Tmex | User Manual :

38 sinclair 1000

‘mmex | User Manual

by Steven Vickers
T 1282 by Times Corparabon with revisions by
© 18982 by Sinclay Research Lamited C.F DUT&I'F(_.}

N3 simclair 10oo

This equipment generates and uses rato frequency enargy and if not
mstalled and used properly, that is, in strict accordance with the manu-
facturer's mstructions, may causs interferance 1o radio and telavision racep-
tion. it has been type tested and found to comply with the limits for a Class B
computing dewce in accordanca with the spacilications in Subpart J of Part
15 of FCC Rules, which are designed to provide reasonable protection agasingt
such imterference in a residential installation However, there is no guarantee
that interference will not occur in 3 particudar installation. If thes agquipment
does cause inerference to radio or 1elewsion reception, which can be deter-
mined by tuning the egupment off and on, the user is encouraged to try to
corract the interference by one or more of the followwng measures:

recnient the récewving antenna

refocate the computer with respect 1o the receiver

maove the computer away from the recerver

plug the compauter into 8 different outiet so that computer and recaiver
are on different branch cirguits,

H necessary, the user should consult the desler or an exparienced radio’
television technician lor additional estions. The user may fmd the fol-
lowang booklet preparad by the Federal Communications Commission halpful:
“"How to ientify and Resolve Radio-TV Interference Problems™. This booklet
i3 available from the US Government Printing Office. Washington. DC
20402, Stock No. 004-000-00345-4

WARNING: This equipment has been cartefied to comply with the limits for a
Class B computing dewice, pursuant to Subpart J of Part 15 of FCC Rules.
Only peripharals lcomputer input/output dewvices, terminals, printers, etc)
certified to comply with the Class B Brmets may be atiached to this computer,
Operation with non-certified peripherals s Skely to resuft in interfarence to
racho and TV recapbon

This edition revised and produced by
The Communicabons Company,
Narth Attlehorough, MA&

This manual was typasat electronically
by WordPower, Burlngton, MA, on a
WordPower Compasition Systam

Table of Contents

Chapter Tape Page
Using the Computer

Introduction: Getting Started 1
1 How to Set Up Your T/S 1000 5
2 Using Ready-to-Run Pragrams =
3 Telling the Computer Whatto Do PRINT_ENTER 15
DELETE, 4 ,¢
Elementary Frogratmmintg
4 Writing a Program NEW, GOTO, RUN, 21
CONT, BREAK
5 Punctuation and Arranging Comena, Sarnicolan, 23
Output on the Screen <.,< EDIT.TAB,
Functions
6 Loops and IF Variables, Loops. 27

LET, STOP. IF. FOR,
NEXT,. TO, STEP, LIST,
REM, INPUT, PI,

CLEAR
7 More About IF THEN. AND. OR. NOT. 3N
<y T T
8 SLOW and FAST SLOW. FAST 39
9 Subroutines GOSUB, RETURN 41
10 When the Computer Gais Full 47
11 Mathematics with +, =0 51

the T/S 1000

Contents

Contems

12

13
14
15

16
17
18
19
20

21

22
23
24

25
26
27

Advanced Programmung
Advanced Printing Technigues AT, TAB, CLS,
SCROLL
The Character Set CODE.CHRS
Graphics PLOT, UNPLOT
Functions RAND, RND, ABS,

SGN, SIN, CDS, TAN,
ASN, ACS, ATN, LN,
EXP, PI, SQR, INT

Time and Motion PAUSE, INKEYS
Arrays DiM
Strings LEN, VAL STRS
Substrings Skcing with TO
Sinclair BASIC Print Commands LPRINT. LLIST.
cCoPY
The T/S 1089 for Those
Who Understand BASIC
Flowcharting and Debugging
Number Systems
How the Computer Works
Far Experts Only

Using Machine Code
Organization of Storage

The System Variables

Raference
Appendix — The Character Sat
Index

Report Codes

65

57
63
69

75
79
85
88
a3

97

111
1156
118

123
127
133

137
144
153

LIMITED WARRANTY

Basic Coverage: This Timew Sinclair Camputer is warranted to the owner
for a period of 90 days from date of oniginal purchase agamst defects in
manufactura, This limited warranty is given by Timex Computar Corporation
— not by the dealer from whom it was purchased

What Timex Will Do: It a defect in manufacture of the Computer 18
discovered within 30 days from date of ariginal purchase, Timax Computer
Corporation will, at its option, repair or replace the defective umit

What You Must Do; You must réturn the Computer, indicating date of
purchase, to Timex Product Service Centar with a writtén explanaton of the
reason for the retum

Return your unit, postage pre-pad, 1.

Timex Product Service Canter
P.O. Box 2740

TG00 Murray Street

Littie Rock, AR 72203

To peotect against in-transit l0ss, we recommend you insure
your Computer.

Limitations:

THE ABOVE REMEDY IS EXCLUSIVE. TIMEX COMPUTER CORPORATION
LMETS THE DURATION OF ANY WARRANTY IMPLIED BY STATE LAW,
INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY, TO 90
DAYS FROM THE DATE OF ORIGINAL PURCHASE, TIMEX COMPUTER COR-
PORATION IS NOT LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGE, This warranty gives you specific legal rights, and you may also
hawve other rights which vary from state to state. Some states do not allow
limitations on how long an impled werrenty lasts, or the exclusicn or limita-
tion of incidental or conseguential damages, so the above limitations or
axclusions may not apply to you.

Thes warranty is vosd i the Computer has been tamperad with or ill-treated or
if the defect is related to servicing not performed by us

Introduction
Getting Started

Walcome to the world of computing. Before you plug n your new Timex/
Sinclair 1009, pleass take 8 momant to think about this exciting new adven-
ture. We want 1o assure you that:

1. You will engoy computing.
2. You will find it easy as well as enjoyable.

3. You shouldn't be afrasd of the computer. You are smarter than itis. Sois
your parakeeat, for that matter

4. You will make mistakes as you learn. The computer will not laugh at you.

5. Your mistakes will not do any harm o the computer. You can't break it by
pushing the ““wrong'’ button.

Introdisctan

6. You are sbout to take a guant step into the future. Everyone will soon be
using computers i every part of their dady lives, and you will have 3 head
start.

You do not nesd to know how ta program a computer to use the T/S 1000,
any more than you need to know how to do a tuneup to drive a car. You may
want to learn to program — it is not diffieult and can be vary enjoyable — but
vou can use the computer 1or the rest of your life without having to leam
Programming.

A computer is a fool, like a hammer or saw — or perhaps like s food
processor. Hammers and saws generally do only one thing well, A food
procassor can parform diffarent operations, and normally you can “program’
it by simply pushing the proper buttons. A computer is sn mformation 1ool,
and is the most versatile tool ever invented. Because it can do many things, it
needs 8 sequence of instructions to parform any particular task. These
ifdiructions are called programs.

There are many available rams for your everyday wse with vour Timex/
Sansclair 1000 You cen use Emm for learning, and for home or business
management (ike batance-sheet calculabons, record-keeping, accounting/
bookkeeping, taxes, personed or busmess inventories, etc). You can maintam
athletic statistics, recipes, address or Christmas-card lists, prepare reports,
learn and use mathematics, play games, and do many other things.

Ome of the most important uses of the Timax/Sinclair compater is as an
educational tood Right now your childeen are begnning to use computers in
school. Thay are learning about com rs, and thay are using computars 10
help them learn other subjects. Your T/8 1000 can help your children learm a1
homa, whethar their schools have computers or not. Many educational
programs are available, for both tutoral heldp and advanced learming. You can
find all of these programs at the same store where you bought your Timax/
Sinclair 1000, Many more programs are being developed right now for the
T/ 1000, because it is the world's bast-selling computar, In the near future,
your personpl computer will be able 1o dal and answer your telephone,
maonitor your burglar alarm, control appkances, water your lawn and perform
many other duties for you. Keap in louch with your dealer]

About This Guide

This book is in several sections, 8s you can see from the Table of Contents.
The first section telis you how to plug in and sat up your Timex/Sinclair 1000,
and usé programs from books and tape cassettes. The second part is an
alamentary introducton to programming, so that you can, if you wish, leam
the basics and better understand how the computer does its work. Later
fswﬁonsgat into more advanced programming and provide reference matesial

of Bxparts

Some of the later chapters may be espacially valuable to you if you want to
program for particular uses:

Chapter 21, "The T/5 1004 for Thoss Who Understand BASIC.” is an
introduction to the spacifics of Sinclair BASIC 88 used by the T/S 1000, and
is a good starting place for expenenced programmers — but it & also a good
raview for beginnars whan thay have reachad that peint in the book.

2

Introduction

I youwm!olryywmdmmtinggammthnwnggmphics.ur
make artistic designs on the screen, you'll want to ses Chapter 13, “The
Charactar Set,” 14, 'Grachs." and 18, “Time and Motion.” Evenmllv.
you'll even want Chapter 25, “"Using Machine Code.”’

Fae the mathememauy or scientifically inclined, Chaptars 11, “"Mathama-
tics with the T/S 1809, and 15, “Functions” will be of most interest, and if
you plan 1o manipulats text matarial, you shodd see Chaptnr 12, “Advanced
Pnnnn% To:'r:n‘um 18, “Strings.” and 19, "“Substrings,” as well as per-

" v’
Have fun as you get to know your Timex/Sincleir 1090 computer!

Chapter 1
How to Set Up Your T/S 1000

We've provided everything you naed to start using your T/5 1008 compu-
ter immediately, with your own television set and an ordinary audio cassette
recorder.

Here are the compaonents of your personal computer system:

1. Your television set. You can use a color or a black-and-whita sat but, of
course, the Timex'Sinclair 1000 will dsplay in black and white only

2. A rransfer switch box, which enables you to switch between your TV
antenna and the camputer

3. A cable. about four feet long, to connect the computer to your TV,
4. The computer iteelf You will see three jack sockets on one side, marked

SVDC IN, EAR and MIC, a larger socket marked TV, and. on the back, an open
space in which you can see an adge of the circuit board Inssde

Chapter 1

5. The power suppfy It is & transformer that plugs into any standard wall
socket 1110 volts), with a cord that plugs into the computer's 9V OC IN
socket. (You will be glad to hear that you can touch the plug at the computer
end without getting any shock at all, and can plug it iInto the wrong socket in
the T/S 1000 without doing any demage) The computer has no on/off
switch, you turn it on by simply plugging it in with tha power supply

6. A double cable, about & foot long, with 3.5 mm plugs at each end, to
connect the T/S 1000 to your tape cassette recorder

7. Your cassette recorder. You'll need one that will accept the 3.5 mm plugs
its earphone and microphone sockets #f you have a recorder and it
doesn’t fit the plugs, try taking the recorder and the cables to your local
electronics shop. You will probably be able to get very inexpensive adaptors
rather than buying another cassette recorder) Strangely enough, any inex-
pensive battery-powered recorder will usually work bast with the T/S 1000
and, in fact. expensive and powerful stereo equipment may damage the
computer. It is helpful — but not essential — if your cassette recorder has a
countar By measuning how much tape has gone by the recording/ playing
mechanism, the numbers in the counter window can halp you find peograms
0N YOur Cassaiies.

Now that you have all the parts assembled, you can put tha system togeth-
er. {If you are going to Iry some programming on your own, you can 9o
without the recorder and skip to Chapter 3 after setting up; if you have a
recorder and want 1o use some pre-recorded software, or save on tape some
of your own programming, you'll want to see Chapter 2.)

First, disconnect the VMHF TV antenna wires from your television set {you
can leave the UHF wires alone). Connact tha wires from the transfer swatch
box to the termanal on your TV instead, and then connect the antenna wires
to the screws marked TV on the transfer switch box. Plug the four foot
connectng cabde into the socket on the transfer switch box and into the TV
socket on tha T/S 1000.

pr—— — e ———

NOTE: If you have cable TV, or a 76-ohm antenna lead (a round
wire ending in a screw terminall, you will need to pick up 8 small
device 1o convert this to the standard, fiat. two-wire antanna lead
that connects to the transfer switch box. There are several ver-
sions of this device, which may be called a “"UNF/VHF matching
transformer,” ““75-t0-300-ohm converter,” “cable adaptor” or
“VCR adaptor.”” Someone st your loeal electronics stora will ba
able to help you; the cost will be from three to ten dollars. You
may have to contact your cable compeny if their wire goes into
your set instead of screwing on to the terminal on the back,

— e ———

Chagpter 1

Lasd from
VHF TV anlenni

WHF wntersny
ferminals

P
»

Y

|

N i <o

Q

TV power lead Pérds Supply unit

.
FPFLL P S

AC power wptl outist

Second, plug the power supply into the wall and into the 8 DC IN socket

on the computer. '

Third, tum on the TV, Set it to channel 2 or channel 3, whichever one is not
beng usad for broadcasting in your area. Make sure the switch on the bottom
of your T/S 1000 is set to the same channel. Tum the sound all the way

dowen.

Chapter 1

You should have a picture like this on your screan:

0
R

The [3 in the lower laft-hand comer of the screen is called the cwrsor, and
means the T/S 1000 is ready for action.

Fourth, connect your recorder to the computer with the twin leads.
Although we've provided two, it may be best to usa them one &t time [you
can experimentl, connect the earphone socket on the recorder to the EAR
socket on the computer in arder 10 load a program from tape into the T/S
1000, and the microphone sockst of the recorder to the computer's MIC
sockat to save programs you've put information into o written.

NOTE: The picture on your TV screen should be clear; if you are
getting intarference, try the fallowing steps in order:

1. Adjust the tuning cantrol on the sat, then try the brightness,
comra:fl. and horizontal hold (horizontal s usually on the back of
the setl.

2. Move tha computer away from the TV sat; or, if possible, place
it lower than the sat.

3. Plug the computer into a different circuit from the television
set, usually outlets on opposite walls are on different branch
circuits,

4. You may wish to try a longer (shielded] cable batween the
switch box and the computer to move the T/S 1000 still farther
away from the TV.

5. Consult an experienced radio/ TV repairman; your set may need
adjusting.

Now you're ready to use your Timex/Sinclair 10001

Chapter 2
Using Ready-to-Run Programs

As of now, there aré many programs available for the Timex/ Sinclair 1000
comparter. programs which are fun and programs wiech are useful It is
exciting 10 see how many new ones appear each month. You will find that
programs written for the Sinclair ZX81, the predecessor of the T'S 1000, will
un on your cumpu‘ler

Some programs — the longer ones — may require the T/S 1016 18K RAM
Pack. which can be attached to the back of the computer to ncrease the
COMputer’'s memory capacity; (e, the amou of mfarmation it can hold The
18K RAM Pack is available where pou purchasad your computer.

Sometimaes you will load a program into the computer from 3 tape cassette.
You can then use the program, and even ro-use it as often as you ke, As long
@s the computer remains on, it will retain that progeam. Whan vou are done
and tum off the computer, it will disappear from the T/5 1000's stesmal
memory but. of course, vou wall still have it on tape to load and use again.
This 15 how wou will usually use games, for example

Sometimas you will type in & pragram from & book in arder to use it, and
than will want to save it on & tape cassette, Then, the next time you want to
use if, you wen't have to typa it i, but simply load if from the cassatte.

Chapter 2

And someatimes thare will ba programs you will load from 2 tape, add data
to, and then save the program with the added dats on snother part of the
tape, separate from the original program.

Let's look at how each of these is done.

' Loading a program from tape

Every program should have a name, and any cassette that has more than
one program on it should provide you with an index listing the names of all the
programs on the tape. Often this index will mark the location of each
program with a tape counter number. |f you set the counter to @30, then run
the tape forward to the numbber of & program you want t© uss, you should be
st that program’'s approximate location. (Caution: since cassatte recorder
counters are usually not exact, it is a good idea to stop 8 few numbers short
of the indax figure — at 033 if the index calls for 037, for instance.)

With all the components of your system connected and turmed on, as
discussed in Chapter 1, make sure that your tape is rawound to the beginning,
and that the [cursor is on your TV screen.

Connect the EAR socket on the computer to the “earphone™ or “head-
phones'’ socket on the tape recordar 1o about thwee-guarters of the maximusm
rolumn. If it has tone controls, adyust them so that treble is high and bass is
aw.

Then type

LOAD

which is what you get when you press the J key while the [3 cursor is
showing. (Whenever the [cursor is on the screen, pressing any key will give
you the keyword command printed above that key on the keyboard) Notice
that the computer has printed

LOAD

an the screen.

You'N notice also that the cursor has changed to This means that the
computer now will interpret any key you press as the ferrer or main llarge)
j\;mbol on any key. {Iif you pressed the J key again, for instance, you'd gat a

If you want ane of the symbols printed in red on a key, you hold down the
SHIFT key [notice that SHIFT s m red, too) and press the key you want That
is what we will do:

You want to insfruct the computer to load the program you wish to use, so
you must put the name in quotes. Suppose you want te run a program for a8
game, called STAR ZAP,

Hold down the SHIFT kay and prass the P key, and you'll gat quotation
marks. Then, without SHIFT, type in the name of the program, making sure
you have it exactly right including spaces. Then type SHIFT P aga:n for
quotation marks. Your screen will ook ke thes:

LOAD “STAR ZAP"

10

Chapter 2

¥ you make a mistake, you can start over by pressing NEW, and then
ENTER, or by bnefly unplugging the computer. n Chapter 3, wa will show
you how to sasly make corrections without starting over |

Nowe start the cassette recorder lon PLAY), and then type

ENTER

You will sae patterns of Black and wiute stripes on your TV screen — thin,
squigghy ones while the computer is searching for the program you've speci-
fied, and thick straight ones while the program is being loaded into the T/5
1000, When it is ready. the black and white stripes wil| stop, and in the lower
left-hand comer of the screen will be the “repon” /A [This maans that the
computer has successfully completed the loading assignment) You can then
turn the tape recorder off.

If the entire tape plays — or 50 much of it that you suspect that your
program has not lcaded peopetly — and you doa’t get the @/ report, press
the BREAK key Something has gone wron? and bears a little investigation.
|A short program should not take more than fifteen seconds to load, once the
heavy ines start)

For mstance, it is possible that the tape was not positioned properly [re-
member when we told you those counters were not always exact?] The
computer might not have found the beginning of the program you dessred.
[This is indscated if the than, squiggly lines never changed to thick, straight
ones.| Double chack the program location, back up the tape to & point a8 bet
earhier than betore, and try again.

The next mast likely problem is that the volume level is 100 high or to0 low.
i needs to be (a) loud enough for the computer to pick up the program,
[b) not so loud that the program s distorted (thes is actually fairly rarel, and
le} quiet enough for the silent part to be recognized as silent by the computer

The best adjustment is 10 turn the volume up 8s loud &3 it will go without
causing silent spaces on the tape 1o be nesy, you can chack this by discon-
nacting the plug in the recorder’s earphone sockat and kstening to the tape on
the speaker I the sdence is very noisy, ethier you still have the volume set
too high or you may have other problems.

Some tape recorders can form a feadback loop with the T/S 1000 [This
means that output from the recorder gets mixed up with Input to the recorder,
resulting in distortion of the ssgnall Thas is why we recommended connectin
only one lead at a time; if you've recorded something with both EAR and MI
connections made, you may not be abile ta load it

Some tape racorders can record a B0 cycle AC hum. This cen be svouded
by operating them on battenes.

Some tape recorders — especially old, worn ones — are intrinsically noisy,
and produce a lot of extraneous noise on ther tapes. You may have to mvest
m another recorder.

You may have to wiggle the plug = the sarphone socket; on some re-
cordars contact is lost if the plug is pushed in too far. If you pull it out pust a
dt, you may feel it setthng inlo a mare secure position

It iz possible to load a program without using its nama. If you type

LOAD =
1

Chapter 2

then start your recorder and press ENTER, the T/S 1000 will load the first
program it comes to. You can use this method f you've forgotten the name
of & program. You can evan load and use & number of programs on a tape,
ong after ancther, (When you stop the recorder after you have finished
loading one program, the tape will be i position to load the next.)

When you have successfully loaded a program (verified by the @/Q report),

YOu carmuse it by preszing
RUN and ENTER

and then following the instructions the program itself gives you on the screen,
and any pented insTrOCTIoNS.
IYou can look at the program by typing

LIST end ENTER
and then RUN i1, if you hke.)
Typing a printed program and saving it on tape

Many shorter programs are available i books and magazines. You can use
them by simply typing them in. Type them exactly as they appear in the
publication, meking sure your spallings ere correct, and all puncluation and
Spaces as well

You can check your listing by comparing what you have on the screen with
the printed version. See Chapter 3 for how to sasdy make corrections.

Yhen you've finished typang the peogram in, you execute it by pressing

RUN and ENTER

as above. When you've finished using it — esther you reach the end, or you
interrupt the program by pressing the key marked BREAK — you can get the
lsting on the screen by pressing

ENTER

again. (You don't have to type LIST in Sinclair BASIC) Then, after verifying
(y using it) that the program works and that you've typed it in comectly, you
can save it for future use on tape. (You don't have 1o try it out first, of coursa,
but}thmvoummmuoolngtoﬂ\otrwbloofsavmapmnmnthatwmt
run

Saving a program on tape

As we said earlier, every program should have a name. The T/S 1009,
fact, won't save a program on tape without 8 name. You can make up a8 name
for 8 program you invent, use the name of 2 program you have typed in as
above, or even change that name to something you like batter. Whatever you

12

Chapter 2

aull the program when you save it will be the name you have to ask for to load

NOTE: it is a good idea to put tha name of a program into the
listing of that program, so you can doublecheck that you have the l
right one. The easiest way is to use a REM line at the baginning.
REM — the keyword over the E key — means remark of reminder.
Any line in 3 program that starts with REM is not usad by the
computer, but is shown an the screen to people to help them use
the program,

The Timex/Sinclair 1000 automatically puts the lowest-num-
bared ling of a program first, and arranges all the lines in numancal
order. You can put a new first kne — a REM statement — in a
program, after you have loaded it by typing

5 REM “STAR ZAP” ENTER
using & line number lower than the lowest in the listing (you'd use

5 if, for instance, the first ne of the program started with the
number 10) and, of course, the actual name of your program,

Connect the MIC socket of the computer to the microphone socket of the
recorder. Position the fape in a part that is blank, or a part that you are
prepared to overwrite. Type:

SAVE "STAR ZAP"

Start the tape recorder, on RECORD, then prass

ENTER
‘Watch tha TV screen. You'll see the pattern of black and white knes, and
evantually the pattern will end and the screen will show 0/Q.

As 3 check on whether the racordar has received the program coerectly,
you can listen to it over the spesker. Rewind the tape to where you started
and play it back. You should hear, in order
1. A soft, humming buzz. This is the signal bafore you pressad ENTER.

2 Fiva seconds of silance.

3. A wvery harsh, high-pitched buzz. which is the program itself. This will go
on longer for a longer program.

4_ The soft, hummang buzz again,

13

Chapter 2

NOTE: A technigue that may make it easies to find programs you
record is 1o speak the name of the program onto the tape through
the microphone before connscting tha computer 1o the recorder
Then you can search for tha sound of your announcemant to find
the program.

_

You can check on your success at saving a program by following the LOAD
instructions above.

Saving programs with your own diata sntered

Some programs are meant for you 1o enter your own data into — saving
lists, figures, etc. These are easily used by following the same procedures
wia've just discussed

1. LOAD the program as we've described,
2. RUN the program, entering your own data as it is called for.

3. SAVE the program with dats i i1, uSang @ new name to distimguish it from
the original program. i, for example. you load & program caled "Calculator’
and then fill m your personal financial recards, you may want to save the
fillad-in version under the name “Financas."”

As you can see. there sre many ways 10 usa your Timex/Sinclair 1000
without learning computer programming, But if you'd like to look into it, try
the next chapters and see haw you like it.

Chapter 3
Telling the Computer What To Do

Now that you have tha scraen looking like the picturs in Chapter 1, you can
enter spacial computer "mstructions.” For example:

PRINT 2+ 2
makes the computer compute the sum 2+2 and display IPRINT) the result on
the screen. An instruction like this, which the computer acts upon immedi-
, 15 tBchnically called 8 BASIC command

here are other BASIC statements that sre used in programs — they are
not operated on immediately. These will be covered in Chapters 4-7)

To type in this command,

1. First type PRINT. But. although as you can see the keyboard has a key for
oach letter, you do not spell the word out P.RILN,T. As soon as you press P,

1%

Chapter 3

the whole word will come up on the screen, followed by a space, and the
scraan will ook like this:

S
4

The reason is that at the beginning of gsach command the computer &
expecting a keyword — a word that specifies what kind of command it is.
The keywords are written above the keys, and you will see that "PRINT”
appears above the P key, so that 1o get "PRINT " you have to prass P,

The computer lets you know that it expects a keyword by the [3 that you
had to start off with. There is almost always a white-on-black linverse widleo
letter, either [3 or M for, we shall see later, [or [), called the cursor. The
[3 means “Whatever key you press, it will ba taken a8 a keyword.” As you
saw, after you had prassed P for PRINT, the [3 changed toan [.

This systemn of sing just one key to gat more than one symbol is used a
lot an the T/8 1 . In the rest of the manual, waords with ther own keys ara
printed in BOLD TYPE

Keywords cannot be typed in lotter by latter.

2. Now type 2. This should cause no problam. Agas, you should see 2
appear on the screen, and the [maove one place 1o the right

Note also how a spaca is automatically put betwean PRINT and 2. Thiz is
dens as miuch as possible, so that you hardly evar have to type a space. If you
do type a space, it will appear on the screen, but it will not affect the
command

3. Now typa +. This is & shifted character [such characters are marked in
red — the color of SHIFT itsef — in the top right-hand comer of sach key),
and to get "'+ you must hold down the key E5FT] | and, while doing that,
press the key '] .

16

Chapter 3

4. Now type 2 again. The screen will look ke this:

R

?T.)-Pi:-'n:v
5. Now press ENTER, the key | £4TER “ . You press this kay wihen you are
finished with a line. The computer will then compute. In our case, the screen

o]
-

4 is the answer — but of course you don't need 8 computer 1o figure
that aut

17

Chapter 3

/0 is the report in which the computer talls you how it got where it is.
iNote that zero is written with a slash to distinguish it from capital 0. Thes s
standard notation in computing | The first @ means “OK, no problems " (At
the very end of the book, where you can flip 16 it conveniently, there is s list of
other report codes that can arse: for instance, if something goes wrang |
The second @ means that “‘the last thing done was line 0. You will see later
— when you start to write programs — that & statement can be given &
nurnber and stored away for execution later it is then a program line.
Commands not in programs do not actually heve numbers, so for the sake of
réports the computer traats them as line @

fou should imegine a report as hiding 8 [cursor — if you press P for
PRINT now, the report will disappear and the screen will change to

0

PRINT ¥

The cursor can also be used for correcting mistakes: type + +2, to get
PRINT + +2
on tha bottorn ling, When you press ENTER you gat

18

Chapter 2

PRINT B+ « 2%

The E] is the syntax error marker (the syntax is the grammar of
saying which are allowed and whach are notl; it shows that the computer got
as far as "PRINT,"” but after that it was not a “legal” message

What you want to do, of coursa, is to delata the first 4+ and replace it with
— let us say — 3. First you have to move the cursor 50 that it is just to the
right of the first +. there are two keys, ¢ and ° (shifted 5 and shiftad 8],
that move the cursor left and rght. Holding SHIFT down, press the © key
twice. This moves the cursor left two places to give you

PRINT +[8+2
Now press the DELETE kay (shifted 0), and you will get
PRINT (8 +2
DELETE removes the character (or keyword) immediately 1o the left of the
::F;“:’@“w;vmw 3 a3 3" will be mserted, egain immediately to the left of
PRINT 319+2
and pressing ENTER gives the answes (5).

The ¢ key ishifted 8] works just like the ¢ key, except that it moves the
cursor right instead of left.

19

Chapter 3

Summary

This chapter has covered how to type = commands for the T/S 1000
explaining the single keystroke system for words,

the [3 and [W cussors,

TepOMs

the syntax error marker, £}

and how 1o correct mistakes using © , ¢ and DELETE

The Keyboard
Here is & picture of the keyboard.

) £ 68 08 66 08 00 060 66 o

BETU R

¥
mmmmlumm
llr
]

. dal
sur ﬂﬁ.ﬂﬂﬂﬂ..

it you are not familiar with typewrniters, youw can use this llestration to leam
where sll the letters are. Rermember that to use SHIFT. you have to hoid it
down at the same time that you press another key. Do not confuse the digit 0
with lettar O

If you are a typist. you must also remember that you cannot use a lower
case L for the numeral 1

Chapter 4
Writing a Program

Wea are now going to wnite our first computer grogram, which is a set of
nstructions 1o the computar. In the last chapter, we gave the computer
commands, which it executed immadiately. Now we will begin to construct
statements which the T/S 1000 will carry Gut in order, Although we will start
small, there are programs of many thousands of lines, which direct compu-
ters 10 carry out lengthy and complicated procedures; the power of comput-
:? is in the ability of the machine to receive, store and carry out many

farent comples programs,

Wa will ram the T/S 1000 in & computer “language” called BASIC
(which stands for Beginner's All-purpose Symbolic Instruction Code). Invent.
ad at Dartmouth College, BASIC looks mora kke English than other computer
languages and can be used In an interactive mode, whare the user types in
something and the computer responds smmediately vie a display like your TV
screan. When you have leamed to program the T/S 1300, you will find that
you can use programs in BASIC drawn from other books and magazines. You
will elmost carteinly have to alter them slightly to make them run on the T/S
1000, because svery maching has its own shightly different version of BASIC.

Let's get started. First type NEW and then ENTER. That erases anything

N

Chapier 4

that maght be left over in the computer from Chapter 3 and clears the decks
for action.
Then, type

19 PRINT "HELLO, JACK"

If you are a typist, be sure you use numeral 1, not tha lowercasa L in the 10
{for one thing. there is no lower case on the T/S 1000 . | Also, be sure you
use zero (@ with the slash mark through il rathar than the letter ©. The 10 in
front of the same command you typed before makes it a program line, Type
ENTER and see what happens.

Now the cursor is ready agam at the bottom of the screen. Type this:

20 GOTO 10 ENTER

Note that GOTO is a keyword lover the G key) and should not be spelled
out.

Now you have & program! To execute if, type RUN (keywiord over R:
Em;'“ how mast of the keywords are over the letters they start with?] and

NTER.

How about that? That's a lot of stuff for the kttle effort you put in. As we
said, the computer is not very smart. But it is fase. and accurate, and tireless
with doing repetitions. One of the most powerful commands n BASIC |s the
GOTO, directing the computer to go back to an earlier line and repeat what
it's donae before.

You'll notica the report 5/10 at the bottam of the screen. That means it
stopped because the screen was filled (5, and last executed line 10. You can
glﬁ‘a'r‘wc screan and allow the computer 1o continue by typing CONT, then

Here's somathing else. While the computar is running dawn the screan
saying “Hello, Jack,” press the BREAK key (which doubles as the SPACE
keyl and notice that the st stops wherever it is when you pressed BREAK,
The computer checks at the end of every program kne to see if anyone has
pressed BREAK ! if s0, it stops the program. (You can siso use BREAK to
Stop & runaway program, an “endless loop,” or & misfired LOADIng from a
tape cassette. |f BREAK doesn't work, you wind up having to pull the plug
and you lose whatever's in the maching)

You can restart the program after the BREAN, also by keying CONT, then
ENTER. CONTinue lets you continue when the screen is full, when you
interrupt the progrem with BREAK or STOP, or when a program interrupts
with the STOP command.

Okay. After you've had your fill of fooling around with BREAK and CONT.
let the program stop with a full screen, and touch ENTER Bgain. Your
program is back on the screen. You can RUM it again Igo ahead: RUN,
ENTER] and then display it again ENTER). You can go on to samathing else
and keaep it in the computer untd you erase i1, the COmpuUter's memory gets
full, or you unplug the machine.

22

Chapter 5
Punctuation and Arranging Output on
the Screen

You can do wonders with punctuation marks in a T/S 1000 Basic program.,
For instance, let's clean up with NEW, ENTER, then type

1@ PRINT “JACK",
20 GOTO 10

Notica that we've decided to dispanse with the “"HELLO'. And, instead of
JACK, why don’t you go shead and use yout own name? In a program, the
computer will treat everything in quotes Bs a string B string of characters),
and the string can be of any length — and it doesn’t have to make sense. The
T/'S 1000 will print JACK, but it will just as faithfully print HERMAMN,
JACQUELINE, or KLIYBB?TF.

Most importantly, notice the comma we've added — and to the dismay of
your sixth-grade English teacher, it is sftar and outside the quotston marks,
Typs RUN, ENTER

23

Chapter 5

The screen is 32 characters wida in T/S 1009 operations, numberad @ to
31, end the comma moves the beginning of the next entry to position 16 or
position O fon the next linel, depanding on where the last entry finished, So
you can make two columns, as long as your name {8 not more than 186 lattars
lang.

T.n-a‘t's se¢ what 8 semicolon does, But don’t wipe out the program with
NEW. Just prass ENTER to bring it back.

There it is, at the top of the screen, There is & different kind of cursor up
there, B showing thst line 20 was the last one you entered. Now hold SHIFT
down and press the up armow, <, [shifted 7), moving the cursor up to ine 10.
Now hold SHIFT and press EDIT (shdfted 1), and line 10 [the one with the
cursor] comes down to tha bottom of the screen where you can work on it.
Now use the right arrow, ¢ . (shifted Bl, to move the cursor all the way to the
end of the line, then DELETE (shifted Q) to erase the comma. Type in the
semicolon instead (shifted X) and ENTER. The edited line replaces the oid
one in the program. RUN the program,

The semicolon starts the second PRINT entry nght after the frst ane. Byt
that's pretty crowded We need 10 add a spaca. Press ENTER to get the
program listng back. Use the EDIT command and the cursor arrows to biring
Ene 10 down and sdd a space betwean the K in JACK [or the last letter in your
name| and the quotation mark. Just position the cursor between K and ™ and
press SPACE. Then ENTER And RUN. And ENTER. Behold.

There's a tnck you cen use with the EDIT function, by the way. H you're
working on & lang program line and have it all messed up, so that you wish it
would go away 50 you can start over, you can press DELETE as many times
os it takes to get back to the left margin. Or you can just press EDIT, bringing
down your last successful program line and wigeng out the one you wers
working on. Then hit ENTER and return the unEDITed line to the program,
giving you o clean slate to wiark with on the bottorn!

We still have one probliem with JACK, and most likely with vour name, too
— the name is divided in different ways st the ends of the lines. Suppose we
wont to line up the narmes in neat columns With 8 comma we can gat two
columns, how can we get more?

With the TAB command, which s actually a function. (Wall, actuslly it's
not a function, but it's treated ike one because of where it is located on the
keyboard |

Clear the program (INEW, ENTER) and type

10 PRINT

You'll then find TAB written under the P key. To get it land to get all athar
functions written under keys!, hold down SHIFT and press FUNCTION (shift-
ed ENTERL. The cursor changes to (8, meaning that the T/S 1000 wil
mnterpret the next key as a function. {You can let go of the SHIFT now, and
the cursor is still .| Press TAB. |t appears on the program line and the
cursor changes back to @ (You can’t have two functions in a row without
something for them to operate on, so the computer automatically switches
out of the function mode) Type in a 1 and a semicolon, the “JACK" or your
name So far the line looks like this (but don't ENTER it: wa're not done yat)-

24

Chapter 5

10 PRINT TAB 1."JACK"

Now we want to separate the columns of names by & space. Since JACK
has four |ettars, wa add 8 space by making the next entry at TAB 6, using
semicolons batwean asch antry !

10 PRINT TAB 1;"JACK" TAB B, JACK"

It your name has a different number of letters from JACK, just add the
number of lettars, plus one for the space, to the last TAB position n order to
get the next TAB position. Keep doing this, but be sure you don't have mare
than 31 letters or spaces in all, however many times you put your nama in {if
you do, }u? elminata one entry, using DELETE, tha cursor arrows and EDIT if
necessany):

10 PRINT TAB 1. JACK" TAB 6."JACK" TAB 11,
“JACK" TAB 16, JACK™,TAB 21, JACK' ; TABR 26, " JACK"

Then ENTER. From now on. we'll stop reminding you about ENTER, ENTER
svery lina when you'ra dong with it. Type

20 GOTO 10
RUN the program. lsa’t that tidy?

2%

26

Chapter 6
Loops and Ifs

We mentioned earher that GOTO could be a very powerful command,
because it directs the computes 1o repeat an action over and over. This is
called fooping, and the portion of the program that i< repeated is called a loop.
Generally, if you don't have a way of ending repetitions [other than BREAK or
pulling the phugl, you have what is called an “endless loop,” which is messy
programming practice. Noemally you want the action repeated a specific
number of times imaybe twice, maybe ten thousand times — it's all the same
? a computer] You can use GOTQ and use a counter or confrof variable.

ype this:

12 LET I=1

The LET statement assigns a value to a varmable. In this case, | is the name
of the variable, and it is being assigned the vaiwe of 1 (You can use any
number of letters or digits in a veriable name in T/S 1000 BASIC as %&s
the first one is 3 letter] Sometimes you spell out a word like RENTPA T
for clarity, often you use just one letter for speed You can only essign
numerical valuas to regular varables. but you can assign anything in quotes to

27

Chapter B

siring variables, whech are always named by a single letter followsd by a
dollar t? Ishifted U). In the previous program, if your name was ABERA-
CROMBIE, mstead of spelling it out sach time, you meght have done thes

12 LET AS="ABERCAOMBIE"
20 PRINTTAB 1 AS:TAB 13,A%. and soon|

Let’s go on with our program for this chaptes. Now type
20 PRINT "HELLO. JACK"
30 LETI=l#+1

Hold on right thare, partner] You expect me to believe that I=l+17 What
kind of math is that?

Well, it isn't math, it's programming. And in a LET statement in BASIC, it's
okay It means “set the new value of | equal fo the old value plus 17, m othar
words, increase the value of | by 1. So each time we go through the program,
in @ repeating loop, the counter will be rased by 1 In 2 moment we'll see
why. Typeon:

40 IF 1I=6 THEN GOTO 60

Ahal Se, each time we get to line 40, the T/S 1800 waill check the value of
I Whan it reaches 8 — the sixth time through the program — it will BOTO
ine 60. Untd | equals §, the program will just go on 1o the next line after 40
Mg inad,

5@ GOTO 20
6@ sTOP

If 1=8, we GOTO 60 and STOP. If | is not equal 1o 6. we go past 40 to 50,
which in tum tedls us to GOTO 2@ and start over from thare. Lat's RUN it

We've printed "HELLO JACK” five times {the sixth time we went to B9
instead). Press ENTER to get back the listing, The IF statement, with its
dacision-making ability, 5 another of BASIC s important features.

But that was a fairy clumsy loop. There is a cleaner approach, called the
FOR/NEXT loop. Type this m without first arasmg the program above:

100 FORI=1TO S
|Use shifted 4 for TO; don't spell i out)

110 PRINT "HELLO, JACK™

120 NEXTI
il is commonly used as the counting or cantrol variable, mcidentally: control
variables of FOR'NEXT loops must have namaes a single letter long|

To RUN that part of the program, typa in RUN 109 instead of just RUN
ithe computer i& saving all the lines and will start runfmg at any line you
choose) After you've seen how that three-iine program does just what the
pravious six-kner does. look at the listing again by typing LIST 100 If you
want to see both listings for, more propery, all of what is really a single
listing), just hit ENTER agein — or LIST with no ne number, and then

28

Chapter 6

ENTER. (This is the way most BASICs handle the listing function; the T'S
1000's recallng of 8 ksting with just ENTER is unusual)

SPECIAL NOTE: Whaen you use "RUN 100, you claar all variables before
beganning the run. If for some reason you want to Save vanables that you
have assigned velues 1o, use “"GOTO 100" instead. The command RUN
maans, to the T/S 1000, CLEAR |which you can aiso enter from the key-
board if you want to clear ofl the variables — for instance, if you need the
space — but leave the program and the screen intact), than GOTO

An extra subtiety is that the control variable does not have to go up by 1
each time. you can change thus 1 10 anything else you like by using 8 STEP
part in the FOR statemant If ina 100 read

100 FORI=1TO SSTEP 2

then you'd get 3 "HELLO, JACK"s before the loop reached its limit and
stopped. The STEP need not be in whole numbers, and the cantrol value
nead not hit the Bmét evenly — it goes on looping as long as it is less than or
equal to the it

You must be careful if you are running two FOR/NEXT loops together, one
inside tha other. Try this program, which prints out a complate sat of §-spot
dominoes:

10 FORM=0TOD 6

20 FORN=0OTO M

30 PRINT M, N;" ",
40 NEXTN

50 PRINT

60 NEXTM

You can see that the N-loop is entirely inside the M-loop — in other words,
they are correctly nested. What must be avoided is two FOR/NEXT loops
that overlap without either being entirely inside the other, like this:

10 FORM=0TO &

20 FORN=OTOM

30 PRINT M, " N ™, WRONG!
40 NEXT M

50 PRINT

60 NEXTN

Two FOR/NEXT loops must be either one inside the other, or m
separate. Another thang to avoid {8 jumpeng into the middle of a
from outside (You might do this with a GOTO directing the computer to
a line after 3 FOR statement, and whan you get to the NEXT statemeant, you
will probably get an error report 1 or 2
Now latsukcalookataprogmmlhalmbghtbeo!wmm,mdm
statemants we haven't seen before. First type it in, and then we’ll analyze it:

28

Chapter 6

10 REM PROGRAM TO MULTIPLY BY P1
(Spefl out Plin lines 19 and 29)
20 PRINT “THIS PROGRAM MULTIPLIES ANY NUMBER BY P
30 PRINT
40 PRINT "ENTER A NUMBER™
50 INPUT A
&0 PRINT A" TIMES Pl= """, A"PI
{Use the function Pl — the 7 under the M key — although the computer wall
print il 1o look just kke the spelled -out version in lines 10 and 20)
7O PRINT
20 GOTO 30

Now, let's talk & bit about this program bafore we run it
1 Notice the line numbers we have been using are m multiples of ten.
Abways do thes in 8 "first draft” Because the computer automatically puts
tha ram lines in numerncal order, you can insert a lme 15 il you want or
need to later — and afterthat, a12Zanda 13
2 The keyword REM, for "REMARK"™ or "REMINDER, " identities a line that
is prnted out In the program lsting to help a later user understand the
mo* ram. but ignored by the cormputer curing a RUN.

he keyword command INPUT in lne 50 causes the computer 10 stop
and wait for the user to enter a number. The [cursor a1 the bottom of the
screan when you run the program indicates that the T/S 1000 s waiting for
input. but it is bast 10 mdicate more clearty 10 the user that he has (o do this.
That's the function of line 40,

SPECIAL NOTE: When you wish ta INPUT a string las we will kater anl, you
must indicate a string variable i the program — A% instead of A — and the
cursor prompt will appear at the bottom of the screen enclosed in quotation
marks. If, 8t thet point, you want to STOP the program, you can’t just input
thae word STOP — the computar will treat it as a string! You must use thea left
arrow kay to move the cursor to a point outside and bafore the guotaton
rmarks and thes type STOP
4. Lines 30 and 70, PRINT without anything to be printed, essentially tefl the
computer to print a blank ling, or skip @ bae This simply makes the autput
aasier to read on the screan because of the extra space. After you've run the
program, you might want to change the listing by typing 30 ENTER and 70
EN‘?ER leliminating both ines| and sea how much more crowded the scraen
looks
5 Another peece of spacing for legibility & found i fine B0 Notice that thare
15 8 space typed in after the first guotation mark and before the second one.
Don't legve them out.

Now RUN the program

You can do the same thing on a pocket calculator with memuory {store an
accurate value far Plin memary, enter a new number, it tha multsply key and
the “‘memaory recal” key for each answer). But evan for this trivial piece of
math, the computer is easier and handser, and trelessly guides you through
the exercise, remending you along the way what you are domng, Imagna the
value of having the computer do this far you on a more complex task!

30

Chapter 7
More About IF

All the programs we've seen so far have bsen fairly predictable — thay
followed all the instructions from beginning to end, and then maybe went
back to the beginning again. Thés is not all that useful In practice the
computer would be expectad to distinguish between different cases and act
accordingly, it does this by using the IF statement.

Clear the computer lusing NEW). and type in and run this program:

12 PRINT "I AM THINKING OF A"
20 PRINT "NUMBER FROM 1 TO 5™
30 PRINT “CAN YOU GUESSIT?"
40 LET A=INTIRNDS| +1

50 INPUT B

B0 IF A=BTHEN GOTO 80

7O PRINT "GUESS AGAIN™

80 GOTO 50

90 PRINT “"CORRECT"

For & discussion of RND, see Chapter 15, “Functions”™, especially exorcise 4.

n

Chapier 7

As you can see, an IF statement takes the form
IF condition THEN statemeant

The statemants hara are GOTO statements, but they could be anything at
8ll, sven mora IF stataments. The condition is something that is goeng to be
proved either frue or falsa. If it comes out 8= true, the statement after THEN
is axpcutad; otherwisa, if (s skipped over,

The most useful conditions compare two numbiers or two strings: thay can
test whather two numbers are equal. or whether one is bigger than the other,;
and they can test whether two strings are equal, or whether one comes
before the other in aiphabetical order. They use the relations =, <, >, <=,
>mand <>.

=, which we have used twice in the program (once for numbers and once
for strings| means “equals”. |1 s not the same as = in a LET statement,

= means is less than," so that

1<2
e |
and -3<

all hold (they have the value frue), but

1<9
and Q<=2

do not (they have the value falsel.
To see how this works, let's write a progrem to input numbers and display
1he biggest so far

10 PRINT “NUMBER" “BIGGEST 50 FAR"
20 INPUT A

30 LET BIGGEST=A

40 PRINT A BIGGEST

5@ INPUT A

60 IF BIGGEST < A THEN LET BIGGEST= A
70 GOTO 40

The crucial part is line 60. which updates BIGGEST if its oid value was
smallar than the naw input number A

> [shifted Ml means "is greater than'" and is just llke < except in reverse,
‘fou can distinguish betwean them by remembering that the thin end points to
the number that i supposed to be smallar,

<= [shifted R — do not type it as < followed by =) means "'is lass than or
equal to,” so that it i like < except that it holds even if the two numbers are
equal: thus 2 < =2 holds, but 2 < 2 doas not.

> = (shifted Y} means “'is greater than or equal t" and is similarly ke =

< > [ghifted T) means “'is not equal 10, the opposite in meaning from =.

Mathematicians wiile <=, > =and < > as =, & and . They also
write such sequances as “2<3< 4" to mean "2<3 and 3= 4" but this is

32

Chapiar 7

not possible in BASIC.
m’;‘m ralations can be combined by using the logrcal operations AND, OR

one refption AND another relation

holds whenever both relations hold
one relation OR another

hodd whenever one of the two relations does (or both do).
NOT relation

holds whenever the relation does not
Logical expressions can be made with relations and AND, OR and NOT,
just as numerical expressions can be made with numbers end 4, ~ and 50 on,
Bc;'u ;an even put in parentheses if necessary, NOT has priority 4, AND 3 and
To illustrate, cleat the computer and try this program, expanded from the
ona at the beginning of the chaptes

1@ PRINT I AM THINKING OF A
20 PRINT "NUMBER FROM 1 TO 5"
25 PRINT “CAN YOU GUESS T?"
30 PRINT
35 LET T=0
40 LET A=INTIRND'5}+1
50 INPUT B
56 LET T=T+1
B0 IFA<>BAND T > =3THEN GOTO 100
66 IF A=BTHEN GOTO 3¢
7@ PRINT "GUESS AGAIN"
80 GOTO 5@
90 PRINT “CORRECT”
25 STOP
102 PRINT "SORRY, GAME OVER"
110 PRINT “YOU DIiD NOT GET ITIN"
120 PRINT “THREE GUESSES."
130 PRINT “THE ANSWER WAS A

Notice the STOP statement in fine 35 DOtherwise, when the program
reached line 99 (because the answer was correct), it would then go on ta 100
and'uv the right answer had not been given. This would be confusing, to say
the leas!.

Lastly, we can compare not only numbers but also strings. We have ssen
how =, <, =, <>, <= and > = work when companng numbers

What does “less than' mean for strings? One thing it does not mean is
“sharter than' so don't make that mistake. We make the distinction that one
string is less than another if it comes first in alphabetical order: thus

3

Chaptar 7

“SMITH" < “SMYTHE™
“SMYTHE" > “SMITH™
“EILLION™ < “MILLION™
"DOLLAR" = “POUND”

all hold. < = means "is less than or equal 10, and &0 on, just as for numbers.

Note: In soma versions of BASIC — but not on the T/S 1000 — the IF
staterment can have the form

IF condition THEM line numbar
This means the same as

IF condition THEN GOTO Ene numiber
You must ese both THEN and BOTO in Sinclair BASIC,

Summary

Operations: =, <, > <=, >= <> AND, OR
Functions: NOT

Exercises

1. <> and = are ocpposites in the sanse that NOT A=8 is the same as
A< >Band

MNOT A< =8 g the same as A=8
Prove to yoursalf that < and > =, and > and <= are Opposites n the
same way, 50 that you can always ramove NOT from in front of & relation by
-:hrgmgﬂwrdalim

MOT & first logical axpression AND a second]
is the same as

NOT (the first) OR NOT (the sacand)
and NOT |a first logical expréssion OR 8 second)

is the same as
NOT [the first) AND NOT (the second).

Using this, you can work NOTs theough parentheses until eventually they
are all applied to relations, and then you can dispasa of them. Thus, logically

34

Chapter 7

speaking, NOT is unnecessary, but you may still find that using it makes a
program clearer.

2. BASIC ean sometimes woek along different lines from English, Consider,
for instance, the English clause “if A doesn't aqual B or C”' How would you
write this in BASIC? The enswer is nof

“FFA<>BORC nor"IFA<>=BORA<>C"

Don't worry if you don't understand exercise 3, 4 end 5, the points coversd in
them are fairly advanced.

3. (Skip this unless you already know BASIC thoroughiy)
Try
PRINT 1=21<>2

which you might expect to give a syntax error. In fact. as far a5 the computer
is concemed, there i= no such thing as a logical value.

il = <, >, <= >=gnd <> ara 8l number-vakued binary operations,
with pricrity 5. The resultis 1 (for true) i the relation holds, and © (for false) il
it does not

tml in

IF condition THEN statement
the condition can actually be any numencal expressson. If its value is @, then it
counts as false and any other value counts as true Thus the IF statement
means exactly the same as
IF condition < > @ THEN statement
(i) AND. OR and NOT are also number-valued oparations,

X if Y is non-zero lcounting as true)
KANDY has the value Qif Y is zero {counting as falsel

1 Yis non-zern
XORY has the valuga X it Y is zero

and 0 if X is non-zaro
NOT X has the value 1if X is pero

With this in mind, read through the chapier agsmn, making sure it all warks,

I the expression X AND Y, X OR Y and NOT X, X and ¥ will each usually
take the value @ or 1, for false or true. Work out the ten different combina-
tions and ses if they do what you expect AND, OR and NOT to do.

4. Try this program:

Chapter 7

10 INPUT A
20 INPUT B
30 PRINT (A AND A =BJ+(B AND A < 8)
40 GOTO 10

Each time, it prants the targes of the two numbers A and B. Why?
Convince yoursalf that you can think of

XAND Y
as maeaning
Xif Y lelse the result is @)’
and of
XORY
% maaning
"X unless Y (n which case the result s 1)’

An expression using AND and OR in this way is called 8 conditions/ expres-
sion. An example using OR could be

LET RETAIL PRICE=PRICE LESS TAX"{1.05 OR V$=""NON-
TAXABLE")

Notce how AND tends to go with addition {because its default value is @),
and OR tends to go with mudtiplication (because its default value is 1)

i.ugou can also make sirng-valued conditional sxpressions. but only using

X$ AND Y has the valua XS if Y is non-zero
Y is 2er0

s0 it means XS if Y (alsa the ampty string).”’
;rry this program, which mputs two strings and armanges them in alphabeti-
cal order.

10 INPUT AS

20 INPUT BS

30 IF AS< =BS THEN GOTO 70

40 LET CE=A%

50 LET AS=BS

60 LET B$=C$

7D PRINT AS," ", ("< AND AS<BS)+
"="AND AS=8%)," " BS

20 GOTO 10

36

Chaptee 7

B Try this program.
10 PRINT "X

20 sTOP
3Q PRINT "'Y"

When you run it. it will display X" and stop with report 220, Now type
CONT

You might expect thes to behave like “GOTO 20, so0 that the computer
would just stop again without displaying YY", but this would not be vuz
useful, so the program is arranged so that for reports with cade 9 {STO
statemant executad|, tha line number is increased by 1 for a CONT state-
mant. Thus, in our example, "CONT " behaves like “GOTO 21" (which, since
thera are no bnes batwaen 20 and 30, hehavas ika “"GOTO 307)

7. Many versions of BASIC (but not the Sinclair BASIC) have an ON state-
mant, h takes the form

ON numerical exprassion GOTO line number, line number, .. ., line number.

in this the numerical expression is evaluated, supposa its value is n then the
effect is that of

GOTO the nth line number
For instance,
ON A GOTO 100, 200, 300, 400, 500

Here, if A has the value 2, then 'GOTO 2007 is executsd. In Sinclair BASIC
thés can be replaced by

GOTO 100°A

In casa tha kma numbers don’t go up neatly by hundreds like this, work out
how you could use

GOTO 8 conditional Bxpression

nstead.

37

34

Chapter 8
SLOW and FAST

The T/5 1000 can run at two speeds — SLOW and FAST. When it is first
plugged in, it runs in the SLOW mode and can compute and display informa-
tion on the screen simultanecusly. Thus mode is ideal for “mowing graphics'’
because it gives priority to maintaining the display and does its computing
during the periods when the television is making the blank parts of the picture
at the top and bottom of the screen,

Howaver, it can go roughly four times as fast, which it does by giving
priority to the computation and onfy maintaining the picture when it has
nothing else to do. To see this working, type

FAST

Now whenever you press a key, the screen will blink — this is because the
computer has stopped displaying a psctura while it detarmined what key you
prassed.

Typa in a program, say,

39

Chapter 8

10 FORN=0TO 255
20 PRINT CHRS N;
30 NEXTN

Nota that CHRS is a function, as wa mentioned briefly in Chapter 4. Press
SHIFT end ENTER to get the [curser, then type U to get CHRS, which is
undear the U.

When you run this, the whole screen will become an indetermingte gray
until the end of the program, when the output fram the PRINT statement will
cOMme up on the screan,

The picture is also displayed during an INPUT statement, while the compu-
ter is waiting for you to type the INPUT data. Try thes program:

10 INPUT A
20 PRINT A
30 GOTO 10

To get back into normal {compute and display) mode, type
sLOow

It will often be just a matter of taste whether you want compute and display
moda for continuity on the screen, or fast mode for speed; but in general you
will use the fast mode

(i) when your program contains a lot of numerical calculation, especially if it
doesn't print much — time doesn’t seerm to drag quite so much if you can see
output coming up on the screen fairly frequently

() when you are typing in & long program, You will already have noticed
that the ksting gets redona evary time you enter a new prograrn hine, and this
can be annoying.

You can use SLOW and FAST statements within programs.

For exampde,

10 SLOw

20 FORN=1TO 64

30 PRINT "A";

40 IF N=32 THEN FAST
50 NEXT N

60 GOTO 10

Summary
Statements: FAST, SLOW

Chapter 9
Subroutines

Sometimes different parts of your ram will have similar jobs to do, and
you will find yourself typing in the same lines two or more times. This s not
necessary. You can type the lines in once, in tha form known as a subroutine,
and then use, or cal, them anywhere alse in the program without having 1o
type them in again

To do this, use the statemants GOSUB (Go o SUBroutingl and RETURN.

GOSUB n

where n s the line number of the first ling in the subrouting, 1% just like GOTO
N except that the computer stores the line number of the GOSUB ststement
50 that it can come back again after doing the line. It does this by putting the
line number (the retun address) on top of a pde of staternents (the GH?UB
stack].

41

Chapter 9
RETURN

takes the top line numbes of! the GOSUB stack and goes on to the line aftar
it

As sn example,

10 PRINT “THIS IS THE MAIN FROGRAM"'

20 GOSUB 1000

30 PRINT “AND AGAIN",

40 GOSUB 1000

50 PRINT “AND THAT IS aLL"

60 STOP
1000 REM SUBROUTINE STARTS HERE
1310 PRINT "THIS IS THE SUBROUTINE"
1020 RETURN

Without the STOP statement in line 60 tha program would run on into the
subroutine and cause error 7 when thea RETURN statement was reached

As another example, suppose you want to write a computer program 1o
handle yards, feet and inches. You will have thrae vaniables Y, F and | (and
maybe others — ¥1,F1,11, and so onl. The arithmatic is easy. First you do it
separately on the yards, feet and inches — for instance, 1o add two quantitias
of distance, you add the inches, add the feet, and add the yards: to doutde the
distance, you double the inches, double the feat, and doubls the yards. Then
adjust the quantities to the correct form so that the inches are between @ and
12 and the feet are between O and 3. This last stage is common to all
operations, 50 wa can maka it nto a subroutine.

Puttng aside the notion of subroutines for a moment, it is worth your while
o try 1o write the program yourself. Given the arbitrary numbers Y, F, and |,
how do you convert them into the correct number of yards, feet. and inches?

‘What first comes o mind will ably be something like 1Y_4F 14| which
you want to convart to 2Y.2F 20 This is not so difficult. But sy you
have negative numbers. Leot's go back to our initial values 1Y 4F 141 nega-
tivaly they becoma — 1Y —4F_— 141 which would then tum out to be -2Y. -
ZF..=21. And what about fractions? If you divida 3Y, 1F_71 by two, you get
1.5Y.Q.5F 3.6, and although this has the feat between 0 and 12, and the
yard as 1.5, it is cerfainly not as good as 1Y. 2F 351 Try to work out your
own answers 1o all this and use them n 3 computer program — befora you
read any further,

Here s one solution, using functions which will be described more
thoroughly in Chapter 15, Chapter 5 tells you how to program them.

42

Chapter 9

1000 REM SUBROUTINE TO ADJUST Y, F, | TO THE NORMAL
FORM FOR YARDS, FEET, AND INCHES

1Q21Q LET 1=36"Y+12*F+i

1020 REM NOW EVERY THING IS IN INCHES

1030 LET E=SGN |

1040 LET I=ABS |

1050 REM WE WORK WITH | POSITIVE, HOLDING
ITSSIGNINE

1060 LET F=INT (/112)

1070 LET i=(-12"FI"E

1080 LET ¥Y=INT IF/'3)°E

1090 LET F=F"E-3"Y

1100 RETURN

On its own this is not much vse, because there is no program to set up ¥.F
and | beforehand, or to do anything with them afterwards Type in this mamn
program, and also another subroutine. to printout ¥, F, and L

10 INPUT Y

20 INPUTF

30 INPUT |

40 GOSUB 2000

45 REM PRINT THE VALUES
50 PRINTTAB 12,"'=",

&0 GOSUB 1000

65 REM THE ADJUSTMENT
70 GOSUB 2000

75 REM PRINT THE VALUES
80 PRINT

a0 GOTO 10

2000 REM SUBROUTINE TO PRINT Y, F, AND |
2010 PRINT " WY R R
2020 RETURN

Clearly we have saved on program length by using the printing subroutine
at 2000, but the adjustment subroutine i fact makes the program longear —
by a GOSUB and a RETURN. 5till, program length is not the anly considera-
tion. Used with skill, subroutines can make programs easéer to understand.

The main program is made simpler by the fact that it uses more powerful
statemants: each GOSUB represents soma compiicated BASIC. 8ut you can
forge! that; only the net result matters. Because of this, it s much easier 1o
grasp the main structure of the program

The subroutimes, on the other hand. are simplified for a very different
reason, namely that they are shorter. They still use the same oid plodding
LET and PRINT statements, but they have to do only a part of the whole job
and s0 are easier to write.

The skill lies in choosing the level — or levels — at which to write the

43

Chapter 9

subroutines, They must be big enough to have a significant impact on the
main program, yet small enough to be significantly easier to write than a
completa program without subroutines. These examples (nor recommended)
ibustrate,

First.

10 GOSUB 1000
20 GOTO 10

1009 INPUT Y

1010 INPUT F

1020 INPUT |

1030 PRINT " .Y, "Y_".F,"F." 11" . TAB 12,"'="",
1040 LET [»38°Y+12'F+|

2000 RETURN
and second,

10 GOSUB 1010
20 GOSUB 1920
30 GOSUB 1¢39
40 GOSUB 1040
50 GOSUB 10560

300 GOTO 10

101Q INPUT Y

1215 RETURN

1020 INPUT F

1025 RETURN

1030 INPUT |

1035 RETURN

1040 PRINT “ " Y, "Y_"F,"F. LT TAB 12'= 7';
1045 RETURN

1050 LET |=36°Y+12"F+|

1055 RETURN

The first, with its single powerful subcouting, and the second, with its many
trivial ones, demonstrate quite opposite extrames, but with sgual futility.

A subrouting can call another, or aven self (a subroutine that calls itself is
recursive), 50 don't be afraid of having several layers

Chapter 8

Summary
Statermants: GOSUB, RETURN

Exercises

1. The example program is virtually a universal distence calculator. How
would you use it

fit toconvert yards and inches into yards, faet and inches?

{ii} to convert maters into yards and feet?

liii} to find fractions of a yard? ia.g., a third of a yard, or a foot.)

Futin a line to round inches off to the nearest inch
2. Add two statements to the program:

4 LET ADJUST=1000
7 LET YFIPRINT=2000

and change

GOSUB 1000 to GOSUB ADJUST
GOSUB 2000 to GOSUB YFIPRINT

This works exactly as you'd hope; in fact, the fne number m a GOSUB lor
GOTO or RUN) statement can be any numencal expressson, (This may not
woark o|n computers other than the T7/S 1000, because it is not standard

This.ltind of thing can work wonders for the clarity of your programs.

3. Rewmte the main program in the example o do something quite different,
but still using the same subroutines.

4. GOSUBn
-RETURN

in consecutive lines can be replaced by
BOTO n

Why?
5. A subroutine can have several entry points. For instance, because of the
Way our mamn program uses them, with GOSUB 1000 followed immediately
by GOSUB 20900, we can replace our two subroutines by one big one that
adyusts Y, F and | and then prints them. It would have two entry points: one at
the beomning for the whole subroutine, and another further on for the print-

Hm the necaswv rearrangements,

45

Chapter 9

6. Run this program:

12 GOSUB 20
20 GOosuB 10

The return addresses are pushed on to the GOSUB stack in droves, but
they never get taken off agein; and eventually there is no room for any more
in the computer. The program then stops with arror 4 (see Report Codes).

You might have difficulty in clesring them out again without losing avery-
thing, but this will work.

) Dedete the two GOSUB stataments.

il nsert two new lines

11 RETURN
21 RETURN

(=) Press
RETURN

The return addresses will be stripped off until you get eeror 7.
iv} Change your program so the same thing doesn't happen again.

How doas this work?

Chapter 10
When the Computer Gets Full

The T/S 1002 has only limited internal storage, and it is not hard to fll it
The best indication that this has happened is ususlly an efror report 4, but
other things can happen, and some of them ara rather strange. If you have a
RAM pack, detach it for 8 moment.

The display fife — the area inside the computer whare it storas the televi-
sion picture — is designad 0 that it only takes up space for what has been
printad so far: a lina in the display consists of up to 32 characters and then
an ENTER character. This means that you can run out of room by printing
somathing, and tha mast obvious time is while making a listing. Type

NEW

DIM A[355)

10 FOR |=1T0 15
20 PRINT |

[The DIMension statemant sats aside space in the computer's memary, as
we will see in Chaptar 17. For now, we are using it 85 8 queck way to “'use

47

Chaptar 10

up™ tha}rnermrv for thig chapter’s demonstration. Typa it in and don’t worry
abgat it,

Here comes the fest swprise: ling 10 disappears from the listing The
listing must include the current line, 20, and there is no room for both linas.
MNow typa

30 NEXT|
Again, there is only room for line 3@ i the listing. Now type
40 REM X (without ENTERI

and you will see line 30 disappear and line 40 jump to the top of the screen, It
has not been entered m the program — you still have the cursor and can
maove it about. All you have seen is some obscure mechanism that gives the
bottom hall of the screen 24 lines to give it priority over the top half. Now
type

L 0.0 [still without ENTER)

and the cursor will disappesr — thara s no room to display it Type another
X, without ENTER, and one of the Xs will disappear. MNow type ENTER.
Evarything will dizsappear, but the program = still in the computer, as you can
prove by deletng line 18 andusing < and —~ Nowtype

18 FORI=1TO 15

again — it will mové up to the top of the screen as line 40 did. But whean you
press ENTER, it will not be entered, although thera & no efrer message or B
marker to say that anything is wrong. This is the result of there being no
room to check the syntax of a line, and it ususlly happens onty for lines that
contain numbers {piher than the line number at the begmningl.

The solution s to make space somehow, but firs! delete the line 10 that
won't go in. Press EDIT: the screen will go blank, becsuse there is no room
to bring the lina down.

Press ENTER and you will get part of the listing beck. Now delets the ling
49 wihich you reslly dhdn't want anywayl by typing

40 {and ENTER]

Now try typing in line 10 agesn — it still won't go. Delete it again. You must
still find extra space somewhera Bear in mind that the reason ling 10 was
rejacted was probably that there was no room to check the syntax of the two
numbers, 1 and 15: so if you delste line 20 in the program, you may have
room to enter line 10 and still have room 1o reenter ling 20 lwhich contains no
number) afterwards Try this Type

24
10 FORI=1TO 15
200 PRINT |

Chapter 10

and the program is entered proparly.
Type

GOTO 10

and again you will find that this line is rejected bacause its syntax cannot be
chacked, howaver, if you delete and type

RUN

it will work. (RUN clears out the array, making plenty of space.}
Now type in the sama as before from NEW up to line 30, and then

40 REM XOOOCGOCCCKX X

(11Xsl], which will end up looking like 40 RE. Whon you press ENTER., the
Esting will consist anly of line 3@, and in fact line 40 will have been compietely
lost. This is bacause it was simply 100 long to fitin the program. The effectis
aven worse when the line is 2 lengthened varsion of a line that is already in the
program, for you will kosa both the old line from the pragram and the new line
that was to replace it.

The sohstion for this is to buy a8 RAM pack. whach fits on the back of the
computer.

The T/S 1016 16K RAM pack gives the computer sight times as much
memory fcomputer jargon for the storage) as it has in its unexpanded form.

The behavior with the 16K RAM pack is different. because the display file
is filled with spaces to make each line 32 characters long (note that SCROLL
upsets this — sea tha chapter on Organization of Storage). Now printing and
listing will not make the computer run out of memory. and you will not see all
the shortenad listings and jumping around. but you will still see the Enas
sticking or getting lost, and again the solution s to find spare space.

If you have a memory expansion board (16K RAM Pack), put it on and go
through the typing in this chapter, using

DIM A{3068)
to raplace DIM A(355).
To summarize

1. If the listing s only partially shown or things start jumping sround, the
space is getting tight.
2. If ENTER seems to have no effect at the end of a fine, thara is probably no
room to deal with a number, Delate tha line, using EDIT-ENTER or DELETE.
3. ENTER might lose a kne altogether,
For all theso oddities, the solution is the same: Don't panic, and look for

SDIMe 5pars space.

The first thing to consider is CLEAR. If you have variables and you do not
mind losing any of them, this | the thing to do

49

Chapter 10

Failing this. look for unnecessary statements in the program. such as REM
staternents, and delete same of them,

Summary

: \Allhenthomemurv fills up odd things can happen. but they are not ususlly
atal

50

Chapter 11
Mathematics with the T/S 1000

Turn on the computer. You can now use it 8s 8 mathematical calculator,
along the lines described in Chapter 3: type PRINT, then whatever it is you
want to solva, and then ENTER.

The T/S 1000 can not only add, but aiso subtract, multiply lusing a star *
instead of the ususl times sign — this & fairly commaon on computers) and
divide (using [instead of +). Try these out,

+, =, *and / are operations, and the numbers they operate on are their

Thsco.mnmvcunilsoniuommmbulothaoomrofmhorbyu;hg
the operation ** (shifted Hl: type
PRINT 2°°3

and you wil?onho answar 8 (2%, or 2 cubed).
The T/S 1000 will also compute combinations of the operations. For
example,

PRINT 20-2°3"2+4/2°3

B1

Chapter 11

gives the answer B. |t does it in a roundabout way, bacausas first it works out
all the powers (**| in order from left to right; then all the multiplications and
divisions (* and /), again from left to right. and then the additions and
subtractions (+ and ~|, yet again from left to right. Thus our exarnple is
worked out in the fellowing stages:

20-2°3*7 + %3

first the powers
0-29 +4/2°3
I

i then the mudtiplications and divislons
20-18 +4/2*3

20-18 +2 3
\.‘.—c

20-18 +6

5 o8 and than the additions and subtractions
]

8

Wae formalize this by giving each operation a prionity, a number batween 1
and 16. The operations with highest priority are evaluated first, and opera-
trons with equal pricrity are evaluated in order from laft to right.

= has priority 10
*and / have prionty B
+and - have priority 6

‘Whan = is used o negate something. as when you write — 1, it has priority
9. This is unary minus, as opposed to the binary minus in 3—1. (A unary
operation has one operand, while a binary operation has two.) Note that on
the T/S 1000 you cannot use + as a unary operation

This order is absolutely rigid, but you can circumvent it by using parenthe-
585 uwﬂﬂ;g in parentheses is evaluated first and then treated as a single
number, so that

PRINT 3°24+2
gives the answar G+ 2 =8, but

PRINT 3*(242)
gives the snswer 3*4m 12

52

Chepter 11

A combination like thes is called an axpression — in this case, an srithmetic
or numeric exprassion, because the answer 18 8 number. In general, whenever
the computer is expecting & number fram you, you can give it an expression
instead and it will work out the answaer.

You can wité numbers with décimal points, and you can also use scientific
notation, as s quite common on pockat calculators. In this, after an ondinary
number (with or without a decimal pointl, you can write an exponent part
consisting of the letter E, then maybe + or =, and then 8 number without a
d:eim! point. The E here means "** 10" (“times 19 to the power of”’) so
that

238E0=234"10"0 =234

234E3=234"10""3=2340
234E-2=234"10"=-2=00234 and S0 on

(Try printing these out on the T/S 1000

It will hedp to understand this if you imagine the exponent part shmm? 1he
decimal point along to the right (for a positive exponent) or to the left {for a
negetive axponant).

You can also]pmt more than one entry at & ume, separating them with
either commas [) of samicolons {; on shifted X, If you use & comma, the next
number will be displayed starting either as the left-nand margn or in the
middie of the line In the 16th column. If you use a semicolon, the next
number will be displayed immediately following the last one. Try

PRINT 1,2:3:4,5,6:7,8.9;10
PRINT 1,2,3456,7,8.8.10

to sea the differences. You can mix commas and semicolons within a single
PRINT staternent.

Summary
Functions: 4, =,*,/,**
Exprassions, scientific notations
Exearcises
1. Try
PRINT 2. 34EQ
PRINT 2 34E1
PRINT 2 34£2
and 0 0N up to
PRINT 2 34E15
You will see that after a while the T/S 1000 also starts using scientific
notation. This is because It never uses maore than 14 spaces to write a
number. Simikarly, try

53

Chapter 11

PRINT 2 34E-1
PRINT 2.34E-.2
and 80 on.
2 Try
PRINT 1.2.3.,.4...56

A comma always moves you on toward the next number. Now try
PRINT 1:,2::3;::4;.;,8
Why is a stnng of semicolons no different from a single one?
3. PRINT gives only B significant digits. Try
PRINT 4204067295.4234967295 —~429E7

This proves that the computer can hold all the digits of 42948967295, even
thaugh it 1 not prepared to display them sll at ance

4. I you have some log tables, test out this rule:

Aaising 10 to the power of a number is the same as teking the antiog of
that numbser

For axamiple, type

PRINT 1003010
and look up the antdog of 0.3810. Why are the answers not exacily sgual?

B. The T/S 1000 uses flaating paint arithmatic, which means that it keeps
separate the digits of & number lits manti/sssl and the position of the point
[the exponentl. The answer is not shways exact, even for whole numbars.

Type _
PRINT 1E10+1-1E10,1E10=1E1041

Numbers are held to about 8 1/2 digits accuracy, so 1E10 is 100 big to be
held exactly right The inaccuracy (sctuslly about 2) is more than 1, so the
numbers 1E1Q and 1E10+1 appsar to the computer to ba aqual,

For an even maore paculisr exampla, type

PRINT 5E3+1-5E9

Here the inaccuracy in SE8 is aaly about 1, and the 1 to be added on, in fact,
gets rounded up to 2. Here the numbers 5E9+41 and 5E9+2 appear to the
computar to be equal

The largast inlcm that can be held completely accurately is 2%2=1
14,294,367 295). T/S 1000 rounds this to B significant digits and it is
displayed as 4,294 967,300

54

Chapter 12
Advanced Printing Techniques

You will recall thet @ PRINT statement has a list of items, each one an
axprassion (or possibly nothing at all), and that they are separated by commas
or semicolons. There are two more PRINT iterns used to tell the computar
not what, but where to print. For example, PRINT AT 11, 16" prints a star
in the middie of the screen.

AT line, column

moves the PRINT position ithe plece where the next iem is to be printed)
to the line and column specified. Lines are numberad from © (at the topl to
21, and columns from @ lon the left) 10 31.

TAB column

maoves the PRINT positon to the column specified. It stays on tha same
ling, or, if this would involve back-spacing, moves on to the next one Note
that the computer reduces the columns number modulo 32 (it divides by 32
and takes the remainder), so TAB 33 means the same as TAB 1. For
axampie (to print out a Contents page heading|:

55

Chapter 12

PRINT TAB 12, "CONTENTS " AT 3,1;
"CHAPTER" TAB 24; "PAGE”

Some small points

il You should normally use semicolons with thasa new iterns, as we have
done above, You can use commas (or nothing, 8t the end of the statement),
but this means that after having carefully set up the PRINT position you
immediately move it to either the left adge or the center of the screen.

(1) Although AT and TAB are not functions, you have to type the function
key [shifted ENTERI to get them

liii} You cannot print on the two bottom Enes 122 and 23) of the screen.
References to the “bottom line" usually mean line 21

livl You can use AT to put the PRINT position even where thers is alraady
something printed; the old stuff will be cverwritten,

There are two more statements connected with PRINT. namely CLS and
SCROLL

CLS clears the screen (but nothing else).

SCROLL moves the whole displsy up one line llosing the top linel and
moves the PRINT position 1o the beginning of the bottem line

To see how it warks, run this program:

10 SCROLL
20 INPUT AS

30 PRINT A%
40 GOTO 10

Summary
PRINT items. AT, TAB
Staterments: CLS, SCROLL
Exorcises
1. Try running this:
10 FORI=0TO 20
20 PRINT TAB 8.1,
30 NEXT|

This shows what is meant by the TAB number’s being reduced modulo 32
For a more mteresting exsmple, change the 8 in ne 20 to a 6

EB

Chapter 13
The Character Set

The letters, tigits, punctuation marks and so on that can appear m strings
are called characters, and they make up the alphabet, or cheracter set, that
the 7/S 1000 wses. Most of thase characters are single symbaols, but there
ara some, called tokens, that represent whole words, such as PRINT, STOP.
**, and s0 on

There are 256 characters altogether, and each one has 3 code between @
and 255 A complete list of them appears in the Appandix. To convert
between codes and characters, there are two functions, CODE and CHRS.

CODE (s applied toas and gives the code of the fwst character in the
string lor O if the string s empiy).

CHRS s applied to a number and gives the singhe character string whose
code is that number.

This program prints out the antire character set.

57

Chapter 13

10 LET A=Q

20 PRINT CHRS A;

30 LET A=A+

40 IF A< 256 THEN GOTO 20

Af the top you can see the symbols ~, £, $ and so on up to Z; all appear on
the keyboard and can be typad in when you have the (8 cursor. Further on,
you can see the same characters, but in white on black {inverse video): these
are also obtamable fram the keyboard. If you press GRAPHICS (shifted 9),
the cursor will come up as (8. this means graphics mode. It you type in &
symbol, it will appear n its inverse video form, and this will go on untd you
press GRAPHICS again. DELETE will have its usual meaning. Be careful not
to lose the [@ cursor amaong all the inversa video eharacters you've just typad
n

Whaen you've expanmented a bit, you should still have the character set at
the top, if not, then run the program again. At the beginning are space and
ten patterns of black, white and grey blobs; further on, there are eleven mora.
These are called the graphics symbols and are usad for drawing pictures You
can enter these from the keyboard, again using graphics mode lexcept for
space, which is an ordinary symbol using the I cursor; the black square is
inverse spacel. Use the 20 keys that have graphics symbols written on them.
For mstance, suppose you want the symbol @® which is the T key Press
GRAPHICS 1o get the [1 cursor; and then press shifted T. From the previous
description of the graphics mode, you would sxpect to get an inverse video
symbol; but shifted T is normally < > a token, and tokens have no inversas:
20 you get the graphics symbol ® instead.

58

Chapter 13

Here are the 22 graphic symbaols

Symbol Code Howobtained Symbol Code Howobrained

) o . 128 G
SPACE SPACE
IR R
shitted 1 shified Q
shifted 2 shefted W
shifted 7 shfteg &
shifted 4 shifted A
shifled 5 shftpd 8
shified T shifted Y
n ? G} G 135 G}
shifted E shifted 3
: G
A Gl 136 G
shifled A o shifted M
#] G e 137 m
shitteg D W shifted G
S
- 1 D m -'-"- 1 38 B
shited 5 shfted F

58

Chapter 13

Now look at the character set again. The tokens stand out quite clesrly in two
blocks: 8 small group of three RND, INKEYS and Pl after Z, and 3 larger
ggg’g l(starting with the quote image after B3, and running from AT up to

The rest of the characters all seem to be 7. This is actually just the way
they get printed; the resl queston mark is between : and | Of the others,
some are for control characters like ©, EDIT and ENTER, and the rest are for
characters that have no special meaning for the T/S 1000 at all,

Summary
Functions: CODE, CHRS

Exarcises

1. Imagine the space for one symbal divided up into four quarters: = I
apch quaster can be either black or white, there are 2°2°2°2 = 16 possibili-
ties. Find them all in the character set.

2. Imagine the space for one symbol diveded into two hoszontally: |1, |If
each half can be black, white or gray, them are 3°3 = 3 possibéties. Find
tham all.

3. The characters m exercsse 2 are designed to be ssed in horizontal bar
charts, using two colors, gray and black. Write a program that inputs two
numbers A and B (both between @ and 32| and draws a bar chart for them

- A
_'__'—]
- — - - a- - — e

You will need to start off by printing """, then change to esthes "™ or
“ma'’, depending on whether A s more or less than B

What does your program do if A and B are not whole numbers? Or of they
are not in the range @ to 327 A good — “user friendly™ is the fashionable
tarm — program will do someathing sensibie and useful.

4. There are two different all-gray characters on the keyboard, on A andH I
vou look at them closely, you will see that the one on H s Bke 2 miniature
chessboard, while the one on A is like & sidaways chessboard. If you print
them next to each other, you will see that they don't join up properly. The one
on A & used to jon up neatly with ™ and .., lon S and D), whereas tha one on
H joins up neatly with & and ™ [on F and Gl

&0

Chapter 13

5. Run thes program:

10 INPUT A
20 PRINT CHRS A,
30 GOTO 10

I you will experiment with it. you will find that for CHRS, A i3 rounded to
the nearest whode number, and if A is not i the range @ to 255, the program
stops with report B, Vinteger out of ranga ™

6 Using the codes for the characters, wa can extend the concapt of “alpha-
betical ordering™ to cower strings containing any characters, not just letters,
if. instead of thimking in terms of the usual alphabet of 26 letters, we use the
extended alphabet of 258 characters in the same order as their codes, the
principle is exactly the same. For instance, these strings are in siphabetical

" ZACHARY"
o ‘-" or

“|ASIDE]"
123 TAXI SERVICE"
“AASVOGEL"
“AARRUOGRE ¢
“ZACHARY"'

" IORDVARK

Here is the rule. First, compara the first characters in the two strings. If
they differ, the code of one of them is less than that of the other, and the
string of whuch it is the first character s the earlier lesser) of the two strings
If they ara the same. then go on to compare the next characters, If m this
process one of the strings runs out before the other. that string s the earlier,
otherwise they are obviously aqual.

Type in again the program n exercise 5 of Chapter 7 (the one that inputs
w0 strings and prints them in orderl and use it 1o experiment,

7. This program prints a8 screenful of random black and white graphics
characters:

10 LET A=INT (16"RND)

20 IF A>=BTHEN LET A=f+120
30 PRINT CHRS A,

40 GOTO 10

How?)

&1

B2

Chapter 14
Graphics

Here are some of the more attractive features of the T/S 1000, they utilize
pixels |picture alaments). The screen you use for display has 22 lines and 32
columns. making 22°32 = 704 character positions, sach wmainin'g 4 pixels,

A pixel is specified by two numbers, its cooroinares. The first, its x-
coorginale, denotes how far it is across from the extreme left-hand column
Iremember, X is ACROSSI, and the second, its y-coardinate, tells how far up
it is from the bottorm. These coordinates are usually written as a pair in
parenthesis, so (0.0), (63, @), (0. 43) and (63, 43) are the bottom left-,
bottom right-, top left- and top right-hand corners,

The statament
PLOT x-coordinate, y-coordmate
blacks in the pixel with these coordnates, while the statement
UNPLOT x-coordinate, y-coordinate

63

Chapter 14

blanks it out
Try this simple program

10 PLOT INT RND*G4), INT [RND"44)
20 INPUT AS
30 GOTO 10

Thes plots a random point each time you press ENTER.
Here is a8 more useful program. |t plots a graph of the function SIN [a sine
wavel for values between 8 and 2 pi radians.

10 FORN=QTO B3 _
20 PLOT N.22+20"SIN IN/32°PI)
30 NEXT N
This next ane plots a graph of SQR (part of s parabolal between 0 and 4.

10 FORN=0TO 63
20 PLOT N, 20°SQR IN/16)

30 MEXTN
Notce that pixel coordinates are different from the e and column in an
AT itemn. You may find the m at the end of this chapter usefu in

working out pixel coordinates and line and column numbars
Exercises

1. There are three differences among the numbers in an AT itam and pixel
coordinates, what are they ! _

Suppose a PRINT position comesponds to AT L. C (for line and column).
Prove 1o yourself that the four pixels in that pasition have x-coordinates 2°C
of 2'C+1, and y-coordinates 2*(21-L} or 2*[21-L}+71. {Look at
the diagram.|

2 Alter the simple program %o that it first fills the screen with black (a black
square s an inverse video spacel, and then unplots random points. If you
have only 1K of memary — the standard mechine without exirs memory —
you will find yourself running out of space and will have to alter the program
s0 that it usas only part of the screen,

3. Modify the SIN graph program so that before plotting the graph itself it
prints & horizontal line of “~"'s for an x-axis and a vertical fine of "/"'s for
a y-axis.

4. Write programs to plet graphs of more functions’ e.g. COS, EXP, LN,
ATN, INT andd s0 on For eah one, you must make sure that the graph fits the
scraan, 50 you will need to congsider

) over what range you are going to take the functions {corresponding to
the range O 1o 2 pa radians for tha SIN graphl.

64

Chapter 14

il where on the screen to put the x-axis (corresponding to 22 in line 28 in
the SIN graph programl.

il how to scale the y-axis of the graph lcorresponding 1o 2@ in lina 20 of
the SIN graph program)

You will find that COS is the easiast — it's just ke SIN.
5. Hun this;

10 PLOT 21,21
20 PRINT "HEAVY QUOTES"
30 PLOT 46,21

PLOT moves the PRINT position to the first space after the PLOT location
[UNPLOT does toa

6. Thes subroutsne draws & lairiy straight line from the pixel (4 8) to the pixel
(C.D}. Use it as part of some main program that supplies the values A, B, C, D.

If you o not have a memory expansion board then you will probably need to
omit the REM statemants.)

1000 LET U=C-A

1005 REM U SHOWS HOW MANY STEPS OVER

WE NEED TO GO

101¢ LET V=D-B

1015 REM V SHOWS HOW MANY STEPS UP

1020 LET D1X=8GN U

1030 LET D1Y=8GN V

1035 REM (D1XD1Y] IS A SINGLE STEP IN A DIAGONAL
DIRECTION

1043 LET D2X=8GN UJ

105@ LET D2Y=0

10656 REM (D2X,D2Y) IS A SINGLE STEP LEFT OR RIGHT
1069 LET M=ABS U

107Q LET N=ABS V

108@ IF M>NTHEN GOTO 1230

1099 LET D2X=0

1100 LET D2Y=8GN V

| LET M=ABS Vv

A
=
=
@
—
=
m
-
=
a
m
x
=]
m
>
&
c
>
&
=
w
=
=
o
-
2

140 LET S=INT M/2) ,
145 REM WE WANT TO MOVE FROM (AB) TO (C,0) IN M
TEPS USING N UP-DOWN OR RIGHT-LEFT STEPS D2. AND
y&s"s DIAGONAL STEPS D1. DISTRIBUTED AS EVENLY AS
IBLE

65

Chaptar 14

160 FORN=OTOM

160 PLOT AB

170 LET S=S+N

1B@ IF S<MTHEN GOTO 1230
190 LET S=5-M

200 LET A=A+D1X

210 LET B=B+D1Y

215 REM A DIAGONAL STEP
1220 GOTO 1250

1230 LET A=A+DZX

1240 LET B=B+D2Y

1245 REM AN UP-DOWN OR RIGHT-LEFT STEP
1250 NEXTM

1260 RETURN

The iast part (ines 1150 on) |
muxes the M—N steps D1 evenly e
with the N staps D2 Imagme & > 1

Monopoly board with M squares —
around tha edge, numbeared
from @ to M—1. The squam yvou
arg on ot any tme is number §, b
starting at the comer opposite i

GO, Each move takes you N
squares around the board, and
it the straight lina on the screen
you make either a left-right / up-
down step 6f you pass GO on

the board), or a disgonal step S,
otherwise, Since your total jour- f%{'c," —
neay on the board is M*N steps, T 15 14 ll:

or all the way around N times,
you pass GO N timas, and even.

ly spaced out in your M steps
are N left-right / up-down steps.

Adjust the program so that if another parameter, E, iz 1, the Ene is drawn n
black (as herel; and i it is 0, the line is drawn in whita (using UNPLOT]. You

can then delete a line you've just drawn by undrawing it.

Chapter 14

=+ Pixel y-coordinates

SR

- SEJEU|PIOCDX (@K1

1

FR 1506 (5 95 65 16 67 &v 97 3 1) 6€ UL OO0 € B0 08 S G0 LZ O 4L SLELSL 8 & 5 O 4
20 0% US 9 YS IS 08 9 G vr Zr Or BN OO 80 XX 06 G2 W2 P2 T2 .02 AL 0w EE 0L 9 o2 or 20

KK eeRNEREBEVCTELA B WS NC O E T L& S FT 2 LD
{ze'£6) 1anid auy) 81 S|y Bdwexa uy -— SULNY

S e MY oowe

Lings——

You cannat PRINT or P
on the bottom two b

67

Chapter 15
Functions

Mathematically, & function is a rule for giving @ number ithe resuwit) in
exchange for anothar (the argument, or eperandl and 8o is really a unary
operation. Tha T/S 1000 has some of these built into it; their names are the
words written under the keys. SQR, for instance, ig the familiar square root
function, and

PRINT SQR 9
gives 3, the square root of 9. (To get SAR, you first prass tha FUNCTION
key — shifted ENTER. This changes the cursor to (3 Now press the SOR
key (H): SOR appears on tha screen, and the cursor changes back to (M. The

same mathod works for all the words that are written underneath the keys,
nearly all of whach are funcbon names |

Try
PRINT SQR 2
You can test the accuracy of the answer by

B3

Chapter 15

PRINT SQR 2'SQR 2

which ought to give 2 Note that both SQRs are worked out before the *, and
in fact all functions |except one — NOT) are worked out before the fe
operations +. —. °. / and ** Agan. you can circumvent this rule using
parentheses:

PRINT SQR (2°2)

gives 2.
Here are some more functions (There is a complete list in Chapter 21},
your math is not up to understanding some of these, it doesn't matter — you
will still be able to use the comparter
SGN The sign function [sometimes called signum to avoid confusion with
SIN). Thae resultis —1, © or +1 accordmg to whether the argument is
negativa, 2ero or positive

ABS The absolute value, or modulus. The result is the argument made
positive, so that

ABS ~32=ABS32=32

SiN

cos

TAN The trigonometric functions. These work
ASN arcsin in radians. not degraes,

ACS arccos

ATN arctan

LN natural logarithm (to base 2.718281828 ., alias e}

EXP exponential function

SQR square root

INT integer part, This always rounds down, 50 INT 3.9 = 3 and
INT -3.8 = -4, (An integer is a whole numbar, possibly

negativa.}

Pl 7 = 3.14169265 _, the circumference in inches of a cacle
one nch across. Pl has no ergument. [Type function = under
the M key |

RND Neither has RND an argument. It yields a random number
between O (which value it can take) and 1 {whach it cannot!

All these except P1 and RND are unary operations with poority 11, (Pl and
RND ara nuifary operations. because they have no operands |

The tngonometric lunctons, as well as EXP. LN and SQR, are generally
calculated to 8 digits accuracy.

RND and RAND These are both on the same key, but whereas RND is a
function, RAND = a keyword, like PRINT. RAND s usad for controlling the
randomness of RND.

RND is not teuly random, but instead follows a fived sequence of 65536
numbers that happen to be so jumbled up as to appear random [RND is

70

Chapter 15

pseudo-random). You can use RAND to start RND off at a definite place in
this sequence by typing RAND, then & number between 1 and 65535, and
then ENTER. 11's not s0 important to know where a given number starts RND
off, as that the same number after RAND will atways start RND off at the
same place. For nstance, type

RAND 1 {and ENTER|
and then

PRINT RND
and type both these in turn several times (Remember to use FUNCTION to
@et RND) The answer from AND will always be 9 80227355986, not a vary
random sagquence

RAND @

lor you can leave out the O acts shghtly differently: it determines where to
start RND off by how long the television has been on, and this should be

genuinely random.

Note: In some dialects of BASIC you must always enclose the argument of a

function in brackets. This is not the casea in Sinclair BASIC,

Summary

Staterment: RAND

Functions: SGN, ABS, SIN, COS, TAN, ASN, ACS, ATN, LN, EXP, SQR,
INT, PI, RND

Exercises

1. To get common logarithms ito base 10), wiweh are what you'd look up in
log tables, divice the natural logarithm by LN 10 For axampie, to find log 2,

PRINT LN 2/LN 10
whach givas the answer 0 30103,
Try doing multiplication and division using logs, using the T/S 1000 as a
sat of log tables in this way. Check the answers using * and /. The direct way
is more accurate

2. EXP and LN are inverse functions in the sense that if you apply one and
then the other, you get back to your origmal number. For instance,

LNEXP2=EXPILN2=2

"

Chapter 15

The same also holds for SIN and ASN, for COS and ACS, and for TAN and
ATN. You can use this to test how accurately the compuler works out these
functions.

3w radians are 180° To convert from degrees to radians, you divide by
180 and multsply by = thus

PRINT TAN (45/180"P1)

gives tan 45° (1),
To get from radians to degrees, divide by = and madtiply by 180

4, Try
PRINT RND

T few tir;\u 10 see how the answer veries. Can you detect any pattern?
Uniikely.

How wouldd you use AND and INT to get a randem whaole number between
1 and B, to represant the throw of a die? (Answer: INT IRND *6) < 1)

5. Test this rule:
Suppose you chooss a number between 1 and 872 and type

RAND and than your number land ENTER|
The next value of RND will be
{76 * lyour number + 1] = 1] / 65536

6 (For mathemat:cians only)
Let p be a (largel prime, and let a be a primitive root modulo p.
Then it b is the residue of 3 modulop (1 < = b, <= p—1), the sequence
b-1

p-1

is @ cyclical sequence of p — 1 distinct numbers in the range @ to 1 (exciuding
1). By choosing a suitably, you can make these look fairly random

65537 is a gﬁersenne peame. 2'—1. Usae this, slong with Gauss's law of
quadratic reciprocity, to show that 75 is & primitive root module 85537

The T/S 1000 uses p=65537 and a=75. and stores some arbitrary b-1 in
memory. The function RND involves replacing b—1 in memary by b,,, -1,
and yiedding the result ib_,—1}/(p=1), RAND n (with 1 < =n < = §5535]
makes b equal ton+ 1

7. INT siways rounds down To round to the nearest integer, add @ 5 first
For instance,

2

Chapter 15

INT29+05|=3 INT (24 + 0Bl =2
INT [-23+05) = -3 INT {(-24 +05)=-2

Compare these with the answers you get when you don't add 0.5
B Try (type the symbol 7 ; the screen will show P1)
PRINTPLPI=-3, P1-3.1.PI-3 14 P1-3.141
This shows how accurately the computer stores =

73

T4

Chapter 16
Time and Motion

Somatimes you will want to make the program take a specified length of
time, and for this purpose you will find the PAUSE staterment usaful;

PAUSEn

stops oompulln%for n frames of the television lat 60 frames per secondl. n
can be up to 32787, which gnves you just under 11 minutes; if a S any
bigger, it means 'PAUSE forever

You can always cut a pause short by pressing a key Inote that a space, or £,
will cause a braak as welll. You have to press the key down after the pauss
hias started.

At the end of the pause, the screen will Hlash,

15

Chapter 18

This program works the second hand (here just a single dot an the edge) of
a clock,

5 REM FIRST WE DRAW THE CLOCK FACE
10 FORN=1TO 12
20 PRINT AT 10-10°COS ING'PI), 104 10°SIN INVEPI), N
30 NEXTN
35 REM NOW WE START THE CLOCK
40 FOR T=0T0 10000
45 REM T IS THE TIME IN SECONDS
50 LET A=T/30"P1
60 LET SX=21+18"SIN A
70 LET SY=22+18"COS A
200 PLOT SX.SY
300 PAUSE 42
310 UNPLOT SX.5Y
400 NEXTT

This clock will run down after about 2 3/4 hours because of ing 49, but
you can easily make it rum ar. Note how the timing is controlled by line
300. You might expect PAUSE 80 1o make it tick once a second, but the
computing takes tima as well and has to be allowed for. This is best done by
trial and erroe, timang the computer clock against a real one and adjus line
300 until they agree (You can't do this very accurately; an adjustmant of one
frame in one second 8 2% or hall an hout in a day).

The function INKEY$ (which has no argument) reads the keyboard. If you
ue ing axactly one key, the result = the character which that key gives

mode; otherwise the result is the empty The control charactars
do not have thew usual effect, but give results like ‘MRS 118 for ENTER —
they are printed as "7"
Try this program, whach works like a typawriter.

10 IF INKEYS < > THEN GOTO 10
20 IFINKEYS «""" THEN GOTO 20
30 PRINT INKEYS

40 GOTO 19

Here line 1@ waits for you to lift your finger off the keyboerd and line 20
waite for you 1o prass a new key.

Remambaer that unlike INPUT. INKEYS doasa’t wait for you. So don't type
ENTER. on the othér hand, ﬂyOudOnHypoanythmgatall you have missad
your chance. In this program, fine 1@ “waits for you'' by the GOTO 10
repetition if no key s pressed.

Exorcises
1. What happens if you leave out line 10 in the typawriter program?
2. Why can't you type space or £ n the typewriter program?

76

Chapter 16

Here is a modified program that gives you a space if you type cursor nght
(shifted B

10 IFINKEYS < > """ THEN GOTOD 12
20 IF INKEYS=""THEN GOTO 20

30 LET AS=INKEYS$S

40 IF AS=CHRS 115 THEN GOTO 110
92 PRINT AS

18@ GOTO 10

11@ PRINT * “;

120 GOTO 10

Note that we read INKEYS$ into A% in line 30. It would be pessible to omit
this and replace AS b; INKEYS in hnes 40 and 90, but there would always be
a chance that INKEYS couid change batwaan the lines.

Add some more program so that «f you type ENTER ICHRS 118) it gives
YOu @ new lne.

3. You can also vse INKEYS in conjunction with PAUSE, as in this alterna-
tive typewriter program.

10 PAUSE 40000
20 PRINT INKEYS
30 GOTO 10

To maka thes work. why is it essential that a PAUSE not finish if it finds you
already préssing a key whaen it starts?

This method has the disadvantage that the screen flashes, but in fast mode
it is the only way of doing it 'When you run a program in fast mode, notice
that the computer uses the pause to display the television picture

4 The following program makes the computer display a number, which you
lor an innocent victiml must type in reponse. To begin with, you have a
second to do it in, but If you get it wrong. vou get a longer time for the next
number, whereas if you get it right. you get less time for the next one. The
idea is 1o gat it going as fast as possible, and then prass (1o find your score
— the higher the better.

10 LET T=60

15 REM T=NUMBER OF FRAMES PER TURN —
INITIALLY 60 FOR 1 SECOND

20 LET A$=CHRS INT {RND"10+CODE "“0")

30 REM AS$ IS A RANDOM DIGIT

40 PRINT A%

50 PAUSET

60 LET BS=INKEY$

70 IFB3="0" THEN GOTO 200

80 IF A$=BS THEN GOTO 150

S0 PRINT “NO GOOD™

100 LET T=T"11

77

Chapter 16

110 GOTO 20

150 PRINT "OK"

160 LETT=7"0.9

170 GOTO 20

200 SCROLL

210 PRINT "YOUR SCORE IS ",INT (50Q/T)

&. For fun.) Try this

10 IFINKEYS = """ THEN GOTO 10

20 PRINT AT 11,8, "KEYBOARD TOUCHED™
30 IFINKEY$ < > """ THEN GOTO 30

40 PRINTAT 11.14.° 7

b GOTO 10

]

Chapter 17
Arrays

An array is a set of vanables, or elements, all with the same name and
distinguished only by & number (the subscripth written m parentheses after
the name. For example the name could be A (ke control variables of FOR -
NEXT loops. the name of an array mwst be a single letter], and twelve
variablas would then be A{1], Af2), snd so on up to A(T12).

The elements of an array are called subscripted varables, as opposed to
the simple varable you are akready familiar with.

Before you can use an armay you must reserve some space for it inside the
computer. To do this you use 8 DIM [{or dimension) statemant.

Dim A1 2}

sets up an array called A wath dimension 12 (e, there are 12 subscripted
variables Al1), ., A(12}], and initializes the 12 values 1o 0. It also deletes any
array called A that existed prewiousty. [But not a simpée verisble. An array and
a simple numerical variable with tha same name can coexst, and there
shouldn’t be any confusson between them, because e array variable always
has 8 subscrpt.}

78

Chapter 17

The subscrpt can be an arbitrary numerical expression, so now you can
write

10 FORN=1TO 12
20 PRINT AN
30 NEXTN

You can also set up arrays with more than one dimension, In a two-
dimensional array you nead two numbers to specify one of the elements —
rather like the ine and column numbers to spacify a character position on tha
tolevision screen — so it has the form of 3 table. Alternatively, if you imagine
the line and column numbers [two dimensions) es referring to a prnted page,
you could have an extra dimension for the page numbers. OF course, we are
talking about numeric arrays; the elements would not be panted characters
a5 i 8 book, but numbers. Think of the elements of a three-dimensional array
C as being specitied by C |page number, line number, colsmn numbsr)

For axample. to set up & two-dimensional array B wath dimension 3 and 8,
you use a DIM staternent

DIM BI3,8)
This then gives you 376 = 18 subscripted varables

B(1,1), Bi(L2), ., B(1LB)
B(2,1), Bf2,2), , B(286)
BE3,1), B32), -, BERE

Tha same principle works for any number of dimensions,

Although you can have a number and an array with the same name, you
cannot have two arrays with the same ngme, even if they hawve different
numbers of dimensions,

There are also string arrgys. The strings m an array differ from simple
strings in that they are of fixed length, and assignment to them is always
Procrustean. Another way of thinking of them s as arrays (with one extra
dimension| of single characters. The name of the string array is a single latter
followed by $. and & string array and a simple string variable cannot have the
sama name (unlike the case for numbers).

Sugposn. then, that you want an array AS of five strings. You must decide
now long thesa strings are to be — et us supposa that 10 chatacters each /s
long enough, You then say

DIM AS(5,10) [type this in|

BO

Chapter 17

Thissatsupa 5 ° 10 array of characters, but you can also think of each row
&s being a stnng.

ASl1l= | AS(1,1) A%(1.2) - AS(T, 10}
ASI2) = | ASI21] AS220 . AS$(210)
ASIS) = ASI5.1] AS[5.2) . ASI5,10)

It you geve the same number of subscripts [two in this casel as there ware
dimensions in the DIM statement, you get a single character, but if you omit
the last one, you get a fixed-length string. So, for instance, A$(2,7) is the Tth
character in the string ASI2); using the slicing notation, we could also write
this as AS(2){7). Now type

LET A$(2]1=""1234567890"
PRINT A$(2].A8(2,7)
1234567800 7

and
You gat
For the last subscript [the one you can omitl, you can also have a slice so
that, for axample,
AS(2,4TO Bl = AS(2](4 TO B] = “45678"
Remember

In a string array, all the strings have the same, fixed langth,
The DIM statement has an extra number (the last one} 1o specidy this

length.

Whan you write down a subscripted varigble for & string array, you can put
in an extra number, or & shcer, 10 cormespond wath the extra number in the
DM siatement
Summary

:cnmys Ithe way the T/S 1000 handlés string arrays is slightly nonstan-

SMM: DimM
Exercises
1. Set up an array MS of twelve strings in which M3l is the name of the

month

81

Chapter 17

2. Hint: the DIM statement will be DIM MS(12,8)) Test # by printing out
all the M3 luse a loopl. Type

PRINT “NOW IS THE MONTH OF ' MS(5): "ING"; “"WHEN TINY
TOTS ARE PLAYING"

What can you do about all those spaces?
2. You can have string arrays with no dimansions. Type
DIM A%{10)

and you will find that AS behaves just like a 5 variable, except that it
alweys has length 10, and assignmeant to it is always rustean,

3. READ, DATA and RESTORE

Most BASICs {but not Sinclair BASIC) have three stataments called READ,
DATA and RESTORE,

A DATA statement is a list of expressions, and taking all the DATA state-
mants in the program gives one long list of exprassions, the DATA st

:an stataments are used 1o assign these expressions, one by one, to
variables:

READ X

for instance, assigns the current axprassion m the DATA list to the varable X
and movas on to the next axpression for the next READ statament.

{RESTORE moves back to tha beginning of the DATA kst)

In theory, you can always replace READ and DATA statements by LET
statements, however, ona of their mejor uses is for initializing arrays, as in
this program:

5 REM THIS PROGRAM WILL NOT WORK IN SINCLAIR BASIC

10 DIM M${12.3)
20 FORN=1TO 12

50 DATA “JAN™,"FEB","MAR","“APR"
eo DATA 0‘MAY‘4. ”JUN”‘ “JUL", “AUG“
70 DATA “SEP”,"OCT","NOV",“DEC"
If you want to run this program anly once, you might well replace fine 30 by
30 INPUT MSIN

and you won’t have any extra typing to do. However, if you want to save the
program, you certainly won't want {0 type in the months evarytime you run it.

We suggest that you use this method;

B2

Chagter 17

fil Intiplize the array using a FOR-NEXT lcop and an INPUT statement as
described above.

fiil Delete the FOR-NEXT lcop and the INPUT statemant (But not with
NEW, because you want to preserva the array |

fiiil Type in the rest of the program and save it. This will save the varables
as wall, mcluding the array.

livl ‘When you load the program back, you will also load the array

vl When you run the program, do nof use RUN, which clears the vari-
sbles. Use GOTO instead.

Chapter 18
Strings

One ing the T/S 1000 can do that pocket calculators cannot do is deal
with text. Type

PRINT “HI THERE. | AM YOUR 7/S 1000, (" s shifted P)

The greating msida the quotes is called a strng Imeamng a string of
characters| and can contain any characters you like except the string quote,”
{But you can use the sa-called guote image, " [shifted), and this will be
printed as ')

A common typing ermor with strings is to leave out one of the guotes — this
willl give you the E marker,

if you are printing numbers out, you can use these strings to explain what
the '?umbcrs mwan. For instanca, if you own 3 sportings good store, you
might type

LET PRICEGOLF = 12 5@

BS

Chapter 18

and than

PRINT ““THE PRICE OF GOLF BALLS IS *;
PRICEGOLF:" PER DOZEN."

(Don’t worry if this runs over into a second line)

This statement displays three PRINT itens: the string “'THE PRICE OF
GOLF BALLS I1S."” the number 12.50 ithe value of the vansable PRICEGOLF),
and then the string “PER DOZEN." In fact. you can PRINT any number of
items and any mixture of strings and numbers (or expressions). Note how the
SPaces 0 3 stning are just a8 much part of it as the latters. Thay are not
sgnored aven at the end.

There are lots of things you can do with strings
1. You can assign them to variebles. However, the nama of the variable must
be special to show that its value is a string and not 8 number: it must be a
single letter followed by $ (shiftad Ul. For exampile, type

LET AS="BASKETBALL UNSFORM"
and
PRINT AS

2. You can 8dd them together. This is aften called concatenation, meaning
“chaining togethar,” and that is exactly what it does. Try

PRINT “JERSEY" + “AND SHORTS"
Note that you are missing a space. Now try
PRINT “JERSEY" 4 “ AND SHORTS"
Notice the space before AND.
You cannot subtract, multiply or divide strings, or raise them to powers.
3. You can apply some functions to strings to get numbers, and vice versa,

LEN This is applied to a string. and the rasult is its length (the number of
characters in the stringl. For instance

LEN "GLOVES" =8
LEN "BATS " =4

VAL This applied to a string. evaluates that sm an arithmetic expres-
sion. For instance Gif A=9), VAL “1/2 + "' =3.5. If the string to
whic:dVAL is applied contains veriables, then two rules must be
obeyed.

) | the VAL function is part of a larger expression, it must be the first

B8

Chapter 18

it:r‘rn:e. O LET X = 7 + VAL “Y”must be changed to 10 LET X = VAL
N4 T
(il VAL can only appear in the first coordinate of a PRINT AT, PLOT or
UNPLOT statement
Isee Chapters 12 and 14) e.g.

10 PLOT 5, VAL "X must be changed to
10 LET Y = VAL "X"
15 MLOTS, Y
STRS When this is applied to a number, the result is what would appear on
the screen if the number were displayed by & PRINT statemant. For
instance STR$ 3.5 = "3.57,

& Just as for numbers, you can combine these to make string expressions,
a

VAL STRS LEN “123458" + "=4"
which is evelusted as

VAL (STRS LEN 123456 « "~ 4

VAL (STRS é - 4"}

VAL (6 +" -4

VAL {‘;é 4" A

Summary

Operation. + (for sirings)
Functions: LEMN, VAL, STR$

Exercises

1. Type
LET AS="2+2"

and then

B7

Chaptss 18

PRINT AS," = " VAL AS
Tey changing A$ to more complicated items and doing the same. eg.,
LEN AS="ATN 14"
(The answer hore should be =)

2. The string " with no charecters is calied the empty or nuill string. 1t is the
only string whose length is @ Remember that spaces are significant and an
empty string is not the same as one contaming Spaces,

Do not confuse it with the quote image, ' (a single token, shifted 0). This
s o special device 1o allow for the fact that you cannot write an ordinary
string quote in the middle of a string fwhy not?) Whaen the quote image
appears in a string that has its quotes at the end (for instance, in the listing of
a program), it shows up 85 two quote symbals, to distinguish it from the
ordinary quote. but when it is displayed by a PRINT statement, it is as just
one guote symbol,

Try
PRINT ") - 4o “weonss. inasars soss . sosssees
3 Type
PRINT "2+4+2=".2+1

Chapter 19
Substrings

Given a string, & substring consists of & number of consecutive characters
from it. taken in sequence. Thus “STRING'' is a substring of "BIGGER
STRING,"” but "B STING" and "'BIG REG" are not.

There s a notation, called sficing, for describing substrings which can be
applied to arbitrary strng expressions. The general form is

string expression (start TO finish)
s0 that, for instance,
“ABCDEF'(ZTO S = "“BCDE"

If you omit the start. then 1 is assumed; if you omat the finish,
the length of the string is assumed. Thus

“ABCDEF” |TO 5) “ABCDEF" (1 TOBl = "ABCDE"

"ABCDEF” [2TD) = *“ABCDEF"(2ZTOB] = “BCDEF"
“ABCDEF” (TOI = "ABCDEF" (1TOBl = "ABCDEF”

Chapter 19

(For what it's worth, you can also write this last one as " ABCDEF"())
A slightly different form omits the TO and has just one number-

“ABCDEF" (3) = "ABCDEF'(3to3] = "C"
Aithough normally both start and finesh must refer to axisting parts of the
string. this rule is ovarridden by another ona: if the start is more than the
finish, than the result is the empty string. So
“ABCDEF” (5t 7}

gives error 3 {subscript error] because, since the string contains only 6
chafacters, 7 is too many, but

"ABCDEF' Bwo7] = "¢
and "ABCDEF " {1t0 @ =

The start and finish must not be negative, or you get error B
This naxt program makes BS equal to AS, but omitting any trailing spaces.
10 INPUT AS

20 FOR N=LEN ASTO 1 STEP -1
30 IFASIN) 10 <> """ THEN GOTO 50

40 NEXT N

50 LET BS=A3(TON

60 mm -------- :As:"”'"‘,.“."";Bs;‘”“".
70 GOTO 10

Note that if AS is entirely spaces, then in line 50 we have N=0 and AS | TO
N=AS(1TOOI =""

For string variables, we can not only extract substrings, but also assign
substitute characters to them. For instance, type

10 LET A3="THAT ISFAR OUT"
andthen 20 LET AS{5 TO B)="r****"
and 30 PRINT A%

Notice that since the substring AS (5 TO 8) is only 4 characters long, only
the first four stars have been used. This is a charactenstic of assigning to
substrings. the substring has 10 be axactly the same length afterwards as it
was before. To make sure this happens, the string that'l:ixm? assigned 1o it
is cut off on the right if it is too long, or filled out with spaces if it is too short
This is called Procrustesn assignment,

If you now change ines 20 and 30 10

20 LET AS(="TERRIFIC"

80

Chapter 19

you will see that the same thing has happened again {this time with spaces
put inl because A%{) counts as a substring

2@ LET AS="TERRIFIC"”

will place the period properly (but the string in ine 10 has been replaced by
the one in 2Q),

Slicing may ba considered as having priority 12, so, for instance,
LEN “ABCDEF"(2TO 5) =LEN ("ABCDEF"'(2TO 5] = 4

Comgplicated string expressions will need parenthesss around them before
thay can be sliced, For example,

“ABC”+"DEF'(1TO 2) = “ABCDE"
["ABC''+"DEF"')(1 TO 2} = "AB"

Summary
Slicing, using TO. Note that this notation is used only on the T/S 1000

Exearcises

1. Soma BASICs (not the Sinciair BASIC) have three functions. cated LEFTS,
RIGHT$ & MIDS.

LEFTSIAS N) gives the substring of AS consisting of the first N characters.
msmrms.vﬁ gives the substring of AS conssting of the characters from

on.

MIDS(AS.N1 N2| gives the substring of A$ consisting of NZ characters
starting at tha N1tk

How would you write thesa in Sinclair BASIC?

2. Try this sequence of commands:
10 LET AS=""X"4+"Y"
20 LET AS(2)=CHRS 11

30 LET AS(4)=CHRS 11
40 PRINT AS

A% is now a string with string quotes inside it! So you can do this if you
work hard enough, but if you had onginally typed

10 LET ASm X" +"Y"
the part to the nght of the aquals sign would have been treated as an

expression, giving AS the value “"XY.”
Now typa

9

Chapter 19

50 m Bs.uxuu+nuvu
60 PRINT B8 ‘

You will find that although AS and BS look the same when printed out, thay
are not equal — try

70 PRINT AS=BS

The computer responds with 9" (the equation is false), because B con-
tains mere quote image charactars {with code 192), while AS contains genu-
ine string quote characters lwith code 11).

3. Run thes program:

1@ LET AS="LEN "“ABCD""
100 PRINT AS,"=" VAL A%

Thes will fail, because VAL does not treat the quote image "' as a string
quote.

Insert some extra lines between 10 and 100 to repiace the quote images in
AS by string quotes [which you must call CHRS 11), and try again.

4. Type in the subrouting that sgnores trailing spaces, and write and run a
program that uses it

'5 'I'I'gss subroutine deletes every occurrence of the string “SUPERMAN"
romA$.

1800 FOR N=1TOLEN A5 -7

":'027? IF ASIN TO N+7)="SUPERMAN" THEN LET ASIN TO
* =r".'-ll.l"

1930 NEXTN

1040 RETURN

Write a program that gives AS various values (g, “SUPERMAN IS

STRONG™) and applies the subroutine. Notice that "SUPERMAN' does not
have 1o be the first woed in AS.

82

Chapter 20
Sinclair BASIC Print Commands

This chapter covers the special BASIC statements needed to operate &
printer with your T/S 1000,

Tha first two, LPRINT and LLIST, are just like PRINT and LIST, excapt that
they wse the printer mstead of the television, (The L is a historical accadent
When BASIC was invented, it genarally used an efectric typewriter instead of
& televsion, o PRINT really did mean print If you wanted massas of output,
vou would use a very fast line printer attached to the computer, and an
LPRINT staterment meaning “Line printer PRINT)

Try thes program, for example.

10 LPRINT “THIS PROGRAM"

20 LLST

30 LPRINT PRINTS OUT THE CHARACTER SET.”,,
40 FORN=0TO 255

50 LPRINT CHRS N;

60 NEXTHN

The third statement, COPY, prnts out @ copy of the telavision screen. For

93

Chapter 20

instance, get a ksting on tha screen of the program above, and type
COPY

You can’amm stop the printar when it is running by pressag the BREAK
key |spacel.

If you execute these statements without the printer aftached, you will
usually lose the cutput and proceed 1o the next statement. However, some-
times the computer will get hung up. and you will nesd to use the BREAK key
to rescue it

Summary
Statements: LPRINT, LLIST, COPY

Note: None of these statements is standard BASIC, although LPRINT is used
by some other computers,

Exercises
1. Try this:

10 FORN=31T100STEP -1
20 PRINT AT 31—-N.N.CHRS [CODE “0" + NI,
30 NEXTN

You will see a pattern of letters workng down ceagonally from the top
right-hand comaer until it reaches the bottom of the screen, when the prograrm
stops with error report 5,

New change “AT 31-NN in line 20 to ‘'TAB N'. The program will have
axactly the same affect as before.

Now ¢ PRINT i iine 20 to LPRINT. This time there will be no error 5,
which should not accur with the printer, and the pattern will continue an extra
ten nes with the digits.

Now change TAB N’ to "AT 21 -N.N" stll using LPRINT. This time you well
get just a single line of symbols. The reason for the difference is that the
autput from LPRINT is not printed snmediately, but arranged n a buffer
store, & picture one line long of what the computer will print

) when the buffer is full,

liil after an LPRINT statement that does not end in @ comma
or semacolon,

lii) when a comma or TAB item requires a new line,
or livl atthe end of a program. if there is anything left unprinted.

Number liiil explains why our program with TAB works the way it does. As

for AT, the Ine number & ignored and the LPRINT position (ke the PRINT
position, but for the printer mstead of the television) is changed to the column

94

Chapter 20

number. An AT item can never cause a line to be sent to the printer.
(Actually, the line number after AT is not completely ignored. it has to be
between =21 and +21 or an error will result. For this reason it s safest
siways to specify ine 0. The item "AT 21=NN" in the last version of our
prograg\ w;)uld be much better lalthough less illustrative) if replaced
by 'AT QN

2. Make a prnted graph of SIN by running the program i Chapter 16 and
then using COPY.

96

Chapter 21
The T/S 1000
for Those Who Understand BASIC

General
if you aiready know BASIC then you should not have much trouble using the
T/S 1000; but it has one or two idicsynerasies.

[} Words are not spefled out, but have keys of their own — this is
describad in Chapter 3 {for keywaords and shifted keys! and Chapter 15 {for
function names|. In the text, these words are pented in BOLD TYPE.

) Sinclair BASIC lacks READ, DATA and RESTORE (but spe exercise 3 of
Chapter 17 concerning this), user-defined functions IFN and DEF. but VAL
can sometimes be used|, and multi-statement knes

(@l The string handbng facilities are comprehensive bul non-standard —
see Chapters 18 and 19, and also Chapter 17 (for string arrays).

(v} The T/S 1000 character set is completely its own

tvl The television display is not, m general, memory-mapped.

lvi) I you are accustomed to using PEEK and POKE on & different
machine, remarmber that all the addreasas will be differant on the T/S 1009Q.

a7

Chapter 21

) The machine works at two speeds, called compute and displey mode and
@5t mode.

In compute and display, the TV screen is generated continuousty, and
computing is done during the blank parts at the top and bottam of the pictura.

In fast mode the television picture is tumned off during computing and s
displayed only at the end of a progeram, while waiting for INPUT data. or
during a pause {see PAUSE]

Fast mode runs about four times as fast and should be used for programs
with & lot of computing as opposed to output, or when typing in long pro-

grams,
Sn;vm:hng between speeds is done with the FAST and SLOW statements
Igwv).

The keyboard

T/S 1000 characters comprise not only the single symbols lletters, digits,
otc.), but also the compound fokens (keywords, function names, etc.; these
are printed hare in BOLD TYPE), and all are entered from the keyboard rather
than being spelled out. To fit this in, some keys have up to five distinct
meanings, given partly by shifting the keys (e, pressing the SHIFT key at the
same time as the required onal and partly by having the machine in different

The mode is indicated by the cursor, an mverse video letter that shows
where the next character from the keyboard will be inserted,
@ mode (for keywords) occurs automatically when the machine is expecting
a command or program line (rather than INPUT datal. and from this position
on the line it knows it should expact a ne number or 8 keyword. This is at the
baginning of the line, or just after some digits at the baginning of the fina, or
just after THEN, |f unshifted, the next kay will be interpreted as either a
keyword (thasa are writtan above the keysl or a digit,
Y mode (for letters! normally occurs at ail other times. If unshifted, the next
key will be intarprated as tha main syrmbol on that key

in both @3 and [modes, a shifted key will be interpreted as the subsasiary
red character in the top rght-hand corner of the key
made {for functions) occurs after FUNCTION (shifted ENTER| 5 pressed
and lasts for one key depression only, That key will be interpreted as a
function name, which appears under the keys.
[mode for graphics occurs after GRAPHICS (shifted 9) is pressed and lasts
until it is pressed again. An unshifted key will give the inverse video of its
mode interpretation. A shifted key will as well, prowided that it is a symbal;
but if the shifted key would normally give a token, in graphice mode it will give
the graphics symbol that appears in the bottom right-hand comer of the kay.

The screen

This has 24 lines. each 32 characters long. and is divided mto two parts,
The top part s at most 22 lines, and dssplays either a listing or program
output. The bottom part, at least two lines, is usad for inputting commands,
program knes and INPUT data, and also for displaying reports

Keyboard input; this appears in the bottom linas of the screen as it

98

Chaptes 21

typed, each character (single symbol or compound token) being mserted just
before the cursor The cursor cen be moved left with © (shifted 5) or right
with ¢ {shifted B). The character before the cursor can be removed with
DELETE [shifted 0. (Note: the whole line can be deleted by typing EDIT
[shiftad 1) followed by ENTER)

When ENTER is prassed, the line is executed, entered into the program, or
used a5 INPUT data as appropriate, unless it contains a syntax error, in which
case the symbol B appears just before the error.

As program lines are entered, a listing is displayed in the top haif of the
screen. The last line to be entered is called the current fine and is indicated by
the symool B, but this can be changed by using the keys « Ishifted &) and <
{shafted 7). if EDIT (shitted 1) is pressed, the current ling is brought down to
the bottom part of the screen and can be edited.

When a command is executed or a program run, output is displayed in the
top half of the screen and remains until a program line is entered, or ENTER is
pressed with an empty line, or = or - is pressed. In the bottom part appears
2 report of the form m/n, where m is a code showing what happened (see
Report Codes), and n is the number of the |ast line executed — or O for a
command The raport remams until 8 key is pressed (and indwcates [3 mode).

In certain circumstances, the SPACE key acts as ¢ BREAK, stopping the
computer with report D. Thes is recognized

(il atthe end of a statement while a program is running,

{iill while the computer is leoking for a program on tape,
or fiil while the computer is using the printer lor by accident trying to use it
when it is not thera).

The BASIC

Numbers are stored to an accuracy of 9 or 10 digits. The largest number
1@-1 gov; get is about 107, and the smallest (positivel number is about

A number is stored in the T/S 1000 in fioating-point binary with one
exponent e (1 <=g < = 256, and four mantissa bytesm (1/2 <=m < 1)
Thes represents the number m * 2* 7% !

Since 1/2 <=m < 1, the most significant bit of the mantissa m i always
1. Therefore in actual fact we can replace it wath a bit to show the sign — @
for pasitive numbers, 1 for negative

Zero has a special representation in wivch all 5 bytes are 0

Numeric varables have names of arbitrary length, starting with & letter and
continuing with letters and d'i‘gita Spaces are ignored.

Controd variablas of FOR-NEXT loops have names a single lettes long.

Numenc arrays have names a single ktter long, wivwch may be the same as
tha nama of a simple vanable. They may have arbitrarily many demensions of
arbitrary size Subscripts startat 1.

Strings are completely flexible in length. The name of a string consists of a
singe latter followed by §.

tring arrays can have arbitrarily many dimensions of arbitrary size The

name is a single letter followed by $ and may not be the same as the name of
@ string. All the strings = a given array have the same fixad length, which is
specified as an extra, final dimension in the DIM statement Subscripts
startat 1.

99

Chapter 21

Shicing: Substrngs of strings may be specifiad by wsing siicers A slicer can
be

iy empty

lif numencal expression
or

lil} optional nurmencal expression TO optional numencal expression and
is used in expressing a substring either by

lal string expression hlicarr?
or by

|b} string array variable (subscrpt, ..., subscript, slicer)
whach means the same as

string array variable lsubscript, . subscript) slicer}

In (al, suppose the stnng expression has the value 585,
H the shicer is empty, the result is 53 conssdered as a substring of itself.
i the slicer is a numerical expression with value m. the result is the mth
character of 53 |a substring of length 1),
if the slicer has the form [iil), suppose the first numerical sxprassion has the
valug m i;g? default value is 1|, and the second, n Ithe default value is the
h of s5).
1 <=m <=n <= the length of 53, the result is the substring of s§,
starting with the mth character and ending with the nth
H@ <=n < m, the result is the empty string,
Otherwise. error 3 results.
Slicing is performed before functions or operstions are evalusted, unless
brackets dictate otherwise.
Substrings can be assigned to (soa LET)
The argument of a function does not need brackets if it is a constant or a
{possibly subscrapted or sliced) variable

Function Type of operand Result
(x}
ABS number Absolute magnitude.
ACS mambar Arccosine in radkans
Error & if x not in the range =1 10
1.
AND binary operation,
nght operand
always a numbsar.

100

ATN
CHRS

CODE

cos

EXP
INKEYS

LEN

§

PEEK

Nurmneric left oparand:

String left operand:

number

string
number

(in rackans)
number

number

number

number

binary operation,

aperands
numbers
number

| AfB=0
AANDE = | 0ifB=0

| ASifB %@
ASANDEB = 1 " fB=0

Ascaing in radigns,
Er;orAifxnmhtharmge-lm
+1.

Arctangent in radans.

The characler whose code s x,
rounded down to the nearest
integes.

Error B if x not in the range @ to 255.

The code of the first character in x
tor @ if x is empty string).

Cosine

e

Reads the keyboard The result is
the character representing (in [§
model the key pressad if thare is
exactly ona, else the empty string.
integer part (always rounds down),
Length.

Natural loganthm (to base el
EmorAfx <=0

Qifx+=0 T#Fx=0 NOT has
priority 4.

f1HB40
AORB= | ifBw0.
OR has prority 2.

The value of the byte in memory
whose address is x nded to the
nearest integer).

Error B if x not in the range 0 to
B85535

o

Chapter 21

Pi none
RND none
SGN number
SIN numbaer
{in redians)
SQR number
STRS number
TAN number
n radisns)
USR number
VAL stnng
- number
The following are binary operations:
+
- Subtrachion
» Mudtiplication
/ Divigion
> Graater than
< Less than
<= Lass than or aqual to
== Greater than or equal to
<> Notequalto

102

= (3141568266 ..)

Tha naxt pseudo-random number y
In & sequence rated by taki
the powars of 75 modulo 655637,
subtracting 1 and dividing by
65536 D<=y < 1.

Signum: the sign (-1, 0 or +1} of x.

Sine.

Squars root.
ErorBifx < 0.

The string of charecters that would
be displayed if x were printed,

Tangent.

Calls the machine code subroutine
whaose starting address is x, On re-
turn, the result is the contents of
the be register pair.

Evaluates x (without its bounding
quotes) as a numerical expression.
Errar C of x contains a syntax error,
or gives a string value.

Other errors possible, depending on
the expression

Negation

Addition lon numbers), or concatenation (on strings)

Raising to a power. Error B if left oparand is negative,
Equats :

Both operands must be of the
same type. The resultisa
number, 1 if the comparison
holds, and Q if it does not.

Chapter 21

Functions and operations have the following priorities:

Operation

Subscribing and slicing
All functions except NOT and
unary minus

Unary menus

-.-'.

+,~ tbinary =]
B> C ==L
NOT

AND

OR

Stataments

In this hst,

Priaeity
12

-

ML s OO0 OO D~

represents a single letter

v represents a variable

y.z rapresents numericel expressions
m.n represents numencal expressions that are rounded to the nearest

ntegar

e represents an expression
f represents a string-valued exprassion
represents & staterment

Note that arbitrery expressions are alowed everywhere lexcept for the line
numbser at the beginning of a statement).

Al statements except INPUT can be used sither as commands or in pro-
grams (although they may be more sensibla in one than the other).

CLEAR

CLs

CONT

coery

Deletes all varables, freemg the space they
occupied.

{Clear Screen) Clears the display file See
Chapter 26 concaming the display fée.

Suppose a'b wara the last report with a non-
zero. Then CONT has the effect

GOTObifaw 9
GOTO b+'1 it a = 9 |STOP
statemant)

Sends » copy of the display 10 the prnter, i
attached: otherwise does natheg.
Repart D if BREAK pressad.

103

Chapter 21

DIM@ In,....n,)

DIM@E Sin,, ., nJ

FAST

FORE =xTO v
FOR@ =xTO y STEP ¢

GOSUB N

GOTOn

IF x THEN 5

Deletes any array with the name @ and sets
up an arrey of numbers with k
gimcnams' Ny Initislizes all the valees to

Ehmdoecmilﬁmisnomomtofnlha
array in. An array & undafined until it is dimen-
sioned in a DIM statement.

Deletes any array or string with the name @ §
and sets up an array of characters with k
dimensions n,, . n,. Indtishzes all the valees to
" This can be conswdered as an array of
strings of fixed length n,, with k=1
dimensions n., . N,y

Error 4 oceurs if there 8 no room to fit the
array in. An array is undefined until i s dimen-
sionad n a DIM statament.

Starts fast mode, «u which the display file is
displayed only at the end of the program,
whda INPUT data is being typed in, or during a
pause

FOR@ =xTO ySTEP 1

Deletes any simple variable and sets up 8
control vanable with value x, imit y, step 2,
and looping address 1 mora than the kne num-
ber of the FOR statemnent {—1 if it is a com-
mand}. Checks (f the instial value is greater (if
step > = Q) or less [if step < @) than the limit,
and if o, then skips 1o statement NEXT @ at
the baginning of a line, See NEXT@.

Error 4 occurs i there 18 no room for the con-
trol vanable

Pushes the number of the GOSUB statement
onto a stack; than as GOTO n.

Error 4 can occur f there are not enough
RETURNSs.

Jumps to line n for, if there is none, to the first
line after that)

If x is true (non-zero), then § is executed.
The form IF x THEN [ine number’ is not
allowed.

LET v=g

LIST n

LLIST
LLIST n

LOAD f

LPRINT .

Chapter 21

Stops [with no special prompt) and waits for
the user to typa in an exgression; the value of
this is assigned 1o v. In fast mode, the display
file is displayed. INPUT cannot be used as a
command, esror 8 occurs if you try.

If the first character in the INPUT line is STOP,
the program stops with report D.

Assigns the value of e to the variable v.

LET cannot be omitted.

A simple variable is undefined until it s
assigned to in a LET or INPUT staterment,

If v is a subscripted string variable, or & sliced
string variable (substringl, then the assign-
ment is Procrustean; the string value of @ is
either truncated or filled out with spaces to the
right, to make it the sama langth as the var-
1able v

LusTo

Lists the program on the TV screen, starting at
fine n. and makes n the current line
Etror 4 or 5 if the ksting is too long to fit on the
screen: CONT will do exactly the same agasn.

LLISTQ

Like LIST, but using the printer instead of the
television

Should do nothing if the printer is not
attached

Stops with Report D if BREAK is pressed.

Looks for a program called f on tape and loads
it and its variables. If f = ", then lcads the
first program available.
It K 5 pressed, than

lil if no program has yet been raad in from
tepe, stops with report D and old program,

lit i part of a program has been read in,
then executes NEW

Like PRINT, but using the printer instead of
the television. A line of text is sent 1o the
printes

i when prnting spills over from one line
1o the next,

(il after en LPRINT statement that does
not end m & comma or a semicolon,

108

Chapter 21

NEW

NEXT@

PAUSEn

PLOT m.n

POKE m.n

106

(i} when a comma or TAB item requires 2
new line, or

liv] at the end of the program, it there is
anything left unprinted.
In an AT dem, only the column number has
any affect; the line number is ignored. An AT
item never sends a lne of text to the printer.
Thera should be no effect if the printer s
absent.
Stops with report D if BREAK is pressad.

Hastarts the BASIC system, deleting program
and varigbles and using the memony up to but
not including the byte whose address i ;m the
:g;;r;l variasble RAMTOP (bytes 16388 and

fil Finds tha control variable @

Wl Adds its step to its value,

fiiil I the step > = 0 and the value > the
fmit; or if the step < O and the vaiue < the
limit. than jumps to tha looping line.
Error 1 if there is no control variable @

Stops computing and displays the display file
for n frames (at 5@ framas per sacond) or until
a key is pressed @ <= n <= 65635, else
arror B if n > = 32787, then the pause is not
timed, but lasts until & key is pressad.

Blacks in the pixel {Im],[n|), moves the
N‘fpomntoumsftarmtuxol

D<= Iml <=63,0<=Inl <= 43, else

error B,

Writes the value n to the byte in store with
addrass m.
0 <=m <= §5535, -256 <=n <= 255,
eisa arror B,

The "~ is a sequence of PRINT tems, sapat-
ated by comwmas or semicolons. Thay are
written to the display file for display on the
television. The position (line and column)
whare the next character s to be printed is
called the PRINT position.
A PRINT item can be

iy empty, ie, nothing

lil a numerical expression

Chapter 21

First, a rminus sign is printed if the value is
tive

negy
Now let x be the modulus of the value.

Hx<=10"orx>= 10", then it s printed
using scientific notation. The mantissa pant
hos up to eight digits (with no trailing zeros),
and the decimal pomt (absent if only one digit)
% after tha first The exponent part is E, fol-
lowed by + or —, followed by one or two
digits

Otherwise x & printed m ordinary decimal
notation with up to eight significant digits, and
no trailling zeros after the decsmal point. A
decimal point nght at the baginning = always
tfollowed by & zero, so, for instance, .03 and
0.3 are printed as such

Q is printed as a single digit ©.

i4) a strng expression

The tokens in the string are expanded,
possibly with a space befora or after.

The guote mage charecter prnts as "'
Unused characters and control characters
printas 7.

livi ATmn

The PRINT position is changed to ne m
lcounting from the topl, column n {counting
fromtha left) 0 <=mi<=210<=phi<=
31, elseerrorB if iml =22 0r 23, arror 5.

vl TABn

n is reduced module 32 Then, the PRINT
position 15 moved to column n, staying on the
same line unless this would involve backspac-
ing. in which case it moves on to the next line.
Q@ <=n<=255 elseerrorB.

A semacolon between two items leaves the
PRINT position unchanged, so that the sec-
ond (tam follows immediataly after the first. A
comma, on the other hand, moves the PRINT
pasition on gt least one place; and after that,
a5 many as are necassary (o leave it in column
0 or 18, maving 16 4 new line if necassary.

At the end of the PRINT statement, if it
does not end in a semicolon or comma, & new
line is started.

Error 4 lout of memory| can occur with 3K or
less of memaory
Error 5 means that the screen is filled

107

Chapter 21

RAND
RAND n

RETURN

RUN
RUN n
SAVE {

SCROLL

SLOW

108

In both cases, the cure is CONT. which will
clear the screen and allow the program
to continue.

RAND @

Sets the systern variable (called SEED) used to
ta the next value of RND. If n = 0, the
is given the value n; if n = 9, it is given

the value of snother system variable |caled

FRAMES) that counts the frames so far

dispiayed on the television, and $0 should be

fairly random.

Error B occurs If n is not m the range O o

85535

No affect .. can be any sequence of charac-
tors except ENTER.

Pops a line number from the GOSUB stack
and jumps to the line after it.

Error 7 occurs when thers is no line number
on the stack. There is some mistake n your
peogram; GOSUBs are not properly batanced
by RETURNs.

RUN Q
CLEAR, and then GOTO n

Records the program and variables on tape
and calls it f.
SAVE should not be used inside a GOSUB
routine,

Error F oceurs if fis the empty string, which
15 not allowed.

Scrolls the display file up one line, losing the
top line and making an empty line at the
hottom

Note that the new line is genuinely empty with
just an ENTER cheracter and no spaces

Futs the computer into compute and display
mode, n which the display file is displayed
continuously and computing i done dur
the spaces at the top and bottom o
the picture

UNPLOT mu.n

Chapier 21

Stops the program with Report 9. CONT will
resuma with the followeng line.

Like PLOT, but blanks out & pixel mstead of
blacking it in.

109

110

Chapter 22
Flowcharting and Debugging

There s more to the art of programming computers than just knowing
which statement does what You will probably already have found that most
of your programs have what are technically known as bugs when you first
type them in: maybe just lyping errors, of maybe meatakes In your own ideas
of what tha progrem should do. Y ou might put this down to inexperience

ALMOST EVERY PROGRAM STARTS OFF WITH BUGS INIT

1

Chapter 22
The general plan can be Bustrated with a flowchart-

Wirile program with as
few bugs as possibie.

l Test program l

Donr1
p=nic

| Find the bugs |

Fix them, introducing ss
lew new ones 3= possibie

The idea is to follow the arrows from box to box, doing what esch one tels
you to do. We have used different sorts of boxes for different sorts of

Astructions:

A rounded box CD is 10 start or finish,

A rectangular box S is @ straightforward
Mnstruction

A diamond asks you to make some kind of
decision before going on.

[These shapes are fairly widely used, but thay are not mandatory)

Flowicharts are often used for describing the large-scale structure of pro-
grams, with a subroutine in almost every box, 50 a flowchart for our distance

112

Chapler 22

example in chaptar 9 might be

&

-

[Input ¥ F & | I

1

I Printoul Y,F &1 I

1

[Adisst vrar |

1

Print o the
new Y F Al

.

Anything — flowcharis. subroutines, and also REM statements — that
makes the program clearer gives you a better understanding of it, and then
you ara sure to write fewer bugs. But subroutines also help you get out the
bugs you ve already written, by makmg the program easier to test You will
find it much aasier 1o test the subroutines iIndaidually and make sure thay fit
together properly than to test o whade unstructured program,

Subroutines, than, help with the box “find the bugs,” and this is the box
where you need all the help you can get, for it is often the most exasperating
Other hints for finding bugs are

{il Make sure there are no typng errors. Always do thes,

fit Try to determine what all the variables should be at each s — and,
if possible. explain them in REM statements. ¥ou can chack the vanables at a
given point in the program by inserting a PRINT statement at that point.

{ii} 1f the effect of the pragram is to make the program stop with an erroe
report, use the mformation as thoroughly as you can. Look up the report code
and decide why it stopped on a particular line. Print out the values of the
variables, if necessary,

liv]l You might be able to step throwgh 2 program line by line by typing in
its inas as commands,

vl Pretend to be the compites: run the program on yoursal!, using pencd
and paper to note down the values of the variables.

Once you've found the bugs, fixing them is much like writing the onginal
program, but you must tast the program again. it is surprisingly easy to fix one
bug ondy to introduce another

113

Chapter 22

Exercises

1. Occasionally — this may have already happened to you — you will logse a
lengthy program you have written, or almost finished, by disconnecting the
power supply accidentally. This sort of thing somatimes happens spontane-
ously; it Is not a bug but 8 glitch. There is nothing you can do about it If it
happens much too often, there is probably something wrong. but it would be
worth saving the incomplete program on tape halfway through

2. The flowchart for the distance calculator has no “finish™ box. Does this
matter? Where would you put one in the flowchart if you wanted to?

114

Chapter 23
Number Systems

We believe that humans count by tens — the decimal system — bacause
humans have ten fingars. Computers count intermally “'by twos", or in binary.
This is not because they have only two fingers, but because they can only
::istingulsh between two states of their many nternal switches, on or off,

or Q.

115

Chapter 23

Aithough engineers use » binary system when building computers (see
nght colurmn of table next page), another number system is usaful because it
i apsier to read and can be easily convaned 1o binary. it is called hexadecimal
[by sixteens, or having base sixteen], and begins:

Hex English

a zZero

1 one

2 two

9 nine

A ten

B alaven

C twealve

D thirteen

E fourtean

F fifteen

10 sixtean

19 twenty-five
1A twanty-gix
1B tweanty-seven
1F thirty-one
20 thirty-two

21 thirty-three

9E one hundred and fifty-aight
SF one hundred and fifty-nine
AQ one hundred and sixty

Al one hundred and sixty-ona

FE two hundred and fifty-four
FF two hundred and fifty-five
100 two hundred and fifty-six

If you are using hex notation and you want to make the fact quite clear,
write “h" 8t the end of the number and say “hex'’. For instance, for one
hundred and fifty-esght, write “"9Eh" and say “'nine E hex",

116

Chapier 23

In the different systems, counting begins

English Decimal Hexadecimal Binary
810 Q 5] 0 or QOB
one 1 1 1 or QOB
two 2 2 10ordd10
threa 3 3 11or@d@11
four i 4 100 or 0100
fiva & b 101 or @101
8ix 6 6 1100rd110
saven " | 7 1MM1or® 1N
eight 8 8 1000
ning 9 g 1001
8n 10 A 1010
alevan ¥1 8 1011
Twelve 12 Cc 1100
thirtean 13 D 11
fourtean 14 E 1110
fiftesn i5 F 1111
sixteen 18 19 1G000

The important paint is that sixteen is equal to two rased to the fourth
power, which makes converting between hex and binary very easy.

To convert hex 1o binary, change each hax digit into four bits, using the
table above. The binary digits O and 1 are referred to as birs.

To conwvert binary to hex, divide the binary numbar inta groups of four bets,
w on the nght. and then change sach group Into the comesponding hax
d

Tha bits mside the computer are mostly grouped into sats of aight. or
bytes. A sangle byte can represent any number from zero 1o two hundred and
fifty-five (11171111 hinary or FF hax), or, alternatively, any character in the
T/S 1000 character set. Its value can be written with two hex digits.

Two bytes can be grouped together 1o make what is techmscally celled 5
word. A word cen be written using sixteen bits or four hex digits, and
represents a number from 0 ta in decimall 2'*=1 = 66535,

A byte 13 always eight bits, but words vary from computer to computer.

Summary
Decimal, haxadecimal and binary systems,
Bits and bytes (don't confuse them) and words,
Exercises
1. How would you convert from pounds to ounces and back again

iy when all the numbers are written i decimal?
fij when all the numbers are written m héx?

Chapter 23

2 How would you ¢onvert between decimal and hex? [Hint exercise 1)

Write programs on the T/S 1090 to convert numerical values nto the
strings giving thesr hex representation, and vice versa. (This is what STRS
and VAL do with decimal representations.)

118

Chapter 24
How the Computer Works

It is bayond the scope of this manual to describe in detail the electronics of
the T/S 1000 and its operation, but we can give some idea of the purpose of
its larger components.

The #ustration in this chapter shows the T/S 1000 with its outer case
removed, The rectangular black components with the metal legs are [Cs —
integrated circuits. Actually you are looking st only the package — the IC
itself is much smalier.

The most important IC of the T/S 1000 = the CPU [Cantral Processing
Unit). It is a ZBOA microprocessor. The procassor doss the anthmetic. and
slectromcslly controls the rest of the computer according to the operating
SYST&M program.

The operating system is contained in the ROM IC. This is a solid state
alectronic storage device which has a program permanently wired in 1o make
the CPU work. Tha program is unique to the T/S 1000. In symbolic form itis
a long sequence of bytes. Each byte has an address showing its position in

118

Chapter 24

the ROM — the first one has addrass @, the second has address 1, and so on
up to B1971; which is why the Sinclair BASIC is called BX BASIC.

You can see what byte is at a given address by using the function PEEK
For example, this program prints out the first 21 bytes in the ROM (and
their addresses)

10 PRINT “ADDRESS"" TAB 8, "BYTE"
20 FORA=0TO 20

30 PRINT A:TAB B.PEEK A

49 NEXT A

The RAM chip is an electronic ““scratch pad'” which is hooked up 1o the
CPU The BASIC programs that you type in are storad glectronically here, as
are its varipbles, the television picture, and the system variables (another
technical word|).

Like the AOM, the RAM s is arranged into bytes, sach with an
address. These range from 16384 to 18431 (or 32767 if you have 3 16K
RAM pack extension). As with the ROM you can find the values of thess
bv;es by using PEEK. The difference is that you can slsc change tham.

vpo

POKE 1730057
This gives the byte at address 17300 the value 57 1f you now ype
PRINT PEEK 17300

you get your number 57 back. {Try poking in ather valives |
Note that the address has to be between @ and 65535 and most of these
will refer to bytes in ROM of newhare at all. and so have no effect. The value
must be between —255 and +285, and if it is negative it gets 256 added to it
The ability to poke gives you mmmense power over the computer if you
know how to use it; however, the necessary knowledge is rather more than
can be imparted in an introductory manual like this

120

Crnptor 26

(wasAs Buneiado) WOM

(ped sjou)
wvd

10lRINPOLW DBRIA — {(8530UYJOmM)

108

N

Chapter 24

The last large IC we call the SCL {Sinclpr Computer Logic). iis a ULA
Imare tachnical jargon) specially designed and made for the T/S 1000. It
wires the other components 10 one ancther in an ingenious way.

The modulator converts the computer’s telavison output into a form suit-
able for the television, and the regulator converts the smoothed, but unreg-
ulated 8 volts of the power supply to a regulated 5 volts.

Summary

Chips

Statements; POKE
Functions: PEEK

122

Chapter 25
Using Machine Code

This chapter is written for those who undarstand Z8¢ machine code, the
set of instructions that the 280 processor chip uses. |f you wish 10 learn
more about ZBQ machine codes and programming, the following books pub-
kshed by Reston Publishing Company, Inc, Reston, Virges, may be helpful:
Mastering Machime Code on Your ZX817, by Teni Baker; and Z-80 Users
m‘l’he !, by Joseph JhCarr. o . "

ultimate authority is the Ass uage Programming
Manual, 10gether with the Z80.CPU, Z804-CPU cchmmnud pubished
by Zilog: but these can hardly be recommended for beginners.

Machine code routines can be éxacuted from withn 3 BASIC program by
using the function USR. The argument of USR is the starting address of the
routine, and isa result 15 a two-byle unsigned integer, the contents of the be
ragister pair on return. The return address to the BASIC is stacked in the
usual way, 3o retum 2 by & ZB80 RET instructon,

There are cartain restrictions on USR routines:

il Onreturn, the i register must have the value 1Eh,

123

Chapter 26

lil The display routing uses a’,'.ixiy and r registers. a USR routine should
not use thue} i compute and display s operating. 1t 1 not even safe to read
the af” pair,

All these lines from the processor are exposed at the back of the T/8
1009, so in principlé you can do anything with a T/S 1000 that you can with
a8 Z80. The T/S 1000 hardware might sometimas get in the way, though,
mspecially in compute and dsplay. Here is a diagram of the exposed connec-
tions at the back

e T T T T T LTI IT] "'l i

WO W A A1 AZ AD AIYAMAL AT AT AW AF A3 & m s
[t 1

T [.Bl-

| BERRREN HER

TIT] | |
o ?‘ﬁﬂ.ﬂ’:ﬂ Or' od O b (ry Da BaT MAT HELY | e e .,m ST T 1 SEFRM
Anel FOLAR SR W

A piece of machine code in the meddle of memory runs the risk of baing
overwritten by the BASIC system Some safoer places are

G In 3 REM statement: type in @ REM statemant with enough characters
1o hold your machine code, whach you than poke in. Avoid halt instructions.,
since thase will be recognized as the end of the REM statement.

Gl In @& string. et up a long enough string, and then assign a machine
code byte 1o each character.

In both of these the code 15 safe, but likely 10 move about, this is especially
the case with sfliJEs In the Appandix, tha character sat. you will find tha
characters and 280 mstructions weitten sice by side in order, and you may
weedl find this useful when entering code

filil At the top of the memory. When thaT 'S 1000 is switched on, it tests
1o see how much mamory thera is and puts tha machine stack nght at the 100
=0 that there 5 no space for USR routines there, i stares the address of the
first nonexistent byte le.g., 17K, or 17408, if you have 1K memory) in &
system wvanable known as RAMTOP, m the two bytes with addresses 16388
and 16389 NEW, on the other hand, does not do a full memaory test, but
only checks up as far as just before the address in RAMTOP. Thus, if you
poke the address of an existng byte mto RAMTOP, for NEW all the memory
from that byte on is outside the BASIC system and is |eft alone. For instance,
suppose you have 1K memory and you hawe just swatched on the compatar

PRINT PEEK 16388+256°PEEK 16389
tells you the address |1 7408) of the first nonaxistant byte,
€ you have s USR routine 20 bytes long. You want ta change

MNow suppo
RAMTOP to 17388 = 236 + 25667 (how would yeu work this out in the
computar?), so type

134

Chapter 25

POKE 16388,236
POKE 16385.87

and then NEW. The twanty bytes of memary from addraess 17388 to 17407
are now yours to do with what you like. If you then type NEW again it will not
affect thase twenty bytes.

The top of memory is a8 good place for USR routines, safe leven from
NEW) and immobide. Its main disadvantage is that it is not saved by SAVE.
Summary
Functions: USR
Statements: NEW
Exarcises

1. Maka RAMTOP squal to 16700 and then execute NEW. You will get an
wdea of what happens when the memory gets full

125

128

Chapter 26
Organization of Storage

The memory s divided into different areas for stoning differant kinds of
information. The areas are only large enaugh for the information thoy actually
contain, and If you insert more st a given point {for instence, by adding a
program Ene or variable), space is made by shifting up everything above that
mn':m Conversely, if you delete information, everything sbove the delation is
shifted down.

127

Chaptar 26

Hyte conmaining 500

L]
Syslem - Line being typad
variables Program | Display file | Vanables > wodlky (
f t t t ! }
16364 16509 O_FILE VARS E.LINE STKBOT

GOSUB' USSR
) Calculator stsck | Spara |Maching stack Stack | foutines

¢ t t } t
STKBOT STKEND Machine stack ERF_S® RAMTOP
pointer sp

The system variables contain various pleces of information that tell the
computer what sort of state the computer is in. They are ksted fully mn the
naxt chapter, but for the momant note that there are some (called D_FILE,
WARS, E_LINE and so on) that contain the addresses of the boundaries
between the varigus sreas in the memary. Thase are not BASIC variables, and
their narmes will not be recognized by the computer

In the program, each line is stored as

Maore signiticant byte

: Less signehcant byte
]]

tor
2.bltos I 2 | { L 7['1I1lrlol1ltlo|
[T UL L
Line numbar Langth of Texi ENTER

taxt + ENTER

Note that, in contrast with all other cases of two-byte numbers in the Z80,
the ine number here {and also in 8 FOR-NEXT control veriable) is stored with
its more significant byte first: that is to say, in the order that you would write
tham down.

A nurmerical constant in the program is followad by its binary form, using
the character CHR$ 126 followed by five bytes for the number itsalf_

128

Chapter 26

Thada?u‘ y file is the mamaory copy of the television picture. It begins with
an ENTEH character, followed by twanty-four knes of text, each finishing
with an ENTER. Thea systern is so designed that a fine of text does not need &
full tharty-two choracters: final spaces can be omitted. Thas is done to save
space whan the memory is small.

When the total amount of memory laccording to the system variable
RAMTOP) is less than 3 1/4K, a clear screen — as sot up at tha start or by
CLS = consists of just 25 ENTERs. When the memory (s bigger, a clear
screan is paddad out with 24°32 spaces. and an the whole it stays at its full
size; SCROLL. however, and certain condibons where the lower part of the
screen expands to more than two lines, can upset this by introducing short
lines at the bottom.

The variables have different formats, depending on their different natures.

Numbar whose name is one lattar only:

Sign hit
*
fTTTTT I3

11 Exponent byte 4 Mantissa byles

Lelior Valus

Number whoss name is Iongar_lmn one lattar:

1lal1i|11|ﬂ|“i;|.H‘} [LIOITI!H ‘QSW“D
[LL1d]] :'-|1H| LLPCytIly

Letigr 2rd) characies Las? chargcies Valus

129

Chapter 26

Array of numbers;

TTTTTTT] [T 1 EI
1840 2bytes | 7 bytes | 2 bytes 7 tytes Sb(loeeach

LLEELy | | L
' —
Latter-20n Totasl No.of 1stdim Last dim. Elemenis
wangth ot dimansions
alements &
Himensiong
+ 1 for no.

of dimanssons

The order of the slements is

first, the elements for which the first subscript is 1

next, the elements for which the first subscript is 2

next, the elements for which the first subseript is 3
and s0 on for all possible values of the first subscrpt.

The elements with a given first subscript are ordered in the same way using
the second subscript. and 80 on down to the last.

As an example, the elements of the 3 X 6 array 8 in Chapter 22 are stored
in the order B(1,1), B(1,2), B(1,3), B(1,4), BI1,5], B(1.8], BI2.1), B(2,2).. . .,
B(2,6), 813,1), B(3,2), ,BI3,6)

Control varigble of a FOR-NEXT loop:

More significant
Less significant

RRARAR I

1119 ‘ 5 byles 5 bytes 5 bytes 2 bytes

WA , . |
Letier Value Lirmit Etep Looping ling

Chapter 26

String:
RRERA | s
RN 2 bytes
ol 5T L
anr-m ‘ Nuﬂ;bef af ‘ Teal of lenn'lfmy be ematy) .
characters
Array of characters.
AR AR I } 2
110) 20;"(03 1byte | 2 oytes 2 byles 1 byle each
Tnttm-?ﬂh Total No. of 18t dim. Last dim, Elemants
number of dims
alemenis
Adims. «
1 107 /.
of tims.

The part starting at E_LINE contains the line being typed las a command, a
program line, or | datal and also some work space.

The calculator is the part of the BASIC systern that deals with anthmetic,
and the numbers it i operating are hald mastly in the calculator stack

The spare part contains the space so far unused,

The machine stack s the stack used by the Z-80 chip to hold retum
addresses and s0 on.

The space for USR routines has to be set aside by you, using NEW as
described in the last chapter.

131

132

Chapter 27
The System Variables

The bytes in memory from 16384 to 16508 are set aside for specific uses
by the system. You can peek them to find out various things about the
system, and some of them cen be usefully poked They are listed here with
their uses.

These are called system varisbles and carry names, butl do not confuse
them with the vanables used by the BASIC, You cannot use the namas in a
BASIC program. they are simply mnemaonics that are used to make it easwer to
refer 1o the variables.

The abbreviations in column 1 have the foliowing meanings.

X The varisbie should not be poked, because the system might crash
N Foking tha variable will have no fasting affect.
5 The variable is saved by SAVE.

The number in column 1 is the number of bytes in the vanable. For two

bytes, the first ona is the /ess significant byte — the reverse of what you
might expact. So to poke a value v 10 2 two-tirte variable at address n, use

133

Chapter 27

POKE n,v~=258°INT v/258)
POKE n+ 1INT v/ 2586

and to peek its value, use the expression:
PEEK n + 256'PEEK (n+1)

Nores

Address

Navme

Contants

X1
X2

N1
N2

s1
52

$X2
52
5X2

SX2
SX2

52

134

18384

18385
163886
16388

16390
16391

16393
16324

16396
16398
16400
16402

16406

16408

ERR_NR

ERR_SP
RAMTOP

MODE
PPC

VERSN
E_PPC

D_FILE
OF.CC

VARS
DEST
E_LINE
CH_ADD

X_PTR

1 less than the report code. Starts off at
255 (for =11, so PEEK 16384, if it works
at all, grves 255 POKE 16384, n can ba
used to force an emror halt: @ <=n <=
14 gives one of the usual reports, 15 < =
n<=340r98 <=n <= 127 gives a
nonstandard report, and 35 <= n <= 98
=5 likely to mess up the display file.
Various flags to control the BASIC
system,

Address of first tem on machine stack
[atter GOSUB returns).

Address of first byte above BASIC system
area You can poke this to make NEW
rasarve space above that area (see Chap-
ter 25} or 1o fool CLS into setting up &
minimal display file [Chapter 26),
Specifies X, L, F or G cursor

Line number of statement currently baing
executed Poking this has no lasting
effact except in the last line of the

program.

Q Identifies 8K ROM in saved programs.
Number of current line (with program
Cursos).

See Chapter 26

Address of PRINT position in display fike,
Can be poked so that PRINT output is
sent alsewhers.

See Chapter 26,

Address of vaniable in assignment.

Sea Chapter 26

Address of the next character to be mter-
preted. the character after the argument
of PEEK. or the ENTER at the end of a
POKE statement.

Address of the character precading the
marker.

Chapter 27

Notes Address Narme Contents

SX2 16410 STKBOT

Sea Chapter 26

SX2 168412 STKEND

SN1 16414 BREG Calculator’s b regester,

SN2 16415 MEM Address of area used for calculator's
memory. (Usually MEMBOT, but not
ahways. |

S1 16417 notused

§X1 16418 DF_SZ The number of lines (including one blank
lingl m the lower part of the screen

§2 16419 S_TOP The number af the top program Ene in
automatsc listings.

SN2 16421 LAST X Shows whech keys pressed

SN1 18423 Debounce status of keyboard.

SMN1 16424 MARGIN Number of blank lines above or below
picture — 31.

SX2 16425 MNXTUIN Addrass of next program line to be
executed

52 16427 OLDPPC Line number 1o which CONT jumps,

SN1 18429 FLAGX Varous flags.

SN2 16430 STRLEN Length of string type designation in
assignment,

SN2 16432 T-ADDR Address of next tem in syntax table (very
unlikaely to ba usafull

52 16434 SEED The seed for AND. This is the vanable
that is set by RAND.

52 16436 FRAMES Counts the frames desplayed on the televi-
sion. Bit 15is 1. Bits O to 14 are decre-
mented for each frame sent to the talevi-
sion. This can be used for timang, but
PAUSE also uses it PAUSE resets bit 15
to @ and puts » bits @ to 14 the length of
the pause. When these have been count-
ed down to zero, the pause stops. If the
peuse stops because of a key depression,
bit 15 is set to one again.

S1 15438 COORDS x-coordinate of last point PLOTted.

S1 16439 y-coordinate of the last point PLOTted.

51 16449 PR.CC Less significant byte of address of next
position for LPRINT to print at lin
PRBUFF).

Sx1 186441 S_POSN Column number for PRINT position.

sx1 16442 Line number for PRINT position,

136

Chapter 27

Notes Address Name Contents

81 16443 CODFLAG Various flags Bit 7 is on (1) during com-
pute and display &
833 16444 PRBUFF Printer buffer (33rd character) is ENTER,
SN30 16477 MEMBOT Calculator's memory area, used fo store
numbers that cannot conveniently ba put
on the calculator stack.

52 16507 not used

Exercises

1. Try this program
160 FORN=0TO 21
20 PRINT PEEK PEEK 164004256 PEEK 16401 + NI
30 NEXTN

Thes tells you the first 22 bytes of the vanables area: try to match up the
control variablé N with the descrption in Chapter 26.

2. In the program above, change lne 20 o
20 PRINT PEEK (168509+N|

This tells you the first 22 bytes of the program area. Match thesa up with
the program itself.

136

Appendix

The Character Set

This is the complete T/5 1000 character set, with codes in decimal and
hex. i one magines the codes being Z80 maching code instructions. then

the right-hand columns give the correspondi
ics. As you are probably sware, certain 28
starting with CBh or EDh, as shaven in the right-hand columns.

Code Character Hex
@ space fulu}
1 ¥ 01
2 = 02
3 = 03
4 g (n11

280 azzembler

nop

Id be, NN
Id), a
inc be
incb

-after C8

fch
nicc
e d
rnce
nc h

assambly language mnemon-
instructions are compounds

-after ED

137

.- w | + 0 Av"""\lﬂn :>}r"&

SrASTIGMMOUORPPFPDONIMAWMN=G’

DhBroavanrun-oRRS28588388 7

280 assamirler

dechb

Id BN
rica

ax af,af
add hibc
Id &, (be)
dac bc
nce
decc
Ide,N

rrca
dinz DIS
Id da, NN
Id (de},a
inc de
incd
decd

id d.N
Ha
jrDis
add hl,de
Id a, Ide}
dec de
ince
dec ¢
de.N
tra
jrnz.DIS
Id hELNN
id (NN, Rl
inc hl
inch
dec h
idhN
daa
rz,DIS
add hihi
Id hi, (NN}
dec hi
nci

dec |
idIN
cpl

it ne,DIS
id sp.NN
wd INN)a

~after CB -after ED

rcl
ric (hi
nca
mch
mee
mcd
mce
mch

|
rr¢ (hi)
mca
b
c
rd
e
h
il
i hi)
da
14 /]
me
mrd
re
mrh
el
rr (hi)
ra
slab
shac
slad
slae
slah
slal
sla {hid
slaa
srab
srac
srad
srae
srah
gral
sra {hi)
sraa

N<Xg<C-uIDTvOZ

not used

280 sssembler

inc sp
inc (hi)
dec (h)
id (hihN
scf

¥ c.DIS
add hl,
Id a,INI

inca
deca
ldaN

Idb.b
idbec
idbd
idbe
idbh
bl
id b, ()
Kdba
dechb
Idc.c
Idecd
Idce
Idec.h
Ide)
Id &, (hi)
ldca
Idd.b
Idd.c
ddd
iddea
ddh
Kd|
idd,(h
ikida
ideb
Idec
Ided
ides
Idenh
Idel
Id e, (M0
Ide.a
Idhb

Appendix

-after CB ~aftar ED

srib

sric

srld

srie

srih

sl

srl (hl}

sria

et 8.b in b, lc}
bit O.c out {cl.b
bit 0.d she bl be
bit Qe Id INN) be
bit @.h neg

bit @1 ratn

bit @, () mQ

bit @, idia

bit 1,b ing,lcl
bit 1,¢ out (ghc
bit1.d ade bl
Dit 1.8 Id b, (NNJ
bit 1.h

it 1.1 rati

bat 1,¢hI

bt 1.8 idra

bt 2.b ind,le)
bit 2.¢ out {c).d
bit2.d she hl,de
bit 2.¢ Id (NN}, de
bit 2,h

hit 2,1

bit 2. (i) m1
bit2.a Ida,
bit3b nelc
bit 3. out lche
bit3.d adc hl,de

Id d, INN)

2 idar
b mh,ic)

139

Codls Characres Hex 280 essemdler
87 81 Id h.c
88 62 Idhd
a9 83 Idhe
100 64 Idhh
1901 85 Idh,|
192 66 It b, (kb
103 }not usad 87 Idhea
104 68 Idib
195 689 Idic
106 BA ldid
197 6B Idle
108 BC ldLh
108 (518) I LI
110 j BE ldLin)
11 6F Idia
112 cursorup <~ 70 Id (b
113 cursordown =771 Id (hl,c
114 cursorlefto 72 Idhd
115 cursorright © 73 Id (hil,e
118 GRAPHICS 74 Id (hi b
117 EDIT 75 I il
118 ENTER 78 halt
118 DELETE 77 Id (hi),a

126 number 7E Id a,(hd
127 cursor 7F Idaa
128 ’ 80 eddab
129 o 81 add a.c
130 = 82 asddad
131 = 83 addae
132 1 84 addah
123 1 B85 addal
13 % 86 adda.lhl)
135 & 87 add a.a
136 & 88 edcab
137 B 89 adcac
138 = BA sdcad
139 inversa"” B8 ade a,e
140 inverse BC sdcah

22
i
88
3
£

bit 5.1

4444444
aoamIRNN

_TFToQao Tox

4
1]
z

0

44
T

in a.ic)
out {cl.a
acdc hl.sp
Id sp.INN)

g9
i~
oan

bt!?h

bit 7.)
bit 7,2
res @b
rasQ.c
res @.d
res Q.a
ras @ h

ras@(hl)
res 0.3
resib
es 1.c
res 1.d
res 1.0
res 1.h
res 1,1
res 1,(hi)

W

Code Characrer

143

145
148
147
148
148
150
151
162

154
155
156
157
158
159
160
161
162
183
164
165
166
167
168
168
170
171
172
173
174
176
176
177
178
178
180
181
182
183
184
185
186
187
188

inversa |
inverse)
inversa =
inverse <
inverse =
inverse +
inverse —
inverse *
inverse /
Inverse |
NVerse ,

inverse O

inverse 2
mvarsa 3
nverse 4
invarsa §
inverse 6
inversa 7
inverse 8
inverse 2
Inwerse A
inverse B
inverse C
inverse D
inverse £
inverse F

inverse H
wverse |

mvarse K
mvarse L
imvarse M
invarsa N
inverse O
inversa P
inverse Q
inversa R
inverse S
inversa T
inverse L
inverse \'
inverse W

AC

ARPEETERROT=BRRE

ZED assemblar

adcasa
subb
sube
sub d
sube
subh
subl
sub ()
suba
sbcab
shcac
she ad
sbcae
sbeah
sbcal
sbe a.(hil
sbcaa
and b
andc
and d
and ¢
and h
and |
and ihl}

xorb
G ¢
xord
ROF @
xorh
xorl
xor (hi)
xOra
orb
orc
ord
ore
orh
orl
or [hi)
ora
cpb
cpe
cpd
cpe
cph

-after OF

res 1.a
res 2.b
res 2.c
res 2 d
ras 2.0

2.h

res 2,1
res 2 ng)
res 2,0
res 3,b
res 3.c
res 3,d
res 3¢
res 3.h
res 3.1
res 3.(hi)
es3.a
res4.b
resd ¢
ros &,d
resd g
res 4.h
res 4,
res 4, (hil
res 4 a
res5b
res 5.¢
res 5.d
res5e
res 5.h
res S|
res 5. hl}
res 5.8
res 6.b
res 6,c
res 6.d
res 6.e
res B.h
res 61
res 6, (hil
res 6.8
ras 7.b
res 7.¢
res 7.d
res 7,8
res 7.h

Appandix

-after £O

Idi
cpi
ini
outi

gags

Idir
cpir
inir
otir

iddr
Cpat
indr
otde

141

233

142

Z30 aszembier

cpl

cp (hil
pa

et mz
pop be
o nz NN
eNN
call nz NN
push be
add aN
rst @
etz

rat
ipz.NN

call z NN
call NN
adca N
st 8

ret ne
pop de

0 Ne.NN
out N.a
call ne, NN
push de
sub N
rst16
retc

Bxx

Jp e, NN
inaN

call ¢, NN
prafixas instruc-
tions using ix
sbcaN
rst 24

ret po
pop

1 po NN
ax {sp),hl
call po,NN
push hi
andN

rst 32

rét pa

ip hi)

sot 1,
set2,b
sat2.c
sat 2,d
sot 2o
sat 2,h
sot 2
set 2, |hi)
set2.a
set3d.b
set3.c
set 3.d
sot 3o
set 3.h
sat 3.1

sat 3,0
sat3.a
satd b
satdc
sat 4.d
setde
set 4k
sat 4,
set 4, |hl)
satda
set5.b
st 5.c

-after D

Code Charscter

234
236
238
237
238
2339
240
241 LET

241 PAUSE
243 NEXT

245 PRINT
248
247 RUN
248
245 RAND
250 IF

251 CLS

252 UNPLOT
253 CLEAR

254
256 COPY

Hex

EC
ED
EE

Fd
F1
F2
F3
F4
F5
FB
F7
F8
Fa
FA
FB
FC
FD

FE
FF

Z80 sssembler

Ippe.NN
ex de,hl
call pe, NN

xor N

ret 40

retp

pop af

ipp NN

di

call p NN
push af

orN

rat 48

rat m

Id sp,
ipmNN

8l

call mNN
prafixas mstruc-
HONS using iy
cpN

rst 56

set 6.0

1t 111se
sy “Teano

Appandix

-after ED

143

Index

This index includes the kays on the keyboard and how to obtain them [the
mode — 4. (I [@or [B— and whether shifted or notl, and their codes.

Usually an entry is referenced only onca par chepter, s6 havirﬁ:und one

reference, look through the rest of the chapter ncluding the exercises.

A

ABS 3. onG Code 210

accuracy

ACS @ on S Code 203. Arccosing
acddition of strings

address

=of a byte
raturm address
alphabetical order
AND Aor 4, shifted 2. Code 218
antiliog
argumant
arithmatic axpression
array
ASN . on A. Code 202. Arcsine.

BESIgN
AT @, onC Code 193.

ATN 3. on 0. Code 204 Arctangent

B

bar chart

BASIC

bDinary
—operation
—Sysiam

BOLD TYPE

BREAK On SPACE. Only recognized as

BREAN = certain situstions.

buffer

bug

144

55,8794
70

60
21.97

35,52
115
117

16,97

11,22
136
1"

byte

call
cassette recorder
character
—positon
—5et
control character
CHR$
CLEAR
CLS
CODE
code
maching code
command
comparison
~0f numbers
—of strings
compute & display
concatanation
condition
conditional expression
CONT

control
=gharacter
—wariable

coordinate

COPY

cos

CcPU

cursor
8 cursor

cursor

3 cursor
cursor
program cursos (B}

D
DATA

ode 214,
ode 253
ode 251
Code 196

TaXe
(2 lele]

[3.0nC. Code 232

E, onZ Code 255.
.on'W Coade 200

For shfted O. Code 119
onD. C

82
115

19,58
4779

145

Index

dimension
display file

E

~in exponent part
EDIT
element
ampty string
ENTER
antry point
execute
EXP
exponent

—byta

—part
BEOrBESGN

arithmetic expression
conditional expression

logical expression

NUMmanc axpressson

string exprassion

F

[mode

false

FAST

fast mode

floating point

flowechart

FOR

FUNCTION

function
—~moda

G

B mode

Sosus
—stack

GOTO

graph

graphics
—symbal

T48

C3 or M, shifted 1. Code 117.

Code 118.

[[E. on X. Code 206

3 or (W, shufted F. Code 229

3, on F. Code 236.

[3 or Y, shitted ENTER. Code 121.

3, onH Code 237
3, 0nG Code 236

47,79
47129

24,69
32
ek
39
52

112

24,69
69

58
114
41

41
224

58,63
58

- miode
GRAPHICS
gray characters

H
hex
hexadecimal

IF
INKEYS
INPUT

integer
intaractive
inverse

—functions
. -m

ftem
PRINT itam

@, [3 or Wshifted 9 Code 118

3 .onkK Code 198
[,onl. Code241.

[r . onK. Code 240

58
58
&0

116
116

2831
2831
76

710,72
54,72
21

7
16,58

16,98

15
16,98
16,98

16,98
91
B8

16,98
64

12,28

147

148

3 or 4, shifted G. Code 228,

onZ Code 205
onJ

a.
K] Code 238

[3 or O, shifted S. Code 225

28

0
10

122
33
54,71
27

a3

123
42,43
54,129
aj

49

81

40
59

16,98
16.98
55,72

70

27

1012

9
11,21,124
28

33

10

88

53

37

parentheses
PAUSE
PEEK
Pl
paxel
PLOT
POKE
position
LPRINT posstion
PRINT position
power

-5
PRINT

=item
—position
printer
priority
Processor
Procrustean assignmant
program
—Ccursor
- lirve
pseudorandom

Q

quote
=image
string guote

R

radisn
RAM
RAMTOP
RAND

0 or (W, shifted W. Code 217.

@, onM Code 242
@.on0. Code 211
@, on M Code BB

@, onQ Code 248
.0on 0. Code 244

[.onP. Code 245.

[3.on T Code 248

51
61
52
a3
70
52
33

10,23.85
g5
85

T2
120
124

o

149

SAVE
scientific notation
SCROLL
SGN
shift
—ad key
simple vanable
SIN
shee
sSLOwW
SAaR
stack
calculator stack
GOSUB stack

150

(.00 E. Code 234
@[3, on Y. Code 264.
@.onT. Cocde 64

(enc. to nearest int]
@3, onR. Code247.

[3.onS Code 248

[3,0nB Code 231.
3. onF. Code 209,

@, on Q. Code 192

[3 or N, shifted D. Code 228.

E.onH Code 208.

, shifted E. Code 224,

ﬁBEi

.onY, Code213.

, shifted A. Code 227.

70
82
44
123

33
13.30.113
11,18,113,153
82

41

41

9

70

119
54,6172
11,22

sulysirmg
symbol
—graphsce symbol
syntax
system variable

T
TAB
TAN
lape
—recorder
—Storage
talevision
THEN
TLS
TO
token
trigonomatric functions
true

U

unary operations
unless

UNPLOT

USR

VAL

value

variable
contrad vanable
simpéa variable
string vanable
subscriptad variable
systern variable

@.onP Code 184
&, on E Code 201,

O3 or(, shiftad 3 Code 222
3 orl, shifted 4. Code 223.

@.ond Code 187

a9
67
58
19
133

24 55 94
70

6.9

28,32
28,89
57

70
az

52
a6

123

27.86
27

79
27,88
133

117

63

181

Index

Y

y-coordinate 63

Z

Z-B0A 119
[For M, Code 27. Full stop or decimal paint. 53
[3 or [N, shifted full stop. Code 26. Comma. 1553
[or Y, shifted X. Code 25. Samicolon 16,53
[Eor [, shifted Z Code 14 Calon

? [3 or [Y,shifted C. Code 15. Question mark,

-’ [3or M. shifted P. Code 11. String quote. 85

o [or 8, shifted O Code 192. Quote image. 85

| L[dor M, shifted . Code 16. Open paranthesis 52

) Qor M, shifted 0. Code 17 Close 52
parenthesis.

£ 3 or ¥, shiftad space. Code 12. Pound 58

$ [3 or [¥.shifted U Code 13. Dollar/Strng. 86

+ [3 or MY, shifted K. Code 21. Plus. 16,51

- Cor N, shfted J Code 22. Minus. 51

= 3 or Y, shifted B. Code 23. Timas 51

f & or [N, shifted V., Code 24. Divide 51

= (3 or O, shifted H. Code 216 To power 51

= 3 or [N, shifted L. Code 20. Equals 27.31

> [or [, shiftad M. Code 18 Greater than 32

= Ll or N, shifted N Coda 19 Less than. 32

<= (@ or ¥, shefted R. Codde 215, Less than or 32
equal to.

>= Qor [V, shifted Y. Code 220, Greater than or 32
equal to.

<> [or O, shifted T. Code 221 Not equal to, 32

¢ (R or M, shifted 5. Code 114. Cursor left. 19

) [dor [4.shifted 8. Code 115, Cursor nght 19

Py (d or [.shifted 7. Code 112, Cursorup. 24

< [or 9, shufted 6. Code 113 Cursor down,

152

Report Codes

This table gives each report code, with a general description and a list of
the statements and functions i which it can occur. In Chapter 21, under
each statement or function, vou will find a more detailed description of what
the arror reports mean,

Code Meaning Situwations

Q Successful completion, or jump to kne Any
number bigger than any existing A report
with code O does not change the line
number usad by CONT

1 The control variable does not exist (has NEXT
not been set up by a FOR statement), but
thera is an ordmary variable with the
sSame name.

2 An undefined variable has bean used. Any

For a simple vaniable this will happen if the
varigble is used before it has been
asssgned to in a LET statement

For & subscripted variable it will heppen f
the variable s used before it has been
dimensionad in &8 DIM statemant.

For a control vanable in a FOR statemant
and if there i no ondinary simple varsbie
with the same name.

3 Subscript out of range. Subscnpted variables
if the subscript is out of range inegative,
or bigger than 65535), error B will result.

4 Not encugh room in memaory. Note that LET, INPUT, DIM,

the line number in the report lafter the) PRINT, LIST, PLOT,
may not be complete on the screen, UNPLOT, FOR,

153

Report Codes

Code Meaning

164

because of the shortage of memory:
for mstance, £/20 may sppear as 4/2.
See Chapter 9.

No more room on the screen. CONT will
make room by clearing the screen,

Arithmetic overflow: calculations have
led to & number graater than about 10%.

No corresponding GOSUB for a RETURN
statemant

You have attempted an INPUT command
Inot aliowesd]

STOP staternent exacuted. CONT will not
try to reexecute the STOP statement.

Invahid argument to certain functions.

integer out of range. When an integer is
required, the floating-point argument s
rounded to the nesrest mteger. If this &
outside & suitabla range, error 8 resufts,
For array access, see also Report 3.

The text of the (string) argument of VAL
does not form a vakd numernical
exprassion.

i) Program mterrupted by BREAK.

fil The INPUT e starts with STOP
Not used

The program name provided is the empty
string.

Situstions

Gosue
Sometimes during
function evaluation.

PRINT, LIST, PLOT,
UNPLOT

Any arithmaetic
RETURN
INPUT

STOP

SQR, LN, ASN, ACS

RUN, RAND, POKE,
DIM, GOTO. GOSUB,
LIST, PAUSE, PLOT,
UNPLOT, CHRS,
PEEK. USR

Array access

VAL

At the end of any state-
ment, or in LOAD,
SAVE, LPRINT, LLIST,
or COPY

INPUT

§10.95 330-011006

TIMEX Timex Computer Corporation Waterbury, Connecticut 08720

