left one
and 2 as the right, but don't get your wires crossed!

Executing this function returns a value which
tells you what is going on. If you are reading the
pushbutton, there are only two possible answers:
you'll get a 1 if the button is being pushed at the
time the reading is being taken and 0 if it is not.

Things are a bit more complicated if you are
reading the stick itself. In the example above, the
1" after the first = sign meant that the stick
was in the ""up’' position (this is why we LET X
move up the screen). The complete table of values
(reading counter-clockwise) is:

(0—on center (not moving)
1—up
5—up and to the left (diagonal)
4—left
6—left and down
2—down
10—down and right
8—right
9—up and right

This is not as odd as it looks; the four main
directional values are organized like this:

S
NS =
o

174 STICK

Chapter 19: Time and Motion

INKEYS, PAUSE, STICK

using binary numbers, and the diagonal directions
are read by combining (adding) the adjacent
values (up left—5—is up—1—plus left—4).

5 1
2 ¢
6

S

N\

9

N\

)8
1

N,

0

Animation
You can make figures move about by using
INKEY$.

You can also make individual user-defined graphics
seem to move by switching between two slightly
different designs (such as placing a figure of a man
at both G and H and having the legs in slightly
different positions, then making him “walk" by
alternating the two characters—and moving the
figure with INKEY$ or program statements).

S

1. INKEYS$ reads the keyboard and inputs as a
character string any key being pressed. (If no
key is being pressed at the time, it ‘‘reads' the
empty or "‘null” string. PRINT INKEY$ will
then act like PRINT alone; if no key is being
pressed, the computer will print a blank line.)

2. PAUSE causes a program to wait a specified
length of time (6@ = one second) before con-
tinuing to the next line. If a key is pressed, the
PAUSE ends.

3. STICK “reads” the position of a joystick
attached to the T/S 2000 and handles the
result similarly to INKEYS.

175

176

Colors available on the T/S 2000, using this
program:

10 FORI=0TO21: READ A

20 FORJ=0TO 31

30 PRINT INK A; ATLJ; “I”

40 NEXTJ

50 NEXT I

60 DATA 1,7,2,7,3,74,75,7,6,1,0,2,0,3,0,4,0,5,0,6

10 REM PROGRAM—STARS

20 PAPER 7: BRIGHT 1: BORDER 0
30FORI=0@TO6: INKI

40 PLOT 30 + 30+[,20 + 20+1: DRAW 20,20,500
50 NEXT I

Try this with values other than 500 in line 40.

Adding color to the GRAPHICS program on
page 156.

5 REM PROGRAM — COLORED CONCENTRIC
CIRCLES

10 FORI=1TO5

20FORJ=0TO6

30 BORDER 1:INK J:CIRCLE 127, 87, (5 + I)»J
40 NEXT J

50 NEXT I

5 REM PROGRAM —COLORED STRIPES
10 FORN=0TO7

20 BORDER N: PRINT PAPER N + 1; INK 9;
“+ 4+ +++ +++":PAUSE 30

30 NEXTN

40 GOTO 10

Color

20

Chapter Preview This chapter goes over
BORDER, INK, and
PAPER again, and
shows you how to
enhance your colors
with BRIGHT, FLASH,
and INVERSE. We also
look at the OVER

P

5 REM PROGRAM — COLORS
10FORX=0TO7
20 BORDER X: PAUSE 30: NEXT X
30 GOSUB 5000
40FORZ = 1TO 3: GOSUB Z+ 1000
50 NEXT Z
60 GOSUB 5000
70 STOP
1000 INVERSE 1: GOSUB 5000
1010 RETURN
2000 INVERSE 0: FLASH 1: GOSUB 5000
2010 RETURN
3000 FLASH @: BRIGHT 1: GOSUB 5000
3010 BRIGHT 0: RETURN
5000 FORY =0 TO 7: PAPER Y
5010 PRINT INK 9: “TIMEX SINCLAIR 2000’
5020 PAUSE 30; NEXT Y
5030 PRINT
5040 RETURN

177

Chapter 20: Color

e e R

Back in Chapter Three, we introduced the color
commands BORDER, PAPER and INK. Now we'll
revisit them, and some T/S 2000 features we
haven't covered.

Type in the above program and RUN it. Let's look
atit:

Line 20 simply takes the border through the avail-
able colors, with each staying on the screen for
about a half second.

Line 30 directs the program to the subroutine
starting at line 5000:

Line 5000 sets paper color to a different value
each time through the loop.

Line 5010 suggests printing in INK color 9. But
there is no color above the 9 key! Color 9 is an
instruction to choose a color (it can be used for
either INK or PAPER) for maximum contrast.
Either black or white will be selected, as
appropriate.

Line 5020 waits a half second then moves to the
next repeat of the loop.

After the program has completed eight printed
itemns, line 5030 prints a blank line to separate this
group of eight from successive groups. Line 5040
ends the subroutine.

Line 40 operates a loop made up of subroutine
calls. They are:

Line 1000 sets INVERSE 1 and then repeats the
above subroutine at line 5000.

Line 2000 turns INVERSE off and turns FLASH
on, and calls subroutine 5000 again.

Line 3000 turns FLASH off and BRIGHT on. Notice
that, before leaving the subroutine, line 3010 turns
BRIGHT off.

178 INK, INVERSE, FLASH, BRIGHT

Chapter 20: Color

e =)
After line 50 completes the loop, line 60 takes us
through the subroutines at 5000 one more time,
and line 7@ STOPs the program.

When you RUN the program, the first eight entries
that appear on the screen illustrate:

1. That PAPER, called within a program, applies
only to areas where printing is done.

2. How INK 9 works: for the first four entries,

A T white INK is automatically used over a dark

PAPER color; for the last four, black INK goes

over the light PAPER colors.

The second eight entries illustrate INVERSE.
Inside the computer, the INK and PAPER colors
remain the same, but the dots in each 8 x 8 char-
acter are reversed (those which had been INK
become PAPER and vice versa).

INVERSE 1 turns on the INVERSE function;
INVERSE 0 (see line 2000) turns it off.

The third eight entries, of which the first four
appear on the first screen, illustrate the FLASH
function. It, as you can see, is simply a rapid
alternation of INVERSE 1 and INVERSE 0.

FLASH 1 turns on the FLASH function, and
FLASH 0 turns it off.

Press Y, or ENTER, or any key but BREAK or N in
response to the scroll? prompt, and see the rest of
the program output.

First are the remainder of the FLASHing items.

The next eight entries illustrate the BRIGHT func-
tion (you may have to look closely: look especially
at the white letters and background to see the
difference).

BRIGHT 1 turns the function on, BRIGHT @ turns
it off.

The last eight entries repeat the original eight, for
you to compare with BRIGHT.

PAPER, INK, INVERSE, FLASH, BRIGHT 179

Chapter 20: Color

e = e
You will be most likely to want to use BRIGHT or
FLASH to call attention to something on the screen
—a label or prompt.

OVER

Another function that is turned on with 1 and off
with @ is OVER. When OVER is on, you can over-
print one character with another. Type this in
and RUN it:

10 PRINT AT 5,5,0000000000"
20 OVER 1: PAUSE 30

30 PRINT AT 5,5, ————————- .

40 OVER 0: PAUSE 30

AOPRINT AT B.5; "#exwexnxwxs’

opoea6e608

In line 10, use capital O, not numeral zero. In line
30, use the dash, SYMBOL SHIFT J.

Line 10 PRINTSs the O character, line 20 turms OVER
on, and line 30 then overprints the dash to make
a row of ten thetas, more or less.

Line 40 turns OVER off, and then when line 50
prints asterisks, they are printed in place of the
previous line of characters.

If you printed enough characters in the same
kokkkkkdkkok place with OVER on, would you end up with a
solid black square?

You can alsc use OVER with CHR$ 8, which is a
backspace, to make compound figures. Make an
"'o"" with an umlaut this way:

P 0K, 50:1

10 OVER 1:PRINT "o'";CHR$ &;""""""

(Remember, open quote, two more quotes to
print one, and close quote.)

180 OVER

Chapter 20: Color

e ——_ e S S
There will be more on CHR$ in Chapter 22. But
for now, if you look in Appendix B, you'll find that
code #8 is defined as "‘cursor left" (or backspace).
You can call for any action or character by its
code, with CHRS. (Instead of PRINT "'$" you
could type PRINT CHR$ 36.)

Some Notes on BORDER, PAPER, and INK
BORDER can be specified either as a command
line in immediate mode, or in a program line. The
BORDER color selected remains until a new color
is specified or the computer is turned off.

When PAPER is specified as a command line, the
entire center screen is changed to the new color
when ENTER is pressed twice. The color remains
until changed, as with BORDER.

In a program line, PAPER takes effect only when
something is printed, and underlies only the char-
acters which are printed. Try

10 PAPER 2
20 PRINT INK 7;"LOOK AT THIS"

press RUN and ENTER. Notice that the PAPER
color is shown only under the INKed characters.
The PAPER color will be extended to the whole
screen after a CLS command. . . or after an ENTER
to recall the program listing to the screen (because
that, in effect, clears the screen before showing
the listing).

Press ENTER again. Then press

PAPER 7 ENTER ENTER

and we are back to "'normal.”’ Add to the program
15CLS

and see what happens when you RUN it.

BORDER, PAPER, INK 181

Chapter 20: Color

182

INK, as a command line, changes the ink color.
But you can't see it work until you PRINT some-
thing. Try (after NEW and ENTER)

INK 2 ENTER
and then
PRINT “"LOOK AT THIS"

In a program line, by itself, INK will also select a
color that will remain until it is changed by a sub-
sequent line, or until the computer is turned off.

But as part of a PRINT command, either INK or
PAPER will specify colors for only that command,
after which the previous generally-specified color
(perhaps the default black-on-white) returns. Re-
member how the INK changed back to black when
you pressed ENTER a second time and turned the
whole screen to PAPER color red? That's because
INK 7 was specified in a PRINT statement (line 20)
of the little program we were using.

Summary
1. INVERSE reverses the INK and PAPER dots to
print inverse characters.

INVERSE 1 turns it on
INVERSE 0 turns it off

2. FLASH causes characters to flash by rapidly
switching between true and inverse video.

FLASH 1 turns it on
FLASH 0 turns it off

3. BRIGHT makes characters brighter on the
screen.

BRIGHT 1 turns it on
BRIGHT 0 turns if off

INVERSE, FLASH, BRIGHT

Chapter 20: Color

R e

4. OVER prints a character over whatever is
already at that position, not erasing the
previous character.

OVER 1 turns it on
OVER 0 turns it off

OVER 183

Sound and Music 21

SOUND

Chapter Preview This chapter covers the
SOUND command, and
how to use it to write
three-part harmonies.

Al

5

Back in Chapter Seven, we played some music
with the BEEP command.

Now we want to investigate the SOUND command.
It allows you to compose music in harmony, with
three channels instead of one at your disposal. It
can also produce some interesting sound effects
to add to your programs.

The SOUND command is followed by pairs of num-
bers, the pairs separated by semicolons and the
individual numbers within the pairs by commas.

You can include up to 15 pairs of numbers in each
SOUND statement. In each pair, the first desig-
nates one of fifteen registers—storage locations—
within the special sound/music synthesizer chip.
The second is a value to put into the register. These
registers control the pitch, duration, and volume
of the sound being produced.

185

Chapter 21: Sound and Music

186

20 PAUSE &0
SOUMD 8,8;7,83

Registers 0 and 1 control the pitch of a tone pro-
duced on Channel A. 1is given a "coarse tune”
value and 0 a “'fine tune.”” We've produced a chart
showing the values to place in each register for
eight octaves’ worth of notes.

Suppose we want to play an A note (in the fifth
octave), through Channel A (it doesn’t matter
which channel you use). First, type in

10 SOUND 0,124;1,0; (DON'T ENTER YET!)

which puts the values, taken from our chart, of
124 into the “fine tune" register and @ into the
“‘coarse tune'’ register.

Next we need to add an amplitude, or volume. For
Channel A, we use register 8 and value 13 (13 from
the available range of 0-15).

10 SOUND 0,124;1,0,8,13; (DON'T ENTER!)

And, we need to enable—turn on—Channel A
by using register 7. For now, use value 62—we'll
explain later. Your SOUND statement should now
look like this:

10 SOUND 0,124;1,0,8,13,7,62

Now you can ENTER it. But don’t RUN it yet!!!
One attribute of a note we haven't yet entered is
duration. Enter the following line

20 PAUSE 60 ENTER

Now, run the program and play A for one second.

Note: Upon program termination and after
every immediate command the T/S 2000 will
turn the sound chip off for you.

SOUND

Chapter 21: Sound and Music

If you want to turn off the sound channels within

SOUND

programs, you will have to do as follows:

30 SOUND 8,0;7,63

Note: The first set of numbers turns the volume to
zero and the second set turns off the channel irre-
gardless of the volume setting; therefore only one
set is necessary to turn off the sound.

Table of Values of Notes
Note Freq.
c 32.703
C# 34.648
D 36.708
D# 38.891
E 41.203
F 43.654
F# 46.249
G 48.999
G# 51.913
by 55
A¥# 58.27
B 61.735
C 65.406
C# 69.296
D 73.416
D# 77.782
E 82.406
F 87.308
F# 92.498
G 97.998
G# 103.826
A 110
A# 116.54
B 123.47
C 130.812
C# 138.592
D 146.832
D# 155.564
E 164.812
F 174.616
F# 184.996
G 195.996
G# 207.652

RNNNNNNWWWWOWWR LB RO MNNWO©WEO©

16
84
163
252
94
201

184
58
196
85
235
136
42
209
126
47
228
158
92
29
226
170
117

21

232
191
161
114

46
14

187

Chapter 21: Sound and Music

e e e]

Note Freq. Coarse Fine
A 220 1 241
A# 233.08 1 213
B 246.94 1 186
C 261.624 1 162
C# 277.184 1 138
D 293.664 1 116
D# 311.128 1 95
E 329.624 1 75
F 349.232 1 57
F# 369.992 1 39
G 391.992 1 23
G# 415.304 1 7
A 440 0 248
A# 466.16 [t} 234
B 493.88 0 221
C 523.248 0 209
C# 554.368 0 197
D 587.328 0 186
D# 622.256 0 175
E 659.248 0 165
F 698.464 0 156
F# 739.984 0 147
G 783.984 0 139
G# 830.608 0 131
A 880 0 124
A# 932.32 0 117
B 987.76 0 110
C 1046.496 0 104
C# 1108.736 0 98
D 1174.656 0 93
D# 1244512 0 87
E 1318.496 0 82
F 1396.928 0 78
F# 1479.968 0 73
G 1567.968 (0] 69
G# 1661.216 0 65
A 1760 0 62
A# 1864.64 o 58
B 19756.52 0 55
C 2092.992 0 52
C# 2217.472 1] 49
D 2349.312 0 46
D# 2489.024 0 43
E 2636.992 0 41
F 2793.856 (0] 39
F# 2959.936 0} 36
G 3135.936 0 34
G# 3322.432 0 32

188 SOUND

Chapter 21: Sound and Music

SOUND

Note Freq Coarse Fine
A 3520 0 31
A# 3729.28 0 29
B 3951.04 (1] 27
C 4185.984 Q 26
C# 4434.944 Q 24
D 4698.624 0 23
D# 4978.048 0 21
E 5273.984 0 20
F 5587.712 0 19
F# 5919.872 (0] 18
G 6271.872 0 17
G# 6644.864 0 16
A 7040 0 15
A¥ 7458.56 0 14
B 7902.08 0 13

There is, admittedly, a lot of footwork involved to
play just one note. And there is much more if you
plan to compose a symphony. But take heart: every
register does not have to be turned on and off for
each note.

Let's illustrate by building a chord of three notes.
Press NEW and ENTER. Type in the following
program. We'll walk through it and then RUN it.

10 SOUND 7,56

20 SOUND 0,68;1,3;8,12

30 PAUSE 60

40 SOUND 2,151;3,2;9,12

50 PAUSE 60

60 SOUND 4,46;5,2;10,12

70 PAUSE 300

80 SOUND 0,0;1,0;2,0;3,0:4,0,5,0

Let's start our analysis with line 20, and come
back to line 10 last. .

189

Chapter 21: Sound and Music

Line 20 contains the fine tune and coarse tune
register values for the C note. For volume, we've
changed the value in register 8 to 12.

Line 3@ “‘holds the note" for one second. Actually,
the note will go on until stopped, as we've seen,
line 30 actually waits one second before going to
line 40.

Line 40 adds a second note to the mix; looking at
the chart of registers and the chart of note values,
we find that we are playing an E through Channel
B—and also turning the volume control up to 12.

Line 50 lets us listen to the two notes for another
second.

Line 60 adds the third note of a C chord—a G—
in Channel C, line 70 lets us listen to the whole
chord for five seconds, and then line 80 turns off
the tone on all three channels.

Notes:

1. We don't have to turn off the other registers
(volume, envelope, etc.), but can leave them
engaged for the next note or chord.

2. We didn't have to use lines 30 and 50; elim-
inating them will play the entire chord
immediately.

3. Similarly, we could use line 80 to change the
notes being played instead of turning them off.

Now, to line 10: loading 56 into register 7 turns
on all three tone (music) channels. (We are not
using the noise register for this exercise; it can be
used by itself for sound effects or mixed with one
or more tone channels to change the timbre of
the sound.)

190 SOUND

Chapter 21: Sound and Music

e

If you imagine register 7 holding the value 63
when all six channels are off, and then subtracting
the following numbers from that for each channel
you wish turned on, you'll be able to use it easily:

Music: Channel A.. .1 Noise: Channel A....8
Channel B. . .2 Channel B. . .16
Channel C. . .4 Channel C. . .32

Combinations of numbers can be subtracted to
enable more than one channel; as we've seen,
subtracting all 63 gives (0 and enables all six
channels.

The envelope: Registers 11, 12 and 13 program
the envelope to control the total sound from
whichever channels are enabled.

There are both a fine tune and a coarse tune
register (11 and 12) for the envelope period. The
available range of values for each register is 0-255.

The envelope is the overall ‘'shape’’ of the sound
being produced: whether it swells, fades, oscil-
lates, etc.

The period is the duration of one ‘‘cycle” of the
envelope shape. The shape—register 13 —is
determined by a value of 0-15, as follows:

Attack: Add 4 to cause the sound to swell from zero
to peak volume over the duration of one cycle. If
you leave this at 0, the sound will “‘decay" instead:
fade from peak to zero volume over one cycle.

Alternate: Add 2 and the patterns described

for “attack’” will alternate; that is, the sound will
swell for one cycle, then decay for one cycle (or
vice versa) and will neither start nor stop abruptly.

Hold: Add 1 to limit the period to one cycle of
either attack or decay. Sound will then remain
at peak or zero volume until a new command

changes it.

SOUND 191

Chapter 21: Sound and Music

Continue: If this is left at @, whatever is pro-
grammed by the other three parameters will last
for only one cycle and volume will then drop to (or
stay at) zero. Add 8 and whatever is set up by the
other three parameters will repeat until terminated
by another command. This may be a repeat of
Attack, Decay or Alternate patterns, or a Hold
as described above.

The value of 0-15 for the envelope shape register,
13, is then assembled from various combinations
of the four pattern parameters. For instance, a
pattern could be made up of 8 (for Continue, so
the note doesn't shut off immediately) plus 2 (for
Alternate, so the volume will rise and fall some-
what gradually) plus 4 (for Attack, so that it rises
first)—a total value of 14.

Register Chart for SOUND Command

Register Function Values
Fine tune, Channel A 0-255
Coarse tune, Channel A 0-15

0

1

2 Finetune, Channel B 0-255
3 Coarse tune, Channel B 0-15
4
5
6

Finetune, ChannelC 0-255
Coarse tune, Channel C 0-15
Noise (Higher value = lower 0-31
frequency)

7 Enable (Subtract from 63, 0-63
to enable):

Tone A=1 B=2 C=4
Noise A=8 B=16 C=32

8 Amplitude
(volume) Channel A 0-15
9 Amplitude Channel B 0-15
10 Amplitude ChannelC 0-15
(Value 16 enables envelope)

192 SOUND

Chapter 21: Sound and Music

Register Function Values
11 Fine tune Envelope period 0-255
12 Coarse tune Envelope
period 0-255
13 Envelope shape 0-15
(Add to zero, to enable:)
Hold 1
Alternate 2
s Attack 4
V| GRAPHIC REPRESENTATION Continue 8
OF ENVELOPE GENERATOR
Quxear Envelope Shape Diagram: The following
o\ patterns are created by loading the stated values
aln into register 13.
8 NNNNNNNNNN
o\
1O NAANANN/
uN—
O V%%
13/
1AAAAA
15%1/1
wuramonorves - | If the value in any channel's amplitude register

is from 0 to 15, you will remove it from the control
of the envelope. The channel will play its note
continuously.

If you change the value to a number from 0 to 15
plus 16, you will let the envelope control the
“shape’’ of the note but you will have specified a
maximum volume for it to reach within that enve-
lope. This is how you will “play"* the T/S 2000
louder or softer.

If the value is exactly 16, the full range of volume
will be available under the control of the envelope.

SOUND 193

Chapter 21: Sound and Music

194

You can obviously spend a lot of time learning to
program the SOUND command. The best way to
learn is to practice it, like any musical instrument.
The amplitude registers, envelope shape and pe-
riod, and enable register may make it possible for
you to create music with just the SOUND command
(without needing, for example, PAUSE in your
programs).

Here is the program we used to obtain the values
for coarse and fine tune registers by inputting the
frequency for a note. You can use it for any fre-
quency within the synthesizer's capacity.

10 REM PROGRAM —SOUND

20 PRINT “NOTE'";TAB 5;FREQ.", TAB 12,
“COARSE";TAB 20;"FINE"

30 INPUT N$

40 INPUT F

B0 LET X = 1.75/(16+F)

60 LET X = X»1000000

70 PRINT N$;TAB 4;F, TAB 14, INT (X/256); TAB 20;
INT X — INT (X/256) «256

The Noise Generator

The noise generator can be used with the tone
channels or by itself; again, the best way to get
a “feel" for the possible effects is to experiment.

You can create sound effects by using registers
6-13, leaving 0-5 set to 0. Here are a few to try
out, with some explanations.

GUNSHOTS

10 SOUND 6,15;7,7;8,16;9,16;10,16;12,16;13,0
20 PAUSE 60

30 GOTO 10

Register 6 (Noise) can be given a value between
0 and 31; the higher the value, the lower the fre-
quency of the sound. Value 7 in the Enable register
(7) turns on Channels A B and C for noise only.

SOUND

Chapter 21: Sound and Music

e e 2 . =]
Registers 8,9 and 10, Amplitude for Channels A,B
and C, are set for envelope control of the full range
of volume. Register 11 (Fine Tune) is left at 0, 12
(Coarse Tune) is set to 16 for the envelope period,
and register 13 (Envelope Shape) is set at 0, decay
for one cycle.

Fire a new gunshot without waiting for the full
pause to elapse by pressing any key. Stop the
gunshots with break.

EXPLOSION

10 SOUND 6,6,7,7;8,16;9,16;10,16;12,56,13,8
20 PAUSE 90

30 SOUND 8,0;9,0,10,0

Note the similarity of many of the settings. Noise
period (6) has been reset. Envelope period (12)
has been increased and Envelope shape (13) has
been changed.

WHISTLING BOMB

10 SOUND 7,628,156

20 FORI=50TO 100

30 SOUND 0, I: PAUSE 3
40 NEXT I

Can you create a routine to follow the “Whistling
Bomb" effect with the “Explosion’’ effect?

A very useful major project would be to design a
program allowing you to “play’’ the T/S 2000 via
the keyboard.

SOUND 185

Checking Up 22

: o
~epmmsmns: wn
B
&

CHRS, CODE

Chapter Preview You can find out lots of
things by asking the
right questions. This
chapter covers the
FREE, POINT, ATTR,
CODE, and CHRS
functions.

In this chapter, we'll explore some ways to obtain
information from the T/S 2000.

CHRS and CODE

We talked earlier about the T/S 2000's “‘extended
alphabet,” in which all its letters and numbers
(and even keyword commands) are ranked in a
256-character listing.

Each character or keyword has a code number*
(a number between @ and 255—see Appendix B
for a list of them) and each of those code numbers
has, of course, a character which we call a CHR$
or character string (it is a very short character
string. . .).

197

Chapter 22: Checking Up

EMTER A MUMBER FROM 32 TO 255
2dG>=1F

Vi

AL
VALS

198

CHRS$ (using the function CHR$ located above
the U key) applied to a number gives the single
character string whose code is that number. Here's
a program to find the character when you know
the code:

10 REM PROGRAM — CHARACTERS

20 PRINT “ENTER A NUMBER FROM 32 TO 255"
30 PRINT

40 INPUT A

50 PRINT CHRS A;

60 GOTO 40

We used 32 to 255 in line 20, because most of the
characters below 32 are tokens for which the T/S
2000 has nothing it can display on the screen (see
the Appendix on The Character Set). Worse, some
of the color commands will stop this program if
we try to include them.

Each time you input a number between 32 and
255, you are shown the corresponding character.
In many cases, you'll be shown a question mark;
this is what the computer will put on the screen if
it does not have a symbol it can print for that num-
ber. To produce our sample output, we keyed in
the codes 50, 100, 150, 200 and 250.

Notice the semicolon at the end of line 50; feel
free to change it if you like.

Here's one to go the other way: input a character
from the keyboard, and get its code. Use the func-
tion CODE located above the [key.

CHRS$

Chapter 22: Checking Up

e L — e T S

PRESS ANY KEY

CODE, FREE, POINT

10 REM PROGRAM — CODES
20 PRINT "PRESS ANY KEY"
30 PRINT

40 INPUT A$

50 PRINT CODE A$

60 GOTO 40

In the sample run, we've obtained the code for,
respectively,

Y Lower case Y
CAPS SHIFTY Capital Y
SYMBOL SHIFT Y AND
GRAPHICS Y For user defined
graphic
EXTENDED MODE, Y STR$

EXTENDED MODE, SHIFTY Left bracket

FREE

At any time—within a program or, more often,
as a command in the immediate mode —you can
press PRINT FREE (extended mode, SHIFT A)
and ENTER.

The computer will respond with the number of
bytes of the computer's internal memory you have
available to work with.

POINT

The function POINT, located under the 8 key and
reached with SHIFT from the extended mode, is
followed by two numbers separated by commas.
The numbers correspond to the PLOT position of
the point in question.

PRINT POINT (255,175)
The response from the T/S 2000 will be

1 if the pixel specified is INK color, or
0 if the pixel is PAPER color.

199

Chapter 22: Checking Up

ATTR

The ATTRibute function, located under the L key
and accessed with SHIFT while in extended mode,
returns a number which encodes a number of attri-
butes of the PRINT position specified.

PRINT ATTR (15,10)

In binary, bit 7 is 1 if the position is flashing, 0 if
not. Bit 6 is 1 if bright, @ if normal. Bits 3-5 define
the PAPER color, in the same way as bits 0-2 define
the INK color.

Converted to decimal, the single number can be
decoded as follows:

1. Ifit contains (is larger than or equal to) 128,
the position is flashing. If not, it isn't.

2. Subtract 128, if possible. If the number then
contains 64, it is bright. If not, it is normal.

3. Subtract 64, if possible. The INK and PAPER
colors can be determined from the table below
(for example, if the remainder is @, both ink
and paper are black; if it is 21, the paper must
be red and the ink cyan—no other combination
will yield that number):

COLOR INK PAPER
Black Q 0
Blue 1 8
Red 2 16
Magenta 3 24
Green 4 32
Cyan 5 40
Yellow 6 48
White 74 56
Summary

1. CHRS$ is applied to a number, and returns the
character for which that number is the code.

PRINT CHRS 220

200 ATTR, CHRS

Chapter 22: Checking Up

2. CODE is applied to a character, and returns
the code for that character.

PRINT CODE "z"

3. FREE lets you know how many bytes of memory
you have available for programs or variables.

PRINT FREE

4. POINT tells you whether the PLOT point
specified by the coordinates chosen is PAPER
color (if the response is @) or INK color (if the
response is 1).

PRINT POINT (255,175}

5. ATTR returns a decimal number between @
and 25b, which can be broken down to reveal
the INK and PAPER color of the specified print
position, and whether it is bright and/or
flashing.

PRINT ATTR (15,10)

CODE, FREE, POINT, ATTR 201

Using the Printer 23

Chapter Preview You can get programs or
output on paper with
LPRINT, LLIST, and
COPY ifyou have a
printer.

10 REM PROGRAM —PRINTER
20 LPRINT ""THIS PROGRAM",,,,
30 LLIST

40 LPRINT

50 LPRINT "PRINTS OUT THE
CHARACTERSET.",,,

60 FOR N =32 TO 255

70 LPRINT CHR$ N,

80 NEXT N

You can obtain copies of your programs, and their
results, on paper, by attaching Timex Sinclair
2040, a printer, to your T/S 2000. This is called a
"hard copy'' because it will be around for a while,
as opposed to what you see on your Screern.

The Timex 2040 printer is an inexpensive device
that attaches to the back of your 2000 and is then
operated by just three simple commands.

LPRINT, LLIST 203

Chapter 23: Using the Printer

204

LPRINT

LPRINT (press the C key while the [cursor is

on the screen), is the same as PRINT, except that
the material to be printed is sent to the printer
instead of the screen.

The 'L stands for “'line printer," which is what
the Timex Sinclair 2040 is—it prints an entire
line at a time — although the command is now
used for any kind of ""hard copy" printer. When
BASIC was invented, the usual display was a kind
of electric typewriter rather than a TV screen, so
PRINT really did mean print. If you wanted a lot
of output fast, a line printer would turn it out more
quickly than a character-at-a-time typewriter.

LLIST

In the same way, LLIST (press the V key while
the [cursor shows) lists the program currently
in the computer's memory on the printer instead
of the screen.

LLIST can be used to "'pull a listing"* without put-
ting a program line in front of the command. In
other words, if you know you want a copy of the
program the computer has in it, just press LLIST
and ENTER, and you'll get it. If you add a program
line—as in LLIST 90— the listing will be printed
starting with that line.

Or, LLIST can be used within a program like the
one above —now is a good time to try it out, if
you haven't already. By the way, it doesn't print
the entire character set, strictly defined (that runs
from 0 to 255) because it cannot handle the color
definition commands that reside between @ and
31 on the printer.

(LPRINT, of course, can also be used either way.
Usually, you'll use LPRINT within a program—it
needs to LPRINT "“"SOMETHING" —while you'll
more often use LLIST outside the program, just
to get a copy of it to refer to.)

LPRINT, LLIST

Chapter 23: Using the Printer

ll EEM PROGEAM--GR

2% PEINT FFIREY Sinren SALESY
38 PRIN
HE SIARUART;TAB 103" FER
AUARY™;TAE 24;"RARCN"

58 LET T u(LET W=

3
&4 FOR A=15 T0 % STEP -1
T4 PRINT AT A, N;"@"

se -lzl ‘

=31 LET M=H+18
(" I# l)Z! THEK GOTD 12@
|Il EUTO Ll

T!l !‘00

FIRST QUARTER SALES
JANUARY FEBRUARY HARCH

corPYy

COPY

The third printer command is COPY (keyword
on the Z key). This simply makes a copy, on the
printer, of whatever is on the screen when COPY
is pressed. You can use COPY as a program line
or as a separate command anytime you want to
copy the screen.

Try this program, which graphs some imaginary,
if encouraging, sales figures:

10 REM PROGRAM — GRAPH
20 PRINT "FIRST QUARTER SALES"™
30 PRINT
40 PRINT "JANUARY";TAB 10;"FEBRUARY' ;TAB
20,"MARCH"

S0LETX=10:LETN =3
60FOR A=15TO X STEP -1
70PRINT ATAN;,"H "
80 NEXT A
S0LETX=X-3 LETN=N+10

100 IF N> 23 THEN GOTO 120

110 GOTO 60

120 COPY

130 STOP

Questions;

Will you get the same effect by eliminating line
120 and then pressing COPY and ENTER after
the program has stopped running?

Do you see what each line in the program does?

Hint: you need GRAPHICS and SYMBOL SHIFT
8 to get the black box.

Will you get the same effect by pressing LLIST
and ENTER as you get by using ENTER to get the
program listing on the screen and then pressing
COPY and ENTER? Can you COPY a program
listing?

Can you COPY the output from the bargraph
program we worked with in Chapter 177

205

Chapter 23: Using the Printer

206

5 Out of screen, 3e:)

19 REM PROGRAM--LETTERS
20 FOR N=31

0 -
|, 3% PRINT TAD N;CHRS (cODE ™one
Lo wExT N

Stopping the Printer with BREAK

When the printer is running, you can stop it

with BREAK. You might want to save paper if, for
example, you are using COPY to print out the five
line program listing above. The command will run
out all 24 lines’ worth of paper, unless you press
BREAK when you see line 130 appear.

If you try to execute any of the three printer com-
mands without a printer attached, the program
will usually proceed to the next line without print-
ing anything. Sometimes, however, the computer
will get hung up and you'll need to press BREAK
to rescue it.

Print Format Statements with the Printer
All but one of the screen printing format commands
will work with LPRINT. The comma, semicolon,
and TAB can be used, but AT does not work. To
illustrate, try this:

10 REM PROGRAM —LETTERS

20 FORN=31TOOSTEP -1

30 PRINT AT 31 - N,N;CHR$ (CODE “O" +N);
40 NEXT N

RUN the program. You'll see a diagonal row of
letters working its way down the screen, until
it stops with report code 5: out of screen.

Next, change AT 31 - N ,Nin line 30 to TAB N.
RUN it again and you'll get the same effect,
except that it will stop with “scroli?”

Okay, go ahead and scroll.
Be patient, we'll get to the point.

BREAK, LPRINT, TAB

Chapter 23: Using the Printer

18 REM PROGRAM--LETTERS
29 FOR N=31 TO @ STEP -1
@ LPRINT TAY® K;CHRS (CODE
"Ny

e i
W@ MEXT N

10 REM PROGRAM--LETTERS
28 FOR M=31 TO @ STEF -1

il LPRINT AT 21-I.H;CI;I (EDBE
wgt AN):

N} G
h® HEXT N

#1234656789: ;<=2 7QABCOEFCHIIKLNND

LPRINT, AT

Now, change PRINT in line 30 to LPRINT. The
program will RUN, and the pattern will continue
for ten more lines since the printer can't be “'full
as the screen can. You'll get no report code or
scroll message.

Finally, change TAB N to AT 21 — N,N. RUN the
program one more time.

This time the printer shows a single row of
characters! This is simply because AT does not
send a “line feed" to the printer. It will move the
print position over a column, but not down a line.

The printer will print a line:

1. After an LPRINT statement that does not end
in a comma or semicolon.

2. When a comma or TAB statement requires a
new line to be started.

3. Atthe end of a program, if there is anything
"left over" to be printed.

207

Chapter 23: Using the Printer

L e]

4. Any time the “‘buffer' is full. The buffer is the
area where characters to be printed are stored
until they are printed. The buffer is exactly one
line (32 characters) long, so unless one of the
events above (1, 2 or 3) occurs first, the printer
will print a line when a full line is in the buffer
(among other things, it needs to empty the buf-
fer before new characters can be stored there).

Remember how the printer, in the first pro-
gram of the chapter, seemed to hesitate before
printing each line of the character set? It was
filling the buffer to a full line during those
pauses.

Summary

1. LPRINT prints on the printer just like PRINT
prints on the screen.

2. LLIST sends a program listing to the printer
just as LIST sends it to the screen.

3. COPY duplicates on the printer whatever is
showing on the screen.

4. BREAK stops the printer when it is running,
or interrupts printer commands when they
cause a problem.

5. TAB, comma and semicolon can be used to
format LPRINT statements.

208 LPRINT, LLIST, COPY, BREAK, LPRINT, TAB

Chapter 23: Using the Printer

Diagram of T/S 2000 Computer
Connection to Printer

TS 2000 Computer

209

Input and Output 24

Chapter Preview A look at the commands
to control input and
output, including PEEK,
POKE, IN, OUT, OPEN,
CLOSE, FORMAT, ERASE,
CAT, MOVE, and RESET.

Anything that goes into the computer is, logically
enough, called "“input.” And, of course, anything
that comes out of it is called ‘‘output.”’

Throughout this manual, we've been looking at
ways to provide input by way of the keyboard,
Timex Command Cartridges, or a cassette recorder,
and to produce output to the TV screen, the
printer, or the cassette recorder.

Let’s look briefly at a few other aspects of input
and output.

211

Chapter 24: Input and Output

s e e
PEEK and POKE
When you type

LET A =150

the computer takes the number and stores it in
some specific memory location. You don't know
where it is, by the T/S 2000 can find it—and
does if you then type

PRINT A

You can deal directly with memory locations
using the PEEK and POKE commands; POKE puts
any number from 0 to 255 at any location from 0
to 65535, and PEEK looks to see what number is
stored in a given location. For instance

PRINT PEEK 20000
will give you the answer @. But then enter
POKE 20000, 150

and then repeat the PEEK command. The 150 is
now stored at address 20000.

You have to be careful where you POKE (you can
PEEK anywhere safely). You won't do the computer
any harm, but you can ruin any programs you
have in the computer by changing one byte of
information in the middle of it.

Here's a program to explore what kind of
numbers are stored at various locations:

10 FOR I = 23500 to 24500 STEP 10
20 PRINT PEEK[;" ',
30NEXTI

212 PEEK, POKE

Chapter 24: Input and Output

L e e ———]
The space in line 20 is so that you can tell where

a number ends and the next one begins. You can

explore the entire set of addresses from 0 to 65535
by making changes in line 10.

You can check the program by POKEing a number
into an address (best to use addresses above 24000
for this) and then having that address included in
the range in line 10. Start the program with GOTO
10 instead of RUN to make sure you don't erase
anything you've POKEd into the area for storing
varnables.

What the numbers at the various ROM addresses
mean to the computer has to do with machine
code and the “operating system" —the program
that controls the T/S 2000 itself —and is a subject
for another time. . .

IN and OUT

IN and OUT are used to read and write to ‘'port
addresses’'external to the T/S 2000's memory
(this includes the keyboard as well as the ports
for present and future peripheral devices).

PRINT IN 49150

tells you what is “coming in'’ from that port
address.

OUT 49150,150

would “write" 150 to the device connected to that
port address. Note that when you try this with the
address 49150 the 150 does not ‘take.' In this
case, it is because you cannot write to that address:
49150 “contains” a quantity that tells the com-
puter if any key in the half-row from H to ENTER
is being pressed.

IN, OUT 213

Chapter 24: Input and Output

R —— e R
If you are quick enough, you can have some fun
with this. If you press ENTER firmly, you'll see
254, which means ENTER is being pressed. But if
you can jab ENTER quickly enough so that it is not
being pressed by the time the T/S 2000 receives
and executes the command, you'll see 255, which
means no key in that half-row is being pressed.
And if you are even faster, and can jab ENTER
and then press another of those keys, you'll see
the code for it!

(If you are interested in developing new periph-
eral hardware or software to use with the Timex
Sinclair 2000, contact Timex Computer Corpora-
tion for port address assignments.)

Commands for Future Peripherals

A number of commands that appear on the key-
board will be used with peripheral devices yet to
come. IN and OUT are among them, as are some
other commands we've discussed: LOAD, SAVE,
MERGE, VERIFY, INPUT and RESET are among
them.

Some which will be used only with peripherals
are "file manipulation’ commands for use with
storage devices other than cassette recorders:

FORMAT will prepare a disk or other storage
medium to work with the T/S 2000.

OPEN will open a file to be read or written to.
CLOSE will, of course, close the file; in so doing it
will make sure there is no stray information still
onthe way tothe file.

MOVE will transfer or rename a file.

CAT —for “‘catalog’ —will show a menu, or list,
of the files available on a given storage device.

ERASE, as you might suspect, will erase a
specified file from storage.

RESET, used with peripherals, will initialize or
“turn on’' a particular device.

214

Chapter 24: Input and Output

Your Timex Sinclair 2000 can accept up to 2
peripherals directly connected to the rear edge
(expansion) connector. For example, the T/S 2040
Printer can be attached along with the T/S 2050
Modem to allow you to make permanent records
of data accessed from telecommunications serv-
ices like The Source and CompuServe.

The cassette recorder, TV, high resolution
monitor and joysticks can always be attached no
matter how many other peripherals are connected.

As future Timex peripherals (including bulk
storage devices and serial or parallel port inter-
faces for these and other products) are announced,
combinations of two of the peripherals can be
added to suit your growing needs.

215

Appendix A:
Review of T/S 2000 Basic

The Keyboard

TIS 2000 characters comprise not only the single
symbols (letters, digits, etc.}, but also the compound
tokens (keywords, function names, etc.) and all these
are entered from the keyboard rather than being spelled
out. To obtain all these functions and commands some
keys have five or more distinct meanings, given partly
by shifting the keys (i.e. pressing either the CAPS SHIFT
key or the SYMBOL SHIFT key at the same time as the
required one) and partly by having the machine in dif-
ferent modes.

The mode is indicated by the cursor, a flashing letter
that shows where the next character from the keyboard
will be inserted.

3 (for keywords) mode automatically replaces [} mode
when the machine is expecting a command or program
line (rather than INPUT data), and from its position on
the line it knows it should expect a line number or a
keyword. This is at the beginning of the line, or just

217

Appendix A:
Review of T/S 2000 BASIC

after THEN, or just after : (exceptin astring). If unshifted,
the next key will be interpreted as either a keyword
(written on the keys), or a digit.

{for letters) mode normally occurs at all other times.
If unshifted, the next key will be interpreted as the
main symbol on that key, in lower case for letters

In both [and [modes, SYMBOL SHIFT and a key will
be interpreted as the character in a black band on the
key and CAPS SHIFT with a digit key will be interpreted
as the control function written in black above the key.
CAPS SHIFT with other keys does not affect the key-
words in [fl§ mode, and in [mode it converts lower
case to capitals

(for capitals) mode is a variant of [mode in which
all letters appear as capitals. CAPS LOCK causes a
change from] mode to [mode or back again.

B (for extended) mode is used for obtaining further
characters, mostly tokens. It occurs after both shift keys
are pressed together, and lasts for one key depression
only. In this mode, a letter gives one character or token
(shown above it) if unshifted, and another (shown below
it) if pressed with either shift. A digit key gives a token
if pressed with SYMBOL SHIFT; otherwise it gives a
color control sequence.

(for graphics) mode occurs after GRAPHICS (CAPS
SHIFT and 9) is pressed, and lasts until it is pressed
again. A digit key will give a mosaic graphic, quit
GRAPHICS or DELETE, and each of the letter keys
apart from V, W, X, Y and Z, will give a user-defined
graphic.

If any key is held down for more than about one sec-
ond, it will start repeating.

Keyboard input appears in the bottom half of the
screen as it is typed, each character (single symbol or
compound token) being inserted just before the cursor.
The cursor can be moved left with CAPS SHIFT and 5,
or right with CAPS SHIFT and 8. The character before
the cursor can be deleted with DELETE (CAPS SHIFT
and 0). (Note: the whole line can be deleted by typing
EDIT (CAPS SHIFT and 1) followed by ENTER.)

218

Appendix A:
Review of T/S 2000 BASIC

When ENTER s pressed, the line is executed, entered
into the program, or used as INPUT data as appropriate,
unless is contains a syntax error. In this case a flashing i
appears next to the error.

As program lines are entered, a listing is displayed in
the top half of the screen. The manner in which the list-
ing is produced is rather complicated, and explained
more fully in Chapter 2. The last line entered is called
the current line and is indicated by the symbol >, but
this can be changed by using the keys | (CAPS SHIFT
and 6) and 1 (CAPS SHIFT and 7). If EDIT (CAPS SHIFT
and 1) is pressed, the current line is brought down to
the bottom part of the screen and can be edited.

When a command is executed or a program run,
output is displayed in the top half of the screen and
remains until a program line is entered, or ENTER is
pressed with an empty line, or t or | is pressed. In the
bottom part appears a report giving a code (digit or
letter) referring you to Appendix H, a brief verbal sum-
mary of what Appendix H says, the number of the line
containing the last statement executed (or @ for a com-
mand) and the position of the statement within the line.
The report remains on the screen until a key is pressed
(and indicates [mode).

In certain circumstances, CAPS SHIFT with the BREAK
key acts as aBREAK, stopping the computer with report
Dor L. This is recognized

(1) attheend of astatement while a program is

running, or

(i) while the computer is using the cassette recorder
or printer.

The television screen

This has 24 lines, each 32 characters long, and is
divided into two parts. The top part is at most 22 lines
and displays either a listing or program output. When
printing in the top part has reached the bottom, it all
scrolls up one line; if this would involve losing a line
that you have not had a chance to see yet, then the
computer stops with the message scroll? Pressing the
keys N, BREAK or STOP will make the program stop
with report D BREAK — CONT repeats; any other key
will let the scrolling continue. The bottom part is used
for inputting commands, program lines, and INPUT

219

Appendix A:
Review of T/S 2000 BASIC

e e

data, and also for displaying reports. The bottom part
starts off as two lines (the upper one blank), but it
expands to accommodate whatever is typed in. When
it reaches the current print position in the top half,
further expansions will make the top half scroll up.

Each character position has attributes specifying its
PAPER (background) and INK (foreground) colors, a
two-level brightness, and whether it flashes or not.
The available colors are black, blue, red, magenta,
green, cyan, yellow and white.

The edge of the screen can be set to any of the colors
using the BORDER statement.

A character position is divided into 8 x 8 pixels and
high resolution graphics are obtained by setting the
pixels individually to show either the INK or PAPER
color for that character position.

The attributes at a character position are adjusted
whenever a character is written there or a pixel is
plotted. The exact manner of the adjustment is
determined by the printing parameters, of which
there are two sets (called permanent and temporary)
of six: the PAPER, INK, FLASH, BRIGHT, INVERSE and
OVER parameters. Permanent parameters for the top
part are set up by PAPER, INK, etc., statements, and
last until further notice. (Initially they are black ink on
white paper. With normal brightness, no flashing,
normal video and no overprinting). Permanent
parameters for the bottom part use the BORDER color
as the PAPER color, with a black or white contrasting
INK color, normal brightness, no flashing, normal
video and no overprinting.

Temporary parameters are set up by PAPER, INK, etc.,
items, which are embedded in PRINT, LPRINT, INPUT,
PLOT, DRAW and CIRCLE statements, and also by
PAPER, INK, etc., control characters when they are
printed to the television — they are followed by a further
byte to specify the parameter value. Temporary
parameters last only to the end of the PRINT (or
whatever) statement, or, in INPUT statements, until
some INPUT data is needed from the keyboard, when
they are replaced by the permanent parameters.

220

Appendix A:
Review of T/S 2000 BASIC

e s e o]
PAPER and INK parameters are in the range @ and 9.
Parameters 0 to 7 are the colors used when a character
is printed:

@ black

1 blue
2red

3 magenta
4 green

5 cyan

6 yellow

7 white

Parameter 8 (‘transparent’) specifies that the color on
the screen is to be left unchanged when a character is
printed.

Parameter 9 (‘contrast’) specifies that the color in
question (PAPER or INK) is to be made either white or
black to show up against the other color.

FLASH and BRIGHT parameters are 0, 1 or 8: 1 means
that flashing or brightness is turned on, @ that it is turned
off, and 8 (‘transparent’) that it is left unchanged at
any character position.

OVER and INVERSE parameters are 0 or 1.

OVER 0 new characters obliterate old ones

OVER 1 the bit patterns of the old and new
characters are combined using an
‘exclusive or' operation (overprinting)

INVERSE Q@ new characters are printed as INK color on
PAPER color (normal video)

INVERSE 1 new characters are printed as PAPER
color on INK color (inverse video)

When a TAB control character is encountered, two
more bytes are expected to specify a tab stop n (less
significant byte first). This is reduced modulo 32
(divide by 32 and use only the remainder) to n, (say),
and then sufficient spaces are printed to move the
printing position into column ng.

When a comma control character is received, then

sufficient spaces (at least one) are printed to move the
printing position into column @ or column 16.

When an apostrophe or ENTER control character is
encountered, the printing position is moved on to the
next line.

221

Appendix A:

Review of T/S 2000 BASIC

e e e R

222

The printer
Output to the printer is via a buffer one line (32
characters) long, and a line is sent to the printer.

(i) when printing spills over from one line to the next,
(i) when an ENTER character is received,
(iii) atthe end of the program, if there is anything left
unprinted, ‘
(iv) when a TAB control or comma control moves the
printing position on to a new line.

TAB controls and comma controls output spaces in
the same way as on the television.

The AT control changes the printing position using
the column number, and ignores the line number.

The printer is affected by INVERSE and OVER controls
(and also statements) in the same way as the screen
is, but not by PAPER, INK, FLASH or BRIGHT.

The printer will stop with error B if BREAK is pressed.
If the printer is absent the output will simply be lost.

The BASIC

Numbers are stored to an accuracy of 9 or 10 digits.
The largest number you can get is about 1038, and the
smallest (positive) number is about 4+10 — 39,

A number is stored in the T/S 2000 in floating-point
binary with one exponent byte e (1 < = e <=255), and
four mantissa bytes m(?2< = m<1). This represents
the number m»2¢ — 128,

Since 2< = m<1, the most significant bit of the
mantissa m is always 1. Therefore in actual fact we
can replace it with a bit to show the sign—0 for posi-
tive numbers, 1 for negative.

Small integers have a special representation in which
the first byte is 0, the second is a sign byte (@ or FFh)
and the third and fourth are the integer in twos com-
plement form, the less significant byte first.

Numeric variables have names of arbitrary length,
starting with a letter and continuing with letters and
digits. Spaces and color controls are ignored and all
letters are converted to lower-case letters.

Control variables of FOR/NEXT loops have names a
single letter long.

Appendix A: _
Review of T/S 2000 BASIC

Numeric arrays have names a single letter long,
which may be the same as the name of a simple varia-
ble. They may have arbitrarily many dimensions of
arbitrary size. Subscripts start at 1.

Strings are completely flexible in length. The name of
a string consists of a single letter followed by $.

String arrays can have arbitrarily many dimensions of
arbitrary size. The name is a single letter followed by
$ and may not be the same as the name of a string.
All the strings in a given array have the same fixed
length, which is specified as an extra, final dimension
in the DIM statement. Subscripts start at 1.
Slicing: Substrings of strings may be specified by
using slicers. A slicer can be
(i) empty or
(i) a numerical expression or
(i) optional numerical expression TO optional
numerical expression
and is used in expressing a substring either by
(a) string expression (slicer)
(b) string array variable (subscript, ..., subscript, slicer)
which means the same as
string array variable (subscript, ..., subscript) (slicer)

In (a), suppose the string expression has the value s$.

If the slicer is empty, the result is s$ considered as a
substring of itself.

If the slicer is a numerical expression with value m,
the result is the mth character of s$ (a substring of
length 1).

If the slicer has the form (iii), then suppose the first
numerical expression has the value m (the default
value is 1), and the second, n (the default value is the
length of s$).

If 1<=m< =n< = the length of s$, then the result is
the substring of s$ starting with the mth character
and ending with the nth.

If 0 < =n< m then the result is the empty string.
Otherwise, error 3 results.

Slicing is performed before functions or operations are
evaluated, unless brackets dictate otherwise.

223

Appendix A:
Review of T/S 2000 BASIC

e

Substrings can be assigned to (see LET).

If a string quote is to be written in a string literal, then
it must be doubled.

Functions

The argument of a function does not need brackets if
it is a constant or a (possibly subscripted or sliced)
variable.

Function Typeof Result
argument
(%)

ABS number Absolute magnitude.

ACS number Arccosine in radians.

Error Aif x notinthe range — 110 + 1.

AND hinary
operation,
nght oper-
and always
a nurmber.

Numeric AifB<>0
left AANDB = 3gp.o
operand:

String left _ JASIfB<>0
operand: ASANDB = Livyrp.ag

ASN number Arcsine in radians.

Error Aifxnotintherange —1to + 1.

ATN number Arctangent in radians.

ATTR two argu- A number whose binary form codes the attributes of
ments, X line X, column y on the television. Bit 7 (most significant)
andy, both is 1 for flashing, @ for not flashing. Bit6is 1 for bright, @
numbers; for normal. Bits 5 to 3 are the paper color. Bits 2 to @ are
enclosedin the ink color.
brackets

224

Appendix A:
Review of T/S 2000 BASIC

Function Type of Result
argument

Error Bunless 0< = x < =23 and 0< =y< =31

BIN This is not really a function, but an alternative nota-
tion for numbers: BIN followed by a sequence of @s and
1s is the number with such a representation in binary.

CHRS number The character whose code is x, rounded to the nearest
integer,

CODE string The code of the first character in x {or @ if % is the empty
string).

cos number Cosine x.

(in radians)
EXP number e~
FN FN followed by a letter calls up a user-defined function

(see DEF). The arguments must be enclosed in paren-
theses; even if there are no arguments, the parentheses
must still be present.

FREE none Returns number of bytes available for BASIC programs
and variables.

IN number The result of inputting at processor level from port x
(0< = x < = FFFFh) (loads the bc register pair with x
and does the assembly language instruction IN a(c)).

INKEY$ none Reads the keyboard. The result is the character repre-
senting (in [or [@ mode) the key pressed if there is
exactly one, else the empty string.

INT number Integer part (always rounds down).
LEN string Length.
number Natural logarithm (to base).
Error Aif x<=0.
NOT number Qifx<> 0, 1ifx = 0. NOT has priority 4.

225

Appendix A:
Review of T/S 2000 BASIC

e e e e e e S]
Function Type of Result

argument
OR binary 1ifb<>0
operation, AORE% aifb=0
both OR has priority 2.
operands
numbers
PEEK number The value of the byte in memory whose address is X
(rounded to the nearest integer).
Error B if x is not in the range 0 to 65535.
PI none n(3.14159265. . .)

POINT Two
arguments 1 if the pixel at (x,y) is ink color. 0 if it is paper color.

an:;ld Y, Error Bunless 0< = x < =256 and 0< = y< = 175.
numbers;
enclosed in

. brackets

RND none The next pseudorandom number in a sequence
generated by taking the powers of 76 modulo 65537,
subtracting 1 and dividing by 65536.

0<y<1.

SCREENS$ Two
arguments, The character that appears, either normally or inverted,

xandy, on the television at line x, column y. Gives the empty
both string, if the character is not recognized.
numbers, Error Bunless 0< = x< =23 and 0< =y< =31.
enclosed
in brackets
SGN number Signum: the sign (- 1 for negative, @ for zero or + 1 for
positive) of x.
SIN number Sine x.
(in radians)
SQR number Square root.
Error A if x<0

226

Appendix A:
Review of T/S 2000 BASIC

Function Type of Result
argument

STICK two argu- Returns number derived from reading input from
ments, X device attached to joystick port. x = 1 is joystick, x = 2
andy, both isbutton; y =1 is left device, y = 2 is right. See
numbers; Chapter 19.

enclosed
in paren-
theses

STRS number The string of characters that would be displayed if x
were printed.

TAN number Tangent.

(in radians)

USR number Calls the machine code subroutine whose starting
address is x. On return, the result is the contents of
the bc register pair.

USR string The address of the bit pattern for the user-defined
graphic corresponding to x.

Error A if x is not a single letter between a and u, or a
user-defined graphic.

VAL string Evaluates x (without its bounding quotes) as a
numerical expression.

Error C if x contains a syntax error, or gives a string
value. Other errors possible, depending on the
expression.

VALS string Evaluates x (without its bounding quotes) as a string
expression.

Error C if x contains a syntax error or gives a numeric
value. Other errors possible, as for VAL,

— number Negation,

227

Appendix A:
Review of T/S 2000 BASIC

P e e e |
Function Result

The following are binary operations:

+ Addition (on numbers), or concatenation (on strings)
Subtraction

Multiplication

Division

Raising to a power. Error Bif the left operand is negative.
Equals

Greater than

Less than

Less than or equal to

Greater than or equal to

Not equal to

Both operands must be of the same type. The result is
a number 1, if the comparison holds and 0 if it does not.

AVAAVI™TT <%

v

Functions and operations have the following priorities.

Operation Priority

Subscripting and slicing 12

All functions except NOT and unary minus 11

t 10

Unary minus (i.e. minus just used to negate
something) 9

*,/ 8

+, — (minus used to subtract one number

from another) 6
=><<=,2=<> 5
NOT 4
AND 3
OR 2
Statements
In this hst,
a represents a single letter
v represents a variable
X,V,Z represents numerical expressions
m,n represent numerical expressions that are

rounded to the nearest integer

e represents an expression
f represents a string valued expression

represents a sequence of statements sepa-
rated by colons .

228

Appendix A:
Review of T/S 2000 BASIC

Function Result

c represents a sequence of color items, each
terminated by commas , or semi-colons ; A
color item has the form of a PAPER, INK,
FLASH, BRIGHT, INVERSE or OVER
statement.

Note that arbitrary expressions are allowed everywhere
{except for the line number at the beginning of a
statement).

All statements except INPUT, DEF, and DATA can be
used either as commands or in programs (although they
may be more sensible in one than the other). A command
or program line can have several statements, separated
by colons (;). There is no restriction on whereabouts in
a line any particular statement can occur—although
see IF and REM.

BEEP x, y Sounds a note through the loudspeaker for x seconds
at a pitch y semitones above middle C (or below if y
18 negative).

BORDER m Sets the color of the border of the screen and also the
paper color for the lower part of the screen.

Error K if m not in the range 0to 7.

BRIGHT Sets brightness of characters subsequently printed.
n =0 for normal, 1 for bright, 8 for transparent.

ErrorKifnnot®, 1or8.

CAT For use with peripherals.
CIRCLE . v, z Draws an arc of a circle, center (x,y), radius z.
CLEAR Deletes all variables, freeing the space they occupied.

Does RESTORE and CLS, resets the PLOT position to
the bottom left-hand comer and clears the GO SUB stack.

CLEARn Like CLEAR, but if possible changes the system variable
RAMTOP to n and puts the new GO SUB stack there.

CLOSE # For use with peripherals.

229

Appendix A:
Review of T/S 2000 BASIC

T ——— T e s SO ———

Function Result
CLS (Clear Screen). Clears the display file.
CONTINUE Continues the program, starting where it left off last

time it stopped with report other than 0. If the report
was 9 or L, then continues with the following statement
(taking jumps into account); otherwise repeats the one
where the error occurred.

If the last report was in a command line then CONTINUE
will attempt to continue the command line and will either
go into a loop if the error was in 0:1, give report @ if it
was in 0:2, or give error N if it was 0:3 or greater.
CONTINUE appears as CONT on the keyboard.

COPY Sends a copy of the top 22 lines of display to the printer,
if attached; otherwise does nothing. Note that COPY
can not be used to print the automatic listings that

appear on the screen.
Report D if BREAK pressed.
DATAe, e, €, ... Part of the DATA list. Must be in a program.
DEF FN User-defined function definition; must be in a program.
ala,,. . . a)=¢e Each of a and a, to e, is either a single letter or a sin-

gle letter followed by '$' for string argument or result.
Takes the form DEF FN «() = e if no arguments.

DELETE x, y Deletes program lines x through y.

DELETE x, Deletes from program line x through end of program.

DELETE y Deletes from beginning of program through line y.

DIM« (n,,...n,) Deletes any array with the name a, and sets up an array
« of numbers with k dimensions n, ..., . Initializes
all the values to 0.

DIM o$(n,,...,n,) Deletes any array or string with the name o$, and sets

up an array of characters with k dimensions n,,...,n.
Initializes all the values to "' "*. This can be considered
as an array of stxings of fixed length n,, with k-1
dimensions n,,. . ., 0, ;.

230

Appendix A:
Review of T/S 2000 BASIC

Error 4 occurs if there is no room to fit the array in. An
array is undefined until it is dimensioned in a DIM

statement.

DRAW x, y DRAW X, y, 0.

DRAW x, v, z Draws a line from the current plot position moving x
horizontally and y vertically relative to it while turning
through an angle z.

Error B if it runs off the screen.
ERASE ' For use with peripherals.

FLASH Defines whether characters will be flashing or steady.
n = for steady, n = 1 for flash, n = 8 for no change.

FORo=xTOy FORa = x TOy STEP 1.

FORa=xTOySTEP: Deletes any simple variable a and sets up a control
variable with value x, limit y, step z, and looping address
referring to the statement after the FOR statement.
Checks if the initial value is greater (if step > = 0) or
less (if step <0) than the limit, and if so then skips to
statement NEXTe, giving error 1 if there is none.

See NEXT.

Error 4 occurs if there is no room for the control variable.

FORMAT { For use with peripherals.

FREE Returns number of bytes of RAM available for BASIC
programs and variables.

GOSUBn Pushes the line number of the GOSUB statement onto

a stack; thenas GOTOn,
Error 4 can occur if there are not enough RETURNS.

GOTOn Jumps to line n (or, if there is none, the first line
after that),
IF x THEN s If x true (non-zero) then s is executed. Note thats

comprises all the statements to the end of the line.
The form ‘IF x THEN line number’ is not allowed.

231

Appendix A:
Review of T/S 2000 BASIC

R —— e e e
Function Result

INKn Sets the ink (foreground) color of characters subse-
quently printed. nis in the range @ to 7 for a color, n = 8
for transparent or 9 for contrast.

Error K if n not in the range 0 to 9.

INPUT . The'. ..’ is asequence of INPUT items, separated
asin a PRINT statement by commas, semicolons or
apostrophes. An INPUT item can be

(i) Any PRINT item not beginning with a letter
(i) A variable name, or
(iii) LINE, then a string type variable name.

The PRINT items and separators in (i) are treated exactly
as in PRINT, except that everything is printed in the
lower part of the screen.

For (i) the computer stops and waits for input of an
expression from the keyboard; the value of this is as-
signed to the variable. The input is echoed in the usual
way and syntax errors give the flashing g For string
type expressions, the input buffer is initialized to con-
tain two string quotes (which can be erased if neces-
sary). If the first character in the input is STOP, the pro-
gram stops with error H. (iii) is like (i) except that the
input is treated as a string literal without quotes, and
the STOP mechanism doesn't work; to stop it you
must type = instead.

INVERSE 1 Controls inversion of characters subsequently printed.
If n = 0, characters are printed in normal video, as ink
color on paper color.

If n =1, characters are printed in inverse video, i.e.
paper color on ink color.

ErrorKifnisnot@or 1.

LETv=¢ Assigns the value of e to the variable v. LET cannot
be omitted, A simple variable is undefined until it is
assigned to in a LET, READ or INPUT statement. Ifvis
a subscripted string variable, or a sliced string varia-
ble (substring), then the assignment is Procrustean
(fixed length): the string value of e is either truncated
or filled out with spaces on the right, to make it the
same length as the variable v.

232

Appendix A:

Review of T/S 2000 BASIC

LIST

LISTn

LLIST

LLIST n

LOAD {

LOAD { DATA ()
LOAD { DATA $()
LOAD { CODE m,n
LOAD f CODE m

LOAD { CODE

LOAD { SCREENS

LPRINT

MERGE f

MOVEf, f,

Result

LIST 0.

Lists the program to the upper part of the screen,
starting at the first line whose number is at least n,
and makes n the current line.

LLIST 0.

Like LIST, but using the printer.

Loads program and variables.

Loads a numeric array.

Loads character array $.

Loads at most n bytes, starting at address m.

Loads bytes starting at address m.

Loads bytes back to the address they were saved
from.

LOAD f CODE 16384,6912.

Searches for file of the right sort on cassette tape and
loads it, deleting previous versions in memory. See
Chapter 20.

Like PRINT but using the printer.

Like LOAD f, but does not delete old program lines
and variables except to make way for new ones with
the same line number or name.

For use with peripherals.

Starts the BASIC system off anew, deleting program
and variables, and using the memory up to and includ-
ing the byte whose address is in the system variable
RAMBOT and preserves the system variables UDG,

P RAMT, RASP and PIP,

233

Appendix A:

Review of T/S 2000 BASIC

e e e T

Function

NEXT o

ON ERR GOTO
line number

ON ERR CONT
ON ERR RESET

OPEN #

OUT m,n

OVERn

234

Result

(i) Finds the control variable &
(i) Add its step to its value

(iii) If the step> = 0 and the value> the limit; or if the
step<0 and the value< the limit, then jumps to
the looping statement.

Error 2 if there is no variable a.
Error 1 if there is one, but it's not a control varable.

These statements allow the programmer to disable
automatic program termination upon encountering
an error condition. The ON ERR GOTO line number
allows the programmer to cause the transfer to the
specified line number to handle the encountered error.
The error number and line number on which it occurred
are available by PEEKing the locations (23739) and
(23736). The statemént number within the line that
caused the error is stored in location (23738). The ON
ERR CONT statement causes the program to resume
execution at the statement in which the error originally
occurred. If an ON ERR CONT statement is encountered
and an error has not occurred, then the command is
ignored. The ON ERR RESET command disables this
feature causing the program to report errors and ter-
minate in the usual manner.

For use with peripherals.

Qutputs byte n at port m at the processor level. (Loads
the bc register pair with m, the a register with n, and
does the assembly language instruction: out (c),a.)

0< m<=65535, —255<=n<= 255, else error B.

Controls overprinting for characters subsequently
printed.

If n = 0, characters obliterate previous characters at
that position.

If n = 1, then new characters are mixed in with old
characters to give ink color wherever either (but not
both) had ink color, and paper color if they were both
paper or both ink color.

ErrorKifnnot @ or 1.

Appendix A:
Review of T/S 2000 BASIC

Function Result

PAPER Like INK, but controlling the paper (background)
color.

PAUSE n Stops computing and displays the the display file for n

frames (at 60 frames per second) until a key is pressed.
0<=n< 65535, else error B.

If n = 0 then the pause is not timed, but lasts until a
key is pressed.

PLOT c;m,n Prints an ink spot (subject to OVER and INVERSE) at
the pixel (jm|, |n|); moves the PLOT position.

Unless the color items c specify otherwise, the ink
color at the character position containing the pixel is
changed to the current permanent ink color, and the
other (paper color, flashing and brightness) are left
unchanged. _

0<=|m|<= 255, 0<= |n|<= 175, else error B.

POKE m,n Writes the value n to the byte in store with address m.
0<=m<= 65536, — 255< =255, else error B.

PRINT . . The'...'isasequence of PRINT items, separated by
commas , semicolons ; or apostrophes ' and they are
written to the display file for output to the television.

A semicolon ; between two items has no effect: it is
used purely to separate the items. A comma , outputs
the comma control character, and an apostrophe '
outputs the ENTER character.

At the end of the PRINT statement, if it does not end
in a semicolen, or comma, or apoestrophe, an ENTER
character is output.
A PRINT item can be
(i) empty, ie. nothing
(ii) anumerical expression
First a minus sign is printed if the value is nega-
tive. Now let x be the modulus of value.
If x<=10-° or x>= 10?2, then it is printed using
scientific notation. The mantissa part has up to
eight digits (with no trailing zeros), and the deci-

235

Appendix A:
Review of T/S 2000 BASIC

—
Function Result

mal point (absent if only one digit) is after the
first. The exponent part is E, followed by + or —,
followed by one or two digits.

Otherwise x is printed in ordinary decimal nota-
tion with up to eight significant digits, and no
trailing zeros after the decimal point. A decimal
point right at the beginning is always followed by
a zero, so for instance .03 and 0.3 are printed

as such.

0 s printed as a single digit 0.

a string expression
The tokens in the string are expanded, possibly
with a space before or after.

=

(iix

Control characters have their control effect.
Unrecognized characters print as ?.

(iv) AT m,n
Outputs an AT control character followed by a
byte for m (the line number) and a byte forn (the
column number).

(v) TABn
Outputs a TAB control character followed by two
bytes for n (less significant byte first), the TAB
stop.

(vi) A color item, which takes the form of a PAPER,
INK, FLASH, BRIGHT, INVERSE or OVER
statement.
RANDOMIZE . RANDOMIZE 0.
RANDOMIZE n Sets the system variable (called SEED) used to generate

the next value of RND. If n < > @, SEED is given the
value n; if n = @ then it is given the value of another
system variable (called FRAMES) that counts the frames
so far displayed on the television, and so should be
fairly random.

RANDOMIZE appears as RAND on the keyboard.
Error B occurs if n is not in the range 0 to 65535.

236

Appendix A:

Review of T/S 2000 BASIC

READ v, vs,. ..V

RESET
RESTORE

RESTORE n

RUN
RUNn
SAVE {

SAVE { LINE m

SAVE { DATA ()
SAVE { DATA $()

SAVE f CODE m,n

Result

Assigns to the variables using $uccessive expressions
in the DATA list.

Error C if an expression is the wrong type.

Error E if there are variables left to be read when the
DATA list is exhausted.

Noeffect'. . .” can be any sequence of characters ex-
cept ENTER. This can include :, s0 no statements are
possible after the REM statement on the same line.
For use with peripherals.

RESTORE 0.

Restores the DATA pointer to the first DATA statement
in a line with number at least n: the next READ state-
ment will start reading there.

Takes a reference to a statermnent off the GOSUB stack,
and jumps to the line after it.

Error 7 occurs when there is no statement reference
on the stack. There is some mistake in your program;
GOSUBs are not properly balanced by RETURNS.
RUN 0.

CLEAR, and then GOTOn.

Saves the program and variables.

Saves the program and variables so that if they are
loaded there is an automatic jump to line m.

Saves the numeric array.
Saves the character array $.

Saves n bytes starting at address m.

Appendix A:
Review of T/S 2000 BASIC

—
Function Result

SAVE { SCREENS SAVE f CODE 16384,6912.
Saves information on cassette, giving it the name f.

Error F if f is empty or has length eleven or more. See
Chapter 20.

SOUNDx,y;xV,. . .X.¥ Controls 3-channel sound synthesizer, where x is any
of up to 15 registers, and y is a value placed in the reg-
ister. See Chapter 21.

STICK Returns number derived from reading input from de-
vice attached to joystick port. See Chapter 19.

STOP Stops the program with report 9. CONTINUE will resume
with the following statement.

VERIFY The same as LOAD except that the data is not loaded
into RAM, but compared against what is already there.

Error R if one of the comparisons shows different bytes.

238 .

Appendix B:
The Character Set

£

NOODAWN =D

Character

Not used

Not used

Not used

Not used

Not used

Not used
PRINT comma
EDIT

This is the complete T/S 2000 character set, with

codes in decimal and hex. If one imagines the codes as

being Z80 machine code instructions, then the right-
hand columns give the corresponding assembly lan-
guage mnemonics. As you are probably aware if you
understand these things, certain Z80 instructions are
compounds starting with CBh or EDh; the two right-

hand columns give these.

Hex

Z80 assembler

nop

Id be, NN
Id (bc), a
inc be
incb
dechb
Idb,N
rica

-after CB -after ED

rlcb
rlcc
ricd
rice
rich
ricl
rlc (hl)
rica

239

Appendix B:
The Character Set

Code Character Hex 280 assembler -afterCB -after
8 Cursor Left 08 ex af,af’ rch
9 Cursor Right 09 add hl,bc Tcce

10 Cursor Down DA Id a,(bc) rcd
11 Cursor Up 0B dec bc rce
12 DELETE oC incc rrch
13 ENTER 0D decc el
14 Number (slug) | OE ldc, N rre (hl)
15 Not used oF rca rnca
16 INK Control 10 djnz DIS rtb
17 PAPER Control | 11 Id de, NN rlc
18 FLASH control | 12 Id (de),a rld
19 BRIGHT

Control 13 incde rle
20 INVERSE

Control 14 incd ilh
21 OVER Control | 15 decd il
22 AT Control 16 idd,N rl (hl)
23 TAB Control 17 rla rla
24 Not used 18 jr DIS b
25 Not used 19 add hl,de nc
26 Not used 1A Id a,(de) nd
27 Not used 1B decde ne
28 Not used 1C ince rh
29 Not used D dece rrl
30 Not used 1E Ide,N rxr (hl)
31 Not used 1F rra ra
32 Space 20 jrnz,DIS slab
33 | 21 Id hl, NN slac
34 " 22 1d (NN),hl slad
35 # 23 inchl slae
36 $ 24 inch slah
37 % 25 dech slal
38 & 26 ldh,N sla (hl)
39 v 27 daa slaa
40 (28 jrz,DIS siab
41) 29 add hl,hl srac
42 * 2A 1d hl,(NN) srad
43 + 2B dechl srae
44 i 2C incl srah
45 = 2D dec! sral
46 a 2E Id, LN sra (hl)
47 / 2F cpl sraa
48 [} 30 jr ne,DIS
49 17 31 Id sp, NN

240

Appendix B:
The Character Set

Code Character Hex 280 assembler -afterCB -after ED
50 2 32 Id (NN),a
51 K 33 inc sp
52 4 - 34 inc (hl)
53 5 35 dec (hl)
54 6 36 1d (hl),N
55 7 37 scf
56 8 38 jr c,DIS stlb
57 9 39 add hl,sp sric
58 L 3A 1d a,(NN) srld
59 § 3B dec sp stle
60 < 3C inca srlh
61 == 3D deca srll
62 > 3E Ida,N srl (hl)
63 2?7 3F ccf srla
64 a- 40 db,b bit@,b inb,(c)
65 A 41 IKh,e bit0,c out{c),b
66 B 42 ldhd bit0,d sbe hl,be
67 C 43 ldbe bit0,e 1d (NN),bc
68 D 44 Idb,h bit 0,h neg
69 E 45 Id, b,1 bit @,1 retn
70 F 46 Id b,(hl) bit @,(hl) im @
71 G 47 Idb,a bit @.a Idia
72 H 48 ldeb bit 1,b in ¢,(c)
73 I 49 lde,c bit 1,c out(c),c
74 J 4A lded bit1,d - adchlbe
75 K 4B ldce bit1,e 1d be,(NN)
76 L 4C ldch bit 1,h
77 M 4D Idc|l bit1,1 reti
78 N 4E Id c.(hl) bit 1,(hl}
79 0] 4F ldc,a bhit1,a ldra
B0 P 50 dd,b bit2,b ind,(c)
81 Q 51 dd,c bit2,c out(c),d
82 R 52 ldd,d bit 2,d sbc hi,de
83 S 53 Idde bit2e 1d (NN) de
84 T 54 lddh bit2h
85 U 55 ldd1I bit 2,1
86 v 56 ld d,(hl) bit 2,(hl) im 1
87 w b7 ldd,a bit2a lda,i
88 X 58 ldeb bit3,b ine,(c)
89 Y 59 Ide,c bit3,c out{c).e
90 A 5A Ided bit3,d adc hl,de
91 [5B Idee bit 3.e 1d de,(NN)
92 / 5C Ideh bit3,h
93 | 5D Ide,l bit 3,1

241

Appendix B:
The Character Set

Code Character Hex Z80 assembler -after CB -after ED
94 t S5E Id e,(hl) bit 3,(hl) "im2
95 . 5F Idea bit 3,a Idar
96 £ 60 ldh,b bit4,b inh,(c)
97 a 61 Idh,c bit4,c out(c),h
98 b 62 ldhd bit4.d sbc hl,hl
99 [63 Idhe bit4e 1d (NN),hl

100 d 64 Idhh bit4,h

101 e 65 Idh,1 bit 4,1

102 f 66 Idh,(hl) bit 4, (hl)

103 g 67 Idha bit 4,a rd

104 h 68 Idlb bit 5,b inl,(c)

105 i 69 Idlec bit 5,¢ out(c),1

106 j B6A ldld bit 5,d adc hl,hl

107 k 6B Idle bit5,e Id hl,(NN)

108 1 6C IdLh bit 5,h

109 m 6D dll bit5,1

110 n 6E 1d 1,(hl) bit 5,(hl)

111 o 6F Id, la bit b,a rld

112 P 70 1d (hl),b bit6,b inf, (c)

113 q 71 1d (hl),c bit 6,c

114 Y 72 Id (hl),d bit6,d sbe hl,sp

115 s 73 (e bit 6,e id (NN),sp

116 t 74 Id (hl),h bit 6,h

117 u 75 1d (hl),1 bit 6,1

118 v 76 halt bit 6,(hl)

119 w 77 1d(h)a bit 6,a

120 X 78 ldab bit 7,b inc a,(c)

121 v 79 ldac bit7,c out(c),a

122 z 7A Ida,d bit 7,d adc hl,sp

123 { (ONERR) 7B Idae bit 7. 1d sp,(NN)

124 STICK 7C lda,h bit7,h

125 } (SOUND) 7D Idal bit 7,1

126 FREE 7E Id a,(hl) bit 7,(hl)

127 © (RESET) 7F daa bit7,a

128 O 80 addab res0,b

129 ™ 81 adda,c res,c

130 ol 82 adda,d res0,d

131 - 83 addae res0.e

132 " 84 addah res 0,h

133 i | 85 adda,l res 0,1

134 ="} 86 add a, (hl) res 0,(hl)

135 s | 87 addaa res0,a

136 bl 88 adca,b res 1.b

137 "} 89 adca,c reslc

242

Appendix B:
The Character Set

Code

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
163
154
165
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

(@)

(h)

()

(5) wuser
(k) graphics
Q

(m)

(n)

(0)

0)

()

(r)

(s)

()

(u)
RND
INKEY$
PI

FN
POINT
SCREEN$
ATTR
AT

TAB
VAL$
CODE
VAL
LEN
SIN
cOos
TAN
ASN

Z80 assembler

adcad
adcae
adcah
adca,l
adc a,(hl)
adca, a
subb
subc
subd
sube
subh
subl
sub (hl)
suba
sbcab
sbca,c
sbcad
sbcae
sbcah
sbca,l
sbec a,(hl)
sbca,a
and b
and c
and d
ande
and h
and |
and (hl}
anda
xor b
XOrI €
xor d
Xore

" xorh

xor |
xor (hl)
XOr a
orb
orc
ord
ore
orh
orl

-after CB

res1,d
resle
res1h
res1,1
res 1,(hl)
resl, a
res 2,b
res2,c
res2d
res2.e
es2h
res 2,1
res 2,(hl)
res2,a
res 3,b
res3.c
res 3,d
res 3.e
res 3,h
res 3,
res 3,(hl)
res3,a
res4,b
res4.c
res4,d
resd e
res4,h
resd]
res 4,(hl)
res4,a
resb,b
res5,c
res b,d
resbe
res5,h
res 5,1
res 5,(hl)
resb,a
res6,b
resB,c
res 6,d
res6.e
res 6,h
res 6,1

-after ED

cpi
ini
outl

idd
cpd
ind
outd

Idir
cpir
inir
otir

243

Appendix B:
The Character Set

e

244

Code

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

222
223
224

Character

ACS
ATN
LN
EXP
INT
SQR
SGN
AES
PEEK
N

LPRINT

Z80 assembler

or (hl)
ora

cpb

cpc

cpd

cpe

cph

cpl

cp (hl)
cpa

ret nz
pop be
jp nz, NIV
ip NN
call nz, NN
push be
addaN
st

etz

ret

ip 2, NN
call z, NN
call NN
adcalN
st 8

ret ne
pop de

ip nc,NN
out (N),a
call nc,NN
push de
sub N

st 16
retc

exrx

jp c,NN
ina,N
call c,NN
prefixes instruc-
tions using ix
sbeca,N
st 24

ret po

-after CB

res 6,(hl)
res6,a
res7b
res7,c
res7.d
res7e
res7.h
res 7,1
res 7,(hl)
res7.a
set0.b
set0,c
set0d
set@.e
set@h
set®,]
set 0,(hl)
setB.a
setlb
setl,c
set 1,d
set1,e
set 1h
set 1,1
set 1,(hl)
setl,a
getZ.b
set2,c
set 2,d
set2.e
set2h
set 21
set 2,(hl)
set2.a
set3.b
set3.c
set3,d
set3.e
set3h
set 3,

set 3,(hl)
set3.a
setdb

-after ED

Iddr
cpdr
indr
otdr

Appendix B:
The Character Set

Code

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

264
265

Character

LLIST
STOP
READ
DATA
RESTORE
NEW
BORDER
CONTINUE
DIM

REM

FOR

GO TO
GO SUB
INPUT
LOAD
LIST

LET
PAUSE
NEXT
POKE
PRINT
PLOT
RUN
SAVE
RANDOMIZE
IF

CLS
DRAW
CLEAR

RETURN
COPY

Z80 assembler

pop hl

jp po, NN
ex (sp),hl
call po, NN
push hl
and N

st 32

ret pe

jp (h1)

ip pe.NN
exdehl
call pe, NN

xor N

st 40

retp

pop af

jp p.NN

di

call p, NN
push af

orN

st 48

retm

Id sp,hl

jp m,NN

ei

call m,INN
prefixes instruc-
tions using iy
cpN

15t 56

-after CB

set4,c
set4,d
setde
setd.h
setd]
set4,(hl)
setd,a
setb.b
setb.c
set5,d
setb.e
set5h
set bl
set 5,(hl)
setba
set6,b
set6,c
set6.d
set6.e
set6,h
set6,1
set 6,(hl)
setB,a
set7.b
set7.c
set7.d
set7 e
set7.h
set7]

set 7,(hl)
set7.a

-after ED

245

Appendix C: Display
Modes and Memory

In addition to the ''normal’’ 32-column screen, the
T/S 2000 allows several “‘enhanced display modes''
for use by advanced programmers and designers of
software for your enjoyment. The full use of these
capabilities is beyond the scope of this manual and
will be discussed in a forthcoming T/S 2000 Advanced
Programming Concepts Manual. Use of these modes
is made easier by Timex application programs which
can use the T/S 2000's display capabilities in word
processing, financial data display, entertainment, and
education.

Display Modes

Use this command to set the full width (64 characters—
or more if you redefine the character set) mode and
select white INK. The proper complementary color of
PAPER (in this case, black) is selected automatically:

OUT 255,62

247

Appendix C:

Display Modes and Memory

248

Other INK selection values are shown in the chart
below:

Value Function INK PAPER
6 Full-width mode Black White
8+6 Blue Yellow
16+6 Red Cyan
24+ 6 Magenta Green
32+6 Green Magenta
40+ 6 Cyan Red
48+6 Yellow Blue

56 + 6 White Black

Use this command to select the alternate display file
(“"dual screen mode''):

OUT 255,1

Extended color mode, which also uses both display
file areas, is selected by this command:

OUT 256,2

You can always return to the “‘normal’ single screen,
32 column mode with

OUT 255,0

In each of the enhanced display modes (beyond the
“normal’* 32 column display mode), you need to set
up the characters and attributes in the memory areas
reserved for these displays. See the chart below. You
can do this by proper use of machine code routines
combined with system software.

Display Addresses

Address Hexadecimal Decimal
Display File 1 4000-57FF 16384-22527
Attribute File 1 5800-5AFF 22528-23295
Display File 2 6000-77FF 24576-30719
Attribute File 2 7800-7AFF 30720-31487

POKE statements must use decimal addresses.

Appendix C:

Display Modes and Memory

“

ROM

The Memory

Deep inside the computer, everything is stored as
bytes, i.e. numbers between 0 and 255. You may think
you have stored away the price of wool or the address
of your fertilizer suppliers, but it has all been converted
into collections of bytes and bytes are what the com-
puter sees.

Each place where a byte can be stored has an address,
which is a number between 0 and FFFFh (so an address
can be stored as two bytes), so you might think of the
memory as a long row of numbered boxes, each of which
can contain a byte. Not all the boxes are the same,
however. In the standard 48K RAM machine, the boxes
from 4000h to FFFFh are RAM boxes, which means you
canopen the lid and alter the contents, and those from
0 to 3FFFh are ROM boxes, which have glass tops but
cannot be opened. You just have to read whatever
was put in them when the computer was made.

16K RAM + 32KRAM

L) 1

4000h 8000h FFFFh
= 16384 =32768 = 65536

To inspect the contents of a box, we use the PEEK func-
tion; its argument is the address of the box, and its re-
sult is the contents. For instance, this program prints
out the first 21 bytes in ROM (and their addresses):

10 PRINT "Address"; TAB 8;"'Byte"
20FORa=0TO 20

30 PRINT a; TAB 8; PEEK a

40 NEXT a

All these bytes will probably be quite meaningless to
you, but the processor chip understands them to be
instructions telling it what to do.

To change the contents of a box (if it is RAM), we use
the POKE statement. It has the form

POKE address, new contents

249

Appendix C:

Display Modes and Memory

where 'address’ and ‘new contents’ stand for numeric
expressions. (Note that the address is given in decimal
notation, not hexadecimal.) For instance, if you say

POKE 31000,57

the byte at address 31000 is given the new value 57
—type

PRINT PEEK 31000

to prove this. (Try poking in other values, to show that
there is no cheating.) The new value must be between
- 255and + 255, and if it is negative then 256 is added
toit.

The ability to POKE gives you immense power over the
computer if you know how to wield it; and immense
destructive possibilities if you don't. It is very easy, by
poking the wrong value in the wrong address, to lose
vast programs that took you hours to type in. Fortunate-
ly, you won't do the computer any permanent damage.

We shall now take a more detailed look at how the
RAM is used but don't bother to read this unless
you're interested.

The memory is divided into different areas (shown on
the big diagram) for storing different kinds of informa-
tion. The areas are only large enough for the informa-
tion that they actually contain, and if you insert some
more at a given point (for instance by adding a program
line or variable) space is made by shifting up every-
thing above that point. Conversely, if you delete infor-
mation then everything is shifted down.

Pixel Data Organization

Pixel data describes where dots are located on the
screen. Dots are written to the screen to display char-
acters and by the PLOT and DRAW commands. This
data is stored in memory as follows:

Appendix C:
Display Modes and Memory

Start of Display File

ose

4+ -32bytes+s Pl +32bytes s s Plaasccscascccsiqfse I2bytess « P+ +32 bytes « « P

L IL s | L JL |
data for row 1 data for row 2 data for row 8 data for row 1
scan line 1 scan line 1 scan line 1 scan line 2

> +32bytesseP{evescncs .-.-.‘.-321;“55-."..32};”‘;@3. .h‘..azbﬂes--}§

— 1 L il L 1
data forrow 8 data for row 8 date forrow 9 data forrow 10
scan line 2 scan line 8 scan line 1 scan line 1

§4..32[—,“95..'.4..32%..;............. d + » 32 bytes » « p| Start of

Attribute file
L IL J e a—— |
dataforrow 16 data forrow 17 data forrow 24
scan line 8 scan line 1 scan line 8

This organization applies to both display files when
used in normal video mode, full width mode, and dual
screen mode.

The display file stores the television picture. It is rather
curiously laid out, so you probably wen't want to PEEK
or POKE in it. Each character position on the screen has
an 8 x 8 square of dots, and each dot can be either 0
(paper) or 1 (ink); and by using binary notation we can
store the pattern as 8 bytes, one for each row. However,
these 8 bytes are not stored together. The correspond-
ing rows in the 32 characters of a single line are stored
together as a scan of 32 bytes, because this is what
the electron beam in the television needs as it scans
from the left hand side of the screen to the other. Since
the complete picture has 24 lines of 8 scans each, you
might expect the total of 172 scans to be stored in order,
one after the other; you'd be wrong. First come the top
scans of lines @ to 7, then the next scans of lines 0 to 7,
and so on to the bottom scans of lines 0 to 7; then the

251

Appendix C:
Display Modes and Memory

e e e
same for lines 8 to 15; and then the same for lines 16
to 23. The upshot of all this is that if you're used to a
computer that uses PEEK and POKE on the screen,
you'll have to start using SCREENS$ and PRINT AT
instead, or PLOT and POINT.

The attributes are the colors and so on for each char-
acter position, using the format of ATTR. These are
stored line by line in the order you'd expect.

Attribute Byte Format
Bit
7 6 5 4 3 2 1 0
A A | I
. = PAPER color INK color
5 1 =BRIGHT, 0 = normal
1 =FLASH, 0 = steady
PAPER or INK color
Value Color
7 111 White
6 110 Yellow
5 101 Cyan
4 100 Green
3 0 Magenta
2 010 Red
1 001 Blue
000 Black

Attribute Data Organization

Attribute data describes paper and ink color, flashing
or steady, and bright or normal intensity. For each
character in normal video mode there is one byte of
attribute data. This data is stored in memory as
follows:

252

Appendix C:

Display Modes and Memory

s *Start of

Attribute file

Pld- - 32bytes » « e » 32bytesssPpleessrreccsacsaldes 32bytes =Py

L I J e 4
data for data for data for
rowl row 2 row 24

In Extended Color Mode, the organization of attributes
(which reside in memory starting at 6000H) is the same
as the organization of pixel data.

The printer buffer stores the characters destined for
the printer.

The system variables contain various pieces of infor-
mation that tell the computer what sort of state the
computer is in, They are listed fully in the next chapter,
but for the moment note that there are some (called
CHANS, PROG, VARS, E__LINE and so on) that con-
tain the addresses of the boundaries between the various
areas in memory. These are not BASIC variables, and
their names will not be recognized by the computer.

253

Appendix C:
Display Modes and Memory

254

Home Memory Map
(a) One Display File (b) Two Display Files
F_RAMT RAM-RESIDENT CODE BRAMT
UDG . FICOH
MACHINE STACK F7COH
uDG
RAMTOP RAMTOP
STKEND
STKEND STKBOT
_STKBOT WORKSP
WORKSP E_LINE
E_LINE
VARS VARS
PROG PROG
CHANS CHANS
ARSBUF ARSBUF
MACHINE CODE VARS MACHINE CODE VARS
6840H 7BOOH
6200H RAM-RESIDENT CODE
DISPLAY-FILE 2
MACHINE STACK
gg%?;:l SYSTEM VARIABLES SYSTEM VARIABLES
PRINTER BUFFER R
5BOOH PRINTER BUFFE
DISPLAY-FILE 1 DISPLAY-FILE 1
HOME ROM HOME ROM
(a) (b)

Appendix C:
Display Modes and Memory

Figure C-1. Data Structure Layout

Primary [Primary [(Printer [System |N| Stack | Utility Bank
Display Attributes|Buffer |VariablesiE Function Switching
File File (OLD) :W Dispatcher (Code
L
: O A e T A A
16384 22528 23296 23552 23734: SP 25088 25365 26688
24576
AR?:BUF B?h H@l} ENTE!} .Swh F.JNTER
v y v v v
Machine Channel BASIC | Vanables Edit INFUT Te y [Calcul Spare
a Information Program Buffer Data Work Stack
Vanables Space
A 3 A A A A A A
- - - - - -
26688 CHANS PROG VARS E__LINE WORKSP STK.BOT S‘E‘KEND
SPARE User
Defined
Graphics
A A A
. - -
RAMTOP UDG P_RAMT

Each line of BASIC program has the form illustrated
by Figure C-2.

Figure C-2. Basic Program Line Layout
More significant byte
. Less significant byte
L]
v_¥
I | I [T
2 bytes 2 bytes 000D® 1101
l l LILIL]
L I Il 1L 1
Line number Length of Text
text + ENTER

ENTER

265

Appendix C:
Display Modes and Memory

Note that in contrast with all other cases of two-byte
numbers in the system, the line number here is stored
with its most significant byte first: that is to say, in the
order that you write them down.

A numerical constant in the program is followed by
its floating pownt form, using the character

CHRS$ 14 followed by five bytes for the number itself.
The variables have different formats according to their
different natures, The letters in the names should be
imagined as starting off in lower case. This order is
illustrated by Figure C-3.

Figure C-3. Number Whose Name Is One

Letter Only
§ignbit
v
FTTEET | = =
211 Exponent byte 4 Mantissa bytes
HEEEEN |
I Letter-60h ! Value I

Figure C-4 illustrates a situation when a number
whose name is longer than one letter is used:

Figure C-4. Longer Name Data Structure

w]jllll@lllllll% 1IIH[II %b“%_l
VLI bt 1 T O

——— | —— | IL J
Letter-60h 2nd character Last character Value

An array of numbers 1s illustrated by Figure C-5:

The order of the elements is:

first, the elements for which the first subscriptis 1
next, the elements for which the first subscript is 2
next, the elements for which the first subscript is 3
and so on for all possible values of the first subscript.

The elements with a given first subscript are ordered
in the same way using the second subscript, and so
on down to the last.

256

Appendix C:
Display Modes and Memory

As an example, the elements of the 3+«6.array b are
stored in the order b(1,1) b(1,2,) b(1,3) b(1.4) b(1,5)
b(1,6), b(2,1) b(2,2) . . . b(2,6) b(3,1) b(3,2) . . . b(3,6)

Figure C-5. Array Data Structure

TTTTETT
100
P11l

|

2 bytes

| § § I 2 s l
1 byte 2 bytes 2 bytes 5 bytes each
| | 2

I It J L | J

Letter-60h

Total
length of

elements &
dimensions

+ 1 forno.

of dimensions

No. of 1stdim. Last dim. Elements
dimensions

Structure of a control variable for a FOR/NEXT loop is
illustrated by Figure C-6.

Figure C-6. FOR/NEXT Loop Data Structure

Less significant byte

. More significant byte
v _ ¥
[RRRRRR |
111 5 bytes 5 bytes 5 bytes 2bytes 1 byte
BEEEEY!
L il I I Il il |
Letter-60h Value Limit Step Looping line Statement
number
within line
String structures are illustrated by Figure C-7:
Figure C-7. String Data Structure
FEFTET | | § §
010 2bytes
LR | |
L i 1l J
Letter-60h Number of Text of string (may be empty)
characters

Figure C-8 illustrates the data structure of an array of
characters:

257

Appendix C:

Display Modes and Memory

Figure C-8. Character Array Data Structure

1T
110
IR s

2 bytes

|

1byte 2bytes

2bytes
J]

IL

|
Letter-60h Total
number
of elements
&dims. +1
for no. of
dims.

258

No. of dims.

L
1stdim. Last dim.

Elements

The calculator is the part of the BASIC system that
deals with arithmetic, and the numbers on which it
is operating are held mostly on the calculator stack.

The spare part contains the space so far unused.

The machine stack is the stack used by the Z80
processor to hold return addresses and so on.

Any number (except 0) can be written uniquely as
+m»28

where + isthe sign

m is the mantissa, and lies between Yz and 1
(it cannot be 1),

e is the exponent, a whole number (possibly
negative). :

Suppose you write m in the binary scale. Because it is
a fraction, it will have a binary point (like the decimal
point in the scale of ten) and then a binary fraction
(like a decimal fraction): so in binary,

a half is written .1

a quarter is written .01

three quarters is written .11

a tenth is written .000110011001100110011. . .and so
on. With our number m, because it is less than 1, there
are no bits before the binary point, and because it is at
least ¥, the bit immediately after the binary pointisa 1.

To store the number in the computer, we use five
bytes, as follows:

1. Write the first eight bits of the mantissa in the sec-
ond byte (we know that the first bit is 1), the second
eight bits in the third byte, the third eight bits in the
fourth byte and the fourth eight bits in the fifth byte,

and

Appendix C:
Display Modes and Memory

2. Replace the first bit in the second byte —which
we know is 1— by the sign: @ for plus, 1 for minus.

3. Write the exponent + 128 in the first byte. For
instance, suppose our number is g

ip=9sx2"3

Thus the mantissa mis.110011001100110011001100
110201100 in binary (since the 33rd bitis 1, we shall
round the 32nd up from @ to 1), and the exponent e is
- 3. Applying our three rules gives the five bytes illus-
trated in Figure C-9.

Figure C-9. Zero Written Here To Show + Sign

zero written here to show +sign
.
.

|n111 11@1]0?10@ 110@] 1100 1100 | 1100 1‘100|11W 1101‘

1 JL]

There is an alternative way of storing whole num-
bers between — 655635 and + 65535:

1. Thefirstbyteis 0.

2. Thesecond byte is 0 for a positive number, FFH
for a negative one.

3. The third and fourth bytes are the less and more
significant bytes of the number (or the number
+ 131072 if it is negative).

4. The fifth byteis 0.

259

Appendix D:
The System Variables

The bytes in memory from 23552 to 23746 are set aside
for specific uses by the systemn. You can PEEK them to
find out varous things about the system, and some of
them can be usefully POKEd. They are listed here with
their uses.

These are called system variables, and have names,
but do not confuse them with the variables used by the
BASIC. The computer will not recognize the names as
referring to system varables, and they are given solely
as mnemonics for us humans.

The abbreviations in columnn 1 have the following
meanings:

X The varables should not be poked because the

system might crash.
N Poking the variable will have no lasting effect.

261

Appendix D:
The System Variables

T S —

The number in column 1 is the number of bytes in the
variable. For two bytes, the first one is the less signifi-
cant byte—the reverse of what you might expect. So to
POKE a value v to a two-byte variable at address n, use

POKE n,v — 256 «INT (v/256)
POKE n + 1,INT (v/256)

and to PEEK its value, use the expression

PEEK n + 256+«PEEK (n + 1)

Notes Address Name Contents

N8 23552 KSTATE Used in reading the keyboard.

N1 23560 LASTK Stores newly pressed key.

1 23561 REPDEL Time—in 60ths of a second—that a key

must be held down before it repeats.
This starts off at 35, but you can POKE
in other values.

1 23562 REPPER Delay—in 60ths of a second—between
successive repeats of a key held down:
initially 5.

N2 23563 DEFADD Address of arguments of user-defined
function if one is being evaluated;
otherwise 0.

N1 23565 K DATA Stores 2nd byte of color controls entered
from keyboard.

N2 23566 TVDATA Stores bytes of color, AT and TAB con-
trols going to television.

X38 23568 STRMS Addresses of channels attached to
streams.

2 23606 CHARS 256 less than address of character set
(which starts with space and carries on
to the copyright symbol). Normally in
ROM, but you can set up your own in
RAM and make CHARS point to it.

1 23608 RASP Length of warning buzz.

1 23609 PIP Length of keyboard click.

1 23610 ERR NR 1 less than the report code. Starts off at
255 (for — 1) so PEEK 23610 gives 255.

X1 23611 FLAGS Various flags to control the BASIC
system.

X1 23612 TV FLAG Flags associated with the television.

X2 23613 ERRSP Address of item on machine stack to be
used as error return.

N2 23615 LIST SP Address of return address from automatic
listing.

262

Appendix D:
The System Variables

Notes Address Name Contents

N1 23617 MODE Specifies B, B B B or [cursor.

2 23618 NEWPPC Line to be jumped to.

1 23620 NSPPC Statement number in line to be jumped

to. Poking first NEWPPC and then NSPPC
forces a jump to a specified statement in

a line.

2 23621 . PPC Line number of statement currently
being executed.

1 23623 SUBPPC Number within line of statement being
executed.

1 23624 BORDCR Border color *8; also contains the attni-
butes normally used for the lower half of
the screen.

2 23625 EPPC Number of current line (with program
cursor).

X2 23627 VARS Address of variables.

N2 23629 DEST Address of variable in assignment.

X2 23631 CHANS Address of channel data.

X2 23633 CURCHL Address of information currently being
used for input and output.

X2 23635 PROG Address of BASIC program.

X2 23637 NXTLIN Address of next line in program.

X2 23639 DATADD Address of terminator of last DATA item.

X2 23641 ELINE Address of command being typed in.

2 23643 KCUR Address of cursor.

X2 23645 CH ADD Address of the next character to be

interpreted: the character after the argu-
ment of PEEK, or the NEWLINE at the

end of a POKE statement.

2 23647 XPTR Address of the character after the
marker.

X2 23649 WORKSP Address of temporary work space.

X2 23651 STKBOT Address of bottom of calculator stack.

X2 23653 STKEND Address of start of spare space.

N1 23655 BREG Calculator’'s b register.

N2 23656 MEM Address of area used for calculator's
memory. (Usually MEMBOT, but not
always).

1 23658 FLAGS2 More flags.

X1 23659 DF SZ The number of lines (including one
blank line) in the lower part of the screen.

23660 STOP The number of the top program line in
automatic listings.

2 23662 OLDPPC Line number to which CONTINUE
jumps.

1 23664 OSPCC Number within line of statement to
which CONTINUE jumps.

N1 23665 FLAGX Various flags.

263

Appendix D:
The System Variables

ﬂ-

Notes Address Name Contents

N2 23666 STRLEN Length of string type destination in
assignment.

N2 23668 T ADDR Address of next item in syntax table.

2 23670 SEED The seed for RND. This is the variable
that is set by RANDOMIZE.

3 23672 FRAMES 3-byte (least significant first), frame
counter. Incremented every 16ms.

2 23675 UuDG Address of 1st user-defined graphic.
You can change this, for instance to save
space, by having fewer user-defined
graphics.

1 23677 COORDS x-coordinate of last point plotted.

1 23678 y-coordinate of last point plotted.

1 23679 P POSN 33-column number of printer position.

1 23680 PRCC Less significant byte of address of next
position for LPRINT to print at (in printer
buffer).

1 23681 Not used.

2 23682 ECHOE 33-column number and 24-line number
(in lower half) of end of input buffer.

2 23684 DFCC Address in display file of PRINT position.

2 23686 DFCCL Like DF CC for lower part of screen.

X1 23688 SPOSN 33-column number for PRINT position.

X1 23689 24-line number for PRINT position.

X2 23690 SPOSNL Like S POSN for lower part.

1 23692 SCRCT Counts scrolls: it is always 1 more than
the number of scrolls that will be done
before stopping with scroli?. If you keep
poking this with a number bigger than
1 (say 255), the screen will scroll on and
on without asking you.

1 23693 ATTRP Permanent current colors, etc. (as set
up by color statements).

1 23694 MASK P Used for transparent colors, etc. Any
bit that is 1 shows that the correspond-
ing attribute bit is taken not from ATTRP,
but from what is already on the screen.

N1 23695 ATTRT Temporary current colors, etc. (as set
up by color items).

N1 23696 MASKT Like MASK P, but temporary.

1 23697 P FLAG More flags.

N30 23698 MEMBOT Calculator's mermory area; used to store
numbers that cannot conveniently be

: put on the calculator stack.

2 23728 Not used.

2 23730 RAMTOP Address of last byte of BASIC system
area.

2 23732 P-RAMT Address of last byte of physical RAM.

264

Appendix D:
The System Variables

Notes Address Name Contents

2 23734 ERRLN Line number to GOTO on error.

2 23736 ERRC Line number in which error occurred.

1 23738 ERRS Statement number within line in which
error occurred,

1 23739 ERRT Error number (Report Code).

2X 23740 SYSCON Pointer to the System Configuration
Table.]

1X 23742 MAXBNEK Number of Expansion Banks in System.

1X 23743 CURCBN Current Channel Bank Number.

2% 23744 MSTBOT Address of location above machine stack.

1X 23746 VIDMOD Video Mode. Non-zero if the second
display file is open for use,

X 23748 Various variables used for BASIC
cartridges.

1X 23755 STRMNM Current stream number.

This program tells you the first 22 bytes of the vari-
ables area:

MMFORN=0TO 21
20 PRINT PEEK (PEEK 23627 + 266+ PEEK 23628 + n)
30 NEXT n :

Try to match up the control variable n with the descrip-
tions above. Now change line 20 to

20 PRINT PEEK (23755 + n)

This tells you the first 22 bytes of the program area.
Match these up with the program itself.

Display Addresses

Address Hexadecimal Decimal
Display File 1 4000-57FF 16384-22527
Attribute File 1 6800-5AFF 22528-23295
Display File 2 6000-77FF 24576-30719
Attribute File 2 7800-7AFF 30720-31487

POKE statements must use decimal addresses.

265

Appendix E:
Using Machine Code

This appendix is written for those who understand Z89
machine code, the set of instructions that the Z80 proc-
essor chip uses, If you do not, but would like to, there
are plenty of books about it. You want to get one called
sornething along the lines of 'Z80 Machine code (or
assembly language) for the absolute beginner.'

These programs are normally written in assembly
language, which, although cryptic, is not too difficult to
understand with practice. However, to run them on the
computer you need to code the program into a sequence
of bytes—in this form it is called machine code. This
translation is usually done by the computer itself, using
a program called an assembler. There is no assembler
built in to the T/S 2000, but you may well be able to buy
one on cassette. Failing that, you will have to do the
translation yourself, provided that the program is not
too long.

267

Appendix E: Using
Machine Code

e e s e R e]
Let's take as an example the program

Id bc, 99
ret

which loads the bc register pair with 99. This trans-
lates into the four machine code bytes 1, 99, 0 (for 1d
be, 99) and 201 (for ret). (If you lcok up 1 and 201 in
Appendix B, you will find 1d be, NN—where NN stands
for any two-byte number—and ret.)

When you have got your machine code program, the
next step is to get it into the computer. (An assembler
would probably do this automatically.) You need to
decide whereabouts in memory to put it, and the best
thing is to make extra space for it between the BASIC
area and the user-defined graphics.

You have a 48K machine, so the top end of RAM has

1 1
g User-defined graphics
| |

A A A
* UDG=65368 P__RAMT = 65535
RAMTOP = 65367
If you type
CLEAR 65267
this will give you a space of 100 (for good measure)
bytes starting at address 65268
T 2 1
§ ; 1 Oh‘;x;:re User-defined graphics ;
A A A A
. 65268 UDG = 65368 P_RAMT = 65535
RAMTOP = 65267

To put in the machine code program, you would run a
BASIC program something like

268

Appendix E: Using
Machine Code

= e — . ==
10 LET a = 65268

20 READ n: POKEa,n
30LETa=a+1:GOTO20
40 DATA 1,99,0,201

(This will stop with report E Out of DATA when it has
filled in the four bytes you specified.)

To run the machine code, you use the function USR—
but this time with a numeric argument, the starting
address. Its result is the value of the be register on
return from the machine code program, so if you do

PRINT USR 65268

you get the answer 99.

The return address to the BASIC is stacked in the usual
way, soreturn is by a Z80 ret instruction. You should
not use the iy and i registers in a machine code routine.

You can save your machine code program easily
enough with

SAVE "some name'' CODE 65268

On the face of it, there is no way of saving it so that
when loaded it automatically runs itself, but you can
get round this by using a BASIC program.

10 LOAD " " CODE 65268,4
20 PRINT USR 65268

Do first
SAVE "some name' LINE 10
and then

SAVE "xxxx'' CODE 65268,4
LOAD "some name"'

will then automatically run the BASIC program, and
the BASIC program will load and run the machine code.

Notes:

1. Ifinterrupts are enabled, don't use the iy register,

2. The iregister must never hold a value greater
than 3Fh.

269

Appendix F:
Keyword Table

Cursor.

Letter
Cursor.

Caps Lock
Cursor.
Graphics
Cursor.
Extended
Cursor.

Definition

If a primary key is pressed when the [cursor is dis-
played, the command (or keyword) imprinted on the
key can be utilized (i.e., PRINT).

If a primary key is pressed when the 8 cursor is dis-
played, the letter or special symbol imprinted on the
key is taken ''as is" by the computer and displayed on
the screen (i.e, O or A).

Locks keyboard to produce upper case (capital) letters
when a primary letter key is pressed.

Initiates graphics mode so the graphics characters
imprinted on keys 1-8 can be utilized.

If & primary key is pressed when the [cursor is dis-
played, the command (or keyword) imprinted above
the primary key can be utilized (i.e. LPRINT); if both
the primary key and the SYMBOL SHIFT key are pressed
simultaneously. The cornmand (or keyword) imprinted
below the primary key can be utilized (i.e. BEEP).

271

Appendix F:
Keyword Table

Tokens
(Keywords) Primary
and Key

Functions Name Instructions

ABS G Need [cursor, then press the Primary Key.

ACS w Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

AND Y Need E, A or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

ASN Q Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

AT I Need [, [or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

ATN E Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

ATTR L Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

BEEP z Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

BIN B Need B3 cursor, then press the Primary Key.

BORDR B Need [cursor, then press the Primary Key.

(BORDER)

BREAK BREAK Press the Primary Key.

BRIGHT B Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

CAPSLOCK 2 Works with [or Need g cursor, then simultaneously

press CAPS SHIFT key and Primary Key.

CAT 9 Need || cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

CHRS$ U Need [cursor, then press the Primary Key.

CIRCLE H Need [} cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

CLEAR X Need [[§ cursor, then press the Primary Key.

CLOSE # 5 Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

CLS \Y Need [cursor, then press the Primary Key.

CODE I Need g cursor, then press the Primary Key.

CONT C Need [cursor, then press the Primary Key.

COPY Z Need [cursor, then press the Primary Key.

CcOS w Need [cursor, then press the Primary Key.

DATA D Need | cursor, then press the Primary Key.

272

Appendix F:
Keyword Table

Tokens
(Keywords)
and
Functions
DEFFN

DELETE

DIM
DRAW
EDIT

ERASE

EXP
FLASH

FN

FOR
FORMAT

FREE

GOSUB
GOTO
GRAPHICS

IF
IN

INK

INKEY$
INPUT

INT

INV. VIDEO

INVERSE

LEN

Primary
Key

1

)

—

ez K Ta weoom oM.

g

Instructions

Need] cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Works with [, [, or [f cursor, then simultaneously
press CAPS SHIFT key and Primary Key.

Need [fJ cursor, then press the Primary Key.
Need | cursor, then press the Primary Key.

Need [cursor, then simultaneously press CAPS
SHIFT key and Primary Key.

Need B cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need [cursor, then press the Primary Key.

Need | cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need J cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need | cursor, then press the Primary Key.

Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need g cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need [cursor, then press the Primary Key.

Need [cursor, then press the Primary Key.

Works with [, [, or i cursor, then simultaneously
press CAPS SHIFT key and Primary Key.

Need [cursor, then press the Primary Key.

Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need 3 cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need [cursor, then press the Primary Key.
Need [§ cursor, then press the Primary Key.
Nea:l cursor, then press the Primary Key.

Works with [[§, 8. or [cursor, then simultaneously
press CAPS SHIFT key and Primary Key.

Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need | cursor, then press the Primary Key.

273

Appendix F:
Keyword Table

e e e e I

Tokens

(Keywords) Primary

and Key

Functions Name Instructions

LET L Need [cursor, then press the Primary Key.

LINE 3 Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

LIST K Need @ cursor, then press the Primary Key.

LLIST v Need | cursor, then press the Primary Key.

LN z Need [cursor, then press the Primary Key.

LOAD J Need [cursor, then press the Primary Key.

LPRINT C Need [cursor, then press the Primary Key.

MERGE T Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

MOVE 6 Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

NEW A Need [cursor, then press the Primary Key.

NEXT N Need [cursor, then press the Primary Key.

NOT S Need B B or B cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

ON ERR F Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

OPEN # 4 Need | cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

OR U Need [§ B or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

ouT O Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

OVER N Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

PAPER C Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

PAUSE M Need [cursor, then press the Primary Key.

PEEK o] Need [cursor, then press the Primary Key.

PI M Need g cursor, then press the Primary Key.

PLOT Q Need [cursor, then press the Primary Key.

POINT 8 Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

POKE (0] Need [f§ cursor, then press the Primary Key.

PRINT P Need [fJ cursor, then press the Primary Key.

RAND T Need [cursor, then press the Primary Key.

274

Appendix F:
Keyword Table

Tokens
(Keywords)
and

Functions

READ
REM
RESET

RESTORE
RETRN
(RETURN)
RND

RUN
SAVE
SCREEN$

SGN
SIN
SOUND

SPACE
BAR

SQR
STEP

STICK
STOP

STR$

SYMBOL
SHIFT

TAB
TAN
THEN

TO
TRUE

VIDEO
USR

=

wmwmm o4

SPACE
BAR

SYMBOL
SHIFT

Instructions

Need g cursor, then press the Primary Key.
Need [cursor, then press the Primary Key.

Need g cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need [cursor, then press the Primary Key.
Need [j cursor, then press the Primary Key.

Need [cursor, then press the Primary Key.
Need [cursor, then press the Primary Key.

Need [cursor, then press the Primary Key.

Need | cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need [cursor, then press the Primary Key.
Need [cursor, then press the Primary Key.

Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Press the Primary Key.

Need [cursor, then press the Primary Kéy_

Need i, 4. or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

Need B, |, or [§ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need [cursor, then press the Primary Key.
Press the Primary Key.

Need [cursor, then press the Primary Key.
Need [cursor, then press the Primary Key.

Need B, [or @ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need B3, |, or @ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Works with [, [, or @ cursor, then simultaneocusly
press CAPS SHIFT key and Primary Key.

Need g cursor, then press the Primary Key.

275

Appendix F:
Keyword Table

T R AT e

Tokens

(Keywords) Primary

and Key '

Functions Name Instructions

VAL J Need E cursor, then press the Primary Key.

VALS$ J Need B cursor, then press the Primary Key.

VERIFY R Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

! 1 Need E§, . or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

" P Need E§, & or @ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

3 Need 3. . or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

$ 4 Need [, B or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

% 5 Need [, [, or @ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

> T Need [, F. or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

\ D Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

‘ H Need E3, F or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

£ X Need 3, . or B cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

? Cc Need [, | or & cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

/ \' Need E3, |, or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

<= Q Need @ . or ﬁ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

>= E Need [, | or & cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

a 2 Need E3. . or B cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

[¥ Need [cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

] U Need B cursor, then hold SYMBOL SHIFT key and
press the Primary Key.

& 6 Need i, B, or @ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

' 7 Need E§. | or @ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

276

Appendix F:

Keyword Table

Tokens

Functions
(

)

-

> <= tOIOE "

y o

a

(Keywords) Primary
and Key

8

9

O D W N -

o

Instructions

Need [B or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need i, . or [@ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need i . or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need 4, B or [/ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need [, | or B cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need 3. | or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need 3 . or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need 3. . or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need [, [or @ cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need 4. . or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need (3, | or B qursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

Need [&] cursor, then press the Primary Key.
Need E cursor, then press the Primary Key.
Need [cursor, then press the Primary Key.
Need [cursor, then press the Primary Key.

Works with [, |, or] cursor, then simultaneously
press CAPS SHIFT key and Primary Key.

Need g cursor, then press the Pnmary Key.

Works with [E§, . or [cursor, then simultaneously
press CAPS SHIFT key and Primary Key

Need [g] cursor, then press the Primary Key.

Works with [[§, . or | cursor, then simultaneously
press CAPS SHIFT key and Primary Key.

Need [€] cursor, then press the Primary Key.

Works with [[§, . or [cursor, then simultaneously
press CAPS SHIFT key and Primary Key.

Need [cursor, then press the Primary Key.

277

Appendix F:
Keyword Table

T — e e)
Tokens

(Keywords) Primary
and

Functions Name Instructions

<> W Need E3, B3 or B cursor, hold SYMBOL SHIFT key,

and then press the Primary Key.

Need [, [or [cursor, hold SYMBOL SHIFT key,
and then press the Primary Key.

A

ABS

ACS

AND

apostrophe

array

array data structure
array variable name
ASN

assembly language
assignment statement
AT

ATN

ATTR

attributes

attribute byte format
audio cable
automatic starting

Appendix G: Index

224

224
128,131, 224
82, 88, 221
143, 150

256

145, 150, 223
224

265

90, 124

84, 88

224
200,201, 224
220

251

6,9

51

279

Appendix G: Index

e e SR

B

BASIC

BASIC program
line layout

BEEP

BIN

BORDER

branch

branching program

BREAK

BRIGHT

C

cursor

© copyright

calculator stack

capital letters

CAPS LOCK

CAPS SHIFT

cassette recorder

CAT

channel selector switch

character array
data structure

CHRS

CIRCLE

CLEAR

CLOSE

CLS

CODE

code numbers

colon

comma

command

comparing strings

comparing values

compiler

CONT

control variable

control variable names

COPY

copyright notice

cOs

counter

Cursor arrows

27

254

66, 69, 229

165, 167, 225

55, 58, 220, 229

121

121

74,78, 206, 208, 219
178, 179, 182, 221, 229

18,218

25

257

73

18, 73, 218
15,218
7.9, 215
214, 229
6.9

257

197, 200, 225
62, 64, 229
91, 93, 229
214, 229
91, 93, 230
198, 201, 225
128, 197
87,88

80, 87

27,71

128

126

140

75,78, 230
114,119

222

205, 208, 230
9,13

225

114

16, 33, 218

Appendix G: Index

D

DATA

data structure layout
DEFFN

DELETE

DIM

display addresses
display file
display modes
down arrow
DRAW

cursor

E (exponent)

EDIT

element of an array
endless loop

ENTER

envelope

ERASE

Extended Color Mode
extended mode

F

FLASH

FN

FOR

FOR/NEXT loop

FOR/NEXT loop data
structure

FORMAT

FREE

functions

G

cursor
GOSUB
GOTO
graphics mode
hard copy

108, 111, 230

254

230

17, 32, 138, 141, 218, 230
144, 150, 230

248, 263

251

247

81

60, 64, 231

23,218

97

80, 105, 219
143, 150
114

29, 36, 219
191, 193
214, 231
225

153

23,35

178, 179, 182, 221
225

114, 119, 231
114,119

256

214,231

199, 201, 225, 231
99, 224

22

134, 141, 231
73,78, 92, 93, 231
22,34, 151, 218
203

281

Appendix G: Index

e S e

282

I

IF

immediate mode
IN

INK

INKEYS

INPUT

INT
interference, TV
interpreter
INVERSE
INVERSE VIDEO

J

joystick
joystick sockets

K

cursor

keyboard tutorial
program

keywords

L

cursor
left bracket

LOAD. . .DATA
LOAD. . .SCREENS
logical relations
LPRINT

121, 125, 130, 231

71

213, 225

56, 58, 60, 105, 220, 232
169, 175, 225

104, 111, 168, 232
100, 225

9

140

178, 179, 182, 221, 232
20

6, 173, 175, 215
6

13,217

25
14, 27, 217

14, 218

25

225

90, 93, 124, 232
51, 63, 237
73

115, 119, 233
204, 208, 233
225

39, 233

233

149, 150, 233
233

128

204, 208, 233

Appendix G: Index

M

machine code 265

machine stack 257

memory map 2563

MERGE 52, 63, 233
modem 215

modules 133

monitor 6, 215

MOVE 214, 233

N ,

nested loops 118

NEW 32, 36, 78, 93, 233
NEXT 114, 119, 234
noise generator 194

NOT 129, 131, 225

o

ON ERR 234

on/off switch 6,9

OPEN 214,234

OR 129, 131, 226
ouT 213,234

OVER 180, 183, 221, 234
P

PAPER 57, 58, 220, 235
parentheses 97, 102

PAUSE 172, 175, 235
PEEK 212, 226, 250
peripheral devices 213, 214, 215

Pl 226

pixel 59, 161, 164
PLAY 41

PLOT 62, 64, 158, 161, 235
PLOT positions 152, 161

POINT 199, 201, 226
POKE 164, 167, 212, 235, 257
power supply unit 7.8

PRINT 28, 36, 72, 87, 235
PRINT position 80, 152

printer 6, 203, 215, 222
priorities 96, 102, 228

283

Appendix G: Index

P e e v]

284

Procrustean
program
program cursor
program line
program name
programs on tape
cassettes
prompt
pseudo-random

Q

guotation marks

R

RAND

random number
generator

READ

RECORD

registers

relations

REM

report code

RESET

RESTORE

RETURN

right bracket

RND

rounding errors

RUN

S

SAVE

SAVE. ..CODE
SAVE. . .DATA
SAVE...SCREENS
scientific notation
SCREENS$
scroll?
semicolon

SGN

SIN

sine wave

slicing strings

146
3,471
73,79, 219
73

40,53

38
104
100

30, 85, 88

101, 236

99

108, 111, 237
48

185, 192
128,131
47,77, 237
30, 42

214, 237
110, 111, 237
134, 141, 237
25

99, 102, 226
98

42,74, 78,93, 237

48, 63, 237
237

149, 160, 237
238

97,102

160, 161, 226
74,78

80, 88

226

159, 226

159

148, 150, 223

Appendix G: Index

SOUND 185, 238
sound effects 194
SOR 35, 99, 226
STEP 117, 119, 231
STICK 173,175, 227, 238
sSTOP 76,106, 111, 238
string 32, 36, 223
string arrays 146, 150, 223
string array names 223
string variable 90, 93
string variable names 90, 93
STRS$ 227
structured programming 133, 141
subroutines 134, 141
subscript 144, 150
substrings 148, 150, 223
superscripts 96
SYMBOL SHIFT 18,218
syntax error marker 33, 219
system variables 259
T
TAB 83, 88, 207, 208, 221
TAN 227
television cable 6,8
THEN 125, 130, 231
Timex Command

Cartridges 37
TO 114, 119, 231
transfer switch box 6,8
TRUE VIDEO 21
U
UHF/VHF matching

transformer ' 8
up arrow 79, 81
user-defined graphics 163, 218
USR 165, 167, 227
\'4
VAL 227
VALS$ 227
variable 90
variable name 90, 93, 222
VERIFY 49, 53, 238

285

Appendix G: Index

e]

X

xly axes 159

Z

780 processor chip 265

¥ e Xl g™ 96, 101, 228
=,<,>,<=,>=,<> 126, 131, 228
$ 90

286

Appendix H:
Report Codes

These appear at the bottom of the screen whenever
the computer stops executing some BASIC, and explain
why it stopped, whether for a natural reason, or because
an error occurred.

The report has a code number or letter so that you can
refer to the table here, a bnef message explaining what
happened and the line number and statement number
within that ine where it stopped. (A command is shown
as hne (. Within a hine, statement 1 is at the beginning,
statemnent 2 comes after the first colon or THEN, and
s001.)

The behavior of CONTINUE depends very much on
the reports. Normally, CONTINUE goes to the line and
statement specified in the last report, but there are
exceptions with reports 0, 9 and D.

Here is a table showing all the reports. It also tells you
in what circumstances the report can occur. For
mstance, error A Invalid argument can cccur with
SQR, IN, ACS and ASN.

287

Appendix H:
Report Codes

#

288

Code

Situation

Any

NEXT

Any

Subscripted
variables,
Substrings

LET, INPUT,
FOR, DIM,
GOSUB, LOAD,
MERGE. Some-
times during
expression
evaluation

INPUT, PRINT

AT

Any arithmetic

RETURN

Peripheral
operations

Meaning

OK

Successful completion, or jump to a line number
bigger

than any existing. This report does not change the
line and statement jumped to by CONTINUE.

NEXT without FOR

The control variable does not exist (it has not been set
up by a FOR statement), but there is an ordinary vari-
able with the same name.

Variable not found

For a simple variable this will happen if the variable is
used before it has been assigned in a LET, READ or
INPUT statement or loaded from tape or set up in a FOR
statement. For a subscripted variable it will happen if
the variable is used before it has been dimensioned in
a DIM statement or loaded from tape.

Subscript wrong.

A subscript is beyond the dimension of the array, or
there are the wrong number of subscripts. If the sub-
script is negative or bigger than 66535, then error B
will result.

Out of memory

There is not enough room in the computer for what
you are trying to do. If the computer really seems to
be stuck in this state, you may have to clear out the
command line using DELETE and then delete a pro-
gram line or two (with the intention of putting them
back afterwards) to give yourself room to maneuver
with—say—CLEAR.

Out of screen

An INPUT statement has tried to generate more than
23 lines in the lower half of the screen. Also occurs
with PRINT AT 22, . . .

Number too big
Calculations have led to a number greater than about
1038,

RETURN without GOSUB
There has been one more RETURN than there were
GOSUBs.

End of file.

Appendix H:
Report Codes

IZE, POKE, DIM,
GOTO, GO SUB,

Code Situations Meaning

STOP STOP statement
After this, CONTINUE will not repeat the STOP but
carries on with the statement after.

SQR, LN, ASN, Invalid argument

ACS,USR (with The argument for a function is no good for some reason.

String argument)

RUN,RANDOM- Integer out of range

When an integer is required, the floating point argu-
ment is rounded to the nearest integer. If this is outside

LIST, LLIST, a suitable range then error B results.
PAUSE, PLOT,
CHRS$, PEEK,
USR (with
numeric
argument)
Array access For array access, see also Error 3.
VAL, VAL$ Nonsense in BASIC
The text of the (string) argument does not form a valid
eXpression.
LOAD, SAVE, BREAK—CONT repeats
VERIFY, BREAK was pressed during some peripheral operation.
MERGE, The behavior of CONTINUE after this report is normal
LPRINT, LLIST, in that it repeats the statement. Compare with report L.
COPY. Also
when the com-
puter asks
scroll? and you
type N, SPACE
or STOP
READ Out of DATA
You have tried to READ past the end of the DATA list.
SAVE Invalid file name

SAVE with name empty or longer than 10 characters.

Entering a line No room for line

into the program There is not enough room left in memory to accommo-
date the new program line.

INPUT STOP in INPUT

Some INPUT data started with STOP, or—for INPUT
LINE—was pressed.
Unlike the case with report 9, after report H CONTINUE
will behave normally, by repeating the INPUT
statement.

289

290

Peripheral
operations

INK, PAPER,
BORDER,
FLASH, BRIGHT,
INVERSE, OVER,
also after one of
the correspond-
ing control
characters

Any

CLEAR,; pos-
sibly in RUN

RETURN, NEXT,
CONTINUE

Peripheral
operations

FN

FN

VERIFY LOAD
or MERGE

FOR without NEXT)
There was a FOR loop to be executed no times (6.9.
FORn = 1TO0) and the corresponding NEXT statement
could not be found.

Invalid I/O device

Invalid color
The number specified is not an appropriate value.

.

BREAK into program

BREAK pressed, this is detected between two state-
ments. The line and statement number in the report
refer to the statement before BREAK was pressed, but
CONTINUE goes to the statement after (allowing for any
jumps to be done), so it does not repeat any statements.

RAMTOP no good
The number specified for RAMTOP is either too big or
too small.

Statement lost
Jump to a statement that no longer exists.

Invalid stream

FN without DEF
User-defined function.

Parameter error
Wrong number of arguments, or one of them is the
wrong type (string instead of number or vice versa).

Tape loading error
A file on tape was found but for some reason could
not be read in, or would not verify.

335-879000

TIMEX Timex Computer Corporation Waterbury, Connecticut 06720

