CAT. NUMBER
26-2101

USER’S VIANUAL

FOR

..-..--“-i.i
-

Radio fhaek

Retflo-co—m[)_u_ting.

MICRO
COVIPUTER

CUSTOM MANUFACTURED IN US.A. BY RADIO SHACKEA DIVISION OF TANDY CORPORATION

LIMITED WARRANTY

Radio Shack warrants for a period of 90 days from the date of delivery to customer that the computer hardware
described herein shall be free from defects in material and workmanship under normal use and service. This
warranty shall be void if the computer case or cabinet is opened or if the unit is altered or modified. During this
period, if a defect should occur, the product must be returned to a Radio Shack store or dealer for repair.
Customer’s sole and exclusive remedy in the event of defect is expressly limited to the correction of the defect
by adjustment, repair or replacement at Radio Shack’s election and sole expense, except there shall be no
obligation to replace or repair items which by their nature are expendable. No representation or other affirma-
tion of fact, including but not limited to statements regarding capacity, suitability for use, or performance of the
equipment, shall be or be deemed to be a warranty or representation by Radio Shack, for any purpose, nor give
rise to any liability or obligation of Radio Shack whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT, THERE ARE NO OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND IN NO EVENT SHALL RADIO
SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDIRECT, SPECIAL, CONSEQUENTIAL OR
OTHER SIMILAR DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN *“AS IS” BASIS WITHOUT
WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other person or entity with respect to

any liability, loss or damage caused or alleged to be caused directly or indirectly by computer equipment or

programs sold by Radio Shack, including but not limited to any interruption of service, loss of business or

anticipatory profits or consequential damages resulting from the use or operation of such computer or computer

programs.

NOTE: Good data processing procedure dictates that the user test the program, run and test sample sets of
data, and run the system in parallel with the system previously in use for a period of time adequate to
insure that results of operation of the computer or program are satisfactory.

-

3 %

AAAS

S B

3

A Personal Note from the Author

This is not 2 conventional book. There are plenty of good conventional
books, and plenty that are not 8O good .

This book is written specifically for people who don't knovw anything
about computers, and who don't want €O be dazzled by fancy footwork

from someone who does. It is written to teach you how to use your

Radic Shack TRS-80 computer and start you on a fast track to becoming

a competent programmer. To that end, every fair and unfair, conventional
and unccnventional, flamboyant and ridiculous technique I could think

of was used. T want you to have fun with your computer! T don't want

you LO be afraid of it, because there is nothing to fear.

The only restrainte put on this book were good taste and a genuine
attempt mot tO insult your intelligence. Reyond that, it contains ne
Yanow jobs", MO efforts to impress OY jntimidate YyOU. and no attemptl
ro sell you anything except the jdea that computers are just not all
that hard to learn to use.

sit back, relax, read slowly 28 though savoring a goodAnovel, and above
all, let your imagination wandex . 1'11 supply you with all the routine
facts and techniques you need. The real enjoyment begins when your
{magination srarts the creative juices flowing and the computerl pecomes
a tool in your own hands. You pecome its master — not the cther way
around. AL that point it evolves from just a box of parts into an
extension of your personality.

Enjoy your new computet!

pr. David A. Lien
gan Diego - 1977

FIRST EDITION
SECOND PRINTING — 1978

All rights reserved. Reproduction or use, without
express permission, of editorial or pictorial con-
tent, in any manner, is prohibited. No patent
liability is assumed with respect to the use of the
information contained herein. While every pre-
caution has been taken in the preparation of this
book, the publisher assumes no responsibility
for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the
information contained herein.

@ Copyright 1977, Radio Shack,

A Diviston of Tandy Corporation,

Fort Worth, Texas 76102, US.A.

Printed in the United States of America

This User’s Manual and You

This Manual has been written for the average person who has no
experience with a Computer. We've deliberately kept our style
light and humorous (some may even say it’s corny!) . . . we think
this will make your learning experience fun.

(And why shouldn’t learning be fun . . . ?)

The Manual is organized in three basic sections:

A. 26 Chapters which introduce you to various capabilities of
the Computer; in small enough bites so you won’t choke.
These Chapters include numerous little check points and
examples (as we get deeper into the book the examples get
deeper).

At the end of the Chapters we’ve given some Exercises — to
give you a chance to try out your knowledge ON YOUR
OWN.

B. A section with sample answers to the Exercises in each
Chapter. You can see how you make out with your attempts
at programming.

C. A section with some User’s Programs — some good
examples of interesting and practical programs (some for
fun, some for business, some for education, etc.).

We'’ve also included some helpful information in an APPENDIX.

The Manual is written in a style where the Computer assists you in
learning (educators might like to call it “Computer Assisted
Instruction” . . . we'll try to avoid trying to impress you with that
type of fancy wording).

So, on you go — and we hope you have as much fun with this book
as we did preparing it (we had some headaches too . . . hope you
don’t have any of those).

4

“SO ENJOYII"

SETTING UP THE SYSTEM

Carefully unpack the system. Remove all packing material, Be sure you
locate all cables, papers, tapes, etc. Save the packing material in case
you need to transport the system.

Connecting the Video Display and Keyboard:

1 I

Connect the power cord from the Video Display to a source of 120

volts, 60 Hz AC power. Note that one prong of the AC plug is wider

than the other — the wide prong should go into the widest slot of
the AC socket.

NOTE: If you use an AC extension cord, you may not be able to
plug the Display's power cord in. Do not attempt to force
this wide prong into the extension cord; use a wall outlet
if at all possible.

Connect the power cord of the Power Supply to a source of 120

volts, 60 Hz AC power.

Connect the gray cable from the front of the Video Monitor to the

VIDEO jack on the back of the Keyboard Assembly. Take care to

line up the pins correctly (the plug fits only one way).

NOTE: Before the next step, be sure the POWER switch on the

back of the Keyboard is off (button out).

Connect the gray cable from the Power Supply to the POWER

jack on the back of the Keyboard Assembly. Again, take care to

mate the connection correctly.

POWER BUTTGN

POWER SUPPLY

GASSETTE
RECORDER

\ \
/ |
POWER POWER VIDEO TAPE
BUTTON

(ON REAR)

Connecting the Cassette Recorder:

NOTE: You do not need to connect the Cassette Recorder unless you
plan to record programs or to load taped programs into the TRS-8(.

1;

2.

Load batteries into the CTR-41 as described in the Manual. Or

make connections for 120 volt AC power.

Connect the short cable (DIN plug on one end and 3 plugs on the

other) to the TAPE jack on the back of the Keyboard Assembly,

Be sure you get the plug to mate correctly,

The 3 plugs on the other end of this cable are for connecting to

the CTR-41.

A. Connect the black plug into the EAR jack on the side of the
CTR-41. This connection provides the output signal from the
CTR-41 to the TRS-80 (for loading Tape programs into the
TRS-80).

B. Connect the larger gray plug into the AUX Jack on the CTR-41.
This connection provides the recording signal to record pro-
grams from the TRS-80 onto the CTR-41’s tape.

Also, plug the Dummy Plug (provided with the CTR-41) into
the MIC jack (this disconnects the built-in Mic so it won’t pick-
up sounds while you are loading tapes).

NOTE: Be sure you always use the Dummy Plug when loading

programs onto tape (Recording).

=E Dummy Plug

C. Connect the smaller gray plug into the REM jack on the
CTR-41. This allows the TRS-80 to automatically control the
CTR-41’s motor (turn tape motion on and off for recording
and playing tapes).

Notes On Using The Recorder

There are a number of things you should be aware of as you use the
Cassette Tape System: (Some of this will be covered in greater detail

in Chapter 9 . . . but some of you can’t wait till then . .

. can you!)
To Play a tape (load a taped program into the TRS-80), you must
have the CTR-41’s Volume control set to 7 to 8. Then press the
CTR-41's PLAY key and then type CLOAD on the TRS-80 and
this command. This will start the tape motion. An * will
appear on the top line of the Monitor; a second * will blink, indi-
cating the program is loading. When loading is done, the TRS-80
will automatically turn the CTR-41 off and flash READY on the
screen. You are then ready to RUN the program (type in

and hit EYIEGD.

To Record a program from the TRS-80, press the CTR-41's
RECORD and PLAY keys simultaneously. Then type CSAVE on
the TRS-80 and this command. When the program has
been recorded, the TRS-80 will automatically turn the CTR-41 off
and flash READY on the screen. Now you have your program on
tape (it still is in the TRS-80 also). Many computer users make a
second or even a third recording of the tape, just to be sure they
have a good recording.
NOTE: To load the full 4K of RAM in the TRS-80 takes less than
3 minutes of tape. Short programs will take only a few
seconds of tape.

Use the CTR-41’s Tape Counter to aid you in locating programs on
tapes.

For best results, use Radio Shack’s special 10 minute Computer
Tape Cassettes (especially designed for recording computer pro-
grams). If you use standard audio tape cassettes, be sure to use top
quality, such as Realistic SUPERTAPE, Keep in mind that audio
cassettes have lead-ins on both ends (blue non-magnetic mylar
material) — you can not record on the leader portion of the tape.
Advance the tape past the leader before recording a program.

. When you are not going to use a CTR-41 for loading or recording

programs, do not leave RECORD or PLAY keys down (press
STOP).

To REWIND or FAST-Forward a cassette, you must disconnect the
plug from the REM jack (with REM jack connected, the TRS-80
controls tape motion).

If you want to save a taped program permanently, break off the
erase protect tab on the cassette (see CTR-41 Manual).

. Do not expose recorded tapes to magnetic fields. Avoid placing

your tapes near the Power Supply.

. To check if a tape has a program recorded on it, you can disconnect

the plug from the EAR jack (also disconnect the REM plug so
you can control the CTR-41 with the keys) and Play the tape;
you'll hear the program material from the speaker.

TURNING THE SYSTEM ON

Turn on the Video Display by pressing the POWER bution. Turn on
the TRS-80 Keyboard by pressing the POWER button on the back
(next to the POWER jack); the red LED just to the right of the Key-
board should light up and the screen should show READY . Adjust C
(contrast) and B (brightness) controls on the front of the Display for
the sharpest display. Set Brightness so the background is gray and the
words are white. Do not set Brightness too high.

[f Display does not show READY, press the Keyboard's POWER
switch off and on again.

NOTE: There is a Reset button inside a door at the left rear of the
Keyboard assembly. This Reset button can be used to unlock a loop-
ing program or if the TRS-80 does not turn oif a cassette or in other
such abnormal program situations,

One More Thought — .

You're all ready now, right? Well, maybe. But let’s just pxepue you
for the TRS-80 and Manual with one more thought g

How do you “talk” to a Computer? In Binary Numbers? In Elec-
tronics (is there such a language . . .)? In English , . .2 oy
Well, we use a simplified form of English — it’s called the BASIC
Language (Beginners All-purpose Symbolic Instruction Code). (There
are lots of other “computer languages”, but this is the easiest.) This
Manual covers Radio Shack’s LEVEL I BASIC.

As you go through this Manual yow'll leam the different words of this
simple computer language — and how to punctuate (VERY IMFPOR-
TANT) — and how to apply all of it for fun and practical benefit. It’s
an easy language to learn — but remember, you've got to use the
language that the TRS-80 understands (we’ll be giving you some
examples of wrong language use and you'll see what happens).

Chapter 1

Computer Etiquette

From the moment you turn it on, the TRS-80 follows a well-defined set of rules for coping
with you, the “'master.” This makes it an especially easy computer to use. To a large extent,
all vou have to do is say the right thing (via the keyboard) at the right time. Of course, there
are lots of “right things"” to say; putting them together for a purpose is called programming.

In this chapter we're going to start a conversation with the TRS-80 by teaching it a few
simple social graces. At the same time, you'll be learning the fundamentals of computer
etiquette. You’ll even write, wonder of wonders, your first TRS-80 computer program!

Getting READY

1. Connect the keyboard-computer, Video Display and Power Supply as explained in the
previous section. Plug Video Display and Power Supply into 120-volt AC outlets,

2. Press POWER button on Video Display and the back of the Keyboard. Give the video
tube a few seconds to warm up.

3. READY
>— should appear in the upper left corner of the screen. Press the key
several times to produce a column of READY messages. The Computer is trying to tell
you something: “I'm ready —it’s your tum to do something!™

To make sure you start off with a ciean slate — erasing all traces of prior programs or tests —
type NEW and press [YQfHi] . The Computer will respond by erasing the screen and print-
ing

READY
>_.

at the top of the screen.

Now type inP .M. and [ANUES] - This is a test to see that the Computer powered up proper-
ly. The display should read:
P.M.

3583

S,

B Cah Bs A e woely ..‘:] A e

Hit - key, hy and ky
Don't use st '~ letters are always (:
- PP T I AR ot N AT (i3

If you have 8K ofm, number
llho“"’!:'u m 16K of q..“’:'y,

If the number is not 3583, turn the Computer off, using the pushbutton on the right rear
corner of the keyboard. Wait about 1 seconds and turn it on again. Repeat the test and
verify that the number is 3583.

Just What Is a Computer Program?

A program is a sequence of instructions that the Computer stores until we command it to
follow (or “‘execute”) those instructions, Programs for the TRS-80 are written in a language
called BASIC — and that should give you an idea of how easy it is to learn!

Let’s write a simple one-line program to let the TRS-80 introduce itself. First be sure the
last line on the screen shows a>, which we call the *prompt”. This is the Computer’s way of
saying, “Go ahead — do something!” Now type the following line, exactly as shown:

19 PRINT "HELLO THERE. I AM YOUR NEW TRS-88 MICROCOMPUTER!"

Do not hit [0 key vet!

If you made a mistake, don't worry — it's much easier to correct typing errors on the
TRS-80 than it is on a regular typewriter. No rubber erasers or white paint to fuss with! Just
use the backspace key < Each time you press this key, the rightmost character will be
erased. If your error was at the beginning of the line, you'll have to erase your way back to
that point and then retype the rest of the line.

Now go back and examine VERY CAREFULLY what you have typed:
1. Did you enclose everything after the word PRINT in quotation marks?
2. Are there any extra quotation marks?

If everything’s okay, you can press [- ''he > prompt will reappear. ‘The Computer is
telling you, “Fine — what’s next?”

If It's Too Late

If you find an error after you’ve typed a line and pressed , you cannot use the <«
backspace key to correct it. Instead, retype the entire line correctly. As soon as you
the line, it will replace the incorrect one. This is because both of them share the
same starting number {in this case, 19).

? lt‘s gnﬁm Wpetform this simple test
wh ryou tum on the TRS-80. Always type
NEWand. before performing the test.
As for what the test lests — we'll wait a few
chapters for that!

“EXTRA CAREFUL

on't have to.use the [SHIFT] key to get a
tter — that's the only kind of letter ﬂte

TRS- 80 uses, However, some of the keys do

have bwo characters printed on them. Use the

[SHIFT] key to get the upper characters —Jike the

” marks and: the exclamation pomt(!).

‘See. me littte “dash’” () that moves across the
tmlnalemr? This fs the “cursor".
ctly where the next chavacter

rm i I
'space bax moves the cursor along one space, with-
out pﬁnﬁng nnythha

it yon pms W a second time, the screen

READY
This is reassuring, but not necessary —as lon' u
" the bottom item on g scteen is the >prompt,

*Allow me to mtroduce mysell "

Now we'll tell the Computer to execute our program. The BASIC command for this is
simple, RUN. So type RUN and press (0308} . If you made no mistakes, the display will
read:

HELLO THERE. 1 AM YOUR NEW TRS-82 MICROCOMPUTER!

1f this 1sn’t what you got, go back and try it again. If RUN still doesn’t produce the greeting,
there’s sonmething wrong in your program, Type NEW 1o ¢lear it out and type in the one-line
program again.

If it did work — let out a yell! “IIEY MA, IT WORKS'" T'his is very important, because now
that you have tasted success with & computer, it may be the last you are heard from in some
time.

Note that the word PRINT was not displayed. nor were the quotation marks. T'hey are part
of the program’s instructions and we didn’t intend for them to be primted.

Type the word RUN agamn and hit SRR .

Type RUN to your heart's content, watching the magic machine do as it’s told, over and
over. When you feel you've really got the hang of all this, get up and stretch, walk around
the room, look out the window — the whole act. Because you'll soon get hooked and you
won't want to take time for such things later on.

Learned in Chapter 1

Commands Statements Miscellaneous
[BREAK] PRINT > prompt

— cursor

NEW «hackspace key
RUN ' quotation marks

We’ll put a list like this at the end of each chapter. Use it as a checkpoint to make sure you
didn’t miss anything.

Maybe you're wondering what’s the difference between BASIC commands and BASIC
statements. Commands are executed as s0on as you type them in and press [YRERGR] - State-
ments are pul in to programs and arc only executed aflier you type the command RUN

“HEY MA, IT WORKS!*!

Whether you're typing in a program, or giving
direct commands liké RUN, you've got to hit

to tell the Compiter to take a look at
what you've typed and act accorgingly.

Special message for people who can’t resist the
urge to_Pl_ay around with the computer and skip
around in this book. / TThiere always are-a few?!} 1s
possible to “lose control” of the Computer, so
that it won'’t give you a READY message when

As you exercise your TRS-80, you'll note that
with [SHIFY] you get.some symbol /characters
d with LEVEL [(Eg.~ [})
although they can be inside a print statement,

Notes:

10

Chapter 2

How To Expand A Program

You now have a program in the Computer. (If you tumed it off between lessons, fire it up
again and type in line 10 from Chapter 1) It’s only a one-linex, but let’s expand it by adding
a second line, In BASIC, every line in the program must have a number, and the program is
executed in order from the smallest number to the largest. Type:

2¢ PRINT '"'YOU CALLED, MASTER. DO YOU HAVE A COMMAND?"

Check 1t carefully — especially the quote marks, then

RUN

If all was correct, the screen will yead:
HELLO THERE. 1 AM YCUR NEW TRS-88 MICROCOMPUTER!
YOU CALLED, MASTER. DO YOU HAVE A COMMAND?

If it ran OK, answer the guestion by typing

ves

Oh — sorry about that! It “bombed™, didn’t it? The screen said,

WHAT?

This error message is the result of a built-in troubleshooter which lets you know when
you've said the wrong thing {or the right thing at the wrong time), The WHAT? message on
the screen says, “No-no, dummy — the program you wrote doesn't have any way lor me to
acecept an answer just because it asked a question' — or words to that effect.

A later lesson will cover another error message. Meanwhile, il you get & WHAT?, HOW?

or SORRY , go hack and examine the program for an error. Your “YES'" answer here was
used purposely to show an error message. Later on, we’ll program the Computer to accept a
“YES” or “NO” answer and act on it.

Have you noticed that we use @ for the number
zero — s0 you can distinguish between the letter
aund number. The Video Display doesit this way —
50 we'll do the same throughout the Manual.

B“WHAT?

11

And the Program Grows

It is customary, traditional (and all that) to space the lines in a program 10 numbers apart
Note that your two-line program has the numbers 19 and 20, The reason . . it's much easier
to modify a program 1 you leave room to insert new lines in-between the old ones, There 13
no henefit to numbering the lines more closely (like 1,2,3 4} Don’t do it.

Look at the Video Display. Let’s decide we’d rather not have the two tines 5o close together,
but would like to have space between them. Type in the new line:

15 PRINT LuREd]

Then

RUN

It should now read:

HELLD THERE. I AM YOUR NEW TRS-8¢ MICROCOMPUTER!

YOU CALLED, MASTER., DO YOU HAVE A COMMAND?

Looks neater, doesn't it? But what about line 15227 It says PRINT. PRINT what???? Well
— print nothmg. That’s what followed PRINT , and that's just what it prmted. But 1n the
process of printing nothing 1t automatically activated the carriage return, and inserted a
space between the printing ordered in lines 1{ and 20. So tiar s how we insert a space.

Another important statement 15 REM, which stands for REMARK. 1t 1s often convenilent to
insert REMarks into a program. Why? So you or someone else can refer to them later, to
help you remember complicated programming details, or even what the program’s for and
how to use it. It’s like having a scratch-pad or notebook builtan to your program.
When vou tell the Computer to execute the program by typing RUN and L it will
skip right over any numbered line which begins with the statement REM. The REM state-
ment will have no effect on the program. Insert the following.

5 REM *THIS 1S MY FIRST COMPUTER PROGRAM* NI
then

Z{SI\ ENTER

The run should read just like the last run, totally unaffected by the presence of hne 5, Did
it?

12

vber. “anything tha

Didn’t that room hetween lines 19 and 20 come in
handy?

You might be wondermg why the asterisks{*) in
line #57 The answeris . . . they're just for decova-
tion: let’s give this apemrlrm some class! Remem-
‘typed on 4 line (ollowing REM
is ignored by. bhe Gomputer

Well, this programming business is getting complicated and ['ve already forgotten what is
in our “big"” program. How can we get a listing of what our program now contains? Easy. A
new BASIC command. Type

L1sT A

The screen should read:

5 REM *THIS IS MY FIRST CUOMPUTER PROGRAM*

14 PRINT "“HELLO THERE. I AM YOUR NEW TRS-80 MICROCOMPUTER!"™
15 PRINT

28 PRINT '"'YOUCALLED, MASTER. DO YOU HAVE A COMMAND?"

You can call for a LIST any time the prompt appears on the screen.

Where is the END of the program?

The end ol a program is, quite naturally, the last statement you want the Computer to
execute. Most computers require you to place an END statement aiter this point, so the
computer will know it’s finished, But with your TRS-80, an END statement is optional —
you can put it in or leave it out. Remember though, if you wan{ to run your BASIC pro-
grams on fussier computers, you’ll probably need the END statement.

Let’s take a close look at END. By the rules governing its use, most dialects of BASIC which
require END insist that it be the last statement in a program, telling the computer “That’s
all, folks,” By tradition, it is given the number 99, or 999, or 9999 (or larger), depending on
the largest number the specific computer will accept. Your RADIO SHACK computer
accepts Line numbers up to 32767,

Let’s add an END statement to our program.

Type in:
99 END {23
then

RUN

The sample run should read:
HELLDO THERE. 1 AM YOUR NEW TRS-8¢ MICROCOMPUTER!

YOU CALLED, MASTER. DO YOu HAVE A COMMAND?

13

“Why didn’t the word END print?” Answer. Because nothing is printed unless it 1s the
“ohject” of a PRINT statement. So how could we get the Computer to print THE END at
the end of the program execution? Think for a minute before reading on.

98 PRINT ' THE END"
Erasing Without Replacing

Just for fun, let’s move the END statement from line 99 to the largest usable line number,
32767. This requires two steps.

The first is to erase line 99, Note that we’re not just making a change or correcting an error
in line 99 — we want to completely eliminate it from the program. Easier done than said:
Type:

99

Then

The line is erased. How can we be sure? Think about this now. Got it??? Sure — “pull” a
LIST of the entire program by typing

LIST SN

The screen should show the program with lines 5, 19, 15, 20 and 98, .99 should be gone.

Any entire line can be erased the same way.
The second step is just as easy. Type
32767 =ND AU
... and the new line is entered. Pull a listing of the program to see if it was. Was it??? Now

RUN the program to see if moving the END statement changed anything. Did it??? It
shouldn’t have.

Other Uses for END

Move END from #32767 to line #17, then RUN, What happened? 1t ENDed the RUN after
printing line 10 and a space RUN it several times.

Now move END to line 13 and RUN , Then to line 8 and RUN. Do you see the effect END
has, depending where it is placed (even temporarily) in a program?

14

This will work ifline #98 is the last PRINT
statement in your program.

Another Error Message
Let’s cause a different error message to appear. Move the optional END statement from line

8 to line 50@00. The Computer should come back with an error message
HCW?

It is saying 1 am very patient with you humans and will obey your every command as
long as it is within my ability. Line numbers above 32767 are beyond my ability, so just
HOW do you expect me to obey?” Pretty smart, this computer.

Learned in Lesson 2

LIST PRINT (Space} Error Messages
REM WHAT?
END HOW?

Line Numbering

15

Notes:

16

Chapter 3

“But Can It Do Math?"

Yes, it can. Basic arithmetic is a snap for the TRS-80, So are highly complex math calcu-
lations — when you write special programs to perform them. (More on this later.)

LEVEL I BASIC uses the four fundamental arithmetic operations, plus a fifth which is just
a modifications of two of the others.
1. Addition, using the symbol +
2. Subtraction, using the symbol —
(See - nothing to this. Just like grade school. | wonder whatever happened o oid
Miss . .. Well, ahem — anyway)
3. Multiptication, using the special symbol *
(Oh drat. | knew this was too easy 16 be true!)
4. Division, using the symbol /
(Well, at least it's simpler than the old = symnbol)
5. Negation (meaning “multiply-times-minus-one’’), using the symbol —

Now that wasn’t too bad, was it? Be careful. You cannot use an “X" for multiplication.
Unfortunately, a long time ago a mathematician decided to use “X", which is a letler, to
mean multiply. We use letters for other things, so it’s much less confusing to use a ***”” for
multiplication. Confusion is one thing a computer can’t tolerate.

So, to computers, “*" is the only symbol which means multiply. After usingit a while, you,
too, may feel we should do away with X as a symbol for multiplication,

Putting all this together in a program is not difficult, so let’s do it. First, we have to erase
the “resident program” from the Computer’s memory.

Type the command
NS ENTER
then type

LIST s

to check that there’s nothing left in memory. The Computer should come back with a
simple >,

"

Putting the Beast to Work

We will now use the Computer for some very simple problem-solving. That means using
equations — oli — panic. Bul then, an equation is just a little statement that says what’s
on one side of the equals sign amounts to the same as what'’s on the other side.

That can’t get too bad (it says here),

We’re going to use that old standby equation,
“Distance traveled equals Rate of travel times Time spent traveling.”

[f it’s been a few years, you might want to sit on the end of a log and contemplate that for
awhile.

To shorten the equation, lets choose letters (called variables) to stand for the three quan-
tities, Then we can rewrite the equation as a BASIC statement acceptable to the TRS-80:

4¢D=R*T

What’s that 4¢ doing there? That’s the program line number. Remember, every step in a pro-
gram has to have one. We chose 40, but another number would have done just as well. The
extra spaces in the line are there just to make the equation easier for us to read; the TRS-80
ignores them. Later, when you write very long programs, you’ll probably want to eliminate
extra spaces, because they take up memory space. For now, they may he helpful, so leave
them in.

We can use any of the 26 letters from A through Z to identify the values we know as well as
those we want to higure out. Whenever you can, it’s a good idea to chose letters that, remind
youof the things they stand for — like the D, R, and T of the Distance, Rate, Time equation.

To further complicate this very simple example, we will point out now that there’s an
optional way of writing the equation, using the BASIC statement LET:
APLET D =R *T

This use of LET reminds us that making D equal R times T was our choice, rather than an
eternal truth like 1 + 1 = 2, Some computers are fussy, and always require the use of LET
with programmed equations. Your TRS-80 says, “Have it your way”’.

Okay — let’s complete the program.
Assume:
Distance (in miles) = Rate (in miles per hour) multipled by Time (in hours), How far is it

from Boston to San Diego if a jet plane traveling at an average speed of 5p@ miles per
hour makes the trip in 6 hours?

18

g
J
t¢

Type in the following:
14 REM * DISTANCE, RATE, TIME PROBLEM *
2 R = 5S¢ LIRS
3T =6
4 D =R*T

Check the program carefully, then
RUN (203

Hom:de AUty oo wnmpmmags s) Fo2 110 o) W SSNUSSS S (this sure is a slow computer).

READY

All it says is READY . The Compuier doesi't work!

Yes it does. It worked just fine. The Computer multiplied 50@ times 6 just like we told it,
and came up with the answer of 3099 miles. But we forgot to tell it to give us the answer,
Sorry about that.

Can you finish this program without help? It only takes one more line. Give it a good try
before reading on for the answer. That way, the answer will mean more to you. (Hint:
We've already used PRINT to print messages in quotes. What would happen if we said
5¢ PRINT " D"7 ... No, we want the value of D, not “D” itself. Hmmm, what happens
when we get rid of the quotes?)

Look in Part B of this Manual for an answer for this 1st Exercise. Also some notes and ideas,

Well, the answer of 3099 is correct, but its “presentation” was no more inspiring than the
printout from a hand calculator, This inevitably leads us back to where we first started this
foray into the unknown -— the PRINT statement.

Note that we said in line 5@ PRINT D. There were no quotes around the letter D like we had
used before. The reason is simple but fairly profound. If we want the Computer to print
the exact words we specify, we enclose them in quotes. 1f we want it to print the value
of a variable, in this case D, we leave the quotes off. That simple message is worth serious
thought before continuing on.

you go!

Did you think seriously about 1¢2¢ .

E o R

19

Now suppose we want to include both the value of something and some exact words on
th same line. Pay attention, as you will be doing more and more program design yourself,
and PRINT stalements give beginners more trouble than any other single part of computer
programming. Type in the following:

' (REMEMBER: Typingin a statement with a line

" " number that aiready 18 in use erases the original
5¢ PRINT THE DISTANCE (IN MILES) 1s", D ENTER stat ,nnnti!e_ly#-.mg 1'&1!1]!!&\'!‘&2“‘50

do here.)

Then

RUN

The display should appear:

THE DISTANCE (IN MILES) IS 3809

How about that! The message enclosed in quotes is printed exactly as we specified, and the
letter gave us the value of D. The comma told the Computer that we wanted it to print two
separate items on the same line. We can tell it to print up to four items on the same line,
simply by inserting commas between them.

With this in mind, see if you can change line 5 so the computer finishes the program with
the following message:

THE DISTANCE 15 3800 MILES.

Break up the quoted message into two parts, and put the variable in between them on the
PRINT line.

58 PRINT "THE DISTANCE IS'",D, "MILES."

Now what about all that extra space on the printout line? The reason for it is that the com-
puter divides up the screen width into four zones of 15 characters each, When a PRINT
statement contains two or more items separated by commas, the computer automatically
prints the items in different print zones. Automatic zoning is a very convenient method of
outputting tabular information, and we’'ll explore the subject. further later on.

It’s possible to eliminate all that extra space in the output from our Distance, Rate, Time
program. Retype the last version of line 5@, substituting semi-colons (;) for commas
throughout the line.

RUN

The display should appear:
20

THE DISTANCE 1S 34208 MILES.

Look carefully at program line 5@. There’s no unused space between the S in IS, the D,
and the M in MILES ., But in the printout on the display, there is a space between IS and
309 , and another space between 38988 and MILE S, How come?

Reason: A semicolon automatically inserts one space between the two items it is separating.
As you do more programming, this point will become important.

WHEW!
Well, we have already covered more than enough commands, statements and math operators
to solve myriads of problems.

Now let’s spend some time actually writing programs to solve problems. There is no better
way to learn than by doing, and everything covered so far is fundamental to our success
in later Chapters. So don’t jump over these exercises — it's the best way to get you into the
thick of programming. You'll find sample answers in Part B, along with further comments.

EXERCISE 3-2: Write a program which will find the time required to travel by jet plane
from San Diego to Boston, if the distance is 3p(Q miles and the plane travels at 50¢ MPH.

EXERCISE 3-3; If the circumference of a circle is found by multiplying its diameter times
7, (3.14) write a program which will find the circumference of a circle with a diameter of
35 feet.

EXERCISE 3-4: If the area of a circle is found by mulliplying 7 times the square of its
radius, write a program to find the area of a circle with a radius of 5 inches.

EXERCISE 3-5: Your checkbook halance was $225. You've written three checks(for $17,
$35 and $225) and made two deposits ($49 and $209). Write a program to adjust your old
balance based on checks written and deposits made, and print out your new balance.

LET = ,

’

= A-Z variables

22

m:} 'l‘ 'ﬂley were. Mccmont Wr m

Chapter 4

Are There More Stars or Grains of Sand?

In this mathematical world we are blessed with very large and very small numbers. Millions
of these and billionths of those. To cope with all this, your Computer uses “exponential
notation”, or “‘standard scientific notation” when the number sizes start to get out of hand.
The number 5 million (5,099,000), for example, can be written “5E+@6”. This means, “the
number 5 followed by six zeros.”

[f an answer comes out “5E-§6”, that means we must shift the decimal point, which is
after the 5, six places to the left, inserting zeroes as necessary. Technically, it means
5X 108, or 5 millionths, (.000.8P5). Tt’s really pretty simple once you get the hang of it,
and a lot easier to keep track of numbers without losing the decimal point. Since the
Computer insists on using it with very large and very small numbers, we can just as well
get in the good habit, too.

TypeNE W before performing the following exercises.

EXERCISE 4-1: If one million cars drove ten thousand miles in a certain year, how many
miles did they drive altogether that year? Write and run a simple program which will give the
answer,

EXERCISE 4-2: Changes lines 20 and 30 in the Car Miles Solution program (from Exercise
4-1) to express the numbers written there in exponential notation, or SSN (Standard Scien-
tific Notation). Then RUN it.

v
| |

Y3, 714, 983, 217,

that's 5/10/10/19/19/19/19

-OR WAS THAT-

a

o the value of sciéntifienotation! -

23

Learned in Chapter 4

E--notation

24

Chapter 5

Using () and the Order of Operations

Parentheses play an important role in computer programming, just as in ordinary math.
They are used here in the same general way, but there are important exceptions.

1.In BASIC, parentheses can enclose operations to be performed. Those operations
which are within parentheses are performed before those not in parentheses.

2. Operations buried deepest within parentheses (that is, parentheses inside parentheses)
are performed first.

3. When there is a *“tie” as to which operations the Computer should perform first after
it has removed all parentheses, it works its way along the program line from left to
right doing the multiplication and division. It then starts at the left again and per-
forms the addition and subtraction.

NOTE: INT. RND and ABS functions are performed before multiplication and division. {We
haven't talked about these yet, but just to be complete . . .)

4. A. problem listed as (X) (Y) will NOT tell the Computer to muitiply. X * Y is for
multiplication.

Example: To convert temperature in Fahrenheit to Celsius (Centigrade), the following
relationship is used:

The Fahrenheit temperature equals 32 degrees plus nine-fifths of the Celsius tempera-

ture.

Or, maybe yow’re more used to the simple formula —

F“=%XC°+32

Assume we have a Celsius temperature of 25°. Type in this program and RUN it.

12 REM * CELSIUS TO FAHRENHEIT CONVERSION *
29 C = 25

30 F

(9/5)Y*Cc + 32

4@ PRINT C; ''DEGREES CELSIUS =" ;F; ""DEGREES FAHRENHEIT."

25

Sample Run:

25 DEGREES CELSIUS = 77 DEGREES FAHRENHEIT,

First notice that line 4@ consists of a PRINT statemen' /cllowed by four separate expres-
sions — two variables and two groups of words in quotes called “literals” or “strings”.

Next, note how the parentheses are placed in line 3. With the 9/5 secure inside, we can
multiply its quotient times C, then add 32,

Now, remove the parentheses in line 30 and RUN again. The answer comes out the same.
Why?

1.On the first pass, the Computer started by solving all problems within parentheses, in
this case just one (9/5). It came up with (but did not print) 1.8. It then multiplied the
1.8 times the value of C and added 32.

2. 0On our next try, without the parentheses, the Computer simply moved from left to
right performing first the division problem (9 divided by 5), then the multiplication
problem (1.8 times C), then the addition problem (adding 32). The parentheses really
made no difference in our first example.

Next, change +32 to 32+ and move it to the front of the equation in line 3@, Run it again,
without parentheses.

Did it make a difference in the answer? Why not?

Answer: Execution proceeds from left to right, multiplication and division first, then
returns and performs addition and subtraction. This is why the 32 was not added to the 9
before being divided by 5. Very important! If they had been added, we would of course
have gotten the wrong answer.

EXERCISE 5-1: Write and run a program which converts 65° Fahrenheit to Celsius. The rule
tells us that “Celsius temperature is equal to fiveminths times what’s left after 32° is sub-
tracted from the Fahrenheit temperature.”

C' = (F* — 32) \[g—]

Remember what the semi-co}_‘ns are for?

EXERCISE 5-2: Remove the first set of parentheses in the #5-1 answer and run again.

l

EXERCISE 5-3: Replace the first set of parentheses in program line 30 and remove the
second pair of parentheses, then RUN. Note how the answer comes out — correctly!

EXERCISE 5-4: Insert brackets in the following eguation to make it correct. Write a
program {o check it out on the TRS-80.

30-9-8-7-6=28

Learned in Chapter §

{)

Order of Operations

S+
~1

Notes:

28

Chapter 6

/F you liked Chapter 1 through 5, THEN you’re going to love the rest of this book!

Because we’re really just getting into the good stuff. Like IF-THEN and GOTO statements
that let your Computer make decisions and take . .. er, executive action. But first, a few
more operators . . .

Relational operators allow the Computer to compare one value with another. There are only
three:
1. Equals, using the symbol =
(How'd you guess?)
2. Is greater than, using the symbol >
3. Is less than, using the symbol<

Combining these three, we come up with three more operators:

4, Is not equal to, using the symbol< >

5. Is less than or equal to, using the symbol<=

6. Is greater than or equal to, using the symbol >=
By adding these six relational operators to the four math operators we already know, plus
new STATEMENTS, called TF-THEN, & GOTO, we create a powerful system of comparing
and calculating that becomes Lhe central core of everything else thai follows.

The IF-THEN statement, combined with the six relational operators above, gives us the
action part of a system of logic. Enter and RUN this program:

1 A =5
20 IF A = 5 THEN 5%
30 PRINT ' A DOES NOT EQUAL 5."
4@ END
5@ PRINT ' A EQUALS 5.
The sereen should display:

A EQUALS Ss.

“THEY GOTTA MAKE IT A MOVIE!"

i o Fe iy

29

Now let’s examine the program line by line,
Line 1@ establishes the fact that A has a value of 5.
Line 20 is an IF-THEN statement which directs the Computer to go to line 50 IF the value
of A is exactly 5, skipping over whatever might be inbetween lines 2¢ and 50, Since A does
equal 5, the Computer jumps to line 5@ and does as it says, printing A EQUALS 5. Line 30
and 49 are not used at all in this case.
Now, change line 19 to read:

1 A = 6
and RUN
The run should say:

A DOES NOT EQUAL S5,

Taking it a line at a time:
Line 19 establishes the value of A to be 6.

Line 2 tests the value of A. If A equals 5, THEN the Computer is directed to go to line 50.
But “the test fails”, that is, A does NOT equal 5, 50 the Computer proceeds as usual to the
next line, line 30.

Line 39 directs the Computer to print the fact that A DOES NOT EQUAL 5. It does not
tell us what the value of A is, only that it does not equal 5. The Computer then proceeds on
to the next line.

Line 4¢ ENDs the program’s execution. Without this statement separating lines 39 and 50,
the Computer would charge right on to line 5@ and print its contents, which obviously are
in conflict with the contents of line 3. This is an example of using an IF-THEN statement
with only the most fundamental relational operator, the equals sign.

Now let’s see if you can accomplish the same thing by using the “‘does not equal” sign:

30

EXERCISE 6-1: Rewrite the resident program using a “does not equal” sign in line 20

instead of the equals sign, changing other lines as necessary, so the same results are achieved
with your program as with the one in the Example,

EXERCISE 6-2: Change line 10 to give A the value of 6, Leave the other four lines from

#6-1 as shown. Add more program lines as necessary so the program will tell us whether A
is larger or smaller than 5 and RUN.

31

EXERCISE 6-3: Change the value of A in line 10 at least three more times, running after
each change to ensure that your new program works correctly .

The [F-THEN statement is what is known as a CONDIT/IONAL brauching statement. The
program will “branch’ to another part of the program on the condition that it passes the
test it contains. If it fails the test, the program simply continues to the next line.

A statement called GOTO is known as an UNCONDITIONAL branching statement. 1 we
were to replace lines 49 and 89 with GOTO 99, and add line 99:

99 END

.. . whenever the Computer hit line 40 or 80 it would unconditionally follow orders and
go to 99, ENDing the run. While your Radio Shack Computer is rather broad-minded
when it comes to accepting these various BASIC dialects, many computers are not. For
practice, change lines 49, 80 and 99 as discussed above and

Did the program work OK as changed? Did you try it with several values of A? Be sure
you do so! We will find many uses for the GOTO statement in the future.

XA e

IF-THEN=~ < L5 = Conditio

nal branching
GOTO 5
Unconditional branching
<
<>
<=
>=

32

Chapter 7

It Also Talks and Listens
Begin this lesson by typing in the sample answer program to Exercise #6-2:

By now you have probably gotten tired of having to retype line 1p over each time you wish
to change the value of A. The INPUT statement is a simple, faster and more convenient
way to accomplish the same thing. It's a biggie, so don't miss any points.
Add the following lines to the resident program:

5 PRINT " THE VALUE I WISH TGO GIVE A Is"

14 INPUT A
Now RUN
The Computer should print:

THE VALUE I WISH TO GIVE A IS

?

See the question mark on the screen. It means, “It’s your turn — and I’m waiting . . .”

Enter a number and see what happens. It should be identical to what happened when you
typed in the same number earlier by changing line 10. Run the program several more times
to get the feel of the INPUT statement.

Pretty powerful, isn’t it?

Let’s add a touch of class to the INPUT process by retyping hine 5 as follows:

5 PRINT '" THE VALUE I WISH TO GIVE A IS'";

Look at that line very carefully. Do you see how it differs from the earliey line 522? It is
different A semicolon has been added at the end of the line,

33

Think back a bit now. We used semicolons before in PRINT statements, but only in the
middle to hook several of them together so they would print close together on the same
line. In this case, we puf a semicolon at the end, so the question mark from the next line
wil print on the same line, rather than down there by itself, After changing line 5 as above,
RUN it. It should read:

THE VALUE T WISH 70 GIVE A 157_

Please note that you cannot use a semicolon indiscriminately ai the end of a PRINT state-
ment. It is only meant to hook two lines together, both of which have printing to be done.
The INPUT line prints the question mark. We shall see later where two long lines starting
with PRINT can be connected together by the trailing semicolon so as to print on the same
line.

Your Radio Shack TRS-80 Interpreter is, as has been mentioned, able to speak “The King’s
Basic’” as well as a variety of dialects. The first of the many “short-cut” dialects we will be
exploring throughout these lessons involves combining PRINT and INPUT into one state-
ment. Change line 5 to read:

S INPUT " THE VALUE I WISH TO GIVE A IS" 4a

then delete line 10 by typing
1¢
then RUN

The results come out exactly the same, don’t they? Here is what you have changed:
1.PRINT to INPUT
2. Both statements on the same line
3. Eliminated the extra line

In the long programs which you will be writing, running and converting, this shortcut
will be valuable.

Up to now, all our programs have been strictly one-shot affairs. You type RUN, the
Computer executes the program, prints the results (if any) and comes back with a READY .,

To repeat the program, you have to type inRUNagain. Can you think of another way to
get the Computer to execute a program two or more times?

34

internal cirenit ﬂuﬁ :ﬂpm you

 £0 “4alk" 1o th .80 i Englsh (BASIC) and

it ean talk to you.

,Someunm the word dialect is used when ulklng
about the different forms of & computer language.
Just as with dialects in “human" languages, there
can besbdhtdlfmca in word uses, etc.in

_ BASIC. (Radio Shack’s BASIC Is totally com-

patible with the Dartmouth BASIC - the original
BASIC. But we do have some handy short cuts,
50 we might call them a ‘“dialect”.) We'll some-
times refer to this as a shortcut and sometimes as
2 dialect.

No don't enlarge the program by repeating its
steps ovoul)d mr min thnc': not very
creative!

We'll answer that question by upgrading our Celsius-to-Fahrenheit conversion program
{Chapter 5). If you think GOTO is a powerful statement in everyday life, wait till you
see what it does for a computer program!

Type NEw and the following:
18 REM * IMPROVED CELSIUS TO FAHRENHEIT CONVERSION PROGRAM *
28 INPUT "WHAT IS THE TEMPERATURE IN DEGREES CELSIUS"Y;C
30 F = (9/5)%C + 32
4% PRINT C; '"DEGREES CELSIUS = " ;F; "DEGREES FAHRENHEIT., "
52 GOTD 22
and RUN .
The Computer will keep on asking for more until you get tired or the power goes off (or
some other event beyond its control). This is the kind of thing a Computer is best at —
doing something over and over again. Modify some of the other programs to make them self-
repeating. You'll find they're much more useful that way.
These have been 7 long and “meaty” lessons, so go back and review them all again, repeat-

ing those assignments where you feel weak. We are moving out into progressively deeper
water, and it is complete mastery of these fundamentals that is your life preserver.

Learned in Chapter 7

; Trailing semicolon
INPUT
and

INPUT with builtin PRINT

“ 1 CAN DO THIS ALL DAY *

35

Notes:

36

Chapter 8

Two Easy Features
The Calculator Mode

Before continuing our exploration of the nooks and crannies of our Computer — acting as
a computer, we should be aware that it also works well as a calculator. If you omit the
line number before certain commands, the Computer will execute them, print the answer on
the screen, then erase the command you entered. What’s more, it will work as a calculator
even when a computer program is loaded, without disturbing that program. All you need, to
be in the calculator mode, is the prompt >,

Example: How much is 3 times 4?2 Type in

PRINT 3 * 4

..« the answer comes back

12
Example: How much is 345 divided by 123?

PRINT 345/123
... the answer is

2.80488
Spend a few minutes making up routine arithmetic problems of your own, using the calcula-
tor mode to solve them. Any arithmetic expression you might use in a program can also be
evaluated in the calculator mode. This includes parentheses and chain calculations like
A*B*(.
Try the following problem:

PRINT (2/3)*(3/2)
The answer comes back:

1.2200009

What? A number times its reciprocal is supposed to equal 1 exactly. So what gives? You
have discovered the Computer’s limit of accuracy. Just like a calculator (or a person), a
computer can never be perfectly accurate all the time. For short arithmetic expressions, the
TRS-80 is accurate to the fifth or sixth decimal place, In longer, more complex expressions,
a minute error in the sixth place can be magnified to where it becomes significant. All pro-
grammers have to cope with this kind of built-in error. We’ll discuss one way of handling it
in a later chapter.

Calculator Mode for Troubleshooting

Suppose a program isn’t giving you the answers you expect, How can you troubleshoot the
program? One way is to ask the Computer to tell you what it knows about the variables
used in the resident program.

Example: PRINT X. The Computer will tell you what the present value of X is.

Another thought: Something is stored in every memory cell {even if YOQU have not put
anything there). Enter and RUN this instruction in the calculator mode:

PRINT A,B,C,D,E,F,G,H,1,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,2

The answers depend on the values last given those variables — even from much earlier pro-
grams. If you turned off the Computer since last using some of the variables, the numbers
stored in those locations will be completely arbitrary and meaningless.

The Memory Command

Since the programs you write do occupy space in the Computer’s memory, and program
size is limited to how much memory you have purchased, it may be important to know how
much memory you are using for a given program. That’s what the Memory Command is for.
The least amount of memory available in the TRS-80 is 4K. This means there are about
1,000 different memory locations to store and process your programs. (Actually, 4096.}
{If you have 8K of memory, the number is 8192; for 16K it is 16384.)

To get some idea what this means, type:
NEW

PRINT MEM

38

ant ta be for the computer

... and the answer will be
3583
With no program loaded, there are 3583 memeory locations available for use. The difference
in memory space between 3583 and 4096 is sel aside for processing programs and overall
management and “monitoring” of what the Computer is doing.
Type in this simple program:
12 A = 2%
then measure the memory remaining by typing
PRINT MEM
.. . the answer will be

3573

The program you entered took 3583 — 3573 = 19 hiies of space. Here is how you can
account for it:

1. Each line number and the space following it (regardless of how small or large that line
number is) occupies 3 memory cells, The *‘carriage return’ at the end of the line takes
1 more byte, even though it does not print on the screen. The memory “overhead’ for
each line, short or long, is 4 bytes.
2. Each letter, number and space takes 1 byte.
In the above program 4 + 6 = 10 bytes.

Enter this additional line, leaving in line 19, and calculate the amount of space remaining in
memory, Then check it with the PRINT MEM command,

29 PRINT "THIS EXAMPLE IS T0O MEASURE MEMORY USAGE."

How much space is left in memory????

Answer: Line 10 took up 10 bytes. Line 20 takes 4 bytes for “overhead™ + 48 characters =
52 bytes. 52+ 10 = 62 bytes. 3583 — 62 = 3521 bytes. Type

39

PRINT MEM
... to see if you agree.

Ohbviously, the short learning programs we have been writing so far are not taking a lot of
memory space. This changes quickly, however, as we move to more sophisticated program-
ming. Make a habit of typing PRINT MEM when completing a program io develop a sense
of its size and memory requirements.

The third and final error message 1s

SORRY

It means “Sorry — you have run out of memory locations and must either cut down the pro-
gram size or purchase additional memory.”” With some practice you will be able to predict
how much memory a given program will need. All lessons and programs furnished with
Radio Shack’s LEVEL I system will run in the “4K" of memory you have available.

Learned in Chapter 8

PRINT MEM Caleulator Mode
Memory
Byte

SORRY

40

Chapter 9

Using Cassette Tape

We will soon write and run long and powerful programs. It becomes tedious to type them
in accurately just once, let alone each time we want to use them. Impressing your friends
with this new super-whazzoo Computer is somewhat more difficult if they sit watching old
TV reruns of Star-Trek while you take an hour or so to type in a program. There has to be
a better way.

‘The TRS-80 has a built-in “Cassette Tape Interface” which allows you to record and store
any program on high quality cassette tape. A full “4K” of memory can be dumped onto
tape, or loaded from tape, in about 3 minutes. Most, programs are shorter and take even less
time. That isn’t even enough time to get through the deodorant ads. Besides building up
your own tape library of computer programs, you can exchange favorite programs with
other TRS-80 owners by exchanging tapes.

Recording

Only a little practice is required. Follow the yellow brick voad:

L. Locate the Recorder, Interconnecting Cable and Radio Shack Computer Recording
Tape cassette.

2. Connect the short cable between the TAPE jack on the back of the TRS-80 and your
Cassette Tape Recorder:
A. The small gray plug goes into the REM jack on the Recorder.
B. The large gray plug goes into the AUX jack.
C. The black plug goes into the EAR jack.

3. Plug the Recorder into the wall outlet (or install batteries).

4. Type any program into your Computer, preferably one that is at least several lines
long. RUN it to be sure it is entered correctly,

5. Load the cassette tape and press the PLAY and RECORD buttons at the same time
until they lock.

6. “Dump” the program onto tape by typing the command:

CSAVE

The motor on the Recorder will start and you'll be recording the Computer’s program
onto tape,

Watch the Video screen. When

41

READY
-

returns and the motor stops, your program is recorded on tape, It is also still in the
Computer’s memory. It has only been “copied” out.

7. Disconnect the small plug from the Recorder’s REM jack and Rewind the tape. Dis-
connect the black plug from the EAR jack and Play the tape so you hear what digital
data sounds like. Sounds terrible, doesn'tit? You were expecting mayhe Lawrence Welk?

Loading
Reversing the process and loading (copying) the program from tape into the Computer is
just as easy.

1. Be sure the tape is fully rewound and the plugs are all in place.

9. Push down the PLAY button until it locks. Set the Volume control to about 7-8.

3. Type NEW (to clear out any existing program}.

4. Type the command

CLOAD

The Tape Recorder’s motor will start and data will flow from the tape into the Com-
puter’s memory at the rate of about 1209 bytes per minute.

As soon as the Computer senses the data, it will flash a + on the screen; then as it accepts
each line of data, a second * will flash on and off.

Watch the Video Display. The program is entered when
READY

>_

returns and the recorder motor stops.

4. RUN the program to see that the data transfer was successful. In the rare event that it
was not, repeat the ahove steps, being sure that all cables are properly connected, the
Volume is set to 7-8 and the tape recorder heads are clean. (Listen to the tape to he
sure there was a program on it.)

Miscellaneous Tape Palaver
To minimize the chance of hitting a “'soft spot” on a tape, where the oxide may be thin or
have flaked off, experienced operators rautinely do a “double dump’ when copying from

42

CLOAD stands for “Load from Cassotte”

“The * ¥ display (sécond ane flashing) is a fool-
nicadon i G s bl e 30 he

 NOTE: If the recorder does not stop, resch around
' the Computer, open the door at the
e press the Reset button insi

take the Computer out of the CLOAD or
VE mode and retum control to the keyboard.

computer to tape. This simply means copying the program twice on the same tape — one
recording right after the other. On long dumps, one is made in one direction and the other
one in the other direction, For extra safety, especially important programs are recorded on
more than one tape. Failures are rare, and your own experience should be your guide,

You may have noticed that specially wound Radio Shack Computer Tape has no plastic
leader on the ends. This is because when you begin “‘dumping” data from memory onto tape
there must be real live tape there to record it.

Radio Shack’ Computer Tape is of high uniform quality, selected especially for its low
“drop out” characteristics. If one little bit of data is lost the entire program can be lost.
Thig Tape is wound in shorter than usual lengths, with the C-10 being standard. [t will
record 5 minutes in each direction — far more than enough for the majority of programs.
Your entire 4K of memory can be recorded on one side of the C-10, with the other side
quickly available for another program without need for a long rewind.

Experienced “‘computerists” have found from experience that it is better to use a separale
cassette (or at least a separate side) for each program rather than try to search through long
tapes for a desired program. Since computer data on tape is not readable by the human ear,
separate cassettes solve the problem, Computer Tape, tape racks and other recording acces-
sories are available at your local Radio Shack store.

When you are not using the Recorder for loading or recording, do not leave RECORD or
PLAY keys down (press STOP).

Do not expose recorded tapes to magnetic fields. Avoid placing your tapes near the Power
Supply.

Do not attempt to re-record on a prerecorded Computer data tape. Even though the new
recording process erases the old recording, just enough information may be left to confuse
the new recording. If you want to use the same tape a second or third time, use a high-
quality bulk tape eraser Lo be sure you erase old data.

[f you want to save a taped program permanently, break off the Erase Protect tab on the
Cassette (see the Tape Recorder’s Manual). When the tabh(s) has been broken off, you can
not press down the RECORD key on your Recorder (this will keep you from accidentally
erasing that tape).

Ground Loops

With some recorders, 1f you leave the Earphone and Aux jack connected at the same time,
when you make a recording, youw'll end up with a hum added to the program (you can hear
it between double<dumps). This 1s caused by a grownd [oop in the Recorder and cables, 'I'o
avoid ground loop problems, keep only the Earphone or the Aux plug connected BUT NOT
BOTH.

Normal audio tape has lead-ins on bothends

ion of tape:
‘Advance the tape paat me Ieader before ncording
4 program.

If you record programs on long, standard audio
cassettes, use the Tape Recorder’s Counter to aid
you in locating programs.

Ground loop is an electronic term which mesns
there are two separate ground conneetions,

each being slightly different — the result typically
is hum (and you don't want or need that).

43

Learned in Chapter 9

CLOAD
CSAVE
“loading”
“dumping”’

**(program loading
indicator)

44

Chapter 10

From >to FOR-NEXT . .. or SMART Loops

A major difference between the computer and a caleulator is the computer’s ability to do
the same thing over and over an outrageous number of times, faster than a speeding bullet
(to coin a phrase)! This one capability more than any other, separates the two,

The FOR-NEXT loop is of such overwhelming importance in putting our Computer {o
work, that few of the programming areas we will explore from this point on will exclude
it. Its simplicity and variations are the heart of its effectiveness, but ils power is truly
staggering,
Type in the following program, andRUN:

10 PRINT "HELP --- MY COMPUTER HAS GONE BERSERK!"

28 GOTO 1@

Y ou have noticed by now that the Computer is continuously writing the line HELP ---
MY COMPUTER HAS GONE BERSERK ! It will continue to do so indefinitely until you
tell it to stop. When you have seen enough, hit the [BREAK] key.
What we created is called an “endless loop’. (Remember our earlier programs which kept
coming back for more INPUT?) Line 20 is an unconditional GOTO statement which causes
the Computer to cycle back and forth (*loop”’) between lines 10 and 20 forever if not halt-
ed. This idea has great potential if we can harness it.
Lel’s modify the program to read:

8 FOR N =1 TO S

18 PRINT '"'HELP ~~- MY COMPUTER HAS GONE BERSERK!"

20 NEXT N

32 PRINT '"*NO --- IT'S UNDER CONTROL."

and it.

7
“BERSERK"

45

The lineHELP =--- MY COMPUTER HAS GONE BERSERK !was printed 5 times, then
NC --= IT'S UNDER CONTROL . The FOR-NEXT loop created in lines 8 and 20
caused the Computer to cycle through lines 8, 10 and 29 exactly 5 times, then continue
through the rest of the program. Each time the Computer hit line 20 it saw “NEXT N.”*
The word NEXT caused the value of N to be increased (or STEPped) by exactly 1, and the
Computer unconditionally sent back to the FOR N = statement that began the loop. The
NEXT statement is conditional on N being less than 5, because line 8 says FOR N =1 TO 5.
After the bBth pass through the loop, the built-in test fails, the loop is broken and the pro-
gram execution moves on, The FOR-NEXT statement harnessed the endless loop!

The STEP function

There are times when it is desirable to increment the FOR-NEXT loop by some value other
than one. The STEP function allows that. Change line 8 to read

8§ FOR N =1 TO 5 STEP 2
...and RUN.
Line 19 was printed only 3 times (when N=1, N=3 and N=5). On the first pass through the
program, when NEXT N was hit, it incremented {or STEPped) the value of N by 2 instead
of 1. On the second pass through the loop N equalled 3. On the third pass through N equal-
led 5.
FOR-NEXT loops can be stepped by any whole number, even negative numbers, Why one
would want to step with negative numbers might seem rather vague at this time, but that
too will be understood with time. In the meantime, change the following line

8 FOR N = 5 TO 1 STEP -1
.. .and RUN.

Five passes through the loop stepping down from 5 to 1 is exactly the same as stepping up
from 1 to 5. Line 19 still got printed 5 times.

Modifying the FOR-NEXT loop

Suppose we wanted to print both lines 1 and 30 five times, alternating between them, How
would you change the program to accomplish it? Go ahead and make the change.

46

HINT: If you can't figure it out, try moving the NEXT N line to some other position.

Right — you moved line 20 to line 4) and the screen reads:

HELP —=~= MY COMPUTER HAS GONE BERSERK!
NO --- IT'S UNDER CONTROL.
HELP =--- MY COMPUTER HAS GONE SERSERK!
NO --- IT.S UNDER CONTROL

... etc. — 3 mare times.

How would you modify the program so line 10 is printed 5 times, then line 30 is printed 3
times? Make the changes and RUN.

The new program might read:
8 FOR N =1 TO §
18 PRINT '"HELP --- MY COMPUTER HAS GONE BERSERK!"
200 NEXT N
25 FOR M =1 70 3
38 PRINT "NO -—- IT'S UNDER CONTROL."

48 NEXT M

47

We now have a program with two controlled loops, sometimes called DO loops. The first
do-loop DOLS something five times; the second one does something three times. We used
the letter N for the first loop and M for the second, but any letters can be used. In fact,
since the two loops are totally separate we could have used the letter N for both of them —
not an uncommon practice in large programs where most of the letters are needed as
variables.

RUN the program, being sure you understand the fundamental principles and the varia-
tions we have introduced.

From >to Incrementing

There is nothing magic about the FOR-NEXT loop, in fact, you may have already thought
of another (longer) way to accomplish the same thing by using features we learned earlier.
Stop now, and see if you can figure out & way to construct a workable do-loop substituting
something else in place of FOR and NEXT.

Answer:
B N =1
1¢ PRINT "HELP ——— MY COMPUTER HAS GONE BERSERK!"

1S N =N+ 1
28 IF N<6 THEN 18

3@ PRINT ' NO --- IT'S UNDER CONTROL.'"

We say that line 8 initializes the value of N, giving it an initial or beginning value of 1. Be-
fore initializing to the value we want, N could have been any number left over from a pre-
vious program.

Line 15 then incremenis it by 1, making N one more than whatever it was before, Line 10
uses one of our relational operators,<, to see that the new value of N is within the bounds
we have established. If not, the test fails and the program continues.

Note that in this system of incrementing and testing we do not send the pragram hack to
line & as was the case with FOR-NEX'T'. What would happen if we did?

Answer: We would keep re-initializing the value of N to equal 1, and would again form an
endless loop.

The opposite of incrementing s decrementing. Change the program so line 15 reads
1S N =N -1

.. . then make other changes as needed to make the program work.

Answer: The changea lines read:
g N = 6
IS5 N= N -1

22 1IF N>1 THEN 18

Putting FOR-NEXT to work

It isn’t very exciting just seeing or doing the same thing over and over, so there has to be a
more noble purpose for the FOR-NEXT loop. There are — many of them, and we will be
learning new uses for a long, long time.

Let’s suppose we want to print out a chart showing how the time it takes to fly from Boston
to San Diego varies with the speed at which we fly. Remember, the formula is D = R*T.
Let’s print out the flight time required for each speed between 200 mph and 10909 mph,
in increments of 209 mph. The program might look like this:

12 REM * TIME VS RATE FLIGHT CHART *

22 CLS

49

3@

4e

52

62

2

8@

o8

122

118

D = 3080

PRINT

PRINT

PRINT

PRINT

FOR

T

PR

NE X

“"RATE (MPH) ", "“TIME (HOURS) ', "DISTANCE (MILES)"

" BOSTON

R=24¢ TO 19688 STEP 1980
= D/R
INT R,T,D
T R

Enter the program and RUN.

It is really solving the problem from Chapter 3 nine times in a row, for different values, and

T

0

S AN DIEGDO

printing out the result. Your screen should look like this:

RATE (MPH)

=]

2¢9

3¢9

423

S20

620

90

8e9

920

1920

0SS TON TO S

TIME (HOURS)

15

19

7.5

6

5

4.28571

3.78

3.33333

A

N

DI EGO

DISTANCE

3epo

3220

300@

300

3000

32029

3zee

3028

3000

(MILES)

“

How about that . , . 2 Try doing that on the old
slide rule or hand caleulator!

Analyzing the Program

Look through the program and observe these many features before we do sume exercises to
change it:

1
2,

O ke o

(=]

19,

The REM statement identifies the program for future use.

Line 20 uses the CLS (Clear Screen) statement to erase the screen so we have a nice
clean place to write on. It allows us to write in a 7op down manner. Run the program
later leaving out this line and see what is meant by the scrof/ mode. CLS is a very un-
fussy statement which you will want to use often just to make your printouts neat and
impressive.

. Line 3@ initializes the value of D, D will remain at its initialized value.

. Line 40 prints a chart heading which is indented and double spaced for appearance.

. Lines 50 and 70 use blank PRINTS to insert spaces in the chart.

. Line 60 prints the chart column headings, and uses automaiic zone spacing to place

those headings (the comma).

. Line 8@ establishes the FOR-NEXT loop complete with a STEP. It says — initialize the

rate (R) at 20 mph, and make passes through the “do-loop” with values of R incre-
mented by values of 19@ mph until a final value of 1999 mph is reached. Line 110 is
the other half of the loop.

. Line 90 contains the actual formula which calculates the answer.
. Line 109 prints the three vaiues. They are positioned under their headings hy automat-

ic zone spacing (the commas).

Lines 90 and 10@ are indented from the rest of the program text. This is a simple
programming {echnique highlighting a do-loop which makes reading and trouble-
shooting easier. You will see it used increasingly as we move on. Try to adopt good
programming practices like this as you do the exercises. Indenting does take up a little
memory space, and on long programs in their final form it is often omitted.

Take a deep breath and go back over any points you might have missed in this lesson. Copy
the program onto your Computer Cassetie Tape because we will use it in the nexi Chapter
continuing our study of FOR-NEXT loops.

in Ibo next 16 -space print zor

Learned in Chapter 10

 Statements

CLS

STEP

Increment
Decrement

Initialize

[BREAK] key
[CLEAR] Key
“2opdown” Display
“Seroll” Display

“Do-Loop™

52

Chapter 11

Son of FOR-NEXT

This is heady stuff. If you turned off the Computer between Chapters, load the program
which you taped from Chapter 19 into the Computer.

Modify the program so the rate and time are calculated and printed for every 50 mph incre-
ment instead of the 10® mph increment presently in the program, RUN.

Answer: 80 FOR R = 208 TO 1002 STEP 5¢

Trouble in the Old Corral

What a revoliing development! The printout goes so fast we can’t read it, and by the time it
stops, the top part is cut off. Aught'a known you can’t irust these ecompuiers!

Solutions For Sale

Several solutions are available;
1. Pressing nearly any key will stop program execution. Try RUNning a number of times,
pressing different keys {and the space bar) during the run, to see what happens.

RUN again, this time using only the 4 {up-arrow), to freeze the display. Nifty —huh?
Clean stop — clean restart. This is the key to use for temporary freezes.

2. 1f you want a classy display you can build a *“pause” into the program. The screen
will fill, halt a moment, and automatically go on if vou don’t interrupt the program.

The Timing Loop

In order to learn about the timer loop, let's employ another sly trick. We're going to leave
our “Flight time” program in the Computer, and put in a second program.

As you can see, pressing a key not only stops execu-
tion but inserts its own Jetter ¢ or number. Messy!

'l'heu s another one you can try — but it’s not &
very useful one; press [BREAX] key, That's even
messier than the irst one. (To restart after a
[BREAK], either enter RUN to start program all
over again or CONT to continue execution at
the “break-point."’)

Start by typing
9 END

We are going to use the space in lines 1 through 8 to write and experiment with a second
little program, and want it to END withoul plowing ahead into the “Flight” program.

The Egg Timer

It takes time to do everything. Even this foxy box takes time to do its thing, though you
may be awed by its speed. Type this:

1 PRINT "DON'T GD AwaY"
?2 FOR X = 1 TO 5p@@g
3 NEXT X
5 PRINT "TIMER PROGRAM ENDED."
...and RUN
How long did it take? Well, it did take time, didn’t it? About 1@ seconds? The Computer

can do approximately 500 FOR-NEXT loops per second. That means, by specifying the
number of loops, you can build in as long a time<delay as you wish.

Change the program Lo create a 3¢-second delay. Time it against your watch or clock to see
how aceurate it is.

TR s £ W o R i Oy S AR A T Ty e e R |
Answer: 2 FOR X = 1 TO 15992

EXERCISE 11-1: Using the space in lines 1 through 8, design a program which asks you
how many seconds delay you wish, allows you to enter a number, then executes the delay
and reports back at the end that the delay is over, and how many seconds it took. A sample
answer is in Part B.

e ————————— ——————— L —

How to Handle Long Program Listings

We've got two programs in the Computer now. Let’s pull a LIST to look at them, My, my
— they are so long we can’t see the end. Now what do we do?

Again, more than one solution. The easiest way to see the rest of the listing is to use the
4 (up-arrow) key. Each time you press it (go ahead), the listing moves up one line, Pretty
exciling, huh? Keep pushing it until you get a prompt (>).

The other solution is to use a slightly more sophisticated version of LIST. It’s called
LIST# # % (however you pronounce that!), Type:

LIST 52

A little scrutiny immediately discloses that the Computer gave a listing starting with line 50
and either 1) filled the screenwith 16 lines, or 2) went from line 5 to the end of the
program, whichever came first,

LIST### and 4 (up-arrow) can be used to find any part of a very long program you wish.

Again, you must have a prompt in order to continue on and do anything else. Aside from
using one (or both) of the above techniques to get to the end of the LIST and find a
prompt, there is a quicker way, once you've found what you want in the list. Simply hit the
key once or twice to get a prompt.

As a matter of fact, you HAVE fo keep pushing
it, or do something else to get the prompt, since
without the prompt it just isn't your tum.

g to start from. gl

Is There No End to This Magic?

We now have 2 separate programs resident in the computer, We know how Lo run the first
one — we just typeRUN. To run the second one we have a foxy variation on RUN called

RUN ###%

. . and, as you might suspect, it is similar to LIST###. To RUN the program starting with
line 10, type

RUN 1@

... and that’s just whal happens.

Will wonders never cease? If you have 2¢ or 3¢ programs in the computer at the same time,
you can RUN just the one you want, provided you know its starting line number. What's
more, you c¢an start any program in the middle (or elsewhere) for purposes of trouble-

shooting — a matter we will become more involved in as our programs get longer and more
complicated,

Meanwhile, Back at the Ranch

We got into this whole messy business trying to find a way to slow down our run on the
flight times from Boston to San Diego. In the process we found out a lot more about the
Computer and learned to build a timer loop. Now let’s see if we can build a timer loop into
our big program. First, let’s erase the test program using lines 2, 3, 4, 5, 6, 7, & 9 by typing
each of those numbers [ollowed with 3

One way to stop the fast parade of information in our chart is to put in a STOP, Type 1n

85 IF R = 68 STOP
...and RUN,
We know R is going to increment to 609, and that's about hall way through the chart, so

600 is a good choice. See how the chart ran out to 550 mph then hit the stop at 60Q came
racing down to line 85. Your screen should read the first part of the chart and

BREAK AT 85

This means the program is stopped, or broken at line 835. You can now gaze at the top half
of the chart to your heart’s content. To restart the program merely type

CONT

56

“MAGICIAN"

.. and it will automatically pick up and print the rest of the chart, or until it hits another
stop you may have placed.

At Last
Our ultimate plan is to build a timer into the program so as not to completely STOP execu-
tion, but merely delay it so we can study the display,

Type
BS 1IF R<> 682 THEN %¢g
87 FOR X = 1 TO S49

88 NEXT X

...and RUN

Hey! It really works! As long as R does not equal 690 the program skips over the delay loop
in lines 87 and 88. when R does equal 609, the test “falls through' and lines 87 and 88
“play catch™ 589 times, delaying the program’s execution for about one second,

It’s been a long and tortuous route with numerous scenic side trips, but we finally made it,
Now that you have picked up so many smarts in these two lessons on FOR-NEXT, it’s your
turn to puf them to work.

EXERCISE 11-2: Modify the resident program so that (MPH) appears below RATE ,
(HOURS) appears below TIME and (MILES) appears below DISTANCE . This one
should be a breeze for you.

EXERCISE 11-3: Design, write and run a program which will calculate and print income at
a yearly, monthly, weekly and daily rate, based on a 4@-hour week, a 1/12th-year month,
and a 52-week year. Do this for yearly incomes between $5000 and $25,009 in $1,000
increments. Document your program with REM statements as necessary to explain the
equations you create.

EXERCISE 114: Here’s an old chestnut that the Computer really eats up: Design. write
and run a program which teils how many days you have to work, starting at a penny a day,
so if your salary doubles each day you know which day you eam at least a million dollars.
Include columns which show each day number, its daily rate, and the total income to-date.
Make the program stop after printing the first day your daily rate is a million dollars or
more,

T R T ORI SR SO S T R
The “Brute Force” Method (Subtitled: Get a Bigger Hammer)

Much to the consternation of some teachers, a great value of the Computer is its ability to
do the tedious work involved in the “cut and try™, “hunt and peck” or other less respect-
able methods of finding an answer (or attempting to prove the correctness of a theory,
theorem or principle). This method involves trying a mess of possible solutions to see if one
fits, or find the closest one, or establish a trend. Beyond that, it can be a powerful learning
tool by providing gobs of data in chart or graph form (later) which would simply take too
long to generate by hand.

EXERCISE 11-5: You have a 1000 foot roll of [encing wire and want to create a rectangular
pasture.

Using all of the wire, determine what length and width dimensions will allow you to enclose
the maximum number of square feet? Use the brute force method; let the Computer try
different values for L and W and print out the Area fenced by each pair of L and W,

The formula for area is Area = Length times Width
orA=L*¥W

R e]
EXERCISE 11-6: EXTRA CREDIT PROBLEM FOR “ELECTRONICS TYPES”

As a further example (more complex and tends to prove the point better) try this final
(optional) assignment in this lesson. It involves a problem confronted by every electricity
student who has studied sources (batteries, generators) and loads (lights, resistors). It is the
MAXIMUM D.C. POWER TRANSFER THEOREM which states, “Maximum DC power is
delivered to an electrical load when the resistance of that load is equal in value to the
internal resistance of the source.” And then the arguments begin . .. “Use a high resistance
load because it will drop more voltage and accept more power,” “No, use a low resistance
load so it will draw more current and accept more power™. “Use a load which is somewhere
in between "

58

Don't necessarily shy away from this one if electricity doesn’t happen to be your bag.
Enough information is given tq write the program, and the principle, the optimizing of a
value, is applicable to many fields of endeavor and is little short of profound.

With the values given in the schematic, design, write and run a program which will try out
values of load resistance ranging from 1 to 20 ohms, in 1 ohm increments, and print the
answers to the following:

1. Value of Load Resistance (from 1 to 20 ohms)

2. Total circuit power (circuit current squared, times source voltage) I* * 10

3. Power lost in source {circuit current squared, times source resistance) 1? * 10

4. Power delivered to load (circuit current squared, times load resistance) [? * R
Note: Circuit current is found by dividing source voltage (12¢ volts) by total circuit
resistance (load resistance + 10 ohms source resistance). Everything follows Ohms Law
(V =1%¥R) and Watts Law (P = [*V)

GOOD LUCK!!!! Don’t look at the answer until you've got it whipped.

120 VOLTS

OHMS

Commands
LIST # # #
RUN# ##

CONT

Learned in Chapter

Statements

STOP

Miscellaneous

Timer Loop

4 Up-Arrow

“Brute force” or
optimizing method

60

Chapter 12

From>to TAB

After those last lessons let’s take an easy one.
We already know 3 ways to sel up our output PRINT format,

We can:
1. Enclose what we want to say in quotes, inserting blank spaces as necessary,
2. Separate the objects of the PRINT statement with semicolons so as to print them tight-
ly together on the same line.
3. Separate the objects of the PRINT statement with commas to print them on the same
line in the four different print “zones.”

A fourth way is to use the TAB function, which is similar to the TAB on a regular Lype

writer, It is especially useful when the output is columns of numbers with headings. Type in
the following program and RUN:

1@ PRINT TAB (S5) ;" THE" ;TAB(20): " TOTAL" ;TAB(35)¢ " SPENT"

290 PRINT TAB(5); "BUDGET" ;TAB(22); " YEAR'S"Y ; TAB(36): ' " THIS"Y

32 PRINT TAB(S); ""CATEGORY'" ;TAB(28);: "BUDGET " ;TAB(35); '""MONTH"

The RUN should appear:

THE TOTAL SPENT
BUDGE 1T YEAR'S THIS
CATEGORY BUDGET MONTH

EXERCISE 12-1: Write a program using the three PRINT forms below:
1. PRINT" Wt R b
2_PRINT* o
and
3.PRINT TAB{);* "TAB() " TAB()5 i

to set up the headings given in the prior example. Use [orm 1 for the first line of the head-
ing, form 2 for the second line and form 3 (the TAB form) for the third line.

s
Q\{

“YOUR TAB.”

61

Hint: Since form #1 uses automatic zone formatting and is not adjustable, the other forms
have to be keyed to it.

S e
T T A T e Y L T T 7 ST S e S R
Whether you follow TAB(##) with a semicolon or comma makes no difference. In either
case, the Computer will start printing #3 spaces to the right of the left margin. JHowever, it
is important to remember that whenever numbers or number variables are printed out,
the Computer inserts one space to the left of the number to allow for the —or + sign. Type
and RUN the following:

18 A = 3
28 B = $
38 C = A + B

4p PRINT TAB(1@);"A" ;TAB(2¢);"B" ;TAB(39);"C"

56 PRINT TAB(1@);A;TAB(22);B:TAB(30);:C

It should appear:

A B C
3 S 8

Note that the numbers are indented one space beyond the TAB(#). Keep it in mind when
lining up (or indenting) headings and answers.

Change line 29 to read
286 B = -5

... and RUN. See why the indenting is necessary?

The Long Lines Division

Have you ever wondered what would happen if you wanted to PRINT a great number of
headings or answers on the same line — but didn’t have enough room on the program line
to get in all the TAB statements? You have? Really? You're in luck because it’s easy. Type
and RUN the following program:

62

20

32

42

S@

6d

7@

842

9@

102

28e

21e

220

32e

314

32e

J=14

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

AN TAB(S®) ;"B 3 TAB(1@);; " C" s TAB(15) ;D"
TAB (22);"E";TAB(2S); "F";TAB(30);"G";
TAB(3S); "H" 1 TAB(4@2) ;"I " ;TAB(45); "y "
A;TAB(S5);B;TAB(18)3CiTAB(15);D;TAB(28);
E;TAB(25);F;TAB(3@);G;TAB(35);H;TAB(42)

I;TAB(45) ;)

It’s the trailing semicolon {;) that does the trick. It makes the end of one PRINT line con-
tinue right on to the next PRINT line without activating a carriage return. The combination
of TAB and trailing semicolon allows you almost infinite flexibility in formatting the
output,

Multiple Statement Lines

As our parting shot in this easy lesson, we're going to have a sneak preview of what’s ahead,
Replace lines 10 through 100 with the following:

12 A=1:B=2:1C=3:0=4:E=5:tF=6:G6=7:H=8:1=9:J=10

Egad, Igor — we've created a monster! Wifl it work ? RUN and find out,

Worked just the same, didn’t {t?

Now don’t get all carried away, but this is one of many cases where you can put a number
of statements on the same line, separating them with the COLON (:). Be careful, not the
semi-colon. The Computer reads them from left to right, as though each were a separate line
number.

Don’t try this trick with IF-THEN statements since there are some special considerations —
but with virtually everything else we’ve learned so far, including FOR-NEX'T loops, it works
fine, saves space, shortens programs and has a lot going for it.

EXFERCISE 12-2: Rework the answer to Exercise 11-3 to include the Hourly rate of pay in
the printout. Use the TAB function to have the chart display all 5 columns side by side.

EXERCISE 12-3: (Optional) Rework the special problem 11-6 answer using the TAB func-
tion so the printout includes the internal resistance in a fifth column.

Learned in Chapter 12

Trailing semicolon

Multiple statement lines

64

Chapter 13

Grandson of FOR-NEXT

The FOR-NEXT loop didn’t go away for long. It returns more powerful than ever. Enter
this program:

1¢ FOR A = 1 T0O 3

22 PRINT " A LOOP" For legibility, add two blank spaces in line 20
beforePR INT; three in line 30 before F DR

38 FOR B = 1 70 2 four in 49 beforePR INT; and three in 50 before
NEXT.

43 PRINT ' ', g5 togP"

52 NEXT B

60 NEXT A

.and RUN.

The result is:

A LOOP
B LOOP
8 LOOP
A LDOP
B LOCP
B LOOP
A LDOP
B LOOP
8 LOOP

65

This display vividly demonstrates operation of the nesied FOR-NEXT loop. “Nesting” is
used in the same sense that drinking glasses are ‘“‘nested’” when stored to save space, Certain
types of portable chairs, empty cardboard hoxes, etc. can be nested. They fit one inside the
other for easy stacking.

Let's analyze the program a line at a time:

Line 10 establishes the first FOR-NEXT loop, called A, and directs that it be executed 3
times.

Line 29 prints “A Loop” so we will know where it came [rom in the program. See how
this program line is indented several spaces to make it stand out as being nested in the
“A” loop?

Line 30 establishes the second loop, called B, and directs that it be executed twice. It is
indented even more so you can instantly see that it is buried even deeper in the “A”
loop.

Line 40 prints two items: first the blank shown between the two quote marks, then the
comma kicks us into the next print zone where “B Loop” is printed. Makes for clear
distinction on the screen between the A loop and B loop, eh?

Line 50 completes the “B” loop and returns control to line 30 for as many executions of
the “B" loop as line 3@ directs, So far we have printed one “A’and one “B™.

Line 60 ends the first pass through the “A” loop and sends control back to line 1@, the
beginning of the A loop. The A loop has to be executed 3 times before the program
run is complete, printing *A”" 3 times and “B” 6 times (3 times PAR

Study the program and the explanation until you completely understand it. It’s simple but
powerful magic.

SRR N S R S RN e N SRR

Okay, to get a better “feel” fox this nested loop (or loop within a loop) business, let’s play
with the program. Change line 10 to read:

1 FOR A = 1 TO S
...and RUN.

Right! A was printed 5 times, meaning the “A” loop was executed 5 times, and B was print-
ed 10 times — twice for each pass of the “A" Joop. Now change line 39 to read

38 FOR B =1 TO 4

...and RUN,

66

When you write ptograms, be sure to indent lines
to highlight nesting (or other lines you want to
emphasize). This helps when reading programs —
and is a great aid when debugging {troubleshooting)
program problems. : :

Nothing to it! A was printed 5 times and B printed 20 times. [f you are having trouble
counting A’s and B’s as they whiz by, you remember what to do. Just press the (4), (y) or
(>) key to stop execution and temporarily freeze the display. The [BREAK] key and typing
CONT do the same thing, allowing hands-off freezing, but inserts a BREAK note and other-
wise messes up the display.

How to goof-up nested FOR-NEXT loops

The most common error beginning programmers make with nested loops is improper nest-
ing. Change these lines:

52 NEXT A
62 NEXT B
...and RUN,
The Computer says:
WHAT?

68 NEXT B?

Looking at the program we quickly see that the B loop is not nested within the A loop, We
have the FOR part of the B loop inside the A loop, but the NEXT part is outside it. This
does not work. A later chapter deals with something called “flow charting”, a means of
helping us plan programs and avoid this type of problem. Meanwhile we just have to be
careful.

Breaking out of Loops
Improper nesting is illegal, but breaking out of a loop when a desired condition has been
met is OK, Add these lines:

5@ NEXT B

55 IF A = 2 GOTO 1908

62 NEXT A

99 END

188 PRINT '"A EQUALLED 2. RUN ENDED."

. .and RUN.

67

As the screen shows, we “bailed out” of the A loop when A equalled 2 and hit the test line
at 55. The END in line 99 is just a precautionary roadblock set up to stop the Computer
from running into line 100 unless specifically directed to go there. That would never happen
in this simple program, but we will use protective ENDs from time to time to remind us
that lines which should be reached only by specific GOTO or IF-THEN statements must be
protected against accidental “hits™.

We'll be seeing a lot of the nested FOR-NEXT loop now that we know what it is and can
put it to use.

EXERCISE 13-1: Enter the original program found at the beginning of this Chapter. It
contains a B loop nested within the A loop. Make the necessary additions to this program
5o a new loop called “C" will be nested within the B loop, and will print “C LOOP" 4 times
for each pass of the B loop.

EXERCISE 13-2: Alter the resident program so that it is the same as that found in the
answer to Exercise 13-1.

Make the necessary additions to this program so a new loop called “D” will be nested within
the C loop, and will print “D LOOP” 5 times for each pass of the C loop.

Learned in Chapter 13
' Miscellaneous

Nested FOR-NEXT loops

Protective END blocks

Chapter 14

The INTEGER function

Integer??? “I can’t even pronounce it, let alone understand it.” Oh, come, come, Don’t let
old nightmares of being trapped in Algebra class stop you now. It’s pronounced (in-teh-juy)
and simply means a whole number like 1, or 2 or 3, etc. How difficult can that be? Come
to think of it, some folks make a whole career of complicating simple ideas. We’re here to
do just the opposite.

The INTEGER function, INT(X), allows us to “round off”” any number, large or smail,
positive or negative, into an integer, or whole number.

Type NEW to clear out any old programs, then enter:
3 X = 3.14159

48 Y

INT(X)
52 PRINT "y = " ;v
.and RUN,
The display reads
Y s 3
Oh — success is so sweel! It rounded 3.14159 off to 3. Change line 3¢ to read:
30 X = =-3.14159
.and RUN.
Good Grief! It rounded the answer down to read
Y = -4

What kind of rounding is this? Basy. The INT function always rounds DOWN to the next
lowest WHOLE number, Pretty hard 1o get that confused! It makes a positive number less
positive, and makes a negative number more negative {same thing as less positive). At least
it’s consistent,.

“CALL IT? INTEGER OF COURSEI"

Careful - we're not talking about ordinary | round-

ing (what could be nrdlmry about your Computer?!).

Ordinary rounding gives us the closest whole
number, whether it’s larger or smaller than X
INT(X), on the other hand, gives us the largest
whole number which is less than or equal to X, As
you'll see {n this chapter, this is a very versatile
form of rounding — in fact, you can use it to pro-
duce the other, “ordinary’’ Kind of toundiug

NOTE: LEVEL 1BASIC allows the INT(X) func-
tion to work only, with numbexs larger than
~32767 and smaller than +32767. LEVEL 2
BASIC remaves this restriction. Use of 2 value of
X outside this range causes the Computer to Iult
execution and ask HOW?

69

Taking it a line at a time:

Line 30 set the value of X (or any of our 26 alphabet-soup variables) equal to the value
we selected, in this case .

Line 49 finds the INTEGER value of the above number and assigns it a variable name. We
chose Y.

Line 5@ prints & little identification (Y=) followed by the value of Y.

Not Content to Leave Well Enough Alone

We can do some foxy things you probably never thought of by combining a FOR-NEXT
loop with the INTEGER function.

Change the program to read:

38 X 3.14159

48 vy INT(X)

o8 2 = X =Y

68 PRINT '''Xx = " ;x

78 PRINT /'Y = " ;v

8% PRINT "'z = " ;2
...and RUN.

AHA! I don’t know what we've discovered but it must be good for something. It reads:
X = 3.14159

Yy =3

Z = .141589

We've split the value of X into its Integer (whole number) value and called it Y, and its
decimal value and called it Z.

Line 69, 70 and 80 merely printed the results.

Hold the phone!!!

Oh — oh! Why doesn't Z equal the exact difference between X and Y? Where did that
“8” come from in the decimal value?

70

It has nothing to do with the INT function. Back in Chapter 8 we talked a little about
the Computer’s accuracy (you always have to watch the accuracy of the last decimal place
or two}. TRS-B0 users who have LEVEL II Basic will not notice this routine “rounding
error”. If we solved all the world’s problems with the bottom-of-the-line machine you
might not want to upgrade to the higher power models, and one doesn’t stay in business
long that way, does cne?

There is a way to control the accuracy of your results in LEVEL 1 BASIC, It involves
artificially rounding your fraction to the desired number of decimal places, and then fore-
ing the Computer to print out only those digits which are “properly rounded”.

For example, suppose you only need 7 to three places. (Of course, you can enter it as 3.142,
but that's not the point.) Type NEW , then enter and RUN the following program:

Adding Q005 gives our fraction a “push in the

18 X=3.14159 right direction". xmg,msuonmzqmmm

28 X=X+.2085 than 4 in its 1 ﬁ rplwe,lhq&ddhil .

3¢ X=INT(X*1002)/1022

ce digit d 9995 will
4@ PRINT X havenoeﬂectonmmnlmm This results in
what’s ealled “4/5 rounding.”

Try using other values for X (just make sure X*10@@ isn’t too large for the INT function to
handle).

It's easy to change the program to accomplish rounding at a different point. For example,
to round X off at the hundredths-place (2 digits to the right of the decimal point), change
lines 20 and 39 to read:

28 X=X+.0285

3¢ X=INT(X*128)/180

and RUN, using several values for X, : mﬂ“&"&xﬁﬁgs’:@%;mmu " .d' :

Hmmmm!!!

Do you suppose there is any way to separate each of the digits in 3.14159, or in any other
number? Do you suppose we would have brought it up if there wasn’t? After all . . . (mum-
ble, mumble . .).

It's really your turn to do some creative thinking, bui we’ll get you started and see if you
can finish this idea. First, wipe out the resident program and retype the program that splits
X into an integer and fractional part (the first program in this Chapter).

We clearly can’t just go on taking the INT value of X over and over to try and split down
decimal value, Let’s try it with 2.

71

98 L = INT (2Z)

1¢2 PRINT "L =";L
.and RUN.

Nope — that’s a sure loser. We got 9. The integer value of 141589 was that value rounded
down to the next number, and the next number down was zero. Hmmm! Erase out lines
90 and 100 and let’s try again. Got any better ideas? No? Well, think some more.

¢ (... brief interlude of recorded music . , .) ﬁ
> A3 S &

Right! If we multiply the value of Z by 19 then Z will become a whole number plus a
decimal part: 1.41589. We can then take its integer value and strip off the decimal part,
leaving the left hand digit standing alone. Let's label the left-hand digit L and see what
happens. Enter:

9g M = z * 19

120 L = INT (M)

112 PRINT "L =""L

. and RUN.

Now, that's more like it. It reads:

X = 3.14159

Y = 3
Z = .141589
L =1

We peeled off the leftmost digit in the decimal. Can you think of any way we might use a
FOR-NEXT loop in order to strip off some more?

s ot (. ..More recorded music . . .) oy
“Q & ¢

-1
(]

Time out for creative thinking!

't have the.

&~ unless you,

After all, these digits lmghl not be just ¢ more
: but a coded message from a

ﬁfe)derm ir’s

a computer!

Enough thinking there on company time! Enter these lines:

95 FOR A = 1 TO 6
120 M = M - L

136 M M * 19

142 NEXT A

.and RUN,

Voila! (I never did figure out what that meant, but I think it's positive.) The “printout”
reads:

3.14159
3
.141589

rrrerrrNn<x
LI LS | | S P | I 1

O W N o o

1Us all there. Every digit, including the “squirrely” ones from the land of little numbers, is
there. Analyzing the program additions (after doing a LIST):

Line 95 began a FOR-NEXT loop with 6 passes, one for each of the 6 digits right of the
decimal.

Line 12¢ creates a new decimal value of M (just a temporary storage location) by strip-
ping off the integer part. (Plugging in the values, M = 1.41589 — 1 = 41589)

Line 139 does the same as line 90 did, multiplies the new decimal times 10 so as to make
the left-hand digit an integer and vulnerable to being snatched away by the INT func-
tion, (M = 41589 * 10 = 4,1589)

Line 140 moves the control back to line 95 for another pass through the clipping program
... and the rest is history.

Is this too hard to follow?

No — it isn't hard to follow, and you could go through and indicate every value just like I
did and it would be perfectly clear (to coin a phrase), Let’s instead learn a way to let the
Computer help us understand what it is doing.

We can insert temporary print lines anywhere in any program so we follow every step in
its execution, The Computer can actually overwhelm us with data, but by carefully indicat-
ing what we want to know, we can observe the inner details of the calculations. Start by
adding this line:

92 PRINT " g¢92 M = " ;M

.and RUN

The essentials of this “‘test™ or “debugging” or “flag” line are:
1, It PRINTSs something.
2. The print tells the line number, for analysis and easy location for later erasure.
3. It tells the name of ihe va.nable you are watching at that point in the program.
4. It gives the value of that variable at that point.

It is most helpful of all when inserted in FOR-NEXT loops — so:

97 PRINT " #97 A = ' ;A

.and RUN.
Wow! The data really comes thick and fast! Haxd to keep track of so much information, and
we’ve barely begun. This tells what is happening during each pass of the loop. Is there some
way to make it more readable? Sure. Can you think of 2 way?

Yes, there are lots of ways. Indenting is just one simple way to keep the answers separated
from the trouble shooting data, Retype lines 92 and 97 as follows:

92 PRINT "™ " " #92 M = " M

97 PRINT "™ " " 497 A

1]

" :A
.and RUN.

Ahhh. How sweet it is. That is so easy to read, let's monitor some more points in the pro-
gram. Type in:

125 PRINT " 00 0 W 4125 M

[}
=

135 PRINT ' 't ' "0 %" %135 M

]
=

.and RUN.
74

This, "ﬂqxlng" issuch e wunderml troubleshoot-
ing tool in stibborm programs that you will want
o make 2 habit of never forgetting to use it when
the going gets tough.

There it is. All the data you can handle (and then some). By using the up or down arrow key
to temporarily halt execution, you can study the data at every step to understand how the
program works (or doesn’t work). Do it. Understand this program and all its little lessons
completely. When you are satisfied, go back and erase out the “flags”. You have learned
quite enough for this Chapter.

EXERCISE 14-1: Enter this straightforward little program for finding the area of a circle,
(First type NEw .)
18 P=3.,14159

2@ PRINT "RADIUS'", "“AREA"
38 PRINT

4@ FOR R=1 TO 1¢

S8 A =P *R*R

6@ PRINT R,A

72 NEXT R

Area equals 7 times the radius squared (that is, the radius times itself). Then RUN it to
make sure it works.

Pretty routine stuff — huh? Problem is, who needs all those little numbers to the far right of
the decimal point. Oh, you do? Well, there’s one in every crowd. The rest of us can do with-
out them. Without giving any big hints, modify the resident program to suppress all the
numbers to the right of the decimal point.

EXERCISE 14-2: Now, knowing just enough to be dangerous, and in need of a shot of
humility, change line 55 so that each value of AREA is rounded (down) to be accurate to
one decimal place. For example:

RADIUS AREA
1 3.1
ete.
Ummm — yaas. Hang in there, It’s super-simple,

75

EXERCISE 14-3: Carrying the above assignment one step further, modify the program line
55 to round (down) the value of area to be accurate to 2 decimal places.

EXERCISE 14-4: At the risk of inducing complete boredom (yet teaching an unexpectedly
important lesson) it's all-together-now: Revise line 55 to introduce 3-place accuracy in the
AREA calculated by the resident program.

Learned in Chapter 14

Functions : Miscellaneous

INT(X) Flags

76

Chapter 15

It Went That-A-Way
Enter this program:

12

28

39

47

59

6g

INPUT

IF N =

IF N =

IF N =

IF N =

IF N =

7% PRINT "

(1}

99 END

118

120

130

149

159

162

172

182

192

PRINT

END

PRINT

END

PRINT

END

PRINT

END

PRINT

""TYPE A NUMBER BETWEEN 1 AND 5" N
1 GOTO 118
2 GOTO 139
3 GUTO 159
4 GOTO 170
5 GOTO 19@

THE NUMBER YOU TYPED WAS NOT BETWEEN 1

"N= ll'

"N= 2"

'lN =3ll

YN =4

"N =5

AND 5 -~- DUMMY

Notice anything funny about line 707 Tt ukesup
two lines on the Displa,y!’l!nh’:bam
mme&mﬂcwu ers (including

ing efforts. In. !aci a prommllm mnnnhin
up to 72 characters (including line number and
spaces). Ta enter or LiSTnch a ine takes

R

E::wo Display lines; but lt‘ssﬁﬁiuatn mm

RUN it a few times to feel comfortable with it and be sure it 1s “debugged”.

Anyway, this program works fine for examining the value of a variable, N, and sending the
Computer off to a certain line number to do what it says there. If there are lots of possible
directions in which to branch, however, we will want to use a greatly improved test called
ON-GOTO which cuts out lots of lines of programming. Let's examine an ON-GOTO after
you do the following:
Erase lines 20, 30, 40, 50 and 60
Enter this new line:

20 ON N GOTO 110,139,158,178,19@

...and RUN the program a few times, as before.

Works just the same, doesn’t it?

The ON-GOTO statement is really pretty simple, though it looks hard. Line 2 says,

if the INTEGER value of N is 1 then GOTO line 110.

if the INTEGER value of N is 2 then GOTO line 130.

if the INTEGER value of N is 3 then GOTO line 150.

if the INTEGER value of N is 4 then GOTO line 170.

if the INTEGER value of N is 5 then GOTO line 199.

if the INTEGER value of N is not one of the numbers listed above, then move on to
the next line.

The ON-GOTO statement has its own built-in INT statement. It really acts like this:
20 ON INT(N) GOTO . . . ETC.
Type in the following values of N to prove the point:

15

3.99999

9.999

5.999

6.02091

Get the picture?
78

Variations on a Theme

There are lots of tricks that can be played to milk the most from ON-GOTO, For example,
if you want to branch out to 15 different locations but obvicusly cannot type that many
different numbers on an ON-GOTO line, you can use several lines, like this;

28 ON N GOTO 110,139,158,17¢,192
25 ON N-5 GOTO 21¢2,2302,25¢2,272,299

3@ ON N-10 GOTO 319,339,350,372,39¢
... and fill in the proper responses at those line numbers.

In line 25, it was necessary to subtract 5 from the number being input as N, since each new
ON-GOTO line starts counting again from the number 1. In line 30, since we had already
provided for inputs between 1 and 10, we subtract 19 from the input N to cover the range
from 11 through 156. By using the ON-GOTO statement, we have programmed into 3 lines
what would otherwise have taken 15 lines. By packing more branching options into each
ON-GOTO line, we could have done it in 2 lines or less, depending on the number of digits
in the line numbers of the branch locations,

As in most of our examples, we could have used any letter after “ON”, not just N, As we
just saw, N can be the value of a letier variable, or a complete expression, either calculated
in place (as here) or in a previous line,

Trade Secret

Due to the vagaries of rounding error and the chance the error might just round a number
like “N™ a tad below the integer value expected, it is common to see something like this:

58 ON N+.2 GOTD 12¢,209,308 ETC.

The effect of this shifty move is to add just a “pinch’ to the incoming value of N, knowing
full well that the ON-GOTO statement contains its own INT function. If N happens to have
been rounded down to say 1.98 (instead of the 2.000 expected), .2 will be added to it
making N 1.98 + 2 = 2,18 which the built-in INT will round down to the desired 2. Pretty
sneaky, Values between .1 and .5 are often added to the N for this purpose in well-written
programs.

Give Me a SGN(X)

Using the ON-GOTO along with a new function called SGN (it’s pronounced sign), plus a
modest amount of imagination, produces a most useful little routine. But first, let’s learn
about SGN.

The SGN function examines any number to see whether it 1s negative, zero, or positive, [t
tells us the number is negative by giving us & (-—1). If the number 1s zero it gives us a {Q). [
positive, we get a (+1). It's a very simple function.

First, the BAD News

Unfortunately, LEVEL I BASIC does not have the SGN function built-in You can only get so many people in a telephone
booth. {There is supposed to be an analogy of
sorts there.) :

Then, the GOOD News

Fortunately, through the use of a computer (yours) it is possible to create or simulate func-
tions we don’t have. That’s why Appendix A is [ull of good things called SUBROUTINES.

So What Is a Subroutine?

Funny you should ask. A sub-routine is a short but very specialized program (or routine)
which you build into a large program to meet a specialized need. LEVEL IT BASIC stores
many of them in a special place in memory and they can be called up by a simple set of
letters. (We have several at LEVEL I, like INT.)

We don’t have enough memory to spare here at LEVEL I to hold all the roufines in
memory, so we are going to use a five-line subroutine instead of the “SGN” function to
accomplish the same thing Even if you have LEVEL II BASIC in your computer, you
should complete this Chapter to be sure you learn about subroutines, We don’t want to
turn out dummies, you know.

Turn to Appendix A. Find the subroutine marked SGN. “Scrateh’ the program now in the
computer by typing NEW, then — very carefully, so you don’t make any mistakes, type in
the SGN subroutine:

38286 END

308008 REM * SGN(X) * INPUT X, OUTPUT T = -1,2, OR +1 “TON
“CAREFULLY"

39810 IF X<@ THEN T = -1

3g82% IF X = & THEN T = ¢

39830 IF X >8 THEN T = +1

30849 RETURN

80

“Calling” a Subroutine — (Sort of like calling hogs.)
When you want to use a subroutine, use the GOSUB# # # # # statement.

This directs the Computer to go to that line number, execute what it says there and in the
lines following, and when done RETURN back to the line containing the GOSUB state-
ment. We will use fine 20 here.

2¢ GOSUB 3@800

A RETURN is always built into a subroutine, and youwll find it at line 30849. We have
reserved line number 30009 to hold a protective END block for all of our subroutines, so
the Computer doesn’t come crashing into them when it is done with the main program.

Getting Down to Business

Okay, now let’s combine GOSUB and SGN (using a subroutine) to see what all this fuss is
about. Type:

18 INPUT "TYPE ANY NUMBER' ;X

2@ GDSUB 392800

30 ON T+2 GOTO 50,68,78

45 END

S@ PRINT " THE NUMBER 1% NEGATIVE."
55 END

62 PRINT " THE NUMBER 1S ZERO.'

65 END

7@ PRINT " THE NUMBER IS POSITIVE."

. ete. (the subroutine is already typed in) . . . and RUN,

Try entering negative, zero and positive numbers to be sure it works. Most of the program
is already obvious to you, but here is an analysis:

Line 19 inputs any number.
Line 20 sends the Computer to line 30809 by a GOSUB statement. This is different from
an ordinary GOTO, since a GOSUB will return control to the originating line like a

81

boomerang when the Computer hits a RETURN. The GOSUB is not completed and
will not move onto the next program line until a RETURN is found,

Lines 30800 through 30840 contain this rather simple subroutine.

Line 3084¢ contains the RETURN which sends control back to line 29, which silently
acknowledges the return and allows movement to the next line.

Line 30 is an ordinary ON-GOTO statement, but adds 2 to the value of its variable, in this
case ‘T, Line 30 is really saying, “If T is —1 then GOTO line 50. If it is zero then
GOTO line 69, and if it is +1 GOTO line 7. By adding 2 to each of those values we
have “matched” them up with the 1, 2, and 3 which are built into the ON-GOTO.

Lines 45, 565, and 65 are routine protective blocks,

Preview of Coming Attractions?

Like so much of what we are learning, this is just the tip of the iceberg. The ON-GOTO and
SGN functions have many more clever applications, and they will evolve as we need them. As
a hint for restless minds, note that the value of X which we input was not used, but it didn’t
go away. All we did was find its SGN, Hmmm . ..

Routines vs SUBroutines

We studied a special-purpose routine used as a subroutine, It is one of the few that we can
both use and really understand. All the routines, understandable or not, can be built directly
into any program instead of being set aside and ‘‘called” as subroutines. Their main value
as subroutines is that they can be “‘called” repeatedly from different parts of a program,
which is often desirable. As ordinary routines they are usually only used once, and lines
containing GOSUB and RETURN are not needed.

One value of using special routines as SUBroutines is that some are exceedingly complex to
type without error, and if each is typed once and saved on cassette tape, it can be quickly
and accurately loaded into the Computer as the first step in creating a new program.
Another good idea is to type all the subroutines at one time, then record on one tape. You
can later load that tape and erase out of the Computer those subroutines that are not need-
ed for the program you are creating.

Now it’s your tum.

EXERCISE 15-1: Delete lines 30800-3084Q from the resident program. Build the SGN
routine into the program so it works just as well as if we were calling it as a SUBroutine.

This problem will probably take you quite a few lines — so rather than give you a lot of
blank space here, why not take advantage of the pad of Program sheets we’ve given you and
write your program answer there. Then check Part B for our suggested answer.

82

By the way, most subroutines are not this simple —
as a matter of fact, they get into yather hairy
nuthemmcal derivations. We won't bother trying

 any of them — I£:you're one of those
Math nnts. you go tight ahead and play with the
numbers .

We'll have more to say in a later Chapter. When
you see just how powerful subroutines are, you’ll
feel like yourTRS-BO is even smarter than it
thinks it is (blush, blush)!

SGN(X)

Learned in Chapter 15

ON-GOTO
GOSUB
ON-GOSUB

RETURN

Debugging

Calling a subroutine

Routines

83

Notes:

84

Chapter 16

READing DATA
So far, we have learned how to enter numbers into our programs by two different methods.
The first is by building the value into the program:

12 A =S
The second is by using an INPUT statement to enter a number through the keyboard:
1 INPUT A
The third principal way is through the DATA statement.,
Enter this program:
19 DATA 1,2,3,4,5
29 READ A,B,C,D,E
3¢ PRINT AsB;C3iD;E
.and RUN.
The DATA statement is in some ways similar to the first method in that a DATA line is
part of the program. It’s different, however, since each DATA line can contain many num-
bers, or pieces of data, each separated by a comma, Each piece of DATA must be read by a
READ statement. Each READ statement can read a number of pieces of DATA if each

variable letter is separated by a comma.

The display shows that all 5 pieces of data in line 1, the numbers 1, 2, 3, 4 and 5 were
READ by line 29, assigned the letters A through E, and printed by line 39.

Keep in mind this important distinction: DATA lines ¢an be read only by READ state-
ments. If more than one piece of data is placed on a DATA line, they muat, be sepamted
by commas. Keyboard data can be entered only via INPUT statements.

DATA lines are always read from left to right by READ statements; the first DATA line
first (when there is more than one), and 1T DOES NOT MATTER WHERE THEY ARE IN

85

THE PROGRAM. This may seem startling, but do the following and you will see:
1. Move the DATA line from line 10 to line 25 and run. No change in the printout,
right?
2. Move the DATA line from line 25 to line 190Q®. Same thing — no change in the
printout.
Data line(s) can be placed anywhere in the program.

This fact leads different programmers to use different styles. Some place all DATA lines at
the beginning of a program so they can be read first in a LIST and found quickly so data
may be changed.

Others place all DATA lines at a program’s end where they are out of the way and there are
more line numbers available to keep adding DATA lines as the need arises. Still others
scatter the DATA lines throughout the program next to the READ lines which bring that
data into use. The style you use is of little consequence — but consistency is comfortable.

The Plot Thickens

Since you now know all about FOR-NEXT loops, let us see what happens when a DATA
line is placed in the middle of a loop. Erase the old program with NEW and type in this

program:
19 DATA 1,2,3,4,5
20 FOR N =1 TO §
32 READ A
40 PRINT Aj;
5@ NEXT N

... then RUN.

That DATA line started outside the loop. Now move it to line 25 and RUN, What hap-
pened?

Nothing different! It is important to note this fact or we wouldn’t have gone to the trouble
to do it. Note that as we went through the N loop 5 times, we read the letter A, and the
PRINT statement only printed A, but A's value was different each time. Jts value was the
same as the value it last READ in the DATA line. The reason — each piece of dala in a
DATA line can only be read once each time the program is run. The next time a READ
statement requests a piece of data, it will read the next piece of data in the DATA line, or,
if that line is all used up, go on to the next DATA line and start reading it.

86

Change line 20 in the program to read:
20 FOR N = 1 TO 6
...and RUN,

We, of course, told the READ statement to read a total of 6 pieces of DATA but there were
only 5. An error statement caught us, as the screen shows.

1 2 3 4 S HOwW?
3@ READ A7
Now change line 20 so the number of READs is less than the DATA available
20 FOR N = 1 TO 4
...and RUN,
The program ran just fine as long as we didn’t use all the available data. The point is, each

piece of data in a DATA statement can only be read once during each RUN.

Exceptions, Exceptions!

Because it is sometimes necessary to read the same DATA more than once without having
to RUN the complete program over, a statement called RESTORE is available. Whenever the
program comes across a RESTORE, all DATA lines are restored to their original “unread”
condition, both those that have been read and those that have not, and all are available for
reading again, starting with the first piece in the first DATA line. Change line 20 of the pro-
gram back to

20 FOR N =1 T0 S
N “ONE MORE TIME?"
and insert
35 RESTORE
and RUN .,

Oh-oh! The screen prints five 1's instead of 1 2 3 4 5, Can you figure out why?

87

Line 30 READ A as 1, but line 35 immediately RESTOREd the DATA LINE TO ITS
ORIGINAL UNREAD CONDITION. When the FOR-NEXT loop brought the READ line
around for the next pass it again read the first piece of data, which was that same 1, Same
thing with all successive passes.

READ and DATA statements are extremely common. The RESTORE statement is used
less often.

String Variables

Who knows where some of these seemingly unrelated words come from? If they weren't so
important we could ignore them. We have been using the letters A through Z to indicate
numbers. They are called NUMERIC VARIABLES. In LEVEL 1 BASIC we have set aside
2 additional symbols to indicate STRING VARIABLES. They are A$, and B$, pronounced
“A String” and “B String”. String variables can be assigned to indicate Letters, Words
and/or Combinations of letters, numbers and spaces of up to 16 characters. Type NEW
then type in:

18 INPUT '"WHAT IS YDUR NAME'" ;AS$
2@ PRINT '"HELLO THERE, ''3;AS
..and RUN.
Hey-hey! How’s that for a grabber? If that, along with what you have learned in earlier

chapters doesn’t make the creative juices flow, nothing will.

That’s Two

Two ways we now know to print words. The first, learned long ago, is to imbed words in
PRINT statements (and is called “printing a string”). The second is to bring in a word(s)
through an INPUT statement (called “inputting a string”). If you can’t think of the third
way, go back and check the title heading at the first of this chapter.

Ah yes, brilliant student! Ahem ... (Reading a siring.}

Change the program to read:
19 READ A%

20 DATA RADIO SHACK TRS-80

3@ PRINT '"'SEE MY FOXY'';AS
88

...and RUN.

See! I told you a string variable would only hold 16 characters. Count them. Any sug-
gestions??

But of course. Level 1 BASIC has two string variables available. Let’s rework the program to
print the entire name of the computer.

14 READ AS$
15 READ BS
29 DATA RADIO SHACK, TRS-80

3¢ PRINT ''SEE MY FOXY'"; A$: ' '";Bs

That’s more like it, Analyzing the program.

Line 20 contains two Data items, separated by a comma.

Line 19 READs the first one.

Line 15 READs the second one.

Line 3¢ contains 4 print expressions. The first one prints SEE MY FOXY, leaving a space
behind the “Y” since string variables always run letters together, allowing you the
option of inserting your own space. The second print is A$, RADIO SHACK, The
third print is the space enclosed in quotes. The last print is TRS-80.

EXERCISE 16-1: Okay, now it’s your turn. Design a program to produce exactly the same
results, but using only A$, not B$.

A lot of your learning to daie is tied up in this little program, so be sure you completely
understand it before you move on.

“In other words, 4 semi-colon between string

between them. So you have (o insert 8 space
R BT i (2

Stuek? Hint: Try a FOR-NEXT loop.

89

A VYoice from the Past

Remember how in a very early chapter we checked the contents of each Numeric Variable
address, A through Z, by using the calculator mode?

PRINT A3B3CiD;E; elc.
We can do the same thing with our two new Strings. Type:

PRINT A$;B$%

Why does it display

TRS—80TRS—80 ?
The first TRS-80 is simple — it was the last string read by A$. Same thing with BS. Even
though B$ was not used in solving the last problem, it was used in the earlier example, and
if the Computer was not turned off since then, it was held in memory. This fact is more

than a laboratory curiosity. It can get you into “unexplainable’ programming problems if
you’re not aware of it.

Oh, by the way . ..
There isn’t room in LEVEL I BASIC to do everything, obviously, and we promised earlier

that you would learn how to answer “YES” and “NO” to the Computer. LEVEL IT allows
you to do it in a straight-forward manner. Here in LEVEL I we have to be sneakier. Enter
this program:

1 ¥ =1

28 N = B

37 INPUT *'ARE YOU OLD ENDUGH TO VOTE (Y/N)" 1A

49 IF A = 1 THEN €92

5 PRINT '"DON'T FRET. THE TIME WILL PASS FAST ENOUGH. '

59 END

68 PRINT '"SWELL.DON'T FORGET TO REGISTER!"

...and RUN.
90

Analysis:

Line 19 sets the value of Y equal to 1.

Line 20 sets the value of N equal to @. These two values can be quickly and easily check-
ed by typing PRINT Y ,N in the calculator mode.

Line 30 inputs the answer to the question as either Y or N, (it will also accept YES or
NO and any other words starting with Y and N). “A” takes on the value of Y or N as
defined in lines 1 and 20.

Line 49 tests the value of A, and if it is 1, sends control to line 6@. If it is not 1 (but not
necessarily @), the line 40 test defaults and falls through to line 5@. The appropriate
message is printed.

Line 59 is a protective END so if line 5@ is printed, line 60 will not also be printed.

More Analysis:

We have carefully given Y and N values of 1 and (. This does not mean that other letters
might not have those same values. That does not matter as long as only Y and N are hit.
The present program relies on line 49 defaulting to the next line if a 1 is NOT found. As
a partial precaution against a user hitting the wrong letter accidentally and coming up with
the wrong answer, we can “backstop” our program with these additional lines:

45 IF A = @ THEN 58
47 PRINT "PLEASE ANSWER WITH EITHER A Y OR NI"

49 END

Analysis:
Line 45 insists that to get the response to line 5@, zero must be entered. We know that
an N will do that for sure. Other letters might also have the value of zero.
Line 47 gives the “default” answer, cautioning the operator that he gave other than a
YES or NO.
Line 49 protects against printing the default answer and running into the line 50 answer.

EXERCISE 16-2: Design and write a simple program that asks the user at least 5 questions,
and in the process carries on a little conversation with him.

You're on your own with this one.

91

Learned in Chapter 16
Statements
READ

DATA

RESTORE

Miscellaneous

String Variables A$, BS
Numeric Variables
(Y/N) — Teaching

TRS-80 to respond to
YES or NO

92

Chapter 17

Coming Up for Air

We’ve had a number of heavy chapters, and more are coming. Exciting as all this is, we need
a break. How about a super-short (but important) chapter? Tho’t you'd agree.

Absolute Value

The ABSOLUTE VALUE of any number is that number without any plus or minus, sign.
Just the number. Easy enough?

Type:
1@ INPUT '"TYPE ANY POSITIVE OR NEGATIVE NUMBER' ;X
280 Y = ABS(X)
3¢ PRINT '"'x","y"
42 PRINT X,Y
.. .and RUN , inputting different number values, both positive and negative.

Regardless of what number you input (as X), its absolute value “Y* is that same number
without the sign, That's “sign’’ like in SGN from an earlier chapter.

When you’re done playing with this one and understand it, the chapter is over. Toldyou itdbe'a shorty didnvl?

Learned in Chapter 17

Function

ABS(X) = absolute value of X

93

Notes:

94

Chapter 18

Now He Tells Me!

This may blow your mind even though you have suspected it all along. The Radio Shack
LEVEL 1 BASIC interpreter has a “shorthand.” Tt is not some wild variation of the
language, or a “regional dialect”, but a genuine shorthand. We have deliberately not used it
until you were well into the language so you would learn how to communicate with all
those other folks out there who don't have this shorthand provision.

Hang Onto Your Chair

Nearly every COMMAND, STATEMENT and FUNCTION has a shorthand notation which is
much shorter and easier to type, and does exactly the same thing. The complete list is inside
the back cover. Here is a list covering those you have learned te date:

NEW =N, GOTO = G.

LIST = L. INPUT = IN.

RUN = R. FOR = F.

PRINT = P. NEXT = N.

MEM =M. CSAVE = C8.

STOP =S8T. CLOAD =CL.

CONT =C. STEP = 8. (when used
with FOR/NEXT)

THEN =T. TAB =T. (When used
with PRINT)

END = E. INT =1,

ABS = A, DATA =D.

RESTORE = REST. READ = REA.

“N-C-ST-GO ON, GO ON-*

Remember our power-up test back in Chapter 1?
Now you can figure out what the test tests,
P.M, Let'ssee that’s. .7

There’s More?

In addition, your Radio Shack Interpreter allows you to put more than one statement on
each numbered line, separating them by a colon (:). For example, a timer loop such as:

168 FOR N = 1 TO 502

118 NEXT N

becomes . ..
102 FOR N = 1 TO 5@@:NEXT N
...shorterstill . ..

19 F.N =1TOSBE:N.N
... oreven less space . . .

18@F.N =1TOS@B:N.N

The last listing can be entered into the Computer as shown, with no space between the line
number and the first letter, but the Computer will automatically insert a space. Entering it
this way does conserve the one extra space that you have been inserting to this time,
however.

Caveat Emptor {Don’t buy a used chariot from a stranger.)

Control yourself! It's easy to get carried away. While we will be using both Radio Shack
Shorthand and multiple statement lines often from here on, you will quickly see that it’s
possible to pack the information so tightly that it becomes hard to read, and also very hard
to modify. For most of this Manual we will avoid multiple statement lines, but when we
want to really pack it {ight — this is the only way to go!

More Caveat (or is it more Emptor?)

Radio Shack Level I Shorthand is nearly foolproof. (Knowing some of our customers, we
can't give an unconditional guarantee; or, to broaden our coverage, let’s say we know
ourselves well enough, too!), but multiple statement lines require careful understanding.
Especially critical are statements of the IF-THEN variety.

Enter the following program:

96

14 IN.'"'TYPE IN A NUMBER" ;X

2% 1F X = 3 THEN 58 : G.7¢Q

3¢ P."HOWDID YOU GET HERE?"

4@ END

S@ P."x=3"

69 END

72 P."CAN'T GET FROM THERE TO HERE, "

-..and RUN it a number of times with different input values.

Line 20 is illegal. If the test in the first statement in the line passes, control branches off to
line 5@. That’s OK. If the test fails, however, control drops to the next line in the program —
line 39. There is no way the second statement in line 20 (G.70) can ever he executed,

THE MESSAGE — if you put an [F-THEN (or ON-GOTO} type-test in a multiple statement
line, it must be the last statement in that line. Other invalid procedures will be called to
your attention as they are studied in future chapters.

NEXT MESSAGE — you cannot send control to any point in a muitiple statement line
except to its first statement. Look at Line 20 in the resident program. Even if the G.79
was legal in that line, there is no way to address it. It shares the same line number as the first
statement in the same line. Only the first statement is addressable by a GOTO or IF-THEN,

NEXT MESSAGE — DATA lines cannot exist on lines with other statements.

EXERCISE 18-1: Rewrite any one of the programs found in Part C, using every Radio
Shack Shorthand feature possible, and multiple statement lines. Use the P.M. {(PRINT
MEMORY) test to see how much memory is being used. Rework the program to cut it to
the smallest memory figure possible.

R S TR Y5 o RPTEATURR e S i T A

Learned in Chapter 18

IF (condition) (statement)
with THEN omitted

LEVEL I shorthand
dialect

Multiple statement lines

98

Chapter 19

A RANDOM number is one with a value that is unpredictable. A Random Number Genera-
tor pulls random numbers out of a hat. We have a Random Number Generalor and you set
it up this way:

N = RND(X)

Where N is the random number
RND is the abbreviation and symbol for random
X is a control number which can be either typed between the parentheses or brought in
as a variable from elsewhere in the program.

Type:
52 PRINT RND(@)
...and RUN,
RUN it again — at least 10 times.
Did you observe:
1. A different number appeared each time?
2. All numbers were between @ and 1?
3. Very small numbers were expressed in exponential notation. RUN some more until

you are satisfied that these statements are true.

Wait a minute — all this RUNning is dumb. You have a Computer! “Build” a FOR-NEXT
loop around this Random Number Generator and let it run itself 1) times.

What program did you write? [wrote:
4@ FOR N = 1 TO 1¢
5S¢ PRINT RND (@)

62 NEXT N

“RUNNING IS IN-
OR IS iT?"

99

RUN it a few times to get the idea,

Let’s put a semi-colon behind cur PRINT statement so we can get more numbers on the
sereen at one time, and increase our FOR-NEXT loop to 99 passes. Change your program
accordingly:

48 FOR N = 1 TO 99
5@ PRINT RND(@)3
6@ NEXT N

...and RUN.

You get the idea,

This is fairly exciting!
Well, maybe so, but you ain't seen nothing yet! Virtually all computer games are based on
the RND(X) function, and you'll soon be playing some and designing your own.

RND(X) with racing stripes.

The RND(§) we just experimented with is the traditional Random Number Generator. In
other BASIC dialects you may see it written as just plain RND. With a little mathematical
chicanery and use of the INT function it is possible to turn those numbers between @ and 1
into something useful. Rather than study that technique, however, let’s look at the Radio
Shack upgrade which does it all so much easier. Change line 5@ to read:

58 PRINT RND(15)3s
...and RUN.

Wow! That’s more like it = real live random integers. And they all are values that fall
between 1 and 15. Figured it out already? Pretty simple, isn't it?
1. If the number in parentheses (or its INT value) is @, the numbers generated are between
0 and 1.
2.If the number in parentheses is 1 or larger, the numbers generated are from 1 to
the INT value of that number (inclusive).
3.In LEVEL I BASIC, the largest permissible value of X is 32767.

Skeptical? You don’t believe the numbers are really random? You want proof? A
natural reaction. OK — how about pretending to repeatedly flip a coin and see how
many heads come up compared to the number of tails?

100

it trying to tell you that “ours” is better

 Radio Shack’s Random Number
with all the numbers -

The Old Coin Toss Gambit,

Remember now, you could toss a thousand heads in a row and the odds on the next toss
are exactly 50/560 that a head will come up again. Every toss is totally independent of what
happened before it. /T 1S TOQ!/!!! In the long run however, the number of heads and tails
should be exactly the same. {Casinos live off people who go broke waiting for their particu-
lar scheme to pay off . . . “in the long run”). Your Computer will give you a complete edu-
cation in “odds’ and various games of chance, and allow you to prove or disprove many
ideas involving probability. This is known as computer “modeling” or “‘simulation.”

We're going to write this coin toss simulation program in Radio Shack Shorthand and use
multiple statement lines just for the practice. Type it in very carefully to avoid errors:

10 H=@:T=8:P.
24 IN, ""HOW MANY TIMES SHALL WE FLIP THE COIN";F:CLS
32 P.'"YOUSTAND BY WHILE I DO THE FLIPPING - - - - ~='
4@ F.N=1TOF:X=RND(2):0NXG. 68,78

5¢ P.'IT BOMBED! WAS NEITHER A 1 NOR A 2.'" 1END

60 H=H+1:G,80

7¢ T=T+t

B2& N.N3P,:P.:P.:1P,

9@ P.'"HEADS'","TAILS", " TOTAL FLIPS'" :P.:P.H,T,F

120 P.1@@¥H/F; "% " ,100%T/F i " %" 1P, P, 1P,

... and RUN. “Flip the coin” 19@ times on the first RUN to get a feel for the program and
the run time. RUN as many times as it takes to convince vou that the random number
generator produces really random numbers. When it’s time for [unch or you can wait quite
awhile for the answer, try 25,8@0 flips or more.

Program analysis:
Line 1@ contains 3 statements. The first initializes H (for Heads) at zero, The second sets
T (for Tails) equal to zero. The third inserts a space in the printout with a PRINT(P.).
Line 20 has 2 statements, 1 — Inputs the number of flips desired. 2 — A clear screen
(CLS) to start the next print line at the top of the sereen.
Line 3@ Prints a “Standby” statement,
Line 49 has 3 statements. 1 — Begins a FOR-NEXT loop that runs “F” times. 2 — Is

“YOU LOSEM

101

the RND(X) generator. We have told it to generate integers between 1 and 2, and of
course that restricts it to just the numbers 1 and 2. Heads is “1" and Tails is “2”,
3 — An ON-GOTO test sends X=1 to line 69 where the ““Heads” are counted, and X=2
to line 70 where the “tails” are counted. Note that this test is the last statement in the
multiple statement line.

Line 50 is a default line. If X = other than 1 or 2, the error message will be printed and
execution will END. It will never happen, but you are insisting on proof.

Line 60 sets up H as a counter. H was initialized as zero in line 1@, and each time the
ON-GOTO test sends control to this line because X=1, H is incremented by one and
keeps count of the “‘Heads”. The second statement sends control to line 8@ where only
the first statement, NEXT N, (N.N), is executed. When the N Loop has gone through
all “F” number of passes, control in line 8@ will move to the 4 blank PRINT(P.)
statements. Until then, the N.N. sends it back to line 40.

Line 40 generates another random number (1 or 2}. If the next X=2 the ON-GOTO sends
contro! to line 7.

Line 79 keeps track of the tails, then passes to Line 8Q and the NEXT N. When the last
“N” is “used up”, it inserts 4 blank print lines and falls to . . .

Line 99 where the Headings are printed, then the blank line, then the values of H,T
and F.

Line 190 calculates and prints the percentage of heads, and percentage of tails, and then
prints 3 blank lines at the end to make the display look less cluttered.

More Than One Generator at a Time

It is possible to generate more than one random number by using more than one generator
in a program. This has special value when the ranges of the generators are different, but is
helpful even if their ranges are the same.

To make the point, we are going to get you started creating a computer game of “Craps” —
where 2 dice are “‘rolled”. Each “die” has six sides, each side having 1, 2, 3, 4, 5 or 6 dots,
respectively, When the 2 dice are rolled, the number of dots showing on their top sides are
added. That sum is important to the game. Obviously, the lowest number that can be rolled
is 2, and the highest number is 12. We will set up a separate Random Number Generator
for each die, give each a range from 1 to 6, and call them die *“A” and die “B"".

Type NEW ,then the following:
5¢ A=RND(6):B=RND(6) :N=A+BE
69 P.N

.. .RUN a few times to get the idea.
102

As you can see, each number printed falls between 2 and 12, We are able to put both of our
generators and the adder on the same line since the dice are always both thrown at the same
time, and only the total is of interest here,

Why would the following be wrong?

50 P.RND(11) + 1

Answer: Adding random numbers created by two generators, each picking numbers between
1 and 6 will create many more sums which equal 3,4,5,6,7, 8,9, 1¢ and 11 than a single
generator which picks an equal amount of numbers 1 through 11 (to which we add 1, to
make the range 2 through 12).

Rules of the Game

In its simplest form, the game goes like this:

1. The player rolls the two dice, If he rolls a sum of 2 (called “snake eyes’’), a 3 (called
“cock-eyes') or a 12 (called “boxcars’) on the first roll, he loses and the game is over.
That’s “craps".

2, If the player rolls 7 or 11 on the first throw, (called “a natural”), he wins and the game
is over.

3. If any other number is rolled, it becomes the player’s “point”. He must keep rolling
until he either “makes his point’” by getting the same number again to win, or rolls a
7, and loses,

EXERCISE 19-1: You already know far more than enough to complete this program. Do it.
Put in all the tests, print lines, etc. to meet the rules of the game and tell the player what is
going on. It will take you awhile to finish, but give it your best before you turn over to
Part. C (User’s Programs) under Craps for a sample solution. Good luck!

Use some of your blank Program Sheets for writing up this program.

103

Random numbers are unpredictable; properly functioning computers are not. So how do we
get random numbers out of our Computer? We don’t: we get pseudo-random numbers. Each
time you use the RND function, the Computer uses an internal “seed number” to produce
the desired random number.

This is neither the time nor the place to get technical, so we’ll give the following tip without
further explanation:

When you're running game programs using RND, it’s a good idea to set the seed to an un-
predictable value. This will ensure that you don’t get the same pseudo-random number
sequence each time you turn on the Computer and play the game. Put the following lines at
the beginning of your program where they will be executed only once:

1 IN. "ENTER A NUMBER BETWEEN 1 AND 142" ;N

2 F., I=1 TO N : J=RND(32767) : N.I

Learned in Chapter 19

Functions ; . Miscellaneous
RND(®) for random numbers Random vs, Pseudo-
greater than @ and random
less than 1 Seed numbers

RND(N) for random numbers
from1lto N

104

Chapter 20

And It Draws Pictures Too!
Your TRS-80 can draw an endless variety of pictures on the Video Display screen, You will
learn some of the basic procedures and capabilities in this Chapter. Later on there’s even
more pictures! After that, what you create is limited only by your own imagination, Who
knows . . . you may write a graphics program artistically equivalent to the Mona Lisa,
Now, on to 2 of the 4 graphic commands:
SET turns on (or lights up if you will) a particular section, block or “light” on the screen,
RESET turns off (or blackens) a particular “light”.
For graphics, the screen is divided into a large number.of sections. See the Video

Display Worksheet on the next page. Each “light” is a rectangular block 2 dots wide by 8
dots high; and each has its own “address”.

For example:
SET (55,32)
means — “‘turn on the light” at the junction of 55th “X’’ Street and 32nd “Y" Avenue.
X is the horizontal address counting across from the left-hand side of the screen. Y is the

vertical address, counting down from the top of the screen. So everything starts from the
upper left-hand corner.

Type in
§@ SET (55, 32)
Clear the screen and RUN.,

There it is! The light came on. Check the Video Display Worksheet carefully to find the
address of that light. Did it show up in about the right place??

105

TRS-80 Video Display Worksheet

TITLE PROGRAMMER (e COMMENTS PAGE —_ OF _

me—-lo[1]2]3 8 | o [10[11]1 213} 4|1 5]1]2 7)1 8[1 9[2 02 1|2 2[2 3]24]25[2 62 7]28]28[30[31[32[33]3 4|3 5|3 6|3 7|3 8|3 54 0ofa 1]a 2]a 2fa a]a 5] efa 7[a8]a of5 0[5 1[5 2[53]5 4]55]5 6|5 7|5 85 9|6 0|61 [62]6 3]
-{[]] RN ARAR IR AR ARARAR B AR8RAR 001088384141 488 A AR 8 B ARRR e e e
i l0j112/3/4/51617 7 1}at 34 5lef 7fsi 901 112/ 3} 7l8; 3145/6{7/8|9]0]12(3l4!5l617 1p2)3}4|5)6| 7)) 3la 34 5/67 /34156 7/8|9lo[112]3la]5lef7le}vjo| k2] 3fals[e|7
0 0|
0| 1 1 63
2 ‘ 2)
3 T 3
64 4 il 4127
5 5
6 €
128| 7| [T 1T I 0 i | | 1] 1] 7292
8 8
9] i Al]] i s
19210 i 0255
11 11
12 12
25613 12319
14 14
15 15
32014 1€ 383
17 ||| i | i 17
18 | 18
38419 | 15447
20 20
21 | 21
44822 lez511
23 3
24 | lea
s12i2s [| 1|1 ATt eyt ; [i T T T esls7s
26 | | |
27 ‘ 27
576 28 | 2e 639
229 | 25
30 | o}
a0 NENERER : ! HAEH AT HERRRES ; 4l +HH HHHH T 1t ; s1703
32[] | \ |52|
33 | 33
704134 | 22767
35 5
36 | |3
76837 37831
38 38
39| 35
83240 40 895
41 | 41
421 || i i 5 b B 42
896 43 il Ly i \ 42 959
44 | 44
45 | 45
96016 I 4¢ 1023
47 | 47
T o ikl sle el ol 1k Tl ki Th ECF OF OF nin Juha”«* 5 5 6 616 dld dle alé ¢ 73 477 a4 Bl o ofa ot oo ofg ol of 1/ 11! 1T Tt Ak STl thatd i
¥] | T 1jo|3faslel7 1% auﬁsﬁmﬁus ME;ﬁfHussvsso:LHu 7 1F345H7Hs g’ﬁ%ﬁﬂ 3!5%7 olg900 0l 6‘111;' 12hi3Elzlaio ekl
106 |o|1]2]3]4s]e|7[8]9 frofr1fa2fa3faafrs]efr 7]18f19]z0[21]22]23]24]25]2627[28]29[30[31]32[33|34]3 5|3 €]3 73 &[5 9}a oa 1]a 2|a 3Ja afas|a e]a 7aslagfs 0[5 1[5 2[5 35 4[5 55 6]5 7l5 85 of6 0] 1|6 2]6 3

Careful now, don’t mess up the screen. Type

59 RESET (55,32)
and RUN,
How about that. You found the ON-OFF switch!

Want to really press your luck? Try turming the light back on. That’s right, type

5S¢ SET (55, 32)
and RUN 5 times in arow. Then 50 RESET (55,32) and RUN.

Oh well, can’t win ’em all. Why didn’t it work? It has to work. It did work! Then why didn’t
the fool light go OFF? Answer: The carriage return keeps moving it up away from its origi-
nal address, and only what's at a specific address gets turned ON and OFF. The screen
addresses never move.

The point of all this obviously is that we can control whether each block on the screen is
white or dark (on or off) by “talking’ to it at its individual address with SET and RESET
statements.

Blinking Lights in the Sky — Flying Saucers or Lightning Bugs?

If one has an ON-OFF switch, what does one do with it? Is that what’s called a rhetorical
question? With a little imagination one could create blocks that don't just go ON and OFF,
but do so to attract attention ... by blinking. This simple program illustrates how to set up
a “blinker"”.

19 CLS
20 X = 60
3 Y = 25

48 SET(X,Y)
586 RESET(X,Y)
64 GOTO 49

Back Far More . . .

In the horizontal direction, there are 128 light-block addresses, numbered from @ to 127, §
is at the far left, 64 is near the middle and 127 is at the far right.

107

In the vertical direction, there are 48 light-hlock addresses numbered from ¢ to 47 0 is at
the top and 47 is at the bottom.

The statement ‘SET (X,Y)” whitens the block which is the Xth block from the left in the
horizontal direction and the Yth one down from the top in the vertical direction, And,
you've figured out that RESET works the same way except that it “turns the light off™.

Let’s try it out. This program will lighten any one block of your choosing. Type:

1@ INPUT '"HORIZONTAL ADDRESS (@ TO 127) IS";X

2@ INPUT "VERTICAL ADDRESS (g TO 47) Is';Y

38 CLS

4@ SET (X, Y)
and RUN many times using various values of X and Y.
What happens if X = 150? Try it. How about if Y = 69? Try it, too. The block just moves off
the end (or bottom) of the screen and starts over with the address count. We call this “wrap
around”.
You may have noticed that if a block is lit in the upper left-hand corner, the READY and
the prompt (>) destroy it. Try X =6 and Y = 6. Then X = 5 and Y = 5. We can avoid this
problem by not returning control to the prompt — by adding

8¢ GOTO 99

at the end of the program. After running the program, this line locks the Computer in an
endless loop. To break the loop, press key. You should put an endless loop at the
end of every graphics program. Do it here, then try X =5 and Y = 5. Now try X = and
Y = Q. Remember the [BREAK] key to stop a properly “locked out’ graphics program,
before starting another.

While we have a key that RESETs every block on the screen to “OFF” in one operation
(the key), we don’t have a similar key to tum them all “ON™.

However, we can easily write a program that “lights”, “whitens” or ‘“‘paints’’ the entire
screen. It uses one Clear (not really a must, but always a good habit to use one for graphics
programs), two FOR-NEXT loops and one endless “locking loop™. Type this:

12 CLS
108

2@ FOR X = & TO 127
3 FOR Y = @ TO 47

4@ SET (X, Y)

58 NEXT Y
6@ NEXT X

99 GDTO 99

and RUN.

The resident program fills the screen from left to right. Redesign it so it starts at the top and Don't forget . . . first you have to Use the
fills to the bottom. @7 R i

Key ta stop the endless loop.

Answer:

18 CLS

20 FOR Y = @ TO 47
3¢ FCR X = @ TO 127
4g SET (X, Y)

58 NEXT X

68 NEXT Y

99 GOTO 99

Next, rewrite it so it starts painting at the bottom and fills to the top.

e e S e R A T U

109

Answer:
1@ CLS
2¢0 FOR Y = 47 TDO @ STEP-1

39 FOR X = @ TO 127

42 SET (X, Y)
59 NEXT X
68 NEXT Y

99 GDOTO 99

OK, now rewrite it so it starts painting at the right-hand side and fills to the left-hand side.
O S e e T e O S T R A G T R R N TR
Answer:
14 CLS
28 FOR X = 127 TO 8 STEP-1 Try some other step increments too , . .
38 FOR Y = & TO 47
49 SET (X, Y)
S@ NEXT Y
6% NEXT X

99 GOTO 99

Fantastic — now you can paint the old barn at least 4 ways!

NS WS P A T S S T T TP A STy R R RO TR v TR

EXERCISE 20-1: Write a program which will allow painting only a small part of the screen
(you determine which part). Allow keyboard INPUT of the starting and ending block num-
bers in both the horizontal and vertical directions.

R R A T TS e TR I 2 e e e R T S i B TS V5
110

Getting the hang of it?? Great, Enough playing with blocks . . . let’s draw some lines (really
moving on, eh?!), Erase the resident program.

We’ll start with a straight line. This program gives us a straight horizontal line across the
entire screen. Type:

19 INPUT " VERTICAL ADDRESS (@ TO 47)'" ;Y
20 CLS
38 FOR X = @ TO 127
49 SET (X,Y)
58 NEXT X
99 GDTD 99
and RUN several times.
We can just as easily create a straight vertical line, Try this.
14 INPUT " HORIZONTAL ADDRESS (@ TC 127) " x
28 CLS
39 FOR Y = @ TO 47
48 SET (X, Y)
58 NEXT Y
99 GOTO 99

And RUN this a number of times.

Now, let’s see if you can modify this last program so we can INPUT both the starting verti-
cal address and the length (in blocks) of the line.

111

12 IN. '"THE STARTING VERTICAL ADDRESS #(@ TO 647) IS';v

14 IN. ""HOW MANY VERTICAL BLOCKS DO YOU WISH TO FILL": A
16 IF V+1<48 GOTO 28

18 PRINT '"TOOMANY VERTICAL BLOCKS. WOULD WRAP-AROUND!'
19 END

3 FOR Y = V TD V+A

Now that we can draw straight lines, we can form figures — like squares and rectangles. This
program forms a rectangle. After NEw , type:

12 INPUT "HORIZONTAL STARTING POINT (2 TO 127)" ;X
2@ INPUT "WVERTICAL STARTING PUOINT (2 TO 47)";Y

378 INPUT "LENGTHOF EACH SIDE (IN BLOCKS) -- 8 TO 47)" ;K
48 CLS

58 FOR L = X TO X+K

60 SET (L,Y)

78 SET (L, Y+K)

8¢ NEXT L

9% FOR M = Y TO Y+K

182 SET (X,M)

118 SET (X+K,M)

122 NEXT M

999 GOTO 9299
and RUN .

Since our building blocks are not square, but 2 by 8 rectangles, we always get a rectangle.
How can we change the program to always form a square?

112

EXERCISE 20-2: Modify the resident program so it always draws a square (on the inside).

Press on .. .

A Little Diversion (Is there no end to all the tricks we can do?!)

All our graphics work to this time has been done by drawing white lines on a darkened
sereen. We can do just the reverse by painting the screen white first, then darkening the
desired areas with RESET . This program for example, draws a black horizontal line on a
white background. Type:

1@ IN. "VERTICAL POSITION (8 TO 47)'";VY

28 CLS

3 FOR X = @ TO 127

4@ FOR J = @ TO 47

Sg SET(X,J)

60 NEXT J

79 NEXT X

B@ FOR X = @& TO 127

9¢ RESET(X,Y)

199 NEXT X

999 G.999

and RUN.

If you're interested, go back and try similar easy modifications to other demonstration pro-
grams and have some fun with these reverse (or “negative”) displays

We can draw other straight (more or less) lines by just changing both X and Y addresses of
SET in the FOR-NEXT loop. Try this next program to draw a diagonal line,

18 INPUT "HORIZONTAL STARTING POINT (@ TO 127)" ;X

20 INPUT "VERTICAL STARTING POINT (@ TD 47)' ;Y

Whew! That's not really very easy, but with some
careful study (remembering that we have to
account for the width of the blocks} it falls into
line. Try your own approach a few times hefore
going back to Part B to look at our suggestion.
Don'’t cheat now! S

You may want to come back later for some
heavier study. \

113

3@ INPUT 'DIAGONAL LENGTH' ;K
49 CLS

52 FOR L = @ TO K

60 SET (X+L,Y+L)

78 NEXT L

29 GOTO 99

Once we have the diagonal line, we can form a right triangle by adding:
78 SET(X,Y+L)
8¢ SET(X+L,Y+K)

998 NEXT L

79 SET(X+K,Y+L)
89 SET(X+L,Y)

93 NEXT L

Try them both. What is the difference in the displays?
s e e e e e
Answer: They are inverted, mirror-images of each other.

Broken Lines

In every graphics program we have used, we could have made the lines “broken’ by intro-
ducing a STEP other than “1” in the FOR-NEXT loops. For example, we can get a broken
horizontal line with:

114

16 INPUT ' VERTICAL ADDRESS (@ TO 4a7)" Y

2¢ INPUT '"STEP SIZE';S

3@ CLS

48 FOR X = @ TO 127 STEP $§

sg SET (X,Y)

6@ NEXT X

99 GOTO 99
RUN this program with various values of §. Note that as you increase S, the line is drawn
much faster (since the Computer has less work to do). In fact, for $=1¢ or more, you can
hardly see the line being drawn. This is how a TV picture is created — since it too is drawn
one unit at a time (but so fast you don’t notice the “drawing time”).
Change the program as follows:

55 RESET (X,Y-1}

72 Y = ¥Y+1

8¢ GOTO 4@
If S is small, you can see the lines being formed and cleared. Bul if 8 is fairly large (try 10),
the line seems to move in somewhat *‘old-time movie” fashion. This is the way the illusion

of motion is ereated on a TV set and in some of the popular video games.

Now try this next program (clear out the old one). It paints a dot on the screen and moves it
up and down,

1g INPUT '"HORIZONTAL STARTING POINT (@ TO 127)";X
20 INPUT “VERTICAL STARTING POINT (2 TO 47)'";Y

38 CLS

49 RESET (X,Y-1)

58 SET (X,Y)

115

60 Y=Y+1
7¢ GOTO 4@
99 GOTO 99
The RESET command simply follows along behind and erases the dot from the last SET.

What happens if you omit RESET? When you try this, remember to change line 79 to
GOTO 50,

Details . . . Details
One minor problem . . . RESET and SET don’t work with negative coordinates. Take a
look at line 4¢ —

4% RESET (X,Y-1)
— if you INPUT Y equal to @, then the Y address really becomes Y—1 . . . —1. A no-no!
We can get around this pesky little detail by changing line 40 to:

4F RESET (X,Y+47)

Why does this work?

Back to the Good Stuff
We can just as easily move a point to the right with:

12 INPUT ' HORIZONTAL STARTING POINT (98 TO 127)" ;X
2¢ INPUT "VERTICAL STARTING POINT (@ TO 47y ;Y

3¢ CLS

4@ RESET (X+127,Y)

5¢ SET (X,Y)

67 X = X+1

78 GOTO 4@

99 GOTO 99
116

Hint: Wrap-around?

Note that we have used the same trick as above (under Details) to avoid negative values

of Y.

What happens if you change line 40 to

49

RESET (X+126,Y)

and RUN?

Then;

42

RESET(X+125,Y)

And RUN,

Don't just sit there — try them! See what you almost missed?

EXERCISE 20-3: Change the last two programs so that they move the dot up and to the left
respectively.

T o L T . S B el o P PR

Now, let’s have the dot move down until it strikes a barrier. The program is:

1¢ INPUT '"HORIZDNTAL STARTING POINT (@ TO 127)'" ;X
2@ INPUT "“VERTICAL STARTING POINT (@ TO 47)";vY

32 INPUT " LOWER BARRIER' ;K

4@ CLS

58 FOR M=¢ TO 127

64 SET (M,K)

79 NEXT M

82 RESET (X,Y+47)

92 SET(X,Y)

109 Y=Y+1

118 IF Y<48 THEN 13@
120 Y=Y-48
139 IF Y<>KTHEN 88

999 GOTO 999

The dot appears to strike the bharrier and stick to it.
Now let’s have the dot start in the middle and ricochet from both the top and the bottom:

1¢ CLS

22 FOR M=g TO 127

3g SET (M,@)

42 SET (M,47)

S@ NEXT M

6P Y=14

79 D=1

8@ RESET (64,Y+48-D)

9@ SET{(64,Y)

120 Y=Y+D

119 IF Y=48 THEN 139

120 IF Y<>-1 THEN 8@

132 v=Y-2*D

1490 D=-D

159 GOTO 992

999 GOTOD 999

118

The change in direction of the moving dot is caused by line 149 D=-D. Note that we must
be careful not to accidentally erase part of the boundary. To do this, we not only move the
dot back 2 steps with line 139 (after moving it forward 1 in line 1909) but we also return to
the SET in 90, rather than to RESET in 80. Tricky, tricky. You can kill the whole day
messing around with this silly bouncing ball. Rather good resilience, ¢h?

Real Moving Pictures
We can draw whatever figures we like. Let’s try a stick man. First, his legs:

12 CLS

280 X=64

39 FOR K=¢ TO 7
49 SET (X+K,4@+K)
58 SET (X—K,4@+K)
68 NEXT K

999 GOTO 999

and RUN.,

Then add his body and arms:
7¢ FOR K=g TO S

82 SET(X+K,34+K)
op SET(X,34+K)
188 SET(X-K,34+K)
112 NEXT K

and RUN.

And finally his head:

129 SET(X,32)

“I'M A LEG MAN, MYSELF.”

119

130 SET(X+1,33)

149 SET(X-1,33)

and RUN,

Now let’s try and move him to the right. Add
45 RESET(X+K-1,48+K)
55 RESET(X-K-1,4@+K}
85 RESET(X+K-1,364+K)
95 RESET(X~-1,34+K)
125 RESET(X-K~-1,34+K)
125 RESET(X-1,32)

135 RESET(X,33)
145 RESET(X-2,33)
159 X=X+1

162 GOTO 3@

and RUN.

Sure moves funny, doesn’t he? Well, I'm no animator either, but I'm sure you’re beginning
to get the idea.

This has been one long and active Chapter . . . and to think all this with only the SET and
RESET statements. Think of the good things to follow with two more commands! And
by simply exchanging RESET for SET, in many cases we could have drawn the same pic-
tures, with dark on a light background instead of light on dark. You might want to give that
atry.

120

OK, so I'm no artist, . .!!

Because the ideas come so fast in the area of graphics, we have deliberately chosen to show
you a lot of examples without getting bogged down in detailed explanations of how each
one works. There is no substitute for lots of experimenting with graphics, and you now
know the basics. Put in your time, stuc, he examples, and soon you can apply for member-

ship in the artists’ guild,

Learned in Chapter 20

Statements
SET

RESET

Notes:

122

Chapter 21

Numeric Arrays

We know that we have the 26 letters of the alphabet available to use as variables, We've
also discovered thal very few of our programs have required anywhere near that many
variahles. There are times, however, when we wish to have more variables available — some-
times hundreds or even thousands of them, to use as names for many different pieces of
data we are storing and want to “retrieve” easily.

The way out of this little dilemma is with an array. Array is just another word for “lineup”,
“arrangement” or “series of things”. Let’s say we’re talking about a collection, arrangement
or lineup (array) of a number of autos, all of which have different license plates (address
numbers).

To be specific, we have 19 cars lined up, as in an array. They are all the same except for
their engine size — and each has a different license plate number, Let’s say the license plate
numbers are from 1 to 10, and we want to use the Computer to quickly spit out the engine
size when we identify a car by license number, This might not seem like a real heavyweight
problem — but, as before, we discover the full potential of these things by learning them
little steps at a time.

Let’s assume the license number and engine sizes are as follows:

ENGINE
LICENSE #» (cubic inches)

309
209
500
309
209
399
1909
109
300
500

=T - < B

=
(=4

123

Now, we could give each of these cars a different letter name, using the variables A through
J. but what a waste — and what will we do when we have a thousand cars, not just ten?

Your TRS-80 LEVEL 1 Interpreter provides for a single array, and it is called “A”. This is
not the same as the alphabet variable “A™, and it is not the same as the “A” used in the
string variable A$. [t is a third and totally separate “A”. You will recognize it as
A-sub(something). We will name the cars A(1) through A(10), pronounced A sub I through
A sub 1. Get the idea?
Next, let’s store the car engine sizes in a line or two of DATA statements.
Type in:

128 DATA 300,282 ,52@,309,280

1190 DATA 322,408,480 ,3202,500

Notice how careful we are to keep the DATA elements in order, from 1 to 10, so the first
car’s engine is found in the first DATA Location and the 10th one’s in the last location.

Now we have to “spin up” an array inside the Computer’s memory to make these data
elements immediately addressable. Think how difficult it would be to try to address the 7th
engine (or the 7 thousandth!) for example, using only what we’'ve learned so far. It can be
done using only DATA, READ and RESTORE statements but it’s very messy and slow,
The easy way Lo create the array is as follows . . . Type in:

S@ FOR L = 1 TO 1@

55 READ A(L)

6@ NEXT L

...and RUN.

Nothing happen? Yes, it did. RUNagain and note that something happened because it took a
little time for READY to return. We simply didn’t display what did happen,

124

Lo Ih t“’ Vi A
.. NOW what do you think? Did that m
a believer?? S :

Big words meaning “so we can find a car fast!"

We obviously used a FOR-NEXT loop to READ 10 DATA elements, and named those
elements (or “cells”) in which they’re stored, A(1) through A(10). Let’s see if we can
PRINT out the values in those array elements.

Type:
2% FOR N = 1 TO 1¢
214 PRINT A{(N)

229 NEXT N

.and RUN,
Aha! It works, but how? We read the DATA elements into an array called A(L), but printed
them out of an array called A(N). What gives? Oh, nothing, really. The array’s name is “A”.
The location of each data element within that array is identified by the number which we
place inside the parentheses. We can bring that number to inside the parentheses by using
any of our 26 letter variables, and can even do some simple arithmetic inside those paren-
theses if we wish.

Remember, though, there is only one array, and its name is “A”. Iis elements are numbered,
and called A-sub {(number).

Let’s work some more on the program.
Type:
176 PRINT

182 PRINT "LICENSE #","ENGINE SIZE"

212 PRINT N,A(N)

.and RUN .
Now that’s more like it. We have every license number, every engine size, and are not “using
up’ any of the 26 alphabetic variables. Having demonstrated that point, erase lines 200,
210 and 220, and type:

19 IN. "WHICHCAR'S ENGINE SIZE DO YOU WANT TO KNOW' ;w

212 PRINT w,A(wW)

.and RUN,

Some pure mathematicians’ m!ghunmt on uﬂlng
that added

A{X) — A “OF” X. Who needs that
eonfusion? Best that you know, just in case.

125

Get the idea? Can you see the beginning of a simple inventory system for a small business?

Let’s go one small step (for mankind) further. Suppose you know the color of each of the
19 cars, and for simplicity, suppose they are coded 1, 2, 3 and 4. We might then have a
master chart that looks like this:

LICENSE # ENGINE SIZE COLOR CODE
1 300 3
2 200 1
3 500 4
4 300 3
5 200 2
6 300 4
7 400 3
8 400 2
9 300 1
“ENGINE SIZE? WHAT ENGINE?"
19 500 3
In the language of professional computer types, this is called a matrix. A matrix is just an Y?ﬂ might v.nnuothink of & matrix as & chart
array that has more than one dimension. (Our first array had the dimension of 1 by 10.) wiih a certain number of columns of information.
This array has a horizontal dimension of 2 and a vertical dimension of 10, If you wanted First you set up the chart, then how many

to be terribly inefficient about the matter, you could say that thisis a 3 by 10 array, count- eokins of infe SN NON WYL

ing the license number. If so, then our otiginal one would have been a 2 by 10 array — but
who needs it? As long as we keep our license numbers in a simple 1 to 10 FOR-NEXT
loop, and our DATA in proper sequence, we can keep our arrays simpler and easier to
handle,

Hlow then can we handle this 2 by 10 marrix? We have already used up our A array ele-
ments numbered 1 through 1. O, you want to know how many array elements we have 1o
work with? Very good! What was your name again? (Let me mark that down.}

Assuming you left our last program untouched, type:

126

PRINT MEM

and you will get a return of about
3372

We have 337@ memory cells left unusued. Again using the calculator mode, type:
PRINT 3378/4 -1

and we get

841.5

Thus, by dividing the remaining memory by 4, and subtracting 1, we found there is room
for 841 more array elements. Lots of room left. We never had it so good, Each array ele-
ment occupies 4 memory locations, whereas each letter variable requires only 1.

Well, with memory to burn, let’s just arbitrarily assign array locations 191 through 119 to
hold the color eode. We also have to put the color code info in the program using a DATA
statement. From the table, type:

3¢9 DATA 3,1,4,3,2,4,3,2,1,3
and

82 FOR S = 181 TO 112

85 READ A(S)

9@ NEXT S
.. . to load the color code DATA into the array. The array element numbers 11 through 100
are not used, nor are those from 111 to the end of memory, since they have not been
formally assigned any values.
Now we need to find some way to display all this good information. Change these lines:

1¢ IN. "WHICH CARS ENGINE & COLOR DO YOU WANT TO KNOW' ;w

182 P. "LICENSE #", "ENGINE SIZE'", '""COLOR CODE"

218 PRINT W,A(W),A(W+1@2)

127

...lhen RUN.

Check your answers against the 2 dimensional matrix chart we gave you earlier. They should
agree.

Let your imagination go. Can you envision entire charts and tables stored in this manner?
Entire inventory lists? How about trying to find a car which has a certain size engine AND a
certain color? Hmmm. We will come back to the Logic needed for that last one in a later
chapter.

EXERCISE 21—1: Assume that your inventory ol 1¢ cars includes 3 different body styles,
coded 19, 20 and 30, as follows:

LICENSE # BODY STYLE
1 20
2 29
3 10
4 20
5 30
6 20
7 30
8 10
9 20

19 20

Modify the resident program to print the hody style information along with the rest when
the car is identified by license number.

A Smith & Wesson Beats 4 Aces

If we want to create a computerized card game (they make good examples to show so many
things), how can we set it up so we draw the 52 or so (watch the dealer at all times) cards
in a totally random way? Answer: Spin up the deck into a single-dimension array. pick
array elements using a random number generator, as each card is “drawn’”, set its array

128

element value equal to zero, then test each card drawn to be sure it isn’t zero. Now that
is really simple!

We will now, a step at a time, write a program which will draw, at random, all 52 cards
numbered from 1 through 52, and print the card numbers on the screen as they are drawn.
No card will be drawn more than once. When all cards have been drawn, it will print “END
OF DECK.”

You do a step first, then check against my example, Then change vours to match mine —
otherwise we might not end up at the same place at the same time.

Step L: Spin up all 52 cards into an array.

h

39 FOR C=1 TO 52:READ A(C):NEXT C
§@¢ DATA 1,2,3,4,5,6,7,8,9,12,11,12,13,14,15,16,17,18,19,2¢
55 DATA 21,22,23,24,25,26,27,28,29,38,31,32,33,34,35

62 DATA 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52

At this point, all you can tell when RUNning is that it is taking some processing time since
the READY doesn’t come back right away.

Step 2: Draw 52 cards at random, printing their values.

9¢ FOR N = 1 TO 52
142 V = RND(52)
118 PRINT A(V);

129 NEXT N

129

True, 52 card values are printed on ihescreen, but if you look carefully, the same number
appears more than once. This means that some “cells” are not being READ and some READ
more than once.

Step. 3: When a card is drawn, set its array address equal to zero. Test each card drawn to
be sure it is not §. When 52 cards have been drawn and printed, type END OF DECK.

P T e T S S e]

99 P = 52

185 IF A(V) = @ G.18¢
128 A(V) = @

13g P =P -1

149 IF P<> € GOTO 108

15¢ PRINT " END OF DECK!"'

Line 120 sets the value in cell A(V) equal to zero only if line 195 finds it NOT equal to zero
already, letting the program pointer fall through.

When a “fall through’ occurs:
1. The card’s value is printed (line 110)
9. The number stored in that cell is set to zero (line 120)
3. Line 130 counts down the number of cards printed. Line 90 initialized the number of
prints at 52.
4. The number of prints is tested (line 14@). When there are no more prints to go,
END OF DECK! is printed (line 150).

Pretty slick —and you don’t have to watch the dealer (just the programmer).

But how do you really know that every card has been dealt? Write a quick addition 1o
the program to “interrogate” each array cell and print its contents.

P e~ R o e s S

130

2¢@ FOR T = 1 T0O s2
212 PRINT A(T);

22@ NEXT T

RUN. . . and every cell comes up zero. If you don’t really trust all this, change line 99 to
read:
og P = 5@

RUN , and see what happens.
AHA! It flushed out those 2 cards in the sleeve, didn’t it.

Reinitialize P at 52, eliminate your test program lines 200, 210 and 220 and you end up
with a good card-drawing routine. You might want to clean it up to your satisfaction and
save it on tape for future projects.

Question: Why does the printing of card numbers slow down to a near halt as those last
few cards are being drawn. Is the dealer reluctant?

Answer: The random number generator has to keep drawing numbers until it hits one that
is the array address of an element which has not been set to zero. Near the end of the deck,
almost all elements have been set to zero. The random number generator has to keep draw-
ing numbers as fast as it can to find a “live”” one.

Look again at the card numbers printed. There will not be any duplication. No stray aces.

There's More?

In the unlikely event you have a program which takes all 26 letter variables, you can use
array locations to serve as numeric variables. Remember, however, each one requires 4 times
as much memory space as a simple letter of the alphabet. Clear out the memory. Then type:

14 A(B70) 3

2g A(E71) 4

38 Z = A(87R) * A(871)

4g PRINT A(870) ,A(B71),Z

...and RUN.

131

The answers of course are:

3 4 12
Try typing

12 A(19002) = 3
...and RUN.

Why does it blow up? What does the SORRY mean? A check of the unused memory would
have immediately told us that the largest usable array element number was about 875, Try

P.M. /74 -1

O R e S S R e e R £ W

EXERCISE 21-2: Study the User programs in Part C to better understand the use of arrays
for storage and access purposes. Time spent studying programs written by others is wisely
invested.

Learned in Chapter 21

o

Miscellaneous.

Arrays

132

Chapter 22

Advanced Graphics

Remember the bouncing dot? Wouldn't it be nifty if we could get the screen to say “PING”
each time the dot bounced off the barrier? Well / think it would be nifty, so we’re going to
do it. But first . . .

We learned all about SET and RESET earlier. Now we will learn about
PRINT AT — aspecial type of PRINT statement especially useful in graphics, and
POINT(X,Y) — a quite unrelated statement which allows us to look at any of the
6144 graphic block locations and get an answer to the question “which ones are ON
and which are OFF?" A super powerful statement, and it’s even useful!

I thought you printed ON, not printed AT

Learit something new every day, The PRINT AT (also written PRINTAT and P.AT) state-
ment allows us to begin printing starting at a location number. Example, type:

19 CLS

S@ PRINT AT 20@, '"HELLO THERE 2¢¢, WHEREVER YOU ARE."

.and RUN.

Where is 209? Back to the Radio Shack graphics layout chart (Video Display Worksheet).
1f you don’t have one handy, there’s one back in Chapter 20.

With the aid of an ordinary household electron microscope, the words “PRINT AT” are
clearly seen on the upper left hand corner of the sheet. Also, an arrow pointing to a set of
numbers. Further scrutiny discloses a tiny “X”’, obviously referring to the address numbers
on the “X" Street — and a tiny “Y"" pointing to the “Y'* numbers for “Y*" Avenue. A truly
astute researcher will also see the “TAB” numbers — all 64 of them (starting with §).

The PRINT AT numbers start at ¢ and go through 63 — in the first line. They then pick up
on the second line with #64 and continue through #127, The third line starts with # 128,
ete. The PRINT AT divisions are really the same as those for TAB except PRINT AT does not
start over again with zero on the second line, It keeps going right on through PRINT posi-

Pardon our attempt azhumor o .*p‘bklng alittle”

fun at ourselves here. !

133

tion #1023. This perhaps strange sort of numbering is not so strange at all when you
consider the problems we had very early in the graphics game with the fool carriage return
scrolling our light right off the screen. The PRINT AT statement does not trigger a scroll
after il has done its printing, EXCEPT IN THE LAST LINE, between print positions #96¢
and #1023. Further, P.AT can directly address any of the 1923 printing locations (not light
block locations — they are very different). Trailing semicolons are needed only after state-
ments printed on that last or bottom line of the video “page”.

You will soon see how valuable all this is.

Oh, It’s That Time Already?

Let’s create a 24-hour clock. (Why not . . . sounds like more fun than digging through all
this obscure print statement logic.) Type:

18 CLS
28 PRINT AT 487, "H M AL
3g FOR H = 2 TO 23

42 FOR M = @ TO 59

52 FOR S = @ TO 59
62 PRINT AT 478, H; ":";M; ":"; s
78 FOR N = 1 TG S@@: NEXT N

89 NEXT S

9@ NEXT M
188 NEXT H
and RUN .
Nothing to it. Ahem!
“Hello? Bureau of Standards?"
Of course the accuracy of this timer depends on how closely you calibrate it. We know that

the TRS-80 with LEVEL I BASIC will execute somewhere around 500 simple FOR-NEXT
loops per second when written as shown in line 70 —a multiple statement line. If you really

134

get carried away with this program, you will want to calibrate it with a precision-type
timepiece {increasing or decreasing the “500” figure as needed). Over the short run, this is
quite a good timer. Note that we are not triggering this with the 6 Hz line frequency, but
relying solely on the amount of time required to execute FOR-NEXT loops.

Oh, Yes ... The PRINT AT . ..

Anyway — let’s not lose sight of the forest for the trees (or something equally trite). The
purpose of this little program is to demonstrate the PRINT AT statement. We used it twice,
By carefully squinting at the layout chart you can find address #4097, with #470Q right
below it. With blazing speed, the HMS (no, no, not Her Majesty’s Service — it stands for
Hours, Minutes and Seconds), are printed — and the HM&S updated each second.

For the real clock nut, see Part C for an operational clock program. It only needs your

closer calibration to be an acceptable sundial. Most expensive clock in the house!

That's How the Ball Bounces
Meanwhile, back with the bouncing ball. Let’s reload the program from the first graphics

chapter. It reads:
ig CLS
28 FOR M=¢ TO 127
38 SET (M, &)

49 SET (M,47)

50 NEXT M
62 Y = 14
7¢ D = 1

88 RESET (64,Y+48-D)
9@ SET (64.,Y)
168 Y = Y+D

11 IF Y=48 THEN 13¢

135

120 IF Y<>~-1 THEN 8@

13g Y =Y=-2%D

143 O=-D

158 GOTO 992

929 GOTO 999
Since we did not explain in detail how that fairly simple program worked, take time now to
see if you can follow it through. When you have it figured out, tackle this exercise:
EXERCISE 22-1: Using PRINT AT statement(s), cause the word “PING” to appear near the
ball each time it bounces off either the top or bottom boundary.

R e R 2 T P e iy
Isn’t it amazing how close we are to getting to some of the actual video games that aye all

the rage? — and yet it’s really so simple and logical.

Merely for Display Purposes
A good way to get a feel for PRINT AT (or any feature) is to look ata fairly simple program

which illustrates its use. This program lays out a graph format on the screen. What you do
with it beyond that point depends on your own needs and interests, but it is worth entering,
studying and getting a feel for its use. T'ype:

14 CLS

2@ K = 998

3¢ F.X=1T05¢9

48 PLATK+X," . " ;

58 N.X: K = 964

68 FOR Y = @ TO 13

78 P.ATY*6445," ."

80 NEXT Y
136

18¢ P.AT28,"GR AP H HEADTING"
156 F.N = @ TO 14

280@ PLATN*64,14-N;

258 N.N

3gg F.X = @ TQ 5

3186 P.AT K+1@%X,X;

320 N.X

43¢ F.X=6T056 STEP1d

418 PLAT K+x, '":';

428 N.X

999 G.999

What is the POINT of all this?

The POINT(X,Y) statement stands pretty much isolated from the other 3 graphics state-
ments. It needs them, but they don’t need it at all.

POINT(X,Y) interrogates (what a great technical word) that graphics point on the screen
with the address of X,Y. If that point is lit, the POINT statement says “1". If it is dark, the
POINT statement says “0”. That’s really all there is to it. Of such great simplicity great
power is derived.

Let's give POINT a liitle exercise before looking closer. Since it also works in the calculator
mode, typée

PRINT POINT(3@,32)
Since we had not lit 30,30 the answer came back with §, It also can be abbreviated. Type:

P.P. (38,
(3@,32) Tho they can both be abbreviated P., the paren.

5 : thesis following the second P. tells the Computer
Same thing: ¢ that IHtPOINde not PRINT. IS

137

Let There Be Light
Let’s light up a spot on the screen, then interrogate that point and see what happens. Type:

18 Y=1:N=0¢

20 IN., Y“DO YDU WISH TO LIGHT THE BLOCK (Y/N)'":iQ

38 CLS

4 IF Q = € GOTO 8@

5S¢ SET(7S5,29)

69 GOTO 199

8¢ RESET(75,20)

182 IF POINT(75,20) = 1 P.AT284,X;Y,"ISLIT"
288 1F POINT(75,20) = @ P.AT220,X;Y," IS DARK"

999 G. 999

And RUN several times. Answer either YES or NO, following the program action to see
what is happening. Pretty simple isn’t it? Really sort of a status-reporting system. Think
what we could do if we set something like this up in 2 nested FOR-NEXT loops so we
scanned the entire screen and got a status report on each point. fzimm. Almost like a radar
scan of the terrain. firmmm some more,

20¢1 Here We Come

Snug up your seat belt, type and RUN the following program, then sit back and watch
POINT in action. Study the display very carefully as it runs, looking for the many things
that occur, This 3% minute “moving picture” really tells all you need to know about the
POINT statement.

16 REM * DEMONSTRATION OF GRAPHICS 'POINT' STATEMENT *
28 P=15:L=119
3% CLS

49 PLATS " THIS IS A DEMONSTRATION OF THE POINT STATEMENT-==""3
138

5¢ P.ATS6, "X Y4

18 F.I=1TO P:SET(RND(113),RND(45)+2):N.1
118 F.X=@ TO 111:F.Y=0 TO 47

128 IF POINT(X,Y) = @ GOTO 168

132 PLAT L, X3tP.AT L+4,Y;

149 L=L+64

1580 G.178@

166 SET(X,Y):RESET(X,Y)

178 N.Y:N.X

188 P.ATS, " THE COORDINATES OF THE GRAPHICS BLOCKS ARE >>-->>" ,

192 P.AT &;

209 G.200

Vectoring in an Darth Vader’s Death Star Fleet . . .

If that one didn’t blow your mind, let’s take the program apart a line at a time:

Line 10 is just the program identification note

Line 20 P is set at 15, the number of “targets” to be randomly placed on the screen by
the FOR-NEXT loop and the random number generator in line 100, L is set at 119,
the starting point for printing the coordinates and their headings in lines 130 and 140.

Line 39 clears the screen for action.

Line 40 and 59 use PRINT AT to print the heading.

Line 109 generates 15 addresses and SETs 15 lights.

Line 110 uses two nested FOR-NEXT loops to establish a “scanner’, testing every
graphics point on the screen.

Line 120 tests to see if the point being addressed is off. If so, the address printing and
related incrementing of the next PRINT AT location in lines 139 and 140 are bypassed.

Line 139 prints the values of X and Y if the POINT test in line 120 “fell through”, mean-
ing that the point being tested was not off.

Line 140 increments the PRINT AT address for the next time line 139 prints the coordi-
nates. By adding 64, the next printing will directly line up under the current heading
and numbers. (See the layout chart if you can’t follow it in your head.)

139

Line 150 is critical, since it jumps over a RESET. Without this jump, the light blocks
would be erased when they are interrogated. ('Iry deleting the line and RUNning
to see.)

Line 160 is just a foxy display trick. It causes a blinking light to “appear’ to be scanning
all points. Actually, line 169 is just turning blocks ON and OFF as the Computer
interrogates them. Since we don’t want to turn off blocks that are already supposed to
be lit, we hop over this line when a real live block is hit. In reality then, this “roving
eye' never actually “hits” an “ON" block,

Line 170 merely closes the FOR-NEXT loops started in line 119

Line 18¢ replaces the heading that was erased by the POINT scanning process.

Line 199 simply moves the cursor (which can be a pesky light in graphics displays) back
to the far upper-left corner, to get it out of the way. [t could have been moved to any
point, or just left alone.

Line 290 is the locking loop used to keep READY and the prompt from goofing up the
display.

Pretty simple when taken a line at a time, isn't it?

Oh yes, did you notice that the “moving dot” turned off the original heading? Did you also
notice that it took two passes of the dot to equal the width of one printed character (which
of course fits right in with what the layout sheet shows)?

The reason the heading was erased is that we deliberately chose not to protect it {like we
protected the blocks) from the RESET in line 160 in order to make the point. You could
write a little protective line if you wanted to (or reduce the vertical length of the scan to
avoid it).

Alpha or Omega?

There you have it — a good running start into graphics. Go now to part C where you will
find more ready-to-run programs. By giving them careful study, you will see the four
graphics statements in use, plus most of the rest you have learned about BASIC program-
ming. The possibilities from here are unlimited.

Learned in Chapter 22

AL o A

POINT (X,Y)

PRINT AT

140

Chapter 23

Flowcharting

Most of the programs we wrote so far were simple; but, they met fairly simple needs.
Suppose you want to write a program to play chess or bridge, evaluate complicated invest-
ment alternatives, keep records for a bowling league or a small business, or do stress calcula-
tions for a new building? How would you go about writing a complex program like that?

Answer: You break down the big program into a series of smaller programs. This is called
Modular Programming and the individual programs are called Modules. But how are the
modules related — and how do you write them anyway?

One way to plan a program is to make a picture displaying its logic. Remember, a
picture is worth a thousand words (or is it the other way around?). The picture that pro-
grammers use is called a flowchart. Flowcharts are so widely used that programmers have
devised standard symbols. There are many specialized symbols in use, but we will examine
only the most common ones.

BEGIN or END

PROCESSING BLOCK
(encloses something the
computer does without
making any decisions)

DECISION DIAMOND
(it branches off in dif-
ferent directions, depend-
ing on the decision it
makes.)

141

Bach decision point asks a question such as “IS A LARGER THAN B?” or “HAVE ALL
THE CARDS BEEN DEALT?” The different branches are marked by YES or NO.

Another useful symbol is:

CONTINUATION

The circle usually has a number inside it which corresponds to a number on another page if
the flowchart is too large for a single sheet.

> CONNECTOR ARROWS

Flowcharts are most helpful in designing programs when they are kept simple. A cluttered
flowchart is hard to read and usually isn’t much more helpful than an ordinary written
program list. A good flowchart is also helpful for *documentation™ to give you (or others) a
picture of how the program works — for later on, when you've forgotten.

There are no hard-and-fast rules about what goes into a [lowchart and what doesn’t. A flow-
chart is supposed to help you . . . not be more work than it’s worth. It helps you plan the
logic of your program. When it stops helping and makes you feel like you're back in arts
and crafts designing mosaics, then you've gone as far as the flowchart will take you (or
more typically, you've passed its point of usefulness).

Let’s look at some examples. Suppose we want to grade a 5-question test by comparing
each of the students’ answers with the correct answer. We will put the correct answers in a
DATA statement in the program, enter a students’ answers through the keyboard, compare
(grade) them, then print the % of correct answers. This procedure will be repeated until all
the students papers are graded.

142

The flowchart might look like this:

I S

GET READY 7O
r— > GRADE FAPERS
LINES 20 TO 60

LOOP b TIMES
BECAUSE THERE ARE
£ ANSWERS

LINE 70

WTER
e — SYUMN' S ANSWER
LINES B0 & 30

£IND CORRECT
ANSWER

LINE 100

S—

X

15 N
o~ STUDENT'S ™
_/Auswnumm r
LN
™
~ 12’.‘
~ -

NO

7 navewe S

\“0

an
- V. /Mak! STUDENT" N,
L

This flowchart has three decision diamonds. In the first, the Computer determines if an
answer is correct. In the second, the Computer determines if all the questions in a single
student’s paper have been graded. The third one terminates execution when all the tests

have been graded.

T Tt AR T T TR I AR R N, TV e N e TP 18
EXERCISE 23-1: Using the flowchart as a guide, write a program that grades a test having

five questions.

For more complicated problems, you may want to subdivide the flochart into larger
modules. A master flowchart will then show the relationship between the flowcharts of indi-

vidual programs.

€S

—3

A01T0 |
NUMEER CORREST
PRINT “COARECT™ |

LINE 120

=

al %\’ mrwmsnuu 3‘

143

For example, let’s say you want to write a program that calculates the return on various
investments. The options might be:

1 —CERTIFICATE OF DEPOSIT
2 — BANK SAVINGS ACCOUNT
3 —CREDIT UNION

4 — MORTGAGE LOAN

The main (or Control) program will select one of these 4 options using an mput guestion,
execute the correct subprogram, and print the answer. Its flowchart might be:

1|Anl

i

ENTEROPTION

CALC: TE
; OPTIONi)LD CENTIFIATE

OF DEFOSIT

\)<
CALCULATE

< OFHON 2 O BANK e
SAVING S ACCOUNT

NO

-

/
- CALEULATE
QPTION 3 YEs FOR CREQIT >
UNION
e
nO
.
7 . CALCULATE
NG YES CaLC
——=_ OPTION 4 FoR)
158 S Loan
\v/"
PHINT
RETUAN
oN
INVESTMENT

/

(L1)
K J
e’

144

We could now flowchart each of the individual programs in the blocks separately. The Cer-
tificate' Of Deposit program would, for example, have to contain the rate of return, size of
deposit, and number of years in which the certificate matures. The order in which that pro-
gram inputs data and performs the calculations would be specified in its own flowchart.

EXERCISE 23-2: Write the master program as flowcharted, with a branch to a program to
calculate the return on a Bank Savings account paying simple interest.

EXERCISE 23-3: Choose a program from an early Chapter and design your own flowchart.

Learned in Chapter 23

Miscellaneous

Flowcharting

14

Notes:

146

Chapter 24

AND & OR

In classical mathematics (fancy words for simple ideas) there exist what are known as the
“logical AND" and the “logical OR"".

So the One Cow Said to the Other Cow . . .

In Figure 1, if Gate A AND gate B AND gate C are open, the cow can move from Pasture
1 to Pasture #2. If any gate is closed, the cow’s path is blocked.

PASTURE #1 PASTURE #2
Mb / GATE A / GATEB / GATEC FIGURE 1
COW

The principle is called “logical AND”.

In Figure 2, if gate X OR gate Y OR gate Z are open, then old Bess can move from Pasture
#3 to #4. That principle is called “logical OR”. These ideas are both pretty logical. If the
cow can figure them out surely you can!

PASTURE #3 | PASTURE #4
’i’/ GATE X
”
vl/GATE v FIGURE 2
OLD BESS]/ GATEZ

Grit Your Teeth and Prepare to Say AAAAAGH!!!!

Somewhere in the misty history of classical mathematics, a budding genius dedicated the
symbol “X” to mean AND, and “+” to mean OR. Ordinary arithmetic of course uses “X"
to mean multiply and “+” to mean add. To further confuse the matter, instead of “X", for
computers we use "“*’ to mean multiply. Our logical AND symbol, therefore, is *'*”.

(Itold you.)

By the way, this cow’s name is Bessie.

“BESSIE?-IT'S ONLY LOGICAL.”

Now don't forget ., . in “logieal’’ eompyter work:

* means AND
+ means OR

147

Now For the Good News

Despite the frustration these so-called “logical” symbols inflict, using them is very simple.
Type:

18 Y=1:N=0

2¢ IN. '"IS GATE '"A' DPEN"' ;A BemntouspﬂleShm-'IkeytogeNheM
quote mark. -

39 IN. '"IS GATE 'B' OPEN" :B

4% IN. "ISGATE 'C' OPEN" ;C

S8 PRINT

69 IF (A=1) * (B=1) * (C=1) THEN 198

780 P. YOLD BESSIE IS SECURE IN PASTURE #1." Remember . . . we're using # here as the logical

8@ END

182 P. "ALL GATES ARE OPEN. OLD BESSIE IS FREE TO ROAM."

., and RUN. Answer (Y/N) the questions differently during RUNs to see how the logical
AND works in line 60.

Where is the LOGIC in all this?

You should by now understand every line in the program except perhaps line 6@.

Line 10 initializes the Y and N values at 1 and { respectively.

Lines 20, 39 and 40 input the gate positions as open (which we defined as equal to “1"),
orclosed (defined as “p). We could have defined them the other way around in line
19 and rewritten line 6@ to match, if we’d wanted to.

Line 60 is the key. It reads, literally, “If gate A is open, AND gate B is open, AND gate
C is apen, then go to line 199. If any one gate is closed, report that fact by defaulting
to line 79.”

Imagine how this simple logic could be used to create a super-simple “computer” consist-
ing of only an electric switch on each gate — add a battery and put a light bulb in the
farmer’s house. The bulb could indicate whether the gates are all open. Such a “gate- .
checking” computer would have only three memory cells — the switches. %&;‘ w"miﬁ)ﬁ {;b'::&l yhi! fobhx

148

Back to the Subject

Look at line 6@ very carefully. You have seen every symbol there before — but is there
something different about how they are arranged? Hmmmm?

Ah yes — the parentheses. They are the tip-off. There bas been (until now) no reason at all
to enclose something like

A=1
in parentheses. When you come across a pair of parentheses enclosing an = sign, a }, a ((or

a combination of these), you know logical math is being used. (Whew — that’s simple
enough!) Having used the * {which you know means AND) now it will all make sense.

EXERCISE 24-1: Using the above program as a model, and the “OR logic™ seen in Figure 2,
write a program which will report Bessie's status as determined by the position of Gates
X, Y and Z.

Teacher’s Pet
Here is a simple program which uses >instead of the equals sign in a logical test. The student

passes if he or she has a final grade over 63 OR a midterm grade over 79 AND a homework
grade over 75. Enter the program, RUN it a few times, and see how efficiently the logical
OR and logical AND tests work in the same program line (40).

1¢ INPUT '*FINAL GRADE" ;F

2¢ INPUT ''"MIDTERM GRADE' ;M

3¢ INPUT '"HOMEWORK GRADE' ;H

48 IF (F>62) + ((M>78) * (H>75)) THEN 70

5¢ PRINT "FAILED"

62 END

7@ PRINT "PASseD"

Does this give you some idea of the power and convenience of logical math? The actual
grade numbers could, of course, be set at any level.

149

Logical Variations

This next program example mixes equals signs, greater-than and less-than in the same pro-
gram_ It determines and reports whether the two numbers you input are both positive, both
negative, or have different signs.

Analyze the program. Note the parentheses. They tell you to shift your thinking to “logi-
cal”, Type it in and RUN.

19 INPUT "“FIRST NUMBER 18" X
2@ INPUT " SECOND NUMBER IS' Y
30 IF (X>=@) * (Y>=g) THEN 72
4@ IF (x<@) * (Y<@) THEN 92

58 PRINT "OPPOSITE SIGNS'

62 END

72 PRINT '"BOTHPOSITIVE'"

8¢ END

g9 PRINT "BOTHNEGATIVE"

With Graphics Too. Yet

Yes, the logical symbols also work along with the graphies statements. See if you can figure
out the surprise caused by the logical OR in line 49. Type this program in, and RUN.

19 CLS

28 FOR X=@ TOD 127

39 FOR Y=@ TO 47

49 IF (X>=64) * (Y>=24) THEN 64
58 SET (X,Y)

62 NEXT Y

78 NEXT X
150

99 GOTO 99

What happens if you replace the * in line 40 with a +? After you think you have it figured
out, do it and see the result.

Did you guess right???

There’s More?

Oh, yes — the only limit is your imagination. See how easily the logical notation makes the
drawing of lines? Type and RUN:

12 CLS

20 FDR X=¢ TO 127

3¢ FOR Y=8 TO 47

4¢ IF (X=64)+(Y=24) THEN 64
59 SET (X,Y)

62 NEXT Y

78 NEXT X

99 GODTO 99

What happens to the program if you replace + (OR) with * (AND)? Sketch your estimated
result, then change line 40 and try it.

e e e N s o = Y
Hope you got it right. If not, it really sneaked up on you, didn’t it!
Using the INT function we can create an elaborate checkerboard. The reasoning is:

In the horizontal dimension.
The INT(X/16)*16—X will equal f when X equals @, 16, 32, 48, 64, 80, 96 and 112

In the vertical dimension
The INT(Y/6)*6—Y will equal @ when Y equals §, 6,12 18, 24, 30, 36 and 42.

151

Replace the old line 40 with

4@

IF ((INT(X/16)*16-X)=g)+((INT(Y/6)¥6-Y)=0) THEN 682,

and you will create an elaborate eight-hy-eight checkerboard.

And on and on it goes . . .

And In Conclusion

The illogic of logical math is worth the hassle, As one last fun program, enter and RUN this
“Midnight Inspection.” Line 10@ checks each response for a NO answer (instead of a YES).
Using logical OR, it branches to the “no-go™ statement (line 130) if any one of the tests
does not match the expectation.

19

2d

38

49

52

62

e

89y

99

12@

12@

130

140

1590

cLS

Y=1:N=@2

P. MANSWER THESE QUESTIONS WITH 'YES' OR 'NO',' :P.
IN. '"HAS THE CAT BEEN PUT OUT'" ;A

IN. '"IS THE PORCH LIGHT TURNED OFF" ;B

IN. 'ARE ALL DOOURS AND WINDOWS LOCKED'" ;C

IN. '"1IS THE TELEVISION TURNED OFF' ;D

IN. '"DID YOU TURN THE THERMOSTAT DOWN' ;E
P.tP.

IF (A=N)+(B=NJ)+(C=N)+(D=N)+(E=N) THEN 132

P ¥ GODODNIGHT" :END
P. 'SOMETHING HAS NOT BEEN DONE. DO NOT 60O TO BED"
P. '"UNTIL YOU FIND THE PROBLEM!'"

GOTO 4@

In most cases, AND and OR statements are interchangeable if other parts of a program are
rewritten to accommaodate the switch.,

EXERCISE 24-2: Rewrite line 49 in th. ~heckerboard program to produce a black-on-white
checkerboard instead of white-on-black,

Learned in Chapter 24

Miscellaneous

* as a logical AND
symbol

+ as a logical OR symbol

163

Notes:

154

Chapter 25

Advanced Subroutines

Back in Chapter 15, we touched on the subject of subroutines, We even “called” one, just
to get the hang of it. But then we rewrote that subroutine as a part of our main program,
and got the same results just as easily. So what's so special about subroutines? That’s what
this chapter is about.

To refresh your memory: A subroutine is a special kind of program which the Computer
ignores until a GOSUB statement calls for it. After executing the subroutine, the Computer
automatically RETURNs program control to a point right after the GOSUB statement. So
no matter how many different times and places your program ‘‘branches” to a subroutine,
program control always returnsto the point where it left off.

An important application of subroutines is the calling of special routines that allow the
Computer to do things that it couldn’t do otherwise. Take square roots, for example. Many
larger forms of BASIC (like Radio Shack LEVEL I1 BASIC) will let you compute VX
simply by using the statement, Y = SQR(X). LEVEL 1 BASIC doesn’t have this ability,
50 we need to add a fairly simple program to accomplish the same thing — a subroutine.

There are many other special routines that we can call to make the computer “‘educated
beyond its intelligence”. Most are very mathematical, and are only for rather special
applications. But when they are needed, they are badly needed. Even if you don’t think
yowll have use of them, go through this lesson anyway. You’ll probably find some special
program in a magazine or elsewhere that you desperately want to run on your Computer —
but it needs a trigonometric, logarithmic, or other higher-math function. You don’t have
to like or even understand these special routines to be able to use them like an expert. Give
it a good shot.

Whatever became of good old Pythagoras — and who cares?

Remember the fun days in geometry and algebra class when you were engaged in such excit-
ing things as trying to find the length of the hypotenuse of a right triangle when the lengths
of the other two sides were known? Welcome back! The Pythagorean rule says, “The length
of the hypotenuse is equal to the square root of the sum of the squares of the remaining two
sides.” No wonder you took ceramics instead, We know all about equations now, though,
50 we can state it much more simply:

L=VAT+BT

““MET A SUB?”
Funetions like SQR are called intrinsic {built-in)

when they are available directly
for mlltngs; m«m subroutine. ABS, IN'F and

155

where the triangle looks like this:

B=4
Okay. That’s not too grim. So let’s write a program to find the value of L, when A = 3 and
B = 4. If we had the built-in square root function (which we don’t), our program might look
like this:
12 REM * SQUARE ROOT SOLUTION WITH SUBROUTINE *

28 IN.'"THE LENGTH OF SIDE A

i
>

1l
©

3¢ IN." THE LENGTH OF SIDE B

49 L = SQR(A*A + B*B)

SQ° Pt MAY Atghh, A 0

68 P. A,B,L
Now type in the program carefully and RUN.
Caarash! The

WHAT?

4@ L=S7QR{A*A + B*B)

tells us the Computer does not recognize SQR. That means we'll have to call up the SQR
subroutine from Appendix A to make a workable program.

See the list at the end of this Chapter to determine which functions are available as sub-
routines in Appendix A,

Tumn to page 216 of Appendix A and find the Square Root Subroutine. There are three

important things to look for when checking out any subroutine:
1. What is the input variable?
2. What is the output variable?

156

3. What other variables are used by the subroutine for internal calculations? You have to
have a high need for dangerous living to use those same variable names in the main
part of the program. Either that, or know exactly what you're doing. Best to change
the program to avoid re-using a subroutine’s “internal variables”,

Type in the square root subroutine exactly as it’s listed, There is no room for error.

Now we need to interface it (that's high-powered computer jargon to impress your friends
with) to the resident program (more jargon — get the idea?). In short, we have to make them
mateh up.

Make these changes in the resident program;

48 X = A*A+B*B : GDSUB 3203g

45 L Y

and RUN.

If your program ran, there was a slight pause before the Computer came back with the
answer:

A B L

That’s because the Computer has to do quite a bit of thinking to compute square roots.
(See, computers aren’t so smart after all!)

If the program didn’t RUN, go over the main program and the subroutine very carefully.
Did your GOSUB statement in Line 40 call 3p030? And does your subroutine really begin
at line 309307

Here’s why we changed Line 40 and added Line 45:

Line 4@ has two separate statements. X=A *A+B*B gets our input variables X ready.

GOSUB 30039 directs the Computer to the subroutine beginning at Line 30030. Lines
30P19 and 39920 are remarks only. To speed things up, we skip over them, The Computer
executes the instructions there until it hits the RETURN statement in Line 30080, which
makes it return to the very next statement in our main program, Line 45,

Line 45 gives our hypotenuse L the value of the subroutine’s output Y,

Lugaﬂvanhnmdncwmmhzﬁmnmummg
into the subroutine afte AT main

We send control to
acer 'tghw é-ms ik g
parts of the program
ldenﬁﬂuﬂonr:glr;,‘ ey ”M it

We want the square raot of the entire expression
A*A+BB, 50 we set it equal to X, which ls v.be
pwpoﬁm& for the subroutine. '

CSAVE!

Before going on te the next section, you may want to save the square root subroutine on a
cassette, to avoid the tedium of typing it in correctly again later, You can save all the sub-
routines separately, all together, or in various combinations. This will let you load just the
ones you need for a given purpose.

From Square Roots to Circles (Well, Ovals Anyway!)

While you've got the sguare root subroutine loaded, we'll demonstrate how scientific sub-
routines can be put to some fairly entertaining uses. Type in the following program:

12 CLS

290 FOR R=2 TO 22 STEP 4

30 FOR A=-R TO R

4% X=R*R-A*A : GOSUB 3083¢ : Y=INT(Y-.5)
5@ SET (A+6@,23+Y)

68 SET (A+62,23~Y)

7@ NEXT A

8@ NEXT R

9¢ GOTD 9@

And RUN.

If you entered the program correctly, the Computer will generate a series of concentric
circles. The program uses the formula for finding the coordinates of a circle on a graph:

= VTR = XX

(Y is the Y-coordinate, X is the X-coordinate, and R is the radius.)

 Use [BREAK] to get out of the program.

Acnully they e ovals, because (he graphics points
ngular imstead of square — it wouldm

Ashghﬁy modified program to generate more perfect

cireles. Care to try?

You'll probably wani to try “graphing’” other curves using the subroutines, so we'll go
into a little detail on how our concentric circles program works.

Line 1 gives us a nice clear screen to start with.

Line 20 sets up a loop which increments the Radius R from 2 to 22 in steps of 4.

Line 30 sets up a “nested” loop which increments the X-coordinate of our graph from —R
to R.

Line 40 computes the Y-coordinate of our graph as a function of the radius R and the X-
coordinate A. The square root subroutine is called.

Lines 5@ and 6(center the circle on the Display and *‘draw it”. Line 50 produces the lower
half of the cixle, and line 6) produces the upper half.

Lines 70, 80 and 99 . . . you can figure them out for yourself,

From One Subroutine to Another

So far we've used GOSUB cominands in the main program to call subroutines. Now let’s be
neighborly — and let one subroutine call on another.

Suppose we. want to compute 3!! — that’s 3 times itself 11 times. We can compute it
directly as 3*3*3¥3*3*3*3%¥3%3%3%3, right? But what about 3''3 — {hat is, 3 to the
11.3 power? Simple multiplication isn't going to get us anywhere on this one. It looks like a
job for Supersub!

That’s our Exponential Subroutine, which actually calls on two other subroutines before it’s
through — one for logs, one for anti-logs. (These are not the opposing sides in a conservation
dispute, They're extremely useful math functions.)

Supersub derives its number-crunching power from a rather complex-looking equation:

XY = oY*log X
(You don’t have to understand it, but it’s nice to know it’ there.)
All we have to do is provide the subroutine with the values for X and Y, in this case 3 and

11.3, and the rest is automatic. The subroutine goes and gets log 3, etc., and returns to our
main program with the final answer.

1569

Turn to page 217 of Appendix A and find the Exponentiation Subroutine.
Type it in slowly (as if we needed to say that) and carefully.

Now type in the following ‘‘demonstration program’,

19 PRINT "'SEEKING THE VALUE OF X TO THE Y POWER"

28 INPUT ''X

]
x

3g INPUT 'Y

]
-
<

4@ GOSUB 39120
5@ PRINT '"'THE ANSWER 1S" ;P
62 GOTO 12
AndRUN. {Use [BREAK] when you want to get out of the program.)

Without trying to understand the mathematics behind it, let’s trace the flow of the program
control from main program to the various subroutines and back.

Lines 20 and 30 provide values for X and Y.

Line 4@ transfers program conirol from the main program to the Exponentiation Sub-
routine,

Line 30140 calls the log subroutine to obtain log(X).

Line 30230 returns L = log(X) to the exponentiation subroutine. (Note that control passes
to the statement immediately following the last GOSUB command — even though that state-
ment is on the same line in this case.) o

Line 30140 now calls the exponentiation subroutine to compute e .
Finally, Line 30150 adjusts the magnitude of P (don't ask questions!) and returns the
computed value P = XY to the main program, Line 5@, for output.

Now let's go off on a tangent about Christmas trees.

Selecting a Christmas tree in the middle of a forest on a snowy evening in December can
be a trying process, Especially when you’re seeking a tree that’s exactly 28 feet tall (the tree
is going to be set up in a park downtown). You can climb up each tree, attach a 28-foot
tape measure, climb back down and check to see if the tape just touches the ground — and

160

it’s a long one ~— after you type it in and get it
running properly, you'll wan to save it on tape for
later use.

riable assignment must
e subroutine:

GUr sesident program saves
6. For example, we can now.

: "&?’?»xib“ to
be before the entry to
Gtk Gl

repeat the process until you find the right tree . . . or surtender to frostbite. Or you can use
a little trigonometry.

Trigonometry will let you figure the height, H, of the tree from two simple facts: your

distance, D, from the base of the tree, and the angle, A, hetween the base and tip of the
tree as measured from the point at which you're standing:

&

(s i]

If you’re standing as indicated in the drawing, then

H =D*TAN(A) >
(That’s “H equals D times the tangent of angle A.”)

Here’s where the TRS-80 comes in. (Youw'll also need a very long extension cord to run from
the nearest electrical outlet to the site of the tree.)

TAN(X) is one of the trigonometric functions available as a subroutine for the TRS-80,
Turn to page 218 of Appendix A and find the Tangent Subroutine. (It’s the longest of the
“trig" subroutines, because it actually contains two of the others, Sine and Cosine).

Type NEW to clear out the program memory and carefully type in the tangent subroutine
(steps 30300 to 30455). Be sure to add a protective END block: 3¢999 END

Now type in the following program:
1o IN. "HOWFAR ARE YOU FROM BASE OF TREE" ;D
20 IN. "WHAT IS ANGLE BETWEEN TIP AND BASE OF TREE™" ;A
30 X=A:GOSUB 32327
4@ H=INT(D*Y+.S5)
5% IF H=28 THEN 8¢

69 P. "FIND ANOTHER TREE--THIS QNE 15" :H; '""FEET TALL."

161

7¢ P.:GOTO 14
8¢ P. 'CHOP IT DOWN AND TAKE IT HOME!"

RUN it, (After youve tried a few values for Distance and Angle, use Distance=16 and
Angle=60.) Hit IBREAK] to get out of the program.

A few notes on how the program works:
Line 30 gives X the value of angle A. This is necessary because the subroutine needs an X-
input. Control is then transferred to 30329, the beginning of the tangent subrcutine, which

returns a value for Y = TAN(X).

Line 40 computes the height as D times Y (D times the Tangent of the Angle), and then
rounds the answer off to the nearest integer.

Line 50 checks to see whether we've found our tree. If we have, program control goes to
Line 80. where a suitable message is printed. Otherwise, Line 60 tells us to [ind a new tree
and line 70 starts the program over again.

But you can’t find an extension cord that’s long enough.

And you can't see beyond 12 feet due to the fast-falling snow. So now you need to know
(in advance) what the angle will be when you’re standing 12 feet away from a 28-foot tree.
Then all you'll have to do is find a tree that gives you that angle reading on your surveyor’s
transit (or simple protractor) when you're standing 12 feet away.

Remember our formula,

H=D*TAN(A).

Well, in this case, we know H(Height} and D(Distance). What we’re seeking is a certain angle
such that

H/D=TAN(A).

In short, we want to find “the angle whose tangent is equal to H divided by D”. In trig-
onometry, that’s known as the Arctangent of A,

Don’t worry — we’ve got a subroutine for that one, too.

EXERCISE 25-1: Write a program which accepts inputs for the height of the tree and your
distance from the tree, and computes what the angle should be. Use the Arctangent Sub-

routine on page 219 of Appendix A.

162

= - = " " oui]
EXERCISE 25-2: Write a program that produces the graph of SIN(X), with X taking on
values from 0 to 360 degrees in 1-degree steps, Refer to the concentric ovals program for
ideas on how to put your points on the screen. Remember that the ranges of X and SIN(X)
will have to be adjusted to fit the 128 by 48 position screen,

Subroutines —
regudar and super
“Dummy variables”™

Subroutines available in Appendix A:
Square Root
Exponentiation
Logarithms (Natural and Common)
Exponential (Powers of e)
Tangent
Cosine
Sine
Are Cosine
Arc Sine
Are Tangent
Sign

163

Notes:

164

Chapter 26

DEBUGGING PROGRAMS

Quick — the RAID!

By now, the Computer has given you plenty of nasty messages like WHAT?, HOW? and
SORRY. You know something’s wrong, but it isn’t always obvious exactly where, or why.

How do you find it? The answer is simple — Be Very Systematic. Even experienced pro-
grammers make lots of silly mistakes . . . but the experience teaches how to locate mistakes
quickly.

Hardware, Cockpit or Software?

The first step in the “debugging’ process is to isolate the problem as being either
1) A hardware problem,
2) An operator problem, or
3) A software problem.

Is it Farther to Ft. Worth or By Bus?
Starting with the least hikely possibility — is the Computer itself working properly? Chances

are (and our fondest desire is) that the Computer is working perfectly. There are several very
fast ways to find out.
A, Type
PRINT MEM
11 there is no program loaded into memory, the answer should be
3583
1f there is a program loaded, the answer should be some value LESS than 3583.
If the answer is MORE than 3583 (assuming of course you have not added more

Radio Shack RAM), there may be trouble. Or, it's possible that the answer is a
NEGATIVE number , , . same solution,

Qr.justP.M.'

or 1679 (8K machine); 15871 (16K}

That’s Random Access Memory.

165

Possible Solution

In either of the above cases, shut the Computer off completely. (Or, as they say in the big
time, “Take it all the way down.”) Let it sit for a full minute before tuming it on again.

Turmn the machine back on, type NEW and try the P.M. test again. If the results are the

same, there is probably a RAM or ROM failure that will require Radio Shack Factory
Authorized servicing.

B. One Last Try

Before full panic sets in, however, type NEW and enter this program. It assigns every free
memory location in RAM a specific value, then reads that value back out onto the screen.

Type (very carefully):
12F . X=1TOB876 :A(X)=X:sN.X:F.Y=1TO876:P.A(Y)}
281FA{Y)-A(Y=-1)<>1P. "BAD"
39N.Y

Then, initialize A(®) to zero by typing
A(B) = &

Then, RUN

After about a 10-second wait for the array to “spin-up”, the monitor should display

12345678 {etc., through876)
If the word *BAD” appears on the screen, you may have found the problem.
You will probably want to enter this test program into your computer, try it out hefore you

need it, then save it on tape and hope that you won’t . . . (need it, that is).

Video Display Problems?

The Video Display is very similar to a television set. It has adjustments for brightness, con-
trast, horizontal and vertical sync, etc. If these fail to give the desired display, the problem
could be in the Computer.

Horizontal and vertical centering and “jitter’ can be controlled by simple internal computer

166

s

ey

adjustments, but you have to know where to adjust. Don’t mess with it, or you could end
up goofing up the voltage regulators instead, and wiping out the entire lineup of integrated
circuits. Very expensive fiddling around!

Idiot here — What's your excuse?
Of course vou don’t make silly mistakes!

Now that’s settled,
1. Is everything plugged in? Correctly? Firmly?
2. Are the recorder batteries fresh (if you'’re using batteries)?
3. Have you avoided the yecorder ground loop problems discussed in the cassette recording
chapter?
4. Is the recorder volume level properly set?
5. Is the recorder tone switch on “high”?
6. Are you using “legal” commands?

if so

Go walk the dog, then check it all over again.

If ... Then

If the trouble was not found in the cockpit or with the hardware, there is probably some-

thing wrong with your program. Dump out the troublesome program. Load in one that is
known to work and run it as a final hardware and operator check.

Error Messages

When the Computer gives usa WHAT? or HOW? message, it usually points out the offend-
ing program line, as in:

WHAT?

19 X=S?2QR{1-X*X)

In the case of WHAT ? messages followed by a program line, the Computer inserts a ques-
tion mark just before the error. In this case, the Computer doesn’t recognize SQR (remem-
ber, we don’t have a built-in square root function in LEVEL I BASIC), so it reads 10 X=8
and then looks for a math operator, colon, end-of-line or other valid continuation. Q" just
doesn’t fit, so the Computer treats it as an ervor,

167

With HOW? messages, the Computer inserts a question mark right after the error. For
example:

HOwW?
18 PRINT INT(I)?/23
The question mark tells us that the error was discovered during execution of the INT

function, We can guess that the value for I probably exceeded the allowable range for the
INT function (value should be greater than —32768 and less than +32768).

Now let's take a look at some of the common sources of ‘“‘computer-detected errors’.

1. Assume the error is in a PRINT, or INPUT statement.
Did you:
a. Forget one of the needed pair of quotation marks?
Example:
1@ PRINT "ANSWER IS, X: GOTOD S

ERROR: No ending gquotation mark alter 1S ; Z,’?‘ ”'l lf;r:ﬁt;&kﬂﬂ\e missly M,ls@élu
b. Use a variable name other than a single letter of the alphabet? . X

Example:

12 INPUT AG,S1

ERROR: LEVEL I variable names can have neither more than one letter, nor a letter/
number combination.

c¢. Forget a semicolon or comma separating variables or text, or bury the semicolon or
comma inside guotation marks?
Example:

14 PRINT "THE VALUE 1S;"v

ERROR: The semicolon is inside the quotation marks (so the “string” of words and
the variable are not properly separated.)
d. Forget the line number, accidentally mix a letter in with the number, or use a line
number larger than 327677
Example:
7283 PRINT ''3AD LINE NUMBER.'

L_ERROR
e. Accidentally have a double quotation mark in your text?
Example:
12 PRINT '"HE SAID '"'HELLO THERE.''"

f. Type a line more than 7@ characters long?

. Misspell PRINT or INPUT (it happens’)?

., Accidentally type a stray character in the line, especially an extra comma or semi-
colon?

oo

2. 1f the error is in a READ statement, almost all the previous possibilities apply, plus:
a. Is there really a DATA statement for the computer to read? Remember, it will only
read a piece of DATA once unless it is RESTOREd.
Example:

1¢ READ X,Y,Z
28 DATA 2,5,

ERROR: There are only two numbers for the Computer to read. If you mean for Z
to be zero, you must say so.

28 DATA 2,5,9

3. If the bad area is a FOR-NEXT loop, most of the previous possibilities also apply, plus:
b, Do you have a NEXT statement to match the FOR?
Example:

Some onh:sc RQ&NEX’N?op eITors won't
cause actua mmm,youxpzopm
12 FOR A=1 TCO N 'mmudnpnmbopgwixhgthgmd'

ERROR: Where’s the NEXT A? the BREAK key.

¢. Do you have all the requirements for a loop — a starting point, an ending point, a
variable name, and a STEP size if it’snot 1?
Example:

1¢ A=1 TO N

ERROR: Must have a FOR and a NEXT.
d. Did you accidentally nest 2 loops using the same variable in both loops?
Example:

12 FOR X=1 TO §
2¢ FOR X=1 TO 3
32 PRINT X

4@ NEXT X

5@ NEXT X

ERROR: The nested loops must have different variables.
169

@, Does avariable in a loop have the same letter as the loop counter?
Example:

18 A=22

28 FOR R=1 TO 5
39 R=18

4@ Y=R*A

5% PRINT Y

68 NEXT R

ERROR: The value of R was changed by another R nside the loop, and NEXT R was
overrun, since 18 is larger than 5.

f. Did you nest loops incorrectly with one not completely inside the other?
Example:

1# FOR X=1 TO 6
2¢ FOR Y=1 TO 8
38 SET {XsY)
49 NEXT X

59 NEXT Y

4. If the goofed-up statement is an [F-THEN or GOTO
a. Does the line number specified by the THEN or GOTO really exist? Be especially
careful of this error when you eliminate a line in the process of “improving’’ or *“‘clean-
ing up” a program.

5. The error comes back as SORRY but the P.M. indicates there is room left in memory:
If you get a SORRY and are using the A(X) numeric array, be sure to check P.M. then
subtract 4 bytes for each array element used. You have probably overrun the amount of
available memory.

6. The error comes back as HOW? and the program line containing the error is printed out
with a question mark buried somewhere inside:
a. Did you exceed the limits of one of the built-in functions?
b. Did one of the values an the line exceed the maximum or minimum size for LEVEL 1
numbers?

170

c. Did you tell the Computer to divide by zero? (‘The Computer isn’t about to let you get
away with that one!)

To find out whether you did any of these things, PRINT the values for all the variables
used in the offending line. If you still don’t see the error, try carrying out the operations
indicated on the line. For example, the error may occur during a multiplication of two
very large numbers.

These certainly aren’t all the possible errors one can make, but at least they give you some
idea where to look first. Since we can’t completely avoid silly errors, it's necessary to be
able to recover from them as quickly as possible,

By the way . . .a one-semester course in beginning typing can do wonders for your program-
ming speed and typing accuracy.

From the Ridiculous to the Sublime:

All the Computer can tell us is that we have (or have not) followed all of its rules, Assuming
we have followed all the rules, the Computer will not ask “WHAT?” or “HOW?” — even
if we’re asking it to do something that’s quite silly and isn’t at all what we intended. It will
dutifully put out garbage all day long if we feed it garbage — even though we follow its
rules. Remember GIGO? If the program has no obvious errors, what might be the matter?

Typical “unreported’ errors are:
1. Forgetting to initialize variables (and they are starting out with old values). Remember
you cannot assume that unused variables are zero.
2. Accidentally reinitializing a variable — particularly easy when using loops.
Example:
12 FOR N=1 TO 3
28 READ A
3¢ PRINT A
4¢ RESTORE
59 NEXT N
62 DATA 1,2,3

O

3. Reversing conditions, i.e. using “="" when you mean ‘<>’, or ‘‘greater than when you
mean “less than.”

171

4. Accidentally including “‘equals”, as in *less than or equals”, when you really mean only
**less than.”

5. Confusing similarly named variables, particularly the variable A, the string A$, and the
array A(X). They are not at all related.

6. Forgetting the order of program execution — from left to right on each line, but multi-
plications and divisions always having priority before additions and subtractions. And
intrinsic functions (INT, RND, ABS, etc.) having priority over everything else.

7. Counting incorrectly in loops. FOR 1=0 TO 7 causes the loop to be executed eight, not
seven, times.

8. Using the same variable accidentally in two different places. This is okay if you don't
need the old variable any more, but disastrous if you do. Be especially carefuly when
combining programs or using the special subroutines in Chapter 25.

But how do you spot these errors if the Computer doesn't point them out? Use common
sense and let the TRS-80 help you. The rules to follow are:

1. Isolate the error. Insert temporary “flags.” Add STOP, END, and extra PRINT state-
ments until you can track the error down to one or two lines,

2. Make your “tests” as simple as possible. Don’t add complications until you've found
the error.

3. Check simple cases by hand to test your logic, but let the Computer do the hard
work, Don’t try to wade through complex calculations with pencil and paper. You’ll
introduce more new mistakes than you'll find. Use the calculator mode, or a separate
hand calculator to do that work.

4. Remember that you can force the Computer to start running a program at any line
number you choose. Just type RUN #=# (where ### represents the desired line
number). This is a usefu! tool for working your way back through a program. You give
the variables acceptable values using calculator-mode statements, and then RUN the
program starting from some point midway through the program flow. If the answers
are what you expect, then the error is before the “test point™ you've created. Other-
wise, the error is after the test point.

5. Remember also that it's not necessary to list the entire program just to get a look at
one section of it. Just type LIST #=# (where ### tells the Computer which line
you'd like to start the list with).

. Practice “defensive programming.” Just because a program ‘‘works ckay”, don't assume
it’s dependable. Programs that accept input data and process it can be especially decep-
tive. Make a point of checking a new program at all the critical places. Examples: A
square root program should be checked for inputs less than or egual to zero. Math
functions you have programmed should be checked at points where the function is
undefined, such as TAN(90°).

o

172

Examples of useful flags:

L2833 PRINT M LINE #2997

339 [K& THEW PRINT ' DUT OF RANGE AF #3129, T3P

Line 299 will help you check whether the line
immediately following line 299 Is executed. This
helps you follow program flow,

Line 399 might be used to locate the point where X
goes ouf of range.

Although the detzils would be different for your
program, these techniques can be applied easily.

Beware of Creeping Elegance

Programs can grow to become more and more elegant with the ego reinforcement of the
programmer as success follows success, With this ‘‘creeping elegance” comes increased
chance of silly errors. It’s fun to let your mind wander and add on some more program here,
and some more there, but it’s easy to lose sight of the purpose of the program. It is at times
like this when the flow chart is ignored and the trouble begins. Nuff said.

We'll leave you some space to make notes on your own debugging and troubleshooting
ideas . . .

- Learned in Chapter 26

Defensive programming
Computer-detected errors
Flags

Hardware checkout
procedures

173

Notes:

174

Notes:

175

Notes:

176

Part B:

Answers to Exercises in the Chapters

177

Part B:
Sample Answers

e V11T JE it s 2 O 4 o P PR ey P A T I T s
SAMPLE ANSWER FOR EXERCISE 3-1
5 PRINT D A ;]
SAMPLE RUN FOR EXERCISE 3-1
30290
Note: You may have used a different line number in your answer but
the way to get the answer printed on the screen is by using the PRINT
statement. If you didn’t get it right the first time don’t be discouraged,

Type in line 50 above and RUN the program. Then return to Chapter
3 and continue.

S N TG ot 4o S P T L i Ty Sy T
SAMPLE ANSWER FOR EXERCISE 3-2

18 REM * TIME SOLUTION KNOWING DISTANCE AND RATE *
20 D = 3909
30 R = S08
4% T = D/R

5¢ PRINT '"'THE TIME REQUIRED IS'";T: "HOURS."

NOTE: Remember to [ATREA;] each line.
SAMPLE RUN FOR 3-2
THE TIME REQUIRED IS 6 HOURS.

Note: In order to arrive at the formula in line 40 it is necessary to
transpose D = R * T' and express in terms of T.

178

R S e e e . R e . N S|
SAMPLE ANSWER FOR EXERCISE 3-3:

19 REM * CIRCUMFERENCE SOLUTION *

280 P = 3.14

3¢ D = 35

49 C = P * D

58 PRINT "THE CIRCLE'S CIRCUMFERENCE I1s";C; “FEeT."

SAMPLE RUN FOR 3-3

THE CIRCLE'S CIRCUMFERENCE 1S 189.9 FEET.

Note: Since 7 is not included in Radio Shack’s LEVEL T BASIC, we
have to set a variable (in this case P was used) equal to the value of pi
{3.14)

SAMPLE ANSWER FOR EXERCISE 34:
14 REM * CIRCULAR AREA SOLUTION *
2¢ P = 3.14

36 R S

4% A P *R *R

52 PRINT "THE CIRCLE'S AREA IS";A; '""SQUARE INCHES."
SAMPLE RUN FOR 34
THE CIRCLE'S AREA IS 78.5 INCHES.
Note: The LEVEL 1 BASIC system does not have a function which
means ‘‘raise to the power” to handle R*. (LEVEL II BASIC does.)
In easy cases like this one, we can simply use R times R (R*R). If

you have a LEVEL Il system, you'll learn how to use the simple EXPO-
NENTIATION function in the USER’S MANUAL for LEVEL II.

179

SAMPLE ANSWER FOR EXERCISE 3-5:

A bare-minimum effort might look like this: (C = checks, D = deposits,
B = old balance, N = new balance.)

19 B=225

29 C=17+35+225

30 D=4@+200

4@ N=B-C+D

52 PRINT '"'"YOUR NEW BALANCE IS $'';N

e A S 7, 5 R ST T T R e T SRR
SAMPLE ANSWER FOR EXERCISE 4-1:

1¢ REM * CAR MILES SOLUTION PROGRAM *

28 N 1oegeen

39 D 12800

4 T = N * O

5¢ PRINT "THE TOTAL NUMBER OF MILES DRIVEN IS " ; T
SAMPLE RUN FOR 4-1

THE TOTAL NUMBER OF MILES DRIVEN IS 1E+12
Note: As discussed earlier, this answer is the number 1 followed by ten
zevoes. 19,000,000,009. Ten Billion. The Computer will not print any

numbers over 993,993 without converting them to exponential nota-
tion.

S R SRS S S MR e > S [R | A e
SAMPLE ANSWER FOR EXERCISE 4-2:

20 N = 1E+6

38 D

1E+4

180

SAMPLE RUN FOR 4-2:
THE TOTAL NUMBER OF MILES DRIVEN IS 1E+18

Note: The answer came out exactly the same as before, meaning we not
only receive answers in SSN, but can also use it in our programs.

T NP T e i A R A 0 S R S R T
SAMPLE ANSWER TO EXERCISE 5-1:
12 REM * FAHRENHEIT TO CELSIUS CUONVERSION *

2¢ F = 6S

3 ¢ = (F ~ 32) * (5/9)

49 PRINT F; ""DEGREES FAHRENHEIT ="' ;C; " DEGREES CELSIUS."
SAMPLE RUN FOR 5-1:

65 DEGREES FAHRENHEIT = 18.3333 DEGREES CELSIUS.
Observe carefully how the parentheses were placed, As a general rule,

when in doubt — use parentheses. The worst they can do 1s slow down
calculating the answer by a few millionths of a second.

AR P A N0 s R R 0 R RO RS PR S ST
SAMPLE ANSWER TO EXERCISE 5-2:

3 C = F-32 * (5/9)
SAMPLE RUN FOR 5-2:
65 DEGREES FAHRENHEIT = 47.222 DEGREES CELSIUS.

Note how silently and dutifully the computer came up with the
WRONG answer. [t has done as we directed, and we directed it wrong.

A common phrase in computer circles is GIGO (pronounced “gee-joe’’}.
It stands for “Garbage In — Garbage Out’’. We have given the computer
garbage and it gave it back to us by way of a wrong answer.

Phrased another way, “Never in the history of mankind has there been
a machine capable of making so many mistakes so rapidly and confi-
dently.” A computer is worthless unless it is programmed correctly.

181

e T Ty e e S R e B o T AR]
SAMPLE ANSWER TO EXERCISE 5-3:

38 ¢ = (F-32)* 5/9
SAMPLE RUN FOR 5-3:

65 DEGREES FAHRENHEIT = 18.3333 DEGREES CELSIUS.
P R T e v R T G i oty P e 1 i)
SAMPLE ANSWER TO EXERCISE 5-4:

Two possible answers: 30 —(9—8) — (7 —6) =28
30 —(9 H8—7-8))) =28
Sample Programs:

1 A = 38 — (9 — (8 - (7 - 6)))

28 PRINT A

Or line 10 might be

A= 3 - (9-8)=(7-6)

Try a few on your own,

SAMPLE ANSWER FOR EXERCISE 6-1:
19 A = 5

29 IF A<>S THEN 58

39 PRINT '*A EQUALS 5"

4% END

54 PRINT "A DOES NOT EQUAL s§"

SAMPLE RUN FOR 6-1
A EQUALS S

A e A e e e ——— e B |
182

T O R e 0 A e T R Lo

SAMPLE ANSWER FOR EXERCISE 6-2:

19

29

39

49

5@

6@

72

=3

9@

A =6

IF A <>S THEN 50

PRINT "A EQUALS 5"

END

PRINT '"ADOES NOT EQUAL S
IF A<5 THEN 99

PRINT '"A IS LARGER THAN 5"
END

PRINT "A IS SMALLER THAN 5"

SAMPLE RUN FOR 6-2:

A

A
Note:

DOES NOT EQUAL S

1S LARGER THAN 5
We had to put in another END statement (line 80) to keep the

program from running on to line 90 after printing line 70.

TR U R ST AT T i+ S P IR e
SAMPLE ANSWER TO EXERCISE 11-1:

2

3

INPUT '"HOW MANY SECONDS DELAY DC YOU WISH' ;S

P = 509
L =2/8% P
FOR X =1 TO D

NEXT X

PRINT "DELAY 1S OVER. TOQOK" ;S; " SECONDS."

183

Explanation
Line 2 used the input statement to obtain desired delay. S, in seconds,
Line 3 defined P, the number of passes required for a one-second delay,
Line 4 multiplied the delay for one second times number of seconds desired, and called
that product D.
Line 5 began the FOR-NEXT loop from 1 to whatever is required.
Line 6 is the other hall of the loop.
Line 7 reports the delay is over, and prints S, the number of seconds. Obviously, S is only
as accurate as the program itself since it merely copies the value of S you entered in line

9
IATERRT Gt SR L S TR R SRR TR N SR SR SRR A,
SAMPLE ANSWER TO EXERCISE 11-2:

62 PRINT '"RATE"™ , "TIME ", "DISTANCE''

65 PRINT " (MPH)'', "'"(HOURS)'', " (MILES)"

1f you honestly had trouble with this one, hetter go back and start all over because you've
missed the real basics.

B e e L e e =
SAMPLE ANSWER TO EXERCISE 11-3

5 CLS
1@ PRINTY e SALARY RATE CHART **¥n»
2@ PRINT
39 PRINT "YEAR " ,"MONTH " ,"week " ,"Day "
49 PRINT
59 FOR Y=50@2 TO 250¢@ STEP 10¢0
55 REM¥*CONVERT YEARLY INCOME INTO MONTHLY*
68 M=Y/12
65 REM*CONVERT YEARLY INCOME INTO WEEKLY®

70 W=Y/52

The FOR-NEXT-STEP function is limited to pum-
bers between -32767 and +32767 (lnc!usive) if
you specify upper or lower limits ora step size
outside this nnge. you’!l geh 8 HOW‘? message.

Another not-so-obvious error will result. if all your
 numbers

are within the range but the

'uyper limit and the step size exceeds 32767 For.

exumple fry
50 FOR Y=540¢ TO 32709 STEP IWO
in the Salary Rate Chart program.

The way around this problem is to use smaller
upper and lower limits and step size, and then
use a scale factor in the loop to get the larger
number. For example:

50 EOR 7-509 T0 3274 STER 109
53 Y=Z*10
110 NEXT 2

75 REM*CONVERT WEEKLY INCOME INTO DAILY®

23] D=w/%
188 PRINT Y,M,w,D
11¢ NEXT Y

SAMPLE RUN FOR 11-3:

rEe SALARY RATE CHART

YEAR MONTH WEEK
5007 416.667 96.1538
6222 See 115.385
Q20 583.333 134,615

ETC.

* kox

DAY

19,2398
23.8769
26.9231

SAMPLE ANSWER FOR EXERCISE 114:

19 R

]

81

28 D = 1

3 T = .01

35 CLS

49 PRINT '"DAY '™ ,"DAILY ' ,'TOTAL "

5% PRINT " #'" ,"RATE " , "EARNED "

62 PRINT
7¢ PRINT D,R,T
82 1IF R > 1E6 END

92 R = R * 2

185

1862 D = O + 1

119 T

T +.R

12¢ GOTO 7@

SAMPLE RUN FOR 114

DAY DAILY TOTAL

RATE EARNED

1 1.9908009E-92 1.200020E-22
2 2E-0@2 3E-@2

3 4E-B2 TE-@2

4 8E-@2 .15

S .16 .31

6 .32 .63

ETC.

e R - S R R T A R e S WS AR i
SAMPLE ANSWER FOR EXERCISE 11-5:

1 REM * FIND THE LARGEST AREA *
S €LS
18 PRINT "WIRE FENCE"™ ,'"LENGTH ' ,"WwIDTH " ,"AREA "
28 PRINT " (FEET)"™ ," (FEeT)" ,'" (FEET)" ," (SQ. FEET)"
39 F = 19¢@¢
49 FOR L = @ TO 502 STEP 58
50 W = (F-2%L)/2
6@ A=L*w

78 PRINT F,L,W,A

186

8%

9@

NEXT L

END

SAMPLE RUN FOR EXERCISE 11-5;

WIRE FENCE LENGTH WIDTH AREA
(FEET) (FEET) (FEET) (SQ,FEET)

1200] 529 2

19289 5S¢ 4SP 225280
19¢9 109 4o 4oaa3
1208 158 352 52509
1€00 288 389 620830
1620 252 2590 62500
14902 30 220 2P0

ETC....

ADDENDUM TO EXERCISE 11-5:
Here’s a program that lets the Computer do the comparing:

S
S
12

IF NECESSARY*

CLS
REM *SET MAXIMUM AREA AT ZERO*

M=g

REM *SET DESIRED LENGTH AT ZERO*

N=g@

REM *F 1S TOTAL FEET OF FENCE AVAILABLE*
F=10082

REM *L 1S LENGTH OF ONE SIDE OF RECTANGLE®
FOR L=@ TD 58@ STEP 50

REM *L IS WIDTH DF ONE SIDE OF RECTANGLEY
W={F-2*L)/s2

A=WAL

REM *COMPARE A WITH CURRENT MAXIMUM. REPLACE
1IF A<=M THEN GOTO S5

M=A

REM *AL.S0 UPDATE CURRENT DESIRED LENGTH*

N=L

NEXT L

PRINT "FOR LARGEST AREA USE THESE DIMENSIONS:'

PRINT N; “FT.BY";S0a8-N; "FT. FOR TOTAL AREA OF' iM: "' SQ.FT."

187

R T e G T T A T o i R T R RE

SAMPLE RUN

FOR ADDENDUM TO EXERCISE 11-5:

FOR LARGEST AREA USE THESE DIMENSIONS:
250 FT. BY 252 FT. FOR TOTAL AREA OF 62599 SQ.FT.

T e A M T R e M S AR T RN e v L 0 SRR
SAMPLE ANSWER FOR OPTIONAL EXERCISE 11-6:

12 REM *
28 CLS

39 PRINT
42 PRINT
52 PRINT

62 PRINT

FINDS OPTIMUM LOAD TO SOURCE MATCH *

" gAD " , "CIRCUIT " , "SDURCE " ,'"LOAD "
YRESISTANCE " , “PoOWwER "' ,"POWER “' ,"POWER "

" OOHMS) ' LM (WATTS) " L, T (WATTS) Y LM (WATTS) "

7% FOR R=1 TO 2¢

8@ I =
9@ C =
1282 S =
11 L =

128/(19+R)
I*I¥(18+4R)
I*1*%10

I¥I*R

128 PRINT R,C,S,L

13¢ NEXT R
SAMPLE RUN FOR EXERCISE 11-6:
LOAD CIRCUIT SOURCE LOAD
RESISTANCE POWER POWER POWER
(OHMS) (WATTS) (WATTS) (WATTS)
1 1329.029 11992.68 119.068
2 1200 1902 20@
3 1187.69 852,871 255.621
ETC.

P e s e i

188

NOTE: Use4key to stop the display so you ean
examine it.

SAMPLE ANSWER FOR EXERCISE 12-1;
1@ PRINT “THE " ,*TOTAL ' , "SPENT "

2@ PRINT "BUDGET YEAR'S

39 PRINT TAB(2); "CATEGORY' ;TAB(16); '"BUDGET " ; TAB(32); ""MONTH""

AR A A By TR e . R R RS

SAMPLE ANSWER FOR EXERCISE 12-2:

32 PRINT TAB(1); " YEAR " ;TAB(12);"MONTH " ;TAB(25);'""WEEK ' ;

THIS™

4@ PRINT TAB(38);"pAY " ;TAB(S1); "HOUR ™

85 REM-CONVERT WEEKLY INCOME INTO HOURLY

8@ H=w/40@

SAMPLE RUN FOR 12-2:

¥EX SALARY RATE CHART **¥

YEAR MONTH WEEK DAY

S9Zg 416.667 96.1538 19.2308

6222 5¢82 115.385 23.2769
ETC.

HOUR

2.48385
2.88462

189

TR TS T PR S e e S SR S

SAMPLE ANSWER FOR 12-3:
3¢ PRINT "INTER " ;TAB(18);"LOAD ' ;TAB(21); ' CIRCUIT " ;
35 PRINT TABS(36); '"SOURCE " ;TAB(S1);"LOAD "
4@ PRINT "RESIST " ;TAB(19); "RESIST " :TAB(21); "POWER " ;
45 PRINT TAB(36); "POWER " ;TAB(S1); " POWER "
58 PRINT "™ (CHMS)' ;TAB(12);" (OHMS)' ;TAB(21);" (WATTS)'";

55 PRINT TAB(36);" (WATTS)' ;TAB(S51);" (WATTS)"

12¢ PRINT" 12" ; TAB{12);R; TAB(20);C:TAB(35);3S; TAB(52) L

SAMPLE RUN FOR EXERCISE 12-3:

INTER LOAD CIRCUIT SOURCE LOAD
RESIST RESIST POWER POWER POWER
(OHMS) (OHMS) (WATTS) (WATTS) (WATTS)
10 1 1329.@9 119@6.028 119.0438
1@ 2 1292 10909 2¢¢2
10 3 1127.69 852.0271 255.621
ETC.

ESER =S SRR s BE EEie E L ———
SAMPLE ANSWER FOR EXERCISE 13-1:

1 FOR A = 1 T0O 3
28 PRINT " A LOOP"
32 FOR B = 1 TO 2

49 PRINT " " ,'" B roopr"
190

42 FOR C = 1 TO 4
44 PRINT " & o w {rc Logp!
48 NEXT C

58 NEXT B

62 NEXT A

SAMPLE ANSWER FOR EXERCISE 13-2:

The program will be the same as the answer to Exercise 13-1 with the following additions:

45 FOR D = 1 TO S
46 PRINT " ' w m 0w ng5 | oopn
47 NEXT D

Note: To get the full impact of this “4-deep” nesting, stop the RUN frequently to examine
the nesting relationships between each of the loops.

SAMPLE ANSWER FOR EXERCISE 14-1:

Addition of the following single line gives a nice clean printout with all values “rounded’ to
their integer value:

55 A = INTC(A)

Worth all the effort to learn it, wasn't it?

SAMPLE ANSWER FOR EXERCISE 14-2:
55 A = INT(1@ * A)/1@2

When 3.14159 was multiplied times 1Q) it became 31.4159, The INTEGER value of 31.4159
18 31. 31 divided by 19 is 3.1. Etc.

SAMPLE ANSWER FOR EXERCISE 14-3:

This was almost too easy.

§5 A = INT(12¢ *A)/102

TR S R T AN TR P R B 4 S T G S e AR
SAMPLE ANSWER FOR EXERCISE 14-4:

Oh Pshaw! And it seemed so easy,

You should have entered:

56 A = INT(1¢29 *A)/1009
Oh, you did? And you got 3 answers, then it crashed, saying:

HOW ?
56 A = INT(188¢ * A)7/1002

[t is all correct. Then why doesn’t it work?

Well, if you have LEVEL II BASIC it did work. If you can’t figure out why it didn't work
with LEVEL I and you don’t know why, you forgot to read the NOTE at the beginning of
the lesson. Go back and read it.

OK. 32727 is the largest permissible number inside the brackets of INT(A). When the pro-
gram tried to execute the fourth pass of the loop, it hit INT(1009 * 50.2654) ete. which
becomes INT{50265.4) which is, of course, too big. So the Computer said HOW? But wait —
there is a way to get the desired result. Try

55A = INT(A) + INTC(A-INT(A))*10008/1209

SAMPLE ANSWER FOR EXERCISE 15-1:
18 INPUT " TYPE ANY NUMBER "' I X
28 REM * SGN ROUTINE *
22 IF X <@ THEN T = -1

24 IF X = @ THEN T = 9
192

26 IF X >3 THEN T = +1
39 ON T+2 GOTO 50,608,790

45 END

5@ PRINT " THE NUMBER 15 NEGATIVE.'
55 END

6@ PRINT " THE NUMBER IS ZERO.'"

65 END

72 PRINT " THE NUMBER IS POSITIVE.™

R P 0 7 A s oy T ST i 2 TSR 408 g

SAMPLE ANSWER FOR EXERCISE 16-1:
3 PRINT " SEE MY FOXY " ;
5 FOR N = 1 TO 2
18 READ A%
26 DATA RADIO SHACK,TRS-80
30 PRINT A$; 't "
4@ NEXT N

Analysis:

Line 3 PRINTSs the first part, leaving a space for the printing from the upcoming AS$, and
has a trailing semicolon so the carriage return is su ppressed.

Line 5 establishes a two-pass FOR-NEXT loop,

Line 10 Reads RADIO SHACK

Line 2¢ contains the two DATA strings, separated by a comma

Line 30 PRINTs RADIO SHACK and a space on the first pass of the N loop. Note the
trailing semi-colon to again suppress the carriage return.

Line 40 returns control to line 5 and the loop. The second pass through the loop PRINTS
TRS-80 (and another space, but it doesn’t matter), finishing the job.

SAMPLE ANSWER FOR EXERCISE 20-]

INPUT ' STARTING HORIZONTAL BLOCK (8 TO 127)'" ;:H
INPUT '* ENDING HORIZONTAL BLOCK (@ TO 127)" ;I
INPUT " STARTING VERTICAL SBSLOCK (& TO 47)" ;V
INPUT ' ENDING VERTICAL BLOCK (@ TO 47)'" ;w

cLs

FOR X = H TO 1

FOR ¥ = V TO ¥

SET(X,Y)

NEXT Y

NEXT X

GOTD 999

e me S e = ——————
SAMPLE ANSWER FOR EXERCISE 20-2:

The following lines are changed. The rest are the same.

FOR L = X TD X+K*2+1
SET(L,Y+K+1)
FOR M = Y TO Y+K+1

SET(X+K¥*2+1,M)

R T e e DR e e e L
SAMPLE ANSWER FOR EXERCISE 20-3:
A, MOVE THE DOT UP

12 INPUT " HORIZONTAL STARTING POINT (& TO 127)' ;X

194

29

39

49

59

66

7%

8@

9@

99

INPUT " VERTICAL STARTING POINT (@ TO 47)}" ;v
cLs

RESET (X,Y+1)

SET{X,Y)

Y = Y-1

IF Y> =g THEN 40

Y = Y+48

GUTO 48

GOTO 99

B. MOVE THE DOT TO THE LEFT

19

29

39

4@

5@

60

e

ee

9@

999

B e e]

INPUT " HORIZONTAL STARTING POINT(2 TOo 127)" ;X
INPUT " VERTICAL STARTING POINT (@ TO 47)" ;Y
CLS

RESET (X+1,Y)

SET X V)

X = X-1

OF X>=@ THEN 49

X = X+128

GOTO 49

GOTD 999

SAMPLE ANSWER FOR EXERCISE 21-1:

Add or change the following lines:

195

18 IN."WHICHCAR'S ENGINE, COLOR £ STYLE DO YOU WANT TO KNOW™ ;W

13g FOR B = 2@1 TO 214
135 READ A(B)

142 NEXT B

186 P."LICENSE #","ENGINE SI1ZE','"COLOR CODE","BODY STYLE "

210 P.W,A{W) ,A(W+1080) ,A(W+200)
4@g¢ DATA 2@,20,19,29,39,20,39,1%,20,20

SAMPLE ANSWER FOR EXERCISE 22-1:
Insert the following lines:

165 IF Y=46 THEN 182

115 IF Y=1 THEN 18¢

15@ PRINT AT Y¥*64+32," "
168 G.9@

188 PRINT AT Y*64+32,"PING "

198 G.%¢@

Note that line 18 prints the “ping” and line 150 makes it disappear by printing blanks in
its place.-

R R R S S 1 S T e T R T

196

SAMPLE ANSWER FOR EXERCISE 23-1:
12 REM * TEST GRADER *

20 CLS
30 P. "THIS IS A TEST GRADING PRQGRAM"

4@ P. '"ENTER THE STUDENT'S FIVE ANSWERS AS REQUESTED'"
5¢ RESTORE

60 N=2

78 FOR I=1 TO S

80 PRINT '""ANSWER NUMBER" ;1

9% INPUT A

1% READ B

112 PRINT A,B3:

120 IF A=B THEN PRINT " CORRECT" ; iN=N+1

132 PRINT

148 NEXT I

158 PRINT N; "RIGHT DUT OF s"

163 PRINT N/S5 *1g8¢; "% "

178 P.'"ANY MORE TESTS TO GRADE' ;

182 IN." --1=YES, 2=NO" ;Z

198 IF Z=1 GOTOD S&

260 DATA 65,23,17,56,39

P o R e - S A e e+ U i, N g
SAMPLE ANSWER FOR EXERCISE 23-2:
18 REM * SAMPLE ANSWER 23-2*

109
112
120
130
140
158
160
179
180
199
2ge
1000
121@
1822
2ee@
201@
2929
2830
2g48
29s@e
2g69@

2p7¢

198

cLS

p."ENTER THE NUMBER OF ONE OF THE FOLLOWING INVESTMENTSY

P.
Pp." 1 - CERTIFICATE OF pePOosSIT"
p." 2 - BANK SAVINGS ACCOUNT"

P." 3 - CREDIT UNION"
P." 4 - MORTGAGE LOAN"
P.:IN.'" INVESTMENT" ;F

ON F GOTOD 1000 ,200¢,38¢2,4020

GOTO 18#: REM USED IF NUMBER NOT BETWEEN 1 AND 4

REM * CERTIFICATE OF DEPOSIT PROGRAM GDES HERE *
p."THE C.D. PROGRAM HAS YET TO BE WRITTEN. "
GOS.19220:G.18¢

REM * BANK SAVINGS ACCOUNT PROGRAM *

CLS:P.:P." THIS ROUTINE CALCULATES SIMPLE INTEREST oN"
P.'" DOLLARS HELD IN DEPDSIT FOR A SPECIFIED PERICD"
p."USING A SPECIFIED PERCENTAGE OF INTEREST.":P.

P.:IN."HOW LARGE 1S THE DEPOSIT (IN DOLLARS) " ;P
IN."HOW LONG WILL YOU LEAVE IT IN (IN pAYs) " ;D
IN. "WHAT INTEREST RATE DO YOU EXPECT (IN £ 3R

CLS:P.:P.:P."FOR A STARTING PRINCIPAL OF 8' ;P;'" AT A"

2288 P.'" RATE OF " ;R;" % FOR ' ;D;'" DAYS, THE INTEREST
299¢ P, '""AMOUNTS TO s" ;

2102 REM INTEREST = (% / YR) / (DAYS/YR) * DAYS * PRINCIPAL
2298 I = R/100 s 365 * p * p

23R8 P.:P." LG Y

24088 END

300¢ REM * CREDIT UNION PROGRAM GOES HERE *

391¢ P."THE C.U. PROGRAM HAS YET TO BE WRITTEN."

3928 GOS.10009:G. 100

4228 REM * MORTGAGE LOAN PROGRAM GOES HEREX

4619 P.'" THE M.L. PROGRAM HAS YET TO BE WRITTEN.'

4920 GUS.190922:G.193

19002 F.I1=1TO20@@N.I1:RET.

B T e T S e e TN, Tl s

SAMPLE ANSWER TO EXERCISE 24-1:
Changes in only two lines are required:
€@ IF (A=1) + (B=1) 4+ (C=1) THEN 10¢90
198 P."A GATE IS DPEN. OLD BESSIE IS FREE TO WANDER. "

Line 60 reads “If gate A is open OR gate B is open OR gate C is open, then GOTO 100.”

SAMPLE ANSWER TO EXERCISF 24-2
4@ IF (CINT (X/16) ¥ 16-X)<>8) * ((INT (Y/6) * 6-Y)<>@)THEN 6g

Here’s one way to create uniform houndaries:

199

26 FOR X

1 TD 126

3 FOR Y = 1 TO 46

P N S e S e T Sl Rt YRS PN
SAMPLE ANSWER FOR EXERCISE 25-1:

1¢ INPUT ''DISTANCE FROM TREE'' ;D
2¢ INPUT '"HEIGHT OF TREE YOU'RE SEEKING" ;H
3@ X=H/D:GOSUB 30669

4% PRINT '""REQUIRED ANGLE 18" ;C; ''DEGREES. "

R S e T T S I G N R O . S R e R A
SAMPLE ANSWER FOR EXERCISE 25-2:

1 CLS

12 FOR A=@ TO 36@
2@ X=A:GOSUB 3@372
3¢ Y=-Y*28

4@ SET(A/3,Y+22)
S@ NEXT A

6@ GOTO 1

Part C:

Some User’s Programs

“USE ME-BUT BE GENTLE.”

201

Part C:
Some User’s Programs

68

72

e

98
129
119
122
139
140
15g
160
17e
180
19¢
298

zZie

202

Test Grader Program

REM * TEST GRADER *
cLs

A=1

E=S

T=10

F=11

N=1¢g

P."WOULD YOU LIKE TOQ INPUT THE ANSWERS"

P."ONE AT A TIME OR S§ AT A TIME (ENTER 1 OR 5)"j sIN,T

IF (T=1)e(T=S5) GOTO 150

GaTo 12@

IN, "ENTER THE STUDENT'S NAME (LAST NAME,FIRST NAME)'" ; As, BS
cLs: P, “TEST FOR ';Bs:" " ojAs

REST.

R=g

FOR 1=1 TO N STEP T

P."ENTER ANSWER'" ;:IF T=S ©, "8 " [; ""IHROUGH ' ;
P.l+T=1,

IF T=S INJACTII L ACTHL) (ACL42) ,ALI+3) ,AL1+43:6G.248

IN. ACL)

242 NEXT I

258 CLS

26@ P," RESULTS ON TEST FROM ' 4BS| " " jAsg"™ "
278 FOR 131 TO N

28@ P.ALI)

29@ READ 2

3ee P.Z,
318 1F A(I}=Z P, '"CORRECY ", : RsR+1
328 P,

33¢ NEXT I

342 P, ""PERCENTAGE CORRECT:' (INT(R/N*IGB+.5)
358 P.

362 G.1%¢2

379 DATA 5,3,A,0,C,E,T,T,F,T

IR e N S e R S T - S St i
Slowpoke

The kiddies (of all ages) will enjoy this one. It tests reaction time. When the com-
puter says “G”, you press any key to stop it. Then it’s the next player’s tuzn 1o
RUN it. The player who stops it on the smallest number wins. Any player who gets
a “SLOWPOKE" has to go take the dogfor a walk.

With a little easy rework of the PRINT statements it can be converted into a
“*drunkometer” reaction time tester,

Ta change the speed of the printing, you can add a short FOR-NEXT loop between
190 and 200.

12 PRINT " GET READY . . . « 4+ & « & « o &
2R FOQR B = 1 TO Sae

32 NEXT B

43 PRINT

S@ PRINY

628 PRINT

TE PRINT TABLI0) - VEEY SET & w s o o & o & o 5 s 9o ¥

ag X = RND(1583) 199 G.392

9% FOR N = 1 TO X 112 A=g
138 NEXT N 128 B=B+1
119 CLS 132 IF B>5 G.152
128 PRINT 142 G.3@2
138 PRINT 152 B=@
148 PRINT 168 C=C+1
152 PRINT 178 IF C59% G.158
168 PRINT 188 G.3@¢
178 PRINT TAB(32) , " G ot ' IV 199 C=2
18¢ FOR Z = | TO 12 288 =0+l
198 PRINT 2 210 IF £>S 6.2398
288 NEXT 2 220 6.390
218 PRINT 238 D=9
22¢ PRINT 268 E=E+l
238 PRINT 258 IF E>9 G.27@
24@ PRINY M SLOW PDKE" 262 G,292
25@ FOR N = 1 TO 1228 . 279 E=3
268 NEXT N 288 FzF+!
e N e e e 1 e I e
388 CLS
318 P.AT 478,F1E; " " 01Ci")" 5B 1A
12-Hour Clock

28 F=INTC(E/12):E=E-(F*1@3)

SR — Checksum For Business

48 D=INT(C/12) :1C=C-(D*1@)

5¢ IN."THE SECONDS ARE" ;A For those responsible for inventory numbers or check clearing and balancing in
60 B=INT(A/18) 1A=A-(B®12) business, a checksum is a most useful testing “code”, This simple program calcu-
lates error-free checksums almost instantly. It is designed for 6-digit numbers and

T8 Frfiel YOIIBBNN 80 ¢2n be used for stock number verification or other applications.

83 A=A+1

9F IF A9 G.11l0

203

8 BRINT
9 REM * CHECKSUM PROGRAM *

18 IN.'" THE FIRST DIGIT IS " 4a

2 IN.' THE SECOND OIGIT IS * ;B

SZ IN.' THE THIRD DIGIT IS5 " aC

72 IN.' THE FOURTH DIGIT IS " ;0

¢ IN.' THE FIFTH DIGIT 15 " &
11€ IN.'" THE SIXTH DIGIT 1S " F
168 F.

178 P." THE NUMBER 15 " ;AB;CiD3EF,
188 & = A + 2%8 + C + 2*D + E + 2°F
219 T = INTIS/12)}

22e v = S - T'10
232 5 = 1T + U
248 IF S»9 G.210@

28 P THE CHECKDIGIT IS ™ ;5

Design Program For
Cubical Quad Antenna

The cubical quad is an exceptionally fine antenna for use in receiving and trans-
mitting ham, citizens band, short wave broadcasting, industrial, public service radio
and television signals. 1t is rotatable, being well-balanced and lightweight, even
when not raised very far off the ground

Electrically, it consists of two loops of wire, one of which is fed with coaxial cable
or twin lead, the other simply scldered together at its ends. Figure 1isan illustra-
tion of a quad.

The program inputs only your desired operating frequency. It then calculates and

outputs all the mechanical dimensions needed so you can construct your own
quad, Happy designing!

204

2n
25
3@
4@
5@
6%
1e9
149
180

190

230
238

242

52¢@

Figure 1

cLs

P, " CUSTOM DESIGNING YOUR OWN HIGH GAIN ANTENNA >>

P.

IN. " CENTER FREQUENCY
CcLS

B See> cuBI1C
P.

E=.985 * F

G=1.¢33 * F

0=1803/F

R=1€32/F

Be118/F
X=(2*(R*R/64))

GOSUB 19@0890

s=Y

x=(s*s + (8*B/4))
Gosue 1¢dez

P=Y

X = ((R*R/64) + 756 *
GOSUB 10989
T=Y
X = ((R*R/64) + 125%1
GOsSUB 1087¢

L=y

W=GeB/F

{ IN MEGAHERTZ) = * ;F

AL OUAD ANTE

75/7(F*F%a))

257(F*rta))

NHNA

B, THE DESIGN CENTER FREQUENCY IS™ F:"™ MHZ.

Pl

Ll Tt

778 CLS

525 P.'THIS 2 ELEMENT GUAD SHOULD EXHIBIT A STANDING WAVE RATIO" 799 P." THIS QUAD ANTENNA WILL WORK WELL EVEN AT
533 P."0F 2:1 OR LESS OVER THE FREQUENCY RANGE FROM™;E;"“7TO"“ LOX HEIGHTS®
ERe P IV Y TS WG SRR R B RS e 795 P.'" ABOVE THE GROUND, BUT IT WORKS BEST WHEN UP IN THE AIR"
542 P, 888 P."™ A HALF-WAVFLENGTH ==~ * ,w;" FEET, OR MORE."
572 P."THE BODM LENGTH CAN VARY BETWEEN' ;75/F;: "“FEET AND " simops
S7S P.128/F " FEET WITH LITTLE EFFECT. A LENGTH OF" ;8 84@ P.’ THE FRONT~TQ-BACK RATIO (ABILITY 70 REDUCE
58¢ P.'FEET IS OPTIMUM. " UNNWANTED:"
559 P. 845 P." SIGNALS FROM THE OPPOSITE DIRECTION) SHOULD
628 P." TOTAL LENGTH OF THE WIRE IN THE DRIVEN ELEMENTY Is" 0 EXCEED 10"
625 P.™ FEET, WHICH COMES TO" ;0/4;' FEET ON EACH SIDE." eS8 P. " DECIBELS FROM ABOUT™ 4.97%F¢" TO" 41.03%F,
638 P. ' MEGAHERTZ, "
649 P.T.(20), "PRESS ENTER TO CONTINUE™iIN. AS 853 P APPROACHING 28 0B AT™ 1Fj*" HESAHERTZ. ™
6528 CLS 86e. P,
66@ P." TOTAL LENGTH OF WIRE IN THE REFLECTION ELEMENT 1S* R LLU L S S R
665 £, ' FEET, WHICH IS"™ jR/4;' FEET ON EACH SIOE." VS99 END
678 P. 12002 REM * SQUARE RODT SUBROUTINE *
692 P, " THE MINIMUM LENGTH OF GAMBOO. FIBERGLASS LAGIR IFE X 2= B COTOI 10048
OR OTHER™ 18022 P." NO SUCH THING AS SOGUARE ROOT OF NEGATIVE NUMBER"
695 P."WILLBE";S; "FEET, MEASURED FROM THE CENTER OT THE™ 12037 ENO
657 P.' BOOM. 1F A SPIDER (BODMLESS) QUAD MOUNT 1S USED, " MRS OYERS2
728 P."™EACH SPREADER WILL HAVE TQ BE AT LEAST™ ¢, “FEET." LYQSE- Z=0
e 19868 W=(X/Y - Y)/2

748 P.' TME TURNING RADIUS (FOR TREE CLEARANCE, ETC) 18378 IF W=@ RET.

WILL VARY" 1@P83 [F w=Z RET.

745 P. " BETWEEN" sT¢'" FEET AND" ;U; " FEET, DEPENDING 10998 Y=YiwiZew

ON THE LENGTH" @123 GDTO 10664
758 P." OF THE BOOM. "
755 P.

760 P.T.(20)," PRESS ENTER TO CONTINUE" :: IN. AS

205

Your Computer is your own personal Tachistoscope, a device used to practice speed
reading. Study this sample program carefully to see how easy it is for you to sub-
stitute your own reading material at whatever reading level you want. The variable

Speed Reading

time loop lets you input the desired reading speed in words-per-minute.

3
4

]

29
39
&2
59
18%
182

194

1¢6

11

112

114

206

REM * SPEED READING FPROGRAM *
G.19

F.I=1 TO BiN.I:PRINT AT 448, RET.
REM AUDCIO PROMPT GOECS BEFORE RETURN IN ABOVE LINE.

1." HOW MANY WORDS PER MINUTE DO YOU READ' W

B=(12%&3/w%) * 589

REM S@@=FOR/NEXT LOOPS IN ONE SECOND

cLs

PLATA4GH

B SCARLETT D'HARA WAS NOT BEAUTIFUL, BUT MEN SELDOM

" 160S.5

P." REALIZED IT WHEN CAUGHT BY HER OWN CHARM AS THE TARLETON
" :GOS,S

P." TWINS WERE. 1IN HER FACE WERE TDO SHARPLY BLENDED THE
" 1G0S.5

P." DELICATE FEATURES OF HER MOTHER, A COAST ARISTOCRAT OF
"iG0S.5

P.'" FRENCH DESCENT, AND THE HEAVY ONES OF HER FLORID IRISH
" :G0S.5
P." FATHER. BUT IT WAS AN ARRESTING FACE., POINTED OF CHIN,
" +G0S.5

P." SQUARE OF JAW. HER EYES WERE PALE GREEN WITHOUT & TOUCH
" 160S.5

STARRED WITH BRISTLY BLACK LASHES AND SLIGHTLY

P." OF HAZEL.

" 160S.5

116

118

L2o

122

P,* TILTED AT THE ENOS. ABOVE THEM, HER THICK BLACK BROWS
" 1G0S. 6

P,"™ SLANTED UPWARDS, CUTTING A STARTLING OBLIQUE LINE IN HER
" +GOS.5

2,% MAGNOLIA-WHITE SKIN--THAT SKIN SO PRIZED BY SOUTHERN

" 1G0S.5

P. "™ WOMEN AND 50 CAREFULLY GUARDED WITH BONNETS, VEILS, AND
" 160S5.5

P." MITTENS AGAINSY HDT GECRG!A SUNS.

" 160S5.5

Modeled after the large wheels of fortune found at camnivals and other such gather-
ings, this graphics program accurately replicates its odds. The numbers are read
from a DATA bank and “rotated” through “windows" as the wheel is “spun”.

As commonly played, a S1 bet on any number, I, 2, 5, 10, 20 or 40 (the Joker
and TRS-80) returns those amounts — if that number comes up. If not

The Wheel Of Fortune

(Or. .. Never Give a Sucker an Even Break.)

cheap education.

Step right up, stranger. Try your luck at the wheel of fortune.

1¢
1

13

22
23
24

26

39P, ""PLEASE ENTER A 1,

REM * WHEEL OF FORTUNE *
CLS1J=131T=88

P, STEP RIGHT UP, STRANGER. TRY YOUR HAND AT THE' (P.:P.
Platt WHEEL OF FORTUNE": :P.iP.
p. "™ PAYOFFS IN DOLLARS FOR $I BET ARE 1, 2, §, 14, 2&."
P.1P. " SPECTALS ARE THE JOKER AND TRS-8@, EACH PAYING 4@."
P.sP." ENTER YOUR CHOICE AS 1,2,5,19.22, JOKER, DR TRS-8@."
IN.G

IF(G=1)+(G=2)14+(GnE) +(G=1R)+(GR2@)+ (G213} +(G=B216. 47

P.ATGGE:

it'sa

2, 5. 1@, 28, JOKER, OR TRS-82Z.% (:6.23

“a

se

34

65

70

7

~
ra

73

a9

82

83

189

129

132

140

REM

CLS1P,AT24," WHEEL OF FORTUNE™

T=65
P=RND(54}
REST.

FOR I=1 TO S¢

READ A(1)

NEXT 1

REST.

FOR 1=55 TO 6@

READ At1)

NEXT I

X=8:Y=16:605.32298

X=18:Y=12:160S.3880

X=361Y=91G0S, 3049

X=56;Y=6,608,.3@¢22

X=76.1Y=9,60S,3022

X=54:Y=12:G0S.32020

X=112:Y=15:C05.3222

PLATS2, " >>===35"

P.ATS94,'" ROCUND £ ROUND IT GOES . . .Y ;
P.AT729," JOKER (13) &"

P.AT794," TRS-80 (a@)"

P.AT856, " BOTH PaY 4@ TD 1"

FOR S=1 To !8@ + RND(2)

P.ATAS@ A(P); 1P.AT331 A(P+1]1:P.AT2TE . ALPI2);
P.ATZZ2 (AlP+3)

FLAT296 ,A(P+4) 1 1P . AT369,AIP+8) ;1P ATSE5 A(P46);
IFSETG, 238

RECS=TI?(S=TI*(S=THsT

IFS<98P .AT5%24, " PAYQFFS GO TO THE " 6,238

P.ATS594 , " ALMOST THERE . . . ',

23@ IF S<1€2 FOR Z=1 TO RiNEXT 2

235 P=p-1

236 IF P=2 P=54

248 WN.S:P.TAB(29);1Q=A(P+4):G0S,200¢ 1 X=8

250 P.TAB(22):" YOUR CHOICE WAS"™ : 0=G:1G0S5.20888

268 P.TAB(23),: IFG=A(P+4)P." YOU WIN AT" ;0" 70 1" :E.
27e P." YOU LODSE. MAE

588 D.1,2,80,1,5,1,2,1,10,1,2,1,5,1,2,1,8,1,2,1,29,1,2,1¢@
s18 D.1,2,1,5,1,2,1,5,1,2,13,1,2,1,18,1,2,1,2

$2¢ D.1,20,1,2.5,1.2,1@,1,2.5

2082 0=Q:17(0Qc>131%(0<>88)P. " " ;0:RET.
2212 O=4@ AS="JOKER " :IFQ=89 A$=TRS-88
2828 P.AS:RET.

3929 FOR 1= TO 7

3210 S.(X, I+Y11S.(X+1,1+Y)

XIS S.{X414,T4Y) S (X+15,14Y)

3820 S.C1*24x, ¥ :S.(1%241+X,Y)

3025 S.UI1%2+X,7¢Y3 5. {1%2+1+X,74Y]

3838 MEXT I

3940 RET.

Dow-Jones Industrial
Average Forecaster

There is no guarantee that this program will make you instantly wealthy, but it is
an example of converting a financial magazine article into a useable computer
program. The article describing the market premises on which this program is built
appeared on Page 90 of Forbes, June 1, 1977.

207

12

29

32

e

5a

68

e

86

Qe

Loe

1@

2ea

21

228

23¢@

REM * FROM FORBES 6/1/77, P.50. ARTICLE BY DROWN *

P.' **4PROJECTS TARGET DOW-JONES INDUSTRIAL AVERAGE AS A"

P. ' FUNCTION OF YEARS DJI EARNINGS AND INFLATION RATE o

P,

REM * K = COST OF MONEY. ASSUME 3x *

K=.€3

REM * P = RISK PREMIUM DF STOCKS OVER BONDS. ASSUME 1x *
P=.081
Y=1

N=#

B. " DO YOU KNOW YEARS PROJECTED EARNINGS OF 38 DJI {(Y/NI™
INPUT A
1IF A = 1 THEN 278

P.

P." THIS METHOD WILL GIVE AN CARNINGS APPROXIMATION USING"
£." THE NEWSPAPER PRICES AND P/E RATIOS, BETTER FORECASTS"
P.'" OF EACH COMPANY'S EARNINGS MAY GIVE AN IMBROVED™

P.' DVERALL FORECAST."

P.

D=2

FOR N = 1 TO 32

READ AS

P.'" WHAT IS THE CURRENT PRICE OF >==> ' sass" <--<";

INPUT P

P." THE CURRENT P/E RATIO" ;
INPUT R

E=P/R

D=E+D

N.N

266

27

282

286

3ze

i3e

348

3se

449

G.312

P. " @HAT IS THE TOTAL PROJECTED EARNINGS FOR 1 SHARE OF "

P, EaCckH"
INPUT D

REM ® I = ESTIMATED INFLATION RATE *

P.'" wHAT PERCENTAGE IS THE INFLATION RATE" ;

INPUT I

T = D/{K+P+1% .81}
R=T/D

P.

P." INFL. RATE™ ' DJT EARN."™ ,' PROJ DJ AVG"™ ,'" AVG/EARN RATIO"™

F.
P.1,0,T,R

DJ.ALLIED CHEM, ALCOA, AMER BRANDS, AMER CAN, A.T.&7

0. BETH STEEL, CHRYSLER, DUPONT, E. KODAK, ESMARK, EXXON

D.G.E., GEN FOODS, GEN MOTORS, GOODYEAR, INCO

D.INT., HARV., INT. PAPER, JDHNS-MAN, MINN MM, OWENS-ILLS

D.PROCTER & G,, SEARS, STD OIL CAL, TEXACO, UNTON CARPIDE

D.U.S. STEEL, UNITED TECHNOL., VESTINGHOUSE, WOOLWORTH

On A Snowy Evening . . .

by Robert Frost

Who says computers only make stuffy mathematical calculations and are not for
folks who appreciate the better things. If this one doesn’t grab you, nothing will.

4@ CLS

s@ P.AT7," ON A SNOWY EVENING

...... aY ROBERT FROST'"

£§5 F.N=1TC22201N.N

68 F.Z=1T03400

7@

72

ae

19099

Legl

1109

1181

Lzoe

1221

1302

12¢1

1402

1481

1522

ise

16@8@

1621

i7eéa

tre

igee

1881

1902

19812

2eee

2981

2iag

2iel

22p@

Z3ga

23¢%

2319

SET(RND(127),RND(6T))
N.2Z

1=2

P.ATSZ5, ' WHMOSE WOODS THESE ARE I THINK I KNOW.'

GOSUBEZEZ
F.AT525," HIS HOUSE IS IN THE VILLAGE, THOUGH' 4
cosuBoee?
P,ATS25," ME WILL NOT SEE ME STOPPING HERE LSS
GOSUBE2@2
F.ATS25," TO WATCH HIS WODDS FILL UP WITH SNOw™
Gosupszaa

P.AT525," MY LITTLE HORSE MUST THINK 1T QUEER *

GOSUBGEAR

P.ATS2S," TO STOP WITHOUT A FARMHMOUSE NEAR b
GosuBe@ee

P.ATS25, " BETWEEN THE WOODS AND FROZEN LAKE ”»

Gosupegae

FL.ATS25," THE DARKEST EVENING OF THE YEAR. ”
GosSUREZal

P,ATS25," HE GIVES HIS HARNESS BELLS A SHAKE " 3
Gosussgae

P.,ATS25," TO ASK IF THERE IS SONMI MISTAKE.™ ;
GRSUB6ZAR

P.ATS25, ' THE ONLY OTHER SOUND'S THE SwEERP™;
GDSUB62Z2

P.AT52%," OF EASY WIND AND DOWNYFLAKE. "y

Gosupswde

P.ATS25, " THE w0OODS ARE LOVELY, DARK AND DEEP'

GOsuBGoaa
P,ATS89, " BUT 1 HAVE PROMISES TO KEEP.'" 4
1=3

GnSURsEe

264228 P.AT653, " AND MILES TO GO BEFORE 1 SLEEP." ;
2485 I=6

2418 GOSUBGERE

25¢@ P AT717," AND MILES TD GO SEFORE 1 SLEEP."
2585 1=9

2519 G0SUB6B02

5998¢ SETIRND(127),RND(47))

S@91 G.52689

6080 F.N=1T02¢

5820 X=RND(127)

6830 Y=RND(4T)

69TE IF ¥ = 24+1G.6@22

6080 IF v = 25+1 G.692P

6099 IF Y = 26+1 G.&@28¢

6107 SET(X,Y)

6150 F.A=1TD221N.A

629 N.N

6300 RETURN

Termites

A malicious sense of humor helps on this one. Its avowed purpose is to demon-
strate the graphic RESET (X, Y) function, turning off the “lights” in a random
fashion, but it's not without other redeeming value. If you don’t like to sit by
the fire and watch it snow while reading good poetry, you can always watch the
termites eat your house down,

4@ CcLs

S# F.X=170127
6@ F.Y=3TO047
120 SET(X,Y)

1228 N.Y:iN.X

209

17 N=3715 66 PP, P,

182 ». " SEE THE TERMITES EAT. oMLY ; 7@ Y=1
185 P.AT4S, "' BITES LEFT!", 75 P. ''SHUFFLING COMPLETED . . GAME CONTINUES!"
8¢ B=#

20Q X=RNO(1273

98 GOTO 11@&
229 Y=RNO(4S5) + 2

3¢@ 1IF POINT(X,Y)=@ G.28@

118 R=INT(RND(4S))
SA6 RESETIX,Y)

12 M=A(R)
554 N=N=1

138 IF M=@ GOTO 11¢&
628 P.AT3IE . N,

1640 A(R) = @
788 IF N=2 G.9%9

158 T=¢
apa G.2@9

16@ FOR 2=1 TO 45
999 6.999%

Sorry

172 T=ACZ) + T

188 NEXT Z

185 P.T.(27)," PRESS ENTER™ [:TIN. AS
1@ IF 7=2 GOTOD210

s 2 282 GOTO 249

SORRY is a popular board game by Parker Brothers. This program demonstrates
how to load a deck of cards into a numerical array, draw them out in a random 212 £." END OF DECK. THE CARDS ARE BEING RESHUFFLED.'
fashion, “reshuffle”” the deck after the last card is drawn, and continue drawing.
You may specify how many seconds delay you wish between each drawing of the

cards, allowing as much time as desired to actually move the pieces on your own 239 GOTO 3¢
SORRY board. Have fun!

220 RESTORE

2643 IF Y < @ G.272

25¢ P, TAB(12); " RED"
1@ REM * RANDDM GENERATOR FOR GAME OF SORRY *
268 GOTD 284
11 IN. "ENTER A NUMBER FROM 1 TO :@e@" N
27@¢ P, TAB(4#);' GREEN'

. I= ® TET) N
12 F. I=1 TO Ni1J=RND{32767):N.1 S60 AE M = 19 GoT0. 58

18 LS 298 P, TAB(B+15)M

28 P," STAND 28Y FOR THE SHUFFLING OF THE DECK OF CARDS." 300 ON M GOTO 328,342,59@,35@,590,59¢ 422,599,590 ,432,45¢,59@,472
21 P. 31@ GOTO S52

22 P. 32¢ P.TAB(B):" MAY MOVE A NEW PIECE out"

39 P. 33¢ coro S92

4@ FOR N=1 TO 45 349 P.TAB{(B); " MAY MOVE A NEW PIECE OUTM

5@ READ A(N) 346 PP,

60 NEXT N 356 P. TAB(B45) ;' DRAW AGAIN "

210

oS [easo—=— i ieo SeES e]

378 GOTU 63¢

380 P.TAB(B) "™ MUST BACK UP & SPACES" Automaﬁc Ticket

39¢ GOTD 59¢

4¢0 P.TAB{B):" MAY SPLIT THE 7 BETWEEN" NMber Drawer

41 P.TAB{(B+3) " 2 PIECES"

Like to make a big splash at the next Rotary Club, Country Fair, or other ticket
drawing giveaway? This program uses the random number generator to pick the
438 P.TABIB) ;" MAY MOVE BACKWARDS 1 SPACE" lucky number(s) and eliminate charges of stuffing the ticket box, besides giving the
wheole affair some pizzaz. If your own number comes up and you are charged with
rigging the computer, you're on your own.

428 GOYO S9#%

4a? GOTO 599

a%@ P. TABIB) ;" CAN SWAP FIECES WITH OPPONENT"

3 IN. "“ENTER A NUMBER FROM 1 7O 1@2% N
468 GOTU 59@

4 F.I=1 TO N: JSRND{32767)N.1.
w7e P,

5 CLS
age P.

12 REM * PICKS WINNER(S) BY DRAWING TICKET NUMBER *
494 IF B=d GOTD 550

11 REM * NO MORE THAN 32767 TICKETS CAN BE soLo *
sag P. " GOTCHA <<

<<< <L<C===¢<<!
12 REM * BUT TICKET NUMSERS CAN RANGE TO 999999 & BEYOND *

518 P.TAB(49)} 1" SO R R Y IV

42 IN.' THE LOWEST TICKET NUMBER IS' 1B
528 P.

52 P,
538 P.

72 IN.' THE HIGHEST TICKET NUMBER IS "™ 1H
548 GOTO 5984

82 P,
SSg P, "SORRY ! 355==-35 55522535 " 3

98 EmH-B+1
568 P, TAB(55);" GOTCHA I

91 IF E<32768 G.11¢
57¢ P.

188 P.' TOQ MANY TICKETS SOLO!"™ 1END
582 P.

112 IN. "™ HOW MANY WINNERS DO YOU WANT ™ 1w
39¢ FOR X=1T04

122 CLS
60@ P. TAB(3@)y' *"

132 IF W > E 6.269
618 NEXT X

142 P,
6209 Y=Y¥(-1)

141 P.
630 1F Y>@ THEN 84

142 P
649 GOTD 108

163 P,

680 0.1,1,7,1.1,2,2,2,2,3,3,3,3,4,4,4.,4,5,5,5,5,7,7,7,7,8,8

182 P."* AND THE wWINNTING ",
660 D.8,8,1@,16,12,1@,11,11,11,11,12,12,12,12,13,13,13,13

182 IF W > 1 6,185

N e o G e S A — 163 F."TITCKET © 5%

211

184

200

285

212

229

262

262

264

266

269

G.202

At ee ey A ARE A
P.

atg) = @

FOR N =1 TO W
Z = HND(E)

P.
P.TAB(12) ;" >-—=-=3>>> " ;2 + 8 - 1
NEXT N

END

CLSIP, 1P, 1P 1P, P, PP,

P.TAB(8) ' YOU CAN'T HAVE MDRE WINNERS THAN'" ;

P, ' ENTRIES - ODUMMY 1™

Craps

The game is as old as history. A testimonial to the intelligence and ingenuity of our
ancient ancestors. An excellent way to demonstrate the running of twin Random
Number Generators.”

You don’t need to know how to play the game

you. (.

"~

2@
e
“e

5@

212

the computer will quickly teach
.. There's one born every minute . . .)

IN. "ENTER A NUMBER FROM 1 TO 12@'' N

F.I=1TDN; J=RND(32767) :N.1

REM * CRAPS GAME *

cLS

GOSUB 332 :1P=N

P.aP. " YOUROLLED ****''¢a;* AND '8 ' ¢¢**"

ON P GOTO 6@. 122,122, 109,127,1€2,110.100,120,100,318,122
REM * USED FOR THE ON STATEMENT IF P=1 (WHICH IT CaN'T)*
2." YOUR POINT IS" :N:GAOTO 13@

PRINT * you wIN!' P :END

126 PRINT " YOU LQSE."' tP.1END

139 GOSUB 38€:M=p

135 PP, " YOU ROLLED **%*™ a;* AND "iBp"evesv
149 IF P=M THEN 114

158 IF M=7 THEN 120

180 G.13¢2

388 A=RMD(6) (B=RND(&) IN=A+BIRET.

318 RETURN

Fire When Ready, Gridley

You have probably seen this popular graphics display at your Radio Shack Store.
It is very well done, and due to popular demand is printed here. Little boys of all
ages are fascinated by it, and it’s great for showing off your computer. You will
want to keep this one on tape for fast loading.

CASTLE SHOT

REM * CASTLE SHOT *

w

12 INPUT * ENTER YOUR INITIALS' ;AS
28 €LS

39 z=74

48 FOR Y=17 TO a7

5¢ FOR X=Z TO 127

6€ SET (X,Y)

7@ NEXT X

B2 LF Y<23 THEN 2=Z+2
208 NEXT Y

212 FDR X=75 TO 123 STEP &

222 SET (X,16)

232 SET (X+1,16)
242 NEXT X
252 Q=@

322 FOR X=35 TD 125 STEP §

319
3ze
23g
3ag
“ge

410

S50
6p¢
&1@

62a@

T2
73g
40
750
teew
19:@
1228
Lg3e
1@s4a
La5%

1122

113
1162
1199
12280

1210

FOR Y=47 70 35 STEP -1
RESET (X.Y)

NEXT Y

NEXT X

FOR X=95 TO 125

RESET (X,34)

NEXT X

PRINT AT 688, As;'''s CaSTLE"
FOR X=73 TO 137

SET (X,12)

SET (X,13)

NEXT X

FOR X=8%5 TO &%

SET (X,14)

SET (X,15)

NEXT X

RESET (92,13)

RESET (21,13)

FOR Z=1 TO 2

FOR X=2 TO 14

FOR Y=42 TO 43

SET (X,Y)
NEXT Y
NEXT X

FOR X=3 TO 13 STEP 2

RESET (X,41)

NEXT X

RESET {7,43)

RESET (8,43)

REM-==THIS WILL MAKE THE CANNON RECOIL
FOR X=1 TO 188:NEXT X

RESET (73,12}

1229
123@
1249
1259
1269
127@
1282
1299
1322
1310
1329
1339
134@
1389
1362

137@

1sge
1518
1522
1538
15648
l6@@
161@
1622
1632
1648

17289

17282
17329

1742

RESET (73.13})
RESET (74,12)
RESET (74,13)
SET (181,12)
SET (1@1,13)
SET (122,12)
SET (1@2,13)
FOR X=1 TO 1@@1NEXT X
SET (74,12}
SET (74,13)
SET (73,12)
SET (T3,13)
RESET (182,12)
RESET (102,13)
RESET (121,12)

RESET (181,13)

FOR X=71 TO 2 STEP -1
P=X-73

Y=P*P/150 + 12

SET (Xx.Y)

SET (X=1,Y)

RESET (X+1,0)

RESET (X,Q)

Q=Y

NEXT X

PRINT AT 771, " karPow!"™ ;
GOSUB 1920

FOR x=1 TO 18

RESET (X,45)

RESET (X,36)

RESEY (X,37)

213

L7528 NEXT X

189@ NEXT 7

1@ PRINT AT ¢

182¢ END

1988 FOR X=1 TO l1@¢7

@ NEXT X

1920 RETURN

2%

3z

49

5

68

(4]

8z

se

95

1e0

112

House Security

REM * LOGICAL AND PROGRAM *
cLS

Y=1i1N=2:P. " PLEASE ANSWER YES OR NO TO THE FOLLOWING QUESTIONS

Pe.
INPUT ' IS THE FRONT DOOR LOCKED' ;A
INPUT ' IS THE BACKX DDOR LOCKED™ 48

INPUT " IS THE KITCHEN WINDOW CLOSED™ ;C

INPUT ' IS THE BEDROGOM WINDOW CLOSED AND LOCKEDY (D

INPUT " IS THE GARAGE DODR LOCKED' E
P.iP,
IF (A=Y)*(B=Y)*(C=Y)*({D=Y)*(E=Y) THEN 128

P." HOUSE NOT LOCKED UP FOR THE NIGHT."

P.

P." PLEASE CHECK FOR AN UNLOCKED DOOR DR WINDOW. '

END

P." HOUSE SECURITY CHECK SHOWS HOUSE LOCKED UP FOR THE NIGHT.'

END

=m0 = =ermee = =]
Loan Amortization

This program provides a fully developed installment plan for the repay-
ment of small-to-moderate size loans, such as car or home improvement
loans. The program includes all instructions necessary to using it. Use it
with common sense; in the last payment period, amounts may be
carried out to a fraction of a cent.

Challenge: modify the program to eliminate fractional-cent payments,
without changing the total amount paid as interest or principal.
1@ C=@:CLS:IN, ""PRINCIPAL' P

28 IN. "#0OF PERICDS'" L

38 IN. " INTCREST RATE' :

EY

4@ 1=R/12:1=1/710€

5@ T=1:F.X=1TOL

60 T=T (1+41) N XaT=1/T

e T=1-7

8g M=P*I/T

A8 M=INT(M*188+.5)/102@

98 GNS.228

198 F.Z=1TOL

118 IFC<13G.120

115 IN, '""PRESS ENTER TO CONTINUE' ;AS C=2:G0S,. 208
128 A=(INT(P"I*120+.5))/10@Q

138 B=M-A:P=P-B

140 P.ZytP.T.(18),P 1P, T, (2@) ,M:
15¢ P,T.(32),8¢1P.T.(40).,A

168 C=C+1:N.2

17¢ END

200 CLS:P. "PAYMENT REMAINING MONTHLY PRINCIPAL INTEREST'
218 P. "“NUMBER PRINCIPAL PAYMENT FAYMENT PAYMENT'

228 RET.

/~Appendix:

A. Subroutines

B. Cassette Data Files

“IF THIS BOTHERS YOU- C. Combined Function and ROM Test

WE'LL HAVE IT REMOVED.”

Appendix A:
Subroutines

Subroutines listed in this Appendix:

Square Root

Exponentiation

Logarithms (Natural and Common)
Exponential (Powers of e)
Tangent

Cosine

Sine

ArcCosine

ArcSine

ArcTangent

Sign

These subroutines will let you run programs which require advanced math
functions not directly available in LEVEL I BASIC.

If you entered all the subroutines exactly as they're listed, you'd have less
than 700 bytes of memory left for your main program — not enough to do
much of anything. So just enter the subroutines you need, and omit REM
statements if you’re still short on space.

Once you've entered a subroutine and gotten it running, save it on a
Cassette. Try saving different combinations of subroutines on Cassettes: for
example, make a SIN/COS/TAN cassette, a SIN/SQR cassette, an EXPO-
NENTIATION/LOG/EXPONENTIAL/SGN cassette — whatever combina-
tions are useful to you.

Each subroutine listing has a set of instructions in the margin. Study them
closely. You’'ll see that some subroutines require other subroutines for in-
ternal calculations. You must enter these “‘auxiliary subroutines” when the
instructions call for them.

Always enter 30p0@ END as a protective block when using subroutines. For
complete information on the use of subroutines, see Chapter 25,

NOTE: Accuracy of the subroutines is less than the acruracy of LEVEL I math operators
and intrinsic functions. This is due to two factors: 1. The subroutines contain many chain
calculations, which tend to magnify the small error of individual operations. 2. These
subroutines are only approximations of the functions they replace, In general, the sub-
routines are accurate to five or six decimal places over much of their allowable range,
with a decrease in accuracy as the input approaches the upper or lower limits for input
values,

Square Root
Computes: SQR(X), VX

Input: X, must be greater than or equal 0 zero.

_thpyt:Y
Also uses: W .7 internally
Other subroutines required: None

How to call: GOSUB 30930

38829 END

32212 REM *SQUARE RODT* INPUT X, QUTPUT ¥
Iee23 REM ALSO USES W & 7 INTERNALLY

30830 IF X = @ T. Y = & : RET.

32042 IF X>2 T. 30268

3pe5% P. "“ROOT OF NEGATIVE NUMBER?' : STOP
32268 Y=x'.5 : Z=¢

38870 w=(X/Y-Y)*.5

3p288 IF (w=p) + (W=Z) T. RET.

38299 Y=Y+W : Z=W : G. 3@2@7¢

216

Exponentiation
Computes: X Y (X to the Y power)
38022 END
Input: X, Y. If X is less than zero, Y must be an odd integer 30182 REM *EXPONENTIATION® INPUT X,Y; OUTRUT P
3¢11¢ REM ALSO USES E,L,A,B,C INTERNALLY
Output: P 32122 P=1 s E=@ & IF Y = @ T. RET.
. . 30132 IF (X<EI*(INT{Y)=Y) T. P=1-2%Y+4*INT(Y/2) & X=X
Also uses: E, L, A, B, C internally, Value of X is changed. ;
35142 IF X<>@ T. GOS. 32198 : X=Y'L : GOS. 30258
Other subroutines required: Log and Exponential 3¢15¢ P=P*E : RET.

How to call: 39120

Logarithms (Natural and Common) FRANE

38178 REM *NATURAL & COMMON LOG* INPUT X, OUTPUT L,X

Computes: LOG(X) hase e, and LOG(X)base 10 33175 REM OUTPRUT L IS NATURAL LOG, OUTPUT X 15 COMMON LOG
30182 REM ALSD USES A,B,C INTERNALLY
Input: X greater than or equal to zero : 39190 E=0 : IF X<2 T. P. "“LOG UNDEFINED AT"™ ;X:STOP

3 o 39195 A=1 : B=2 1 C=.5
Output: L s nateml log (hask.e)y Ris comimon Tow (hese-10) 30282 IF X>=A T. X=C*X : EcE+A : G. 30208

. - 285 T. X=8*X : E=E- 5
Also uses: A,B,C interally. Value of X is changed. 39 1FXKe S5%) @ ENESQ 4 Gy 320
302108 X=(X-.787187)/{X+.787187) : L=X*X
Other subroutines required: None 30215 L=(({.598979%L+.961471)% +2.88539)%X+E-.5}*.6%93147

39222 1F ABS(L)C1E-6 T. L=8

How to call: GOSUB 30199 32225 X=L*.4342045 RET.

Exponential 32809 END

Comput%: EXP (X) (e to theXpower) 3p244 REM *EXPONENTIAL* INPUT X, QUTPUT E
38245 REM ALSO USES L,A INTERNALLY

lnpll,(:X ! 32258 L=INT(1.46427*X)+1 : IF L<127 T, 3226%
3285 IF X>8 T. P. "OVERFLOW " : STOP
39268 E«=2 : RET.

3P265 E=.693147%L-X : A=1.3298B8E-3-1.41316E-4*E

OQutput: E

Also uses: L,A internally. Value of X is changed.
38275 E=(({A-.166665)*E+.S)YE-1)*E+]1 ¢ A=2

Other subroutines required: None 39288 IF L<=8 T. A=.5 : L=-L : IF L=@ T. RET.

3228% F. Xx=1 TO L &+ E=AYE 1 N, X : RET.
How to call: GOSUB 39250

217

Tangent
Computes: TAN(X)

2 39eae END
M: xm g 30328 REM *TANGENT® INPUT X% IN DEGREES, OUTPUT Y
onmt: Y 3931¢ REM ALSD USES A.C,W,2 INTERNALLY

; 30320 A=X 1 GOS. 38368
Also Uses: A,C,W and Z internally. Value of X is changed. 3g33¢ IF ABS (Y)<1E-S5 T. P, 'TANGENT UNDEFINED'" ; STOP

39348 C=Y : X=A : GOS.30376 : Y=Y/C : RET.
Other subroutines required: Cosine, Sine
How to call: GOSUB 30320
Cosine
Computes: COS(X)
i 3¢982 END
30352 REM *COSINE* INPUT X IN DEGREES, QUTPUT Y
39351 REM ALSO USES wW,Z INTERNALLY
30360 WSABS(X)/X:X=X+90:GD5.38376:1F(2=-1)*(W=1)T.Y=-
Also uses: W and Z internally. Value of X is changed. 3U25% RET.
Other subroutines required: Sine
How to call: GOSUB 30360
- 32892 END
Sine i
32379 REM *SIN INPUT X IN DEGREES, QUIRPUT ¥
32371 REM ALSO USES 2 INTERNALLY
Computes: SIN(X)
32376 2=ABS(X)/X1X=2"x
R - : ‘ 3@3AG IF XO368 1. X=x/368 1 X=(X-INT(X))"36@
i 32392 IFX>9RY . XeX/3@:Y=INTIX) :Xs(X-Y)*92:0NYG.3IP419,32420,20243¢
22400 X=X/57.20578 1F ABS{X)<C2 486l6E=-4 Y=O:RET,
I24085 G.3@440
= - 32410 X=99-X G. 3p4p00
Also uses: Z internally. Value of X is changed. :
32420 X=-X 1 G. 32gemR
30430 XxX=X-99 3 G, 38400
o e g g .
ther subroutines required: None W e R TR — -
30458 YoY+XTXOXOXU XX X"Xk*X/362888 : IF Z=-1T.v==Y
How to Call: GOSUB 30376 e

218

ArcCosine
Computes: Arccos(S), angle whose cosine is §
Input: 8, 9@-801
39889 END

Output: Y in degrees, W is in radians 7 e 30568 REM *ARCCOS® INPUT S, OUTPUT Y,W
39518 REM Y IS IN DEGREES, W IS IN RADIANS

Also uses: X,Z internally
39522 GOS. 33550 : Y=92-Y : W = 1.578796-W : RET.

Other subroutines required: ArcSine

How to call: GOSUB 30509

30800 END

32539 REM *ARCSIN SUBRUUTINE® INPUT S, DUTPUT Y.W
39535 REM Y IS IN DEGREES, W IS IN RADIANS

32549 REM AL SO USES VARIABLES X,Z INTERNALLY

ArcSine

Computes: ArcSin(S), angle whose sine is §
_ 36550 X=S : IF ABS(S)<=.7@871€7 T. 30612

.hmg;s_gg;‘s<=1 30568 X=1-S*S ; 1F X<@ T. P. S; "IS OUT OF RANGE' : STOP
. 38578 wW=X/2 : 7=
Output: Y in degrees, W in radians S0, 32588 Y=(X/W-%)/2 : IF {Y=8)4{Y=Z) T. X=W : G. 38618
Also uses; X,Y internally 30687 W=W+Y 1 Z=Y G. 38580
38618 Y=X+X*X*X/64XTXIXAX*X¥ 75+ XXX X X*X*X*4 . 464286E-2
Other subroutines required: None IB628 WeY+XEXFX T AR TN AT X*X*3 . 03810462
30625 1IF ABS(S)>.787187 T. W=1.578796-W
How to call: 30550 39630 Y=W*S7.29578 : RET.
ArcTangent 30989 END
33668 REM TARCTANGENT® INPUT X, OUTPUT C,A
Computes: ATN(X), angle whose tangent 1s X 39678 REM C 1S IN DEGREES. A IS IN RADIANS
s : 396824 REM ALSO USES 8,T INTERNALLY
Tnput: X : 38692 GOS. 32819 : X=ABS(X) : C=9
W:ciﬂm,Alﬂ radians : t 387808 IF X>1 7. €=1 : X=1/X
’ 36710 A=X*X
Also uses: BT internally. Value of X is changed. 38729 B=((2.B6623E-3*A-1.61657E-2)%A+4.29096E-2)%A

30732 B=((((B-7.52B9E~2)%A+. 106563)™A~.142889)%A+.199936)%A

i ired: Si
it G fegab e i 38740 A=((B-.333332)%A+1)*X

How to call: GOSUB 3069@ 39758 IF C=! T. A=1,5787%6-A
30762 A=T®A : C=A*S7.29578 : RET.

219

Sign

Computes: SGN(X), the sign-component of X

3g@3e END

3080¢ REM *SIGN* INPUT X, DUTPUT T=-1,8 DR +1
38818 IF X<& T, T=-1

3982Q IF X=8 T. T=0

3¢83@ IF X>¢ T. T=1

39849 RET.

Also uses: No other variables
Other subroutines required: None

How to call: GOSUR 30819

220

Appendix B:
Cassette Data Files

The matenal in this Appendix is optional and yet very important. The more practical pro-
gramming you do, the more you'll appreciate your TRS-80’s data file capabilities. They
allow you to go from the world of programming to the larger world of data processing.

Up to now we've relied on LEVEL [’s 26 humber variables A to Z, 876 (or less) array loca-
tions A(X), two string variables A$ and B$, and DATA lines to store the data our programs
need. This leaves us with two limitations:
1. The Computer's memory may not be large enough to hold all the data we need (for
example, an inventory list).
2. When we turn off the Computier, the values of A B,A(X), etc., are lost.

Cassette data files solve both of these problems. We can save huge guantities of information
on tape and retrieve them later, just as we save and reload programs. Only instead of the
commands CSAVE and CLOAD, we use the special statements PRINT # and INPUT =%,

Press RECORD and PLAY keys on your Recorder at the same time, then type in the fol-
lowing lines and RUN :

S8 A=1:8=2:C=3
189 PRINT # A;",";B;",";C

Note the special punctuation required to separate each variable to be printed onto tape.

The sequence of five characters (;”.”";) must be inserted between every two variables in a
PRINT # statement.

This program causes three things to happen:
1. The Tape Recorder is automatically started (assuming you have it set in the RECORD
mode).
2. The values of A, B and C are written onto the cassette.
3. The Recorder is automatically stopped. (You should then press STOP on the Recorder
to disengage the recording head.)

You now have a permanent record which can easily be read back into the Computer, Note
that the variables A, B and C are not written onto the tape — just the values of those vari-
ables (in this case, 1, 2 and 3) are stared.

221

To read back the data from tape, you must first press REWIND on the Recorder to rewind
the tape to the point where the data file started. (You'll have to disconnect the REMote
plug to gain manual control of the recorder. When you have rewound the tape to the start-
ing point, reconnect the REMote plug.)

Type NEW to clear out the old program and enter these lines:
182 A=p: B=Q: C=0P
119 INPUT # A,B,C
122 PRINT " THE DATA HAS BEEN READ FROM THE TAPE."
130 PRINT "A=";A,"B="";B,"C="";C
Now press PLAY on the Recorder and type RUN.

If the data from the earlier program was stored and read properly, the Computer should
display:

THE DATA HAS BEEN READ FROM THE TAPE

As 1 B= 2 C= 3

Line 100 sets our variables to zero, If the data is not read properly, A, B and C will be
output as zero.

Line 110 causes the Recorder to start, loading three nutmbers into the variables A, B and C.
When the three numbers have been read, the Recorder motion is stopped.

Line 120 prints a reassuring message, This is important when the Computer is using an
external device such as a Tape Recorder. Print messages are also valuable as prompting
instructions to the user regarding the control of the Recorder. For example, before the
Computer executes a PRINT # statement, we can have it print a message telling the user
to put the Recorder in the Record mode,

Line 130 prints the data that was read from the tape.

NOTE: If the Recorder is not in the PLAY mode (with proper connections made) when it
executes an INPUT # statement, the Computer will keep trying o read the tape until it
gets something. You have no keyboard control of the Computer during such an input
operation, so it is effectively locked-up. The only way to unlock it is to press the Reset
button located in the expansion port on the left rear corner of the Keyboard. This will
terminate the entire program, but will not erase it.

222

on an INPUT

2

to separate

One last word of advice: If you PRINT # a list of, say, 19 values onto tape, you should
INPUT # a list of 19 values also. If you don't match up the number of PRINT # items
with the number of INPUT # items, you'll end up either losing data or going into the
lock-up condition described above.

The following program demonstrates how a data file can be used to create a list of data
items, process and update it. Study it carefully and think how similar programs might
handle inventories, or any sequential lists.

1 REM *AVG.TEMP AND HUMIDITY USING A DATA FILE*

5 C=@:CLS

7 B=@

18 IN. "WHAT DAY OF THE MONTH IS IT'' ;D

28 IN."WHAT WAS THE TEMPERATURE TODAY' ;T

38 IN. "WHAT WAS THE HUMIDITY" ;H

49 IF D=1 THEN 169

5@ P.' LOAD PREVIDUS TEMPERATURES AND HUMIDITIES THIS
53 P.'""FIRSTREWIND TAPE TO BEGINNING OF DATA FILE."
5 P, " THEN PRESS RECORDER'S PLAY KEY."

60 IN.'"PRESS ENTER WHEN READY'';A$

72 FOR X=1 TO D-1

8@ INPUT # Y,Z

90 B=B+Y
182 C=C+2Z
119 NEXT X
126 B=(B+T)/D
139 C=(C+H)/D
148 CLS:P. '"THE AVERAGE TEMPERATURE IS' ;B

1509
160
179
184
190
229
219
220
230
240
259

P. " THE AVERAGE HUMIDITY IS';C

P.:P, ""NOW THE TRS-88% WILL WRITE"

P.'"TODAY'S TEMPERATURE AND HUMIDITY "
P.'""ONTC THE TAPE."

P.'" S0 PRESS RECORD AND PLAY KEYS"

P.'"BUT DO NOT REWIND, "

IN., "PRESS ENTER WHEN READY'' ;AS

PRINT # T:'" ,":H

P.:P.'""NOW TOBAY'S INFO IS ADDED TD THE TAPE FILE.
P,iP. "PLEASE PRESS STOP KEY ON THE RECORDER.,"
END

MONTH. **

Line 7 reads back all the previous days’ numbers, two at a time. When all the information
is read in, the average temperature and humidity are calculated (using the current day’s
info as well),

Line 210 then writes the current day's information at the end of the list.

223

Kor a sample run of the program, assume it is the first day of the month. Enter plausihle
temperature and humidity figures. Cantinue running the program uniil you've got a cumu-
lative listing for several days. Getling the feel for data files?

Suggestions for Further Use of Data Files

1. Teaching/Testing. Write a program that gives a multiple-choice test, for example, a voea
bulary test. Include ten questions. The program should write the student’s name and all
ten responses onto a cassette data file, Design the program so that any number of students
may take the test in sequence. Include instructions about when to use the RECORD,
PLAY and STOP keys.

Write a grader program that uses the data file created above to read each student’s name and
responses, grade the test, and then read the next student’s test. Be sure to Jeave time for the
teacher to mark down the names and grades in his or her little black book.

2. Inventory. Write a program that sets up an array in which you store the following infor-
mation ahout a group of cars;

License No. Engine Size Color Code Body Style
The program should then store the array in a data file.

Write another program which
1. Asks you which car you're interested in (you enter the license number).
2. Reads the data file until it comes to the correct license number.
3. Prints out all the information about that particular car.

(See Chapter 21, where this same array was
developed.)

Appendix C:
Combined Function and ROM Test

The following program puts the TRS-80 through its paces — all of them. If you're having
trouble running a program, and you think it may be the Computer’s fault, try this program
on it. (First check to see that the Computer powered-up properly by running the P .M.
test described in Chapler 26.)
Program execution is in three stages:

1. Function checkout (takes about 5 seconds)

2, RAM checkout {takes a few minutes)

3. Display checkout. This lets you check centering, straight-line distortion, ete. (Takes

hardly any time at all — press[IYRER:] to *‘redraw’ test pattern.)

If at any point the Computer comes back with a “BREAK AT ###" {(### will be a line
number), you know that one of the functions isn’t performing properly (ROM error). In
case of a RAM error, BREAK message will be preceded by the message “RAM ERROR™.

If you don’t get a BREAK message (or an infinite loop), you can relax about, the TRS-80
and go back to troubleshooting your program.

Type in the program VERY CAREFULLY, get it running properly, then save it on tape for
later use,

1 IN. "TYPE 1, THEN PRESS ENTER"™ ;X
15 CLS:P.AT@®; '"TRS-88 FUNCTION TESTY
22 READ Y

39 DATA 2

42 RESTORE

59 READ Y

55 F.A=1TD1@Q8:N.A

6@ IFX>YSTOP

225

7¢ IFX>=YSTOP

8¢ IFYLXSTOP

92 IFY<=XSTOP

128 F.X=1TO18STEP2
112 GOTO132

128 STOP

13¢ GOS.158

149 GOTO1682

158 RETURN

168 CNXGOTO18@

178 STOP

188 SET(X,Y)

185 IFPOINT(X,Y)G.19@
187 STOP

198 RESET(X,Y)

208 IFXL<>Y-1STOP
212 IFY=X+1G.23¢
228 STOP

23@ Z=RND(2)

248 X=1.1:X=INT(X)

245 Y=ABS(X)/2+.5

258 IFY=1G.277

26z STOP

278 REM EVERYTHING IS OK

226

292 CLS:P.TAB(5),"ALL FUNCTIONS ARE 0.K.,THE RAM TEXT IS NOW
RUNNING. "

382 A=M./4-1:B=0
31¢ F.Y=1T08:Q=.5

322 F.B=1TOY:Q=Q*2:N.B

330 F.X=BTOA:A(X)=Q:N.X

340 F.X=@TOA:IFA(X)<>GQGP. ""RAM ERROR" :STOP
350 N.X

360 P.AT68,Q:N,Y:P.AT®; "'THE RAM TEST IS COMPLETE'
378 F.A=1T0258@:N.A

4@@ CLS:K=1

419 A$=GH

423 F.X=1T032:P.A$i:N.X

439 F.X=1TO14:P.T.(29);A$:N.X

449 P.AT 4693

459 F.X=1TD9:P.AS$;:N.X:P.

468 P.T.(21);:F.X=1TO9:P.A$3:1N. X
473 P.AT9680;

480 F.X=1TD31:P,AS;:N.X

492 IN.BS

502 I1FK>PA$=80

519 IF K<@AS=GH

529 K=-K

39 CL.5:G.429

Pin Connections for Expansion —
Interface Specifications Port Edge Card

{See Figure 2)

SIGNAL
P/N NAME DESCRIPTION
1 RAS* Row Address Strobe Output for 16-Pin Dynamic Rams
Casse“e 2 SYSRES* Syﬁtem lll)esez Ouet,put, L.ow During Power Up Initialize or
eset Depresse
Suggested Input Level for 2 V peak-to-peak at a minimum 2 %\g"’ ﬁz’&‘r’;‘s’; Sﬂfrﬁf Strobe Qutput for 16-Pin Dynamic Rams
Playback from Recorder impedance of 360K ohms 2 ﬁ%% Agg'”” Outgut
. Address Output
Typical Computer Output 800 mV peak-to-peak at 1K ohm g ;}3\150 Qddn]?scs‘ Outvdut
Level to Recorder ?) E 1 ﬁ:§§$°”.§:?p“t
- . _ 1 4 vess Output
Remeote On/Off Switching 0.5 A max at 6 VDC 11 8?5'1 ?dd,;“ ?‘i&g‘" p—
1 12 Yo eripheral Write Stro utput
Capability 13 WR* Memory Write Strobe Output
}g RII;F'AK‘ ll\?terruptﬁ\cknowlebdg(e) Output
) : : ~ i emory Read Strobe Output
DIN Jack Pin Connections (See Figure 1) }9] ?\flglx x]gbtiplcﬁs‘: Control Output for 16-Pin Dynamic Rams
s ress Qutput
1 R'emote 18 D4 Bidirectional Data Bus
2 — Signal ground 19 1IN* Peripheral Read Strobe Qutput
3 — Remote 20 D7 Bidirectional Data Bus
4 s ; 21 INT* Interrupt Input (Maskable)
— Input from recorder’s earphone jack %% %ST. gu[hrec::ona Datra gus‘ ; . 1 i
r= J Mic i 3 * Logic “®’ on TEST* Input Tri-States A@-A15, 7,
5 — Qutput to recorder’s Aux or Mic jack WRE RD* IN*. OUT*, RAS*, CASY, MUX*
24 Dé Bidirectional Data Bus
25 AD Address Output
= e 26 D3 Bidirectiona! Data Bus
Video Signal 27 Al Address Qutput
28 D5 Bidirectional Data Bus
o . . 2 i 3 i
DIN Jack Pin Connections (See Figure 1) 58 §§D %:33;:::«:%%::?00 B
= 31 4 Address Bus
1—+5 VDC at 50 mA 32 D2 Bidirectional Data Bus
2 — Not used ZS WéAiT"‘ ll"\roa:essoz)wail Input, to Allow for Slow Memory
o 4 Al ddress Quiput
3 —Not used 35 A Address Ousput
4 — Video signal, 1.4 V gg 6\'& 5 g‘_ddr?s(i’ Ouu:;u
- gna roun
peal\-_to-peak. 0.4V 38 A8 Address Qutput
negative syne, 76 ohms 39 45V 5 Volt Qutput (Limited Current)
5 — Ground 40 A2 Address Output
2 NOTE: *means Negative (Logica! “9") True Input or Qutput
4 §
Mates with AMP P/N 88103-1 Card
Edge Connector or Equivalent
Figure 1. Pin Connections 1 3 T3 s T 9 1 13 15 17 19 2 W B A B » 3\ B N N
for TAPE and VIDEO DIN A A oo o s.osos nn n oS- 8- aoa-f-m o |
Jacks (viewed from rear of - e P~ S~ I~ A = .~ S~ T~ = T — L B~ R — R R4
2 4 6 B8 0 12 14 16 18 N0 22 24 6 ® I 32 I3 36 3B A

keyboard assembly)
Figure 2. Connection peints for
ExpansionPort Edge Card (viewed
from rear of keyboard assembly)

228

Notes:

229

Notes:

230

Notes:

231

Summary of LEVEL 1 BASIC

Commands
NEW

RUN

RUN###

LIST

LIST#w#s

CONT

Purpose
Clears out all program
lines stored in memory

Starts program execution
at lowest-numbered line

Starts program execution
at specified line number

Displays the first 12 pro-
gram lines stored in
memory, starting at low-
est numbered line. Use
A key to display higher-
numbered lines (if any)
Same as LIST, but starts
at specified line number

Continues program execu-

tion when BREAK AT
is displayed

Described in
Example Chapter(s)
NEW (not part of program) 1
RUN (not part of program) 1
RUN 30 (not part of program) 11

LIST (not part of program) 2

LIST 399 (not part of 11
program)

CONT (not part of program) 11

Statements
PRINT

INPUT

INPUT

READ

DATA

RESTORE

GOTO

232

Purpose

Prints value of a
variable or expression;
also prints whatever is
inside quotes

Tells Computer to let
you enter data from
the Keyboard

Also has built-in
PRINT capability
Reads data in DATA
statement

Holds data to be read
by READ statement
Causes next READ
statement to start with

first item in first
DATA line

Described in
Example Chapter(s)

10 PRINT “A+B=""; 123
A+B

10 INPUT ABC 7

19 INPUT “ENTER A™; A 7
1p READ A B,C,A$ 16
20 DATA 1,23, “SALLY” 16

30 RESTORE 16

(Optional) Assigns a new value @ LET A=3.14159 2

to variable on left of
equals sign

Transfers program control
to designated program line

10 GOTO 309 6

locations (clears screen)

Described in
Statements Purpose Example Chapter(s)
IF-THEN Establishes a test point 10IF A=B THEN 309 6
FORNEXT Sets up a do-loop to be 10 FOR 1=1 TO 10 10,11
executed a specified 20 NEXT | 13
number of times
STEP Specifies size of increment 19 FOR [=p TO 1¢ STEP 2 10
to be used in FOR-NEXT
loops
STOP Stops program execution 19 IF A(B STOP 11
and prints BREAK AT
message
END Ends program execution 99 END 2
and sets program counter
to zero
GOSUB Transfers program control 10 GOSUB 3009 15,25
to subroutine beginning at
specified line
RETURN Ends subroutine execution 3019 RETURN 15,25
and returns control to
GOSUB line .
ON Multi-way branch used 19 ON N GOTO 39,40.50 15
with GOTO and 19 ON N GOSUB 3009,
GOSUB. 4009, 5909
Print Described in
Modifiers Purpose Example Chapter(s)
AT (Follows PRINT) Begins 19 PRINT AT 659, “"HELLO” 22
printing at specified
location on Display
TAB (Follows PRINT) Begins 19 PRINT TAB (19); 12
printing at specified “MONTH”; TAB (20);
number of spaces from “RECEIPTS”
left margin
Graphic Described in
Statements Purpose Example Chapter(s)
SET Lights up a specified 1PSET (3p40) 20,22
location on Display
RESET Turns off a specified 2P RESET (30.40) 20,22
graphics location on
Display
POINT Checks the specified 3@ IF POINT (39,40)=1 22
graphics location: if THEN PRINT “ON"
point is “on”, returns
a I,if “off”, returns
af.
CLS Turns off all graphics 19 CLS 10,20

Built-In Described in
Functions Description Example Chapter(s)
MEM Returns the number of 10 PRINT MEM 8
free bytes left in
memory
INT(X) Returns the greatest 10 I=INT (Y) 14
integer which is less than
or equal to X
ABS(X) Absolute value of X 10 M=ABS (A) 17
RND (¢) Returns a random 10 X=RND() 19
number between @ and 1
RND(N) Returns a random 10 X=RND(50¢) 19
integer between
land N
Math Described in
Operators Function Example Chapter(s)
+ Addition A+B 3
- Subtraction A-B 3
* Multiplication A*B 3
/ Division A/B 3
- Assigns value of right- A=B 3
hand side to variable
on left-hand side
Relational Described in
Operators Relationship Example Chapter(s)
< Is less than A<B 6
> Is greater than A>B 6
- Is equal to A=B 6
<= Is less than or equal to A<=B 6
>= Is greater than or equal to A>=B 6
Is not equal to A<>B 6
Logical Described in
Operators Function Example Chapter(s)
¥ AND (A=3)*(A=7) 24
“A equals 3 and
A equals 7
+ OR (A=3)+(B=7) 24
"'A equals 3 or

B equals 77

Variables Purpose Example [:Iehs:::’eer((isl)n
A through Z Take on number values A=3.14159 3
AS and B§ Take on string values AS=RADIO SHACK 16
A(X) Store the elements of A(0)=400 21
a one-dimensional array
LEVEL I
Shorthand Dialect

Command/Statement Abbreviation| Command/Statement Abbreviation
PRINT P. TAB (after PRINT) T

NEW N. INT L.

RUN R. GOSUB GOS.

LIST L. RETURN RET.

END E. READ REA.
THEN T DATA D.

GOTO G. RESTORE REST.
INPUT IN ABS

MEM M RND R

FOR F SET S

NEXT N. RESET R.

STEP (after FOR) S. POINT P

STOP ST. PRINT AT P.A.
CONT C.

RADIO SHACK gA DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM UK
280 316 VICTGRIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEONESBURY
RYDALMERE. N SW 2116 5140 NANINNE WEST MIDLANDS WS10 7UN

PRINTED IN U.S.A.

