LJ

| a—

o e R R

)

A EaA A

(:, 3-09- 1

PERSONAL COMPUTER

System Guide

a3 233333333 0333333333

~ INTRODUCING THE
— COMMODORE 128

- @,L_‘ \M\\

AN EXTRA PAIR OF
HANDS FOR THE
BUSY EXECUTIVE

:EE:::..:.:::

._.,: ,@

BALLARLL

EASY ON YOUR
COMMODORE 128

GRAPHICS ARE

A POWERFUL
LEARNING TOOL AT
HOME OR IN THE
CLASSROOM

2] “I.

SHIP TO SHORE
TELECOMMUNI-
CATING MADE
EASY WITH YOUR
COMMODORE
COMPUTER AND
MODEM

PRODUCTION
PROBLEM SOLVING
ON YOUR
COMMODORE 128

THE COMMODORE
128 AND STUDENT
HEADING FOR
CLASS

THE BUDGET
FINALLY
BALANCED-
THANKS TO
COMMODORE 128

C

[

[(=

{

I

Cc128
SYSTEM GUIDE

{

(.

[.

L

(.

(.

[

(.

N O I

USER’S MANUAL STATEMENT

WARNING:

This equipment has been certified to comply with the limils for a Class B computing device,
pursuant to subpart J of Part 15 of the Federal Communications Commission's rules, which
are designed to provide reasonable protection against radio and television interference in a
residential installation. If not installed properly, in strict accordance with the manufac-
turer's instructions, it may ¢ause such interference. If you suspect interference, you can
test this equipment by turning it off and on. If this equipment does cause interference,
correct it by doing any of the following:

+ Reorient the receiving antenna or AC plug.

= Change the relative positions of the computer and the
receiver.

* Plug the computer into a different outlet so the computer and
receivar are on different circuits.

CAUTION: Only peripherals with shield-grounded cables {com-
puter input-output devices, terminals, printers, etc.), certilied to
comply with Class B limits, can be attached to this computer.
Operation with non-certified peripherais is likely to result in
communications interferance.

Your house AC wall receptacle must be a three-pronged typs
{AC ground). If not, contact an electrician 1o install the proper
receptacle. If a multi-connector box is used io connect the com-
puter and peripherals to AC, the ground must be commeon 1o all
units.

If necessary, consult your Commodore dealer or an experienced radio-television techni-
cian for additional suggestions. You may find the following FCC booklet helpful: “How to
Identify and Resoclve RadioTV Interference Problems.” The booklet is available from the
U.8. Government Printing Office, Washington, D.C. 20402, stock no. 004-000-00345-4.

Third Printing, November 1986
Copyright © 1985 by Commadore Elecironics Limited
All rights reserved

This manual containg copyrighted and proprietary information. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, elecironic, mechanical, photocopying, recerding or otherwise, without the prior
written permission of Commadore Elecironics Limited.

Commodore BASIC 7.0

Copyright © 1985 by Commodore Electronics Limited
All rights reserved

Copyright © 1977 by Microsoft Corp.
All rights reserved

CP/M® Plus Version 3.0

Copyright © 1982 by Digital Research Inc.
All rights reserved

CPiM is a registered trademark of Digital Research Inc.

C. . C O C

C C = L E

-

U

)

TABLE OF
CONTENTS

Chapter |—introduction

Section 1—How to Use this Guide
Section 2—0verview of the Commodore 128
Personal Computer

Chapter i—Using C128 Mode

Section 3—Getting Started in BASIC

Section 4—BASIC Programming

Section 5—Advanced BASIC 7.0 Commands

Section 6—Color, Animation and Sprite Graphics
Statements Unique to the C128

Section 7—Sound and Music in C128 Mode

Section 8—Using 80 Columns

Chapter lll—Using C64 Mode

Section 9—Using the Keyboard in C64 Mode
Section 10—Storing and Reusing Your Programs in
C64 Mode

Chapter IV—Using CPIM Mode

Section 11—Introduction to CP/M 3.0

Section 12—Files, Disks and Disk Drives in CP/M 3.0
Section 13—Using the Console and Printer in CP/M 3.0
Section 14—Summary of Major CP/M 3.0 Commands
Section 15—Commodore Enhancements to CP/M 3.0

Chapter V—Basic 7.0 Encyclopedia

Section 16—Introduction

Section 17—BASIC Commands and Statements
Section 18—BASIC Functions

Section 19— Variables and Operators

Section 20—Reserved Words and Symbols

17
49
73

93
127
159

169
175

183
191
201
207
217

227
233
305
325
331

Appendices

FRETIONMOOm>

. BASIC Language Error Messages

. DOS Error Messages

. Connectors/Ports for Peripheral Equipment
. Screen Display Codes

ASCIl and CHRS$ Codes
Screen and Color Memory Maps

. Derived Trigonometric Functions
. Memory Map

Control and Escape Codes
Machine Language Monitor
BASIC 7.0 Abbreviations
Disk Command Summary

Glossary

Index

R I N

(_

(-

(I N

=

C £ =

(SR S S O

CHAPTER

INTRODUCTION

150 W T e N0 N M A Mot N M Han N NCe NS W Y N

(]

15 B

]

")

.

1

4

i
1

|

I e

L

1

j—

1

SEGCTION 1
How o Use
this Guide

3

INTRODUCTION—How to Use this Guide

300D 3333 3250 3303303039 D a3

}

)

C) o

-

L

L)

)

]

i J LJJ

N

How to Use this
Guide

This Commodore 128 System Guide is designed to help you make
fult use of the advanced capabilities of the Commodore 128 com-
puter. Here's how to use this Guide:

Before you read any further in this System Guide, make sure
you have read the other book packed in the computer carton,
introducing The Commodore 128 Personal Computer,
which contains important information on getting started with
the Commaodore 128.

if you are primarily interested in using the BASIC language 10
create and run your own programs, you should first read Sec-
tion 2 of this chapter. This section summarizes the three operat-
ing modes of the Commodore 128. Then read Chapter !I, USING
C128 MODE. This chapter introduces you to the BASIC pro-
gramming language as used in both C128 and C64 modes;
describes the Commodore 128 keyboard; defines some
advanced commands you can use in both C128 and C64
modes; shows how to use a number of powerful new BASIC
commands {including color, graphic and sound commands) that
are unigue to C128 mode; and describes how to use the 80-
column capabilities available in C128 mode.

If you want to use BASIC in C64 mode, read Chapter 111, USING
C64 MODE. You can use all the Commaodore 84 BASIC 2.0 com-
mands in C64 mode. Note, however, that the Commodore 128
BASIC 7.0 language provides many more BASIC cormmands
than BASIC 2.0, and the C128 BASIC commands are more pow-
erful and easier to use than equivalent BASIC 2.0 commands.
Remember, you can use C64 mode to run any of the thousands
of C64 software packages currently available.

If you want to use CP/M on the Commodore 128, read Chapter
IV, USING CP/M MODE. This chapter tells you how to startup
and use CP/M on the Commodore 128. In CP/M mode you san
choose from thousands of software packages. You can also
create your own CP/M programs.

if you want details on the BASIC 7.0 commands, read Chapter V,
BASIC 7.0 ENCYCLOPEDIA. This chapter gives format and
usage details on all BASIC 7.0 commands, statements and
functions.

If, after reading Chapters I through V you are looking for addi-
tional technical information about a particular Commodore 128

INTRODUCTION—How to Use this Guide

6

topic, first check the Appendices to this System Guide. These
appendices contain a wide range of information, such as a
complete list of BASIC and DOS error messages and a sum-
mary of disk commands. A Glossary following the Appendices
provides definitions of computing terms.

For complete technical details about any feature of the Commodore
128, consult the Commodore 128 Programmer's Reference Guide.

INTRODUCTION—How to Use this Guide

(-

R S S (U W N GO SR SR S

S S N

—~—

-

N

-1

1

SECTION 2
Overview of the

Commodore 128

Personal
Compuier

7

OVERVIEW OF THE COMMODORE C128 PERSONAL
COMPUTER
C128 Mode
C64 Mode
CP/M Mode
TURNING ON YOUR COMMODORE C128
USING SOFTWARE

SWITCHING BETWEEN MODES

INTRODUCTION-—Overview of the Commodore C128 Perscnal Computer

10
10
1
1
12

13

s e s Se N e R Hen N R S N s S S N B

L)

o}

Overview of the
Commodore C128
Personal
Computer

The Commodore 128 incorporates many powerful new features,
including:

@ A greatly enhanced BASIC language—Commodore BASIC
7.0—that provides extensive new commands and
capabilities

B 128K of RAM, which can be expanded to 256 or 640K with
optional RAM expansion modules

B 40- and 80-column video output

M Operative with new 1571 fast disk drive

W 2 mHz operation

8 CP/M 3.0 operation

Bl A professional-type keyboard including a full numeric keypad

B A built-in machine tanguage monitor

B Compatibility with Commodore 64 hardware and software

INTRODUCTION —Overview of the Commodore G128 Personal Computer

The Commaodore 128 Personal Computer is actually three computers
in cne, offering three primary operating modes:

W C128 Mode
W C64 Mode
M CP/M Mode

Here's a summary of what each mode offers:

C128 Mode

In C128 mode, the Commodore 128 Personal Computer provides
access to 128K of RAM and a powerful extended BASIC language
known as BASIC 7.0, BASIC 7.0—which offers over 140 commands,
statements and functions—has been created by Commodore to
provide better and easier ways to perform many sophisticated pro-
gramming 1asks, including those invoiving graphics, animation,
sound and music. C128 mode also provides both 40- and 80-column
output capabilities and full use of the 92-key keyboard. The keyboard
includes a numeric keypad in addition to Escape, Tab, ALPHA LOCK
and Help keys. A built-in machine language monitor allows you to
create and debug your own machine janguage programs. You can
use these programs in conjunction with a BASIC program. In C128
mode you can use a number of new peripheral devices from Com-
modore, including a new fast-serial disk drive, a mouse, and a 44/80-
column composite video/RGBI monitor. And you can use all standard
Commodore serial peripherals.

C64 Mode

In C64 mode, the Commodore 128
operates exactly iike a Commodore
64 computer. The Commodore 128
retains all the capabilities of the com-
mercially successfut C64, thus allow-
ing you to take full advantage of the
wide range of avaitable C64 software.
You also have compatibility with C64
peripherals, including standard cas-
sette, joystick, user port and serial devices, as well as C64 compos-
ite video monitor and TV outputs.

INTRODUCTION —COverview of the Commodore C128 Personal Computer

C =

S S

SR Gl SO S S S U S

S

PR

-

e

]

]

]

0

Turning On Your
Commodore 128

11

C64 mode provides the BASIC 2.0 language, 40-column cutput and
access to 64K of RAM. The main keyboard layout, except for the
placement of the function keys, is the same as that of a Commodore
64 computer. All the C64 graphics, color and sound capabilities are
retained, used exactly as on a Commodore 64.

CPIM Mode *

tn CP/M mode, an onboard Z80 microprocessor gives you access to
the capabilities of Digital Research’s CP/M Version 3.0, plus a num-
ber of new capabilities added by Commodcre, The Commadore
128's CP/M 3.0 package (also known as CP/M Plus) provides 128K of
RAM, 40- and 80-column output, access to the full keyboard, includ-
ing the numeric keypad and special keys, and access to the new
Commodore 1571 fast serial disk drive and the standard peripherals.
With some exceptions, you will be able to choose from thousands of
popular software programs—already available, and already proven,
(Programs created for a specific computer may not run on the Com-
modore 128. Also, CP/M 3.0 programs on the Commodore 128 may
run somewhat slower than CP/M systems on high-priced machines.)

Chapters 1, 1l and IV, which include Sections 3 through 15, tell you
how to access and use the capabilities of the three powerful and
versatile operating modes of the Commodore 128 Personai
Computer.

Before you turn on your Commodore 128, there are a few things to
check to make sure that you get started property. One thing you
shouid do before powering up the computer is to make sure the
40/80 key on the top row of the keyboard is set to match your monitor.
For example, if you have a 40-column monitor, the 40/80 key should
be in the up position. If you have an 80-column monitor the 40/80

key should be depressed.

INTRODUCTION —Overview of the Commodore G128 Personal Computer

Using Software

If you are using the Commodore 1902 dual monitor in 40-colurmn
farmat, the 40/80 key should be up and the stide switch on the front
of the monitor should be in the middte position. In 80-column format
using the 1802 dual monitor, the 40/80 key should be depressed and

the switch on the front of the menitor should be in the extreme right
position,

Regardless of which screen format you are using, check to see that
both the CAPS LOCK and SHIFT LOCK keys are in the up position. If
they're not, you may get no picture at all because the monitor switch
may be set for the opposite screen, or the screen may display unfa-

miliar symbols. (See Section 5 for a description of all the special keys
used in C128 mode.)

If you are using a MAGIC VOICE speech maodule, insert the module in
the expansion port and, while holding down the Commodore key,
turn on the power switch. Never plug in any cartridge with the
power turned on.

If you experience difficulty getting a cartridge to power-up in C64
mode, plug in the cartridge with the power off; then hold down the
Commaodore key and turn on the computer.

If you have the external CP/M 2.2 cartridge marketed for the Com-
modore 64, do net plug it into the Commadore 128, The Commaodore
128 has a Z80 microprocessor already on-board for CP/M 3.0. If you
do plug in the CP/M 2.2 cartridge, it can cause unpredictable results.

If you are using software involving a light pen, plug the light pen into
Controller Port 1, located on the right side of the C128 near the power
switch.

INTRODUCTION—Overview of the Commodore C128 Personal Computer

L.

I

-

i

C C - C =k

-

-

(

C

Switching

The following chart tells how o switch to one mode from another.

Between Modes

TO FROM
OFF cl28 C128 C64 CPM cCPM
40 COL 80 COL 40 COL 80 COL
c128 1. Check that 1. Press ESC key; 1. Check that 1. Check ihat 1. Checkthay - -
40 COL - 40/80 key is rglease, 740480 keyis - - 40/80 key is UP. .z . 4 I
Uk 2. Press X key. up. 2. Remove CP/M - 2. ‘Remove CP/M™
2. Turn computer oR . Turn computar system disk from ~ system disk from
ON. 1. Check that OFF, then ON. drive, if drive, if
40/80 key is necessary. ~ netessary.
Up 3. Turncomputer . 3. Turn computer
3. Press RESET OFF, then ON. OFF, then ON,
butten.
ci28 1. Press40/80 1. Press ESC key; . Press40/80 1. Press 40/80 key T Checkthat
80 COL key DOWN, release. key DOWN. DOWN. - 40/80 keyis
2. Turncompuler 2. Press X key. . Turncemputer 2. Remove CP/M DOWN.
ON. OR OFF, then ON. system disk fram 2. .Remove CP/M. .
1. Press 40/80 : drive, il o - system disk fmm
key DOWN. necessary. .. drive, if -
3. Turn computer . necessary.
2 E[,‘i?ﬁ,,r_*ESET OFF. then ON. 3. Turn compiiter -
OFF, then ON......
C&4 1. Hold € key 1. Type GO 64; 1. Type 6O 64, 1. Turn computer 1. 'furncomputer
: DOWN. - press RETURN. press RETURN. OFF. o OFF,
2. Turncomputer 2. Thecomputer 2. Thecomputer " 2. Check that 40/ 1--23;--'3Check1hat40
ON. responds; responds: 80 key is UF. © B0 keyis UR
OR ?R \;UU SURE? ?ﬂf \;0U SURE? 3. Hold DOWN< 3. Hold DOWN ¢
1. Inser C64 yoe I, press YDe Y. press key while turning . key while turning
cartridge. RETURN. RETURN. computer ON. - .. computer ON.
2. Turn computer : O . DR
N, 1. Turn computer
OFF. .
2. Insert (64 -2, InsertC64 .
cartridge. N _ca;tridgg. R
3. Turnpower ON. 3. Turn power ON.
CPIM . 1. Turn disk drive 1. Turndiskdrive - 1. Turn disk drive ,'_'Gh_é_t:-k_.ihai nsert.disk:
40C0L 0N . AG/80 key is “CP/M utiktie
2. InsertCP/M 2. insertGP/M 2. Insert CP/M ue drive,
system disk in system disk in systemdiskin 2. Turn disk drive 2. Atscreen
drive drive, drive. ON. .- promgt, A)type:
3. Check that 3. Check that 3. Check hat .- Insert CP/M . DEVGECONOUT: = 40801
40/80 key is 40/80 key is A/80 key is Systern disk in 3. Press RETURN.
ue ue UP ‘drive. e
4. Turn computer 4. Type: BOOT 4. Type: BOOT . Turncomputer
ON. 5. PressRETURN 5. PressRETURN -OFF. then ON.
CPIM 1. Turndiskdrive 1. Turndiskdrive 1. Turndisk drive 1. Press 40/80 1. Insert disk with
80GOL - . ON. ON... . “hey:DOWN. - CP/M utilities in
2. insertCP/M 2. nser{CP/M 2. Insert CP/M LAl disk deive ;. drive.
system disk in system disk in system disk in ON. 2. Atscreen -
drive. drive. drive. Insert CP/M prompt, A} type: .
3. Press40/80 3. Press40/80 3. Check that systern disk in DEVICECONROUT: = ADCOL
key DOWN. key DOWN. 40/80 key is drive. 3. Press RETURN.
4. Turncomputer 4. Type: BOOT DOWN. . “Turn.computer
ON. 5. PressRETURN 4. Type: BOOT OFF, then ON.
5. Press RETURN

14

NOTE: If you are using a Commodore 1902 dual monitor, remember

to move the video switch on the monitor from COMPOSITE or
SEPARATED to RGBI when switching from 40-column to 80-column
display, reverse this step when switching from 80 to 40 columns. Also,
when changing from CP/M mode to another mode, make sure to
remove the CP/M operating system diskette from the 1571 disk drive, or
else upon reset or power-up, the C128 will BOOT CP/M again.

INTRODUCTION—Overview of the Commodore C128 Personal Computer

I W

-

C C C C C C & ¢ B

I a

A UV S SN

CHAPTER

(-

USING C128 MODE

[

N R R

I

[

[

[

r

(.

3 0323333333333 3333303 D

M

]

I B B B

I

1]

]

2

SECTION 3
Getting Started
in Basic

BASIC PROGRAMMING LANGUAGE
Direct Mode
Program Mode

USING THE KEYBOARD
Keyboard Character Sets
Using the Command Keys
Function Keys
Displaying Graphic Characters
Rules for Typing BASIC Language Programs

GETTING STARTED—The PRINT COMMAND

Printing Numbers

Using the Question Mark to Abbreviate the PRINT
Command

Printing Text

Printing in Different Colors

Using the Cursor Keys Inside Quotes with the PRINT
Command

BEGINNING TO PROGRAM
What a Program Is
Line Numbers
Viewing your Program—The LIST Command
A Simple Loop—The GOTO Statement

Clearing the Computer’s Memory—The NEW Command

Using Color in a Program

EDITING YOUR PROGRAM
Erasing a Line from a Program
Duplicating a Line
Replacing a Line
Changing a Line

MATHEMATICAL OPERATIONS
Addition and Subtraction
Multiplication and Division
Exponentiation
Order of Operations
Using Parentheses to Define the Order of Operations

CONSTANTS, VARIABLES AND STRINGS
Constants
Varlables
Strings

USING C128 MODE —Getting Started in BASIC

18

SAMPLE PROGRAM

STORING AND REUSING YOUR PROGRAMS
Formatting a Disk—The HEADER Command
SAVEing on Disk
SAVEing on Cassette
LOADing from Disk
LOADing from Cassette
Other Disk-Related Commands

USING C128 MODE—Getting Started in BASIC

1
M
42

45
45

C C - L

I

I I

I B B

il

]

1

N

3 1 1

I N

B

]

BASIC
Programming
Language

19

The BASIC programming language is a special language that lets you
communicate with your Commodore 128. Using BASIC is one means
by which you instruct your computer what to do.

BASIC has its own vocabulary {(made up of commands, statements
and functions) and its own rules of structure (called syntax). You
can use the BASIC vocabulary and syntax to create a set of instruc-
tions called a program, which your computer can then perform or
“I'l.ln."

Using BASIC, you can communicate with your Commodore 128 in
two ways: within a program, or directly (cutside a program,.

Direct Mode

Your Commodore 128 is ready to accept BASIC commands in direct
mode as soon as you turn on the computer. In the direct mode, you
type commands on the keyboard and enter them into the computer
by pressing the RETURN key. The computer executes ait direct
mode commands immediately after you press the RETURN key.
Most BASIC commands in your Commodore 128 can be used in
direct mode as well as in a program,

Program Mode

In program mode you enter a set of instructions that perform a spe-
cific task. Each instruction is contained in a sequentiat program line.
A statement in a program may be as long as 160 characters; this is
equivalent to four full screen lines in 40-column format, and two full
screen lines in 80-column format.

Once you have typed a program, you ¢an use it immediately by typ-
ing the RUN command and pressing the RETURN key. You can also
store the program on disk or tape by using the DSAVE {or SAVE) com-
mand. Then you can recall it from the disk or tape by using the
DLOAD (or LOAD) command. This comrnand copies the program
from the disk or tape and places that program in the Commodore
128's memory. You can then use or “execute” the program again by
entering the RUN command. All these commands are explained later
in this section. Most of the time you will be using your computer with
programs, including programs you yourself write, and commercially
available software packages. The only time you operate in direct
mode is when you are manipuiating or editing your programs with

USING C128 MODE—Getting Started in BASIC

Using the
Keyboard

commands such as LIST, LOAD, SAVE and RUN. As a rule, the differ-
ence between direct mode and operation within a program is that
direct mode commands have no line numbers.

Shown below is the keyboard of the Commodore 128 Personal
Computer.

Using BASIC is essentially the same in both C64 and C128 modes,
Most of the keys, and many of the commands you will learn, can be
used to program BASIC in either mode, The keys that are shaded in
the figure above can be used in C684 mode. In C128 mode you can
use all of the keys on the keyboard.

20 USING €128 MODE—Getting Started in BASIC

C C C &

C C CCcCC - Cc bbb

[

)

.l

1

_)

]

]

S)

]

Keyboard Character Sets

The Commodore 128 keyboard offers two different sets of
characters:

M Upper-case letters and graphic characters
B Upper- and lower case letters

In 80-column format, both character sets are available simultane-
ously. This gives you a total of 512 different characters that you can
display on the screen. In 40 column format you can use only one
character set at a time.

When you turn on the Commaodore 128 in 40-column format, the key-
board is normally using the upper-casefgraphic character set. This
means that everything you type is in capital letters. To switch back
and forth between the two character sets, press the SHIFT key and
the €x key (the COMMODORE key) at the same time. To practice
using the two character sets turn on your computer and press sev-
erat letters or graphic characters. Then press the SHIFT key and the
G (Commodore) key. Notice how the screen changes to upper- and
lower-case characters. Press SHIFT and €& again to return to the
upper-case and graphic character set.

Using the Command Keys

COMMAND keys are keys that send messages to the computer.
Some command keys (such as RETURN) are used by themselves.
Other command keys (such as SHIFT, CTRL, € and RESTORE) are
used with other keys. The use of each of the command keys is
explained below.

Return When you press the RETURN key, what you
have typed is sent to the Commodore 128 com-
puter's memory. Pressing the RETURN key also
moves the cursor {the smalt flashing rectangle
that marks where the next character you type
will appear) to the beginning of the next line.

At times you may misspell a command or type in

something the computer does not understand.
Then, when you press the RETURN key, you

USING C128 MODE~—Getting Started in BASIC

Shift

Shift Lock

probabty will get a message like SYNTAX
ERROCR on the screen. This is called an “Error
Message.” Appendix A lists the error messages
and tells how to correct the errors,

NOTE: in the examples given in this book, the
following symbol indicates that you must press
the RETURN key:

There are two SHIF T keys on the bottom row of
the keyboard. One key is on the left and the
other is on the right, just as on a standard type-
writer keyboard.

The SHIFT key can be used in three ways:

1. With the upperfiower-case character set,
the SHIFT key is used like the shift key on a
regular typewriter. When the SHIFT key is
held down, it fets you print capital letters or
the top characters on double-character
keys.

2. The SHIFT key can be used with some of
the other command keys to perform special
functions.

3. When the keyboard is set for the upper-
case/graphic character set, you can use the
SHIFT key to print the graphic symbols or
characters that appear on the front face of
certain keys. See the paragraphs entitled
“Displaying Graphic Characters” at the end
of this section for more details.

When you press this key down, it locks into
place. Then, whatever you type will either be a
capital letter, or the top character of a double-
character key. To release the lock, press down
on the SHIFT LOCK key again.

USING C128 MODE-Getting Started in BASIC

-

.

(-

O C C C ¢ CC

(-

(-

(-

(-

. C

]

]

]

]

3

-

]

]

)

N

]

}

)

—

]

-]

Moving the In C128 mode, you can move the cursor by

Cursor using either the four arrow keys located just
above the top right of the main keyboard, or the
two keys labeled CRSR, at the right of the bot-
fom row of the main keyboard.

Using the Four Arrow Cursor Keys

In C128 mode, the cursor can be moved in any
direction simply by using the arrow key in the
top row that points in the direction you want to
mave the cursor. {These keys cannct be used in
C64 mode).

Using the CRSR keys

In both C128 and C64 mode, you can use the
two keys on the right side of the bottom row of
the main keyboard to move the cursor:

A
* Pressing the CRSR key alone moves the cur-
sor down.

* Pressing the CRASR and SHIFT keys together
moves the cursgr up.

¢ Pressing the CRSR key alone moves the cur-
sorright.

* Pressing the CRSR and SHIFT keys together
moves the cursor left.

You don't have to keep tapping a cursor key to
move more than one space. Just hold the key
down and the cursor continues to move until it
reaches the position you want,

Notice that when the cursor reaches the right
side of the screen, it “wraps”, or starts again at
the beginning of the next row. When moving left,
the cursor will move along the line until it
reaches the edge of the screen, then it will jump
up to the end of the preceding tine.

23 USING €128 MODE—Getting Started in BASIC

InstiDel

You should try to become very familiar with the
cursor keys, because moving the cursor makes
your pregramming much easier. With a little
practice you will find that you can move the cur-
sor almost without thinking about it.

This is a duat purpose key. INST stands for
INSerT, and DEL for DELete.

Ingerting Characters

You must use the SHIFT key with the INST/DEL
key when you want to insert characters in a line.
Suppose you left some characters out of a line,
like this:

WHILE U WERE OUT

To insert the missing characters, first use the
cursor keys to move the cursor back to the
error, like this:

WHILEEWERE OUT

Then, while you hold down the SHIF T key, press
the INST/DEL key until you have enough space
to add the missing characters:

WHILE B U WERE OUT

Notice that INST doesn’t move the cursor; it just
adds space between the cursor and the charac-
ter to its right. To make the carrection, simply
type in the missing “Y"” and “Q", like this:

WHILE YOU WERE OUT

Deleting Characters

When you press the DEL key, the cursor moves
one space to the left and erases the character

- that is there. This means that when you want to

delete something, you move the cursor just to
the right of the character you want to DELete.
Suppose you have made a mistake in typing, like
this:

PRINT “ERROER”

L C CC o CCocotob oL &

(~

(

24 USING C128 MODE—Getting Started in BASIC

-

]

]

)

}

]

-]

1

)

]

You wanted to type the word ERROR, not
ERROER. To delete the incorrect E that pre-
cedes the final R, position the cursor in the
space where the final R is located. When you
press the DEL key, the character to the right of
the cursor {the R) automatically moves over one
space to the left. You now have the correct
wording like this:

PRINT “ERROR”

Using INSerT and DELete Together

You can use the INSerT and DELete functions
together to fix incorrect characters. First, move
the cursor to the incorrect characters and press
the INST/DEL key by itself to delete the charac-
ters. Next, press the SHIFT key and the INST/
DEL key iocgether to add any necessary space.
Then type in the corrections. You can also type
directly on top of undesired characters, then use
INST to add any needed space.

Control The Control key is used with other keys to do
special tasks calied control functions. To per-
form a control function, hold down the Control
key while you press some other key. Control
functions are often used in prepackaged soft-
ware such as a word processing system.

One control function that is used often is setting
the character and cursor color. To select a color,
hold down the CTRL key while you press a num-
ber key (1 through 8), on the top row of the key-
board. There are eight more colors available to
you; these can be selected with the Ce key, as
explained later.

Runi{Stop This is a dual function key. Under certain condi-
tions you can use the RUN function of this key
by pressing the SHIFT and RUN/STOP together.
It is also possible to use the STOP function of
this key to halt a program or a printout by press-
ing this key while the program is running. How-

25 USING €128 MODE--Getting Started in BASIC

Restore

CLR/Home

Commodore Key

()

ever, in most prepackaged programs, the STOP
function of the RUN/STOP key is intentionally
disabled {made unusable). This is done to pre-
vent the user from trying to stop a program that
is running before it reaches its normal end point.
If the user were able to stop the program, valu-
abie data could be lost.

The RESTORE key is used with the RUN/STOP
key to return the computer to its standard condi-
tion. To do this, hotd down the RUN/STOP key
and press RESTORE.

Most prepackaged programs disable the
RESTORE key for the same reason they disable
the STOP function of the RUN/STOP key: to pre-
vent losing valuable data.

CLR stands for CLeaR. HOME refers to the
upper-left corner of the screen, which is called
the HOME position. If you press this key by itself
the cursor returns {o the HOME position. When
you use the SHIFT key with the CLR/HOME key,
the screen ClLeaRs and the cursor returns to the
HOME position.

The €& key (known as the COMMODORE key)
has a number of functions, including the follow-
ing ones:

1. The € key lets you switch back and forth
between the upperflower-case character
set (which displays the letters and charac-
ters on the top of the keys), and the upper-
case/graphic display character set (which
displays capital letters and the graphics
symbols on the front face of the keys). To
switch modes, press the € key and the
SHIFT key at the same time.

2. The€s key also lets you use a second set of
eight colors for the cursor. To get these col-
ors, you hald down the € key while you
press a number key (1 through 8) in the top
row.

USING C128 MODE—Getting Started in BASIC

- L

[

[

Zo

(Z

[

. =& & G & & E

(_

-

)

-

)

-)

—

-]

)

)

)

)

]

27

3. If you hold down the € key while turning on
the computer, you can immediately access
C64 mode.

Function Keys

The four keys located above the numeric keypad {marked F1, F3, F5
and F7 on the top and F2, F4, F6 and F8 on the front) are called func-
tion keys. In C128 and C64 modes, you can program the function
keys. (See the KEY command descriptions in Section 5 of Chapter [I
and in Chapter V, BASIC 7.0 ENCYCLOPEDIA). These keys are also
often used by prepackaged software 1o aliow you to perform a task
with a single keystroke.

Displaying Graphic Characters

To display the graphic symbol on the right front face of a key, hold
down the SHIFT key while you press the key that has the graphic
character you want to print. You can display the right side graphic
characters only when the keyboard is in the upper-case/graphics
character set (the normal character set usually available at power-

up).

To display the graphic character on the left front face of a key, hold
down the € key while you press the key that has the graphic charac-
ter you want. You can display the teft graphic character while the
keyboard is in gither character set.

Rules for Typing BASIC Language Programs

You can type and use BASIC tanguage programs even without know-
ing BASIC. You must type carefully, however, because a typing error
may cause the computer to reject your information. The following
guidelines will help minimize errors when typing or copying a pro-
gram listing.

1. Spacing between words is not critical; e.g., typing
FORT = 1TO10 is the same as typing FOR T =1 TO 10. However,
a BASIC keywaord itself must not be broken up by spaces. (See
the BASIC 7.0 Encyclopedia in Chapter V for a list of BASIC key-
words).

2. Anycharacters can be typed inside quotation marks. Scme char-
acters have speciat functions when placed inside quotation
marks. These functions are explained later in this Guide.

USING C128 MODE—Getiing Started in BASIC

Getting Started—

The PRINT
Command

28

3. Be careful with punctuation marks. Commas, colons and semi-
colons also have special properties, exptained later in this
section.

4. Always press the RETURN key (indicated in this Guide by

BEECIRES) after completing a numbered line.

5. Never type more than 160 characters in a program line. Remem:-
ber, this is the same as four full screen lines in 40-column format,
or two full screen lines in 80-column format. See Section 8 for
maore details on 40- and 80-column formats.

6. Distinguish clearily between the letter | and the numeral 1 and
between the letter O and the numeral @.

7. The computer ignores anything following the tetters REM on a
program line. REM stands for REMark. You can use the REM
statement to put comments in your program that tell anyone list-
ing the program what is happening at a specific point.

Follow these guidelines when you type the examples and programs
shown in this section.

The PRINT command tells the computer to display information on the
screen. You can print both numbers and text (letters), but there are
special rules for each case, described in the following paragraphs.

Printing Numbers

To print numbers, use the PRINT command followed by the num-
ber(s} you want to print. Try typing this on your Commodore 128:

PRINT 5

Then press the RETURN key. Notice the number 5 is now displayed
on the screen.

Now type this and press RETURN:
PRINT 5,6

In this PRINT command, the comma telts the Commodaore 128 that
you want to print more than one number, When the computer finds
commas in a string of numbers in a PRINT statement, each number
that follows a comma is printed starting in either the 11th, 21st or
31st column on the screen, depending on the length of each number.
If the previous number has more than 7 digits, the following number
is moved to the next starting position, 10 columns to the right. The
C128 always leaves at least 3 spaces between numbers which are

USING C128 MODE--Getting Started in BASIC

C =

ke

(

C C ¢ C 0 CcoCcCcitC-cCCc o

]

N

]

]

)

1]

]

]

]

}

]

]

)

]

]

]

separated by a comma. If you don't want all the exira spaces, use a
semicolon {;) in your PRINT staiement instead of a comma. The semi-
colon tells the computer not to add any spaces between strings and
numeric variables and numeric constants. Numbers and numeric
variables are printed with either a leading space or a minus sign, and
a trailing space. Omitting a semicclon, a comma, or any separators
acls the same as a semi-colon. Type these examples and see what
happens:

PRINT 5;6 SREgRIE
PRINT 100;200;300;400;500 SBEEHRA=

Using the Question Mark to Abbreviate the PRINT
Command

You can use a question mark (7} as an abbreviation for the PRINT
command. Many of the examples in this section use the ? symbol in
place of the word PRINT. In fact, most of the BASIC commands can
be abbreviated. However, when you LIST a program, the keyword
appears in the long version. The abbreviations for BASIC commands
can be found in Appendix K of this Guide,

Printing Text

Now that you know how to print numbers, it’s time to learn how to
print text. It's actually very simple. Any words or characters you want
to display are typed on the screen, with a quote symbol at each end
of the string of characters. String is the BASIC name for any set of
characters surrounded by quotes. The quote character is obtained
by pressing SHIF T and the numeral 2 key on the top row of the key-
board {not the 2 in the numeric keypad). Try these exampies:

? “COMMODORE 128" =RETHRN-

? “4*§”
Notice that when you press RETURN, the computer displays the
characters within the quotes on the screen. Also note that the sec-
ond example did not calculate 4*5 since it was treated as a string

and not a mathematical calculation. If you want to calculate the
result 4*5, use the following command:

? 4*5 RETURRE

You can PRINT any string you want by using the PRINT command
and surrounding the printed characters with quotes. You can com-
bine text and calculations in a single PRINT command like this:

? 45 4*5 SRETERRE

USING C128 MODE—Getting Started in BASIC

30

See how the computer PRINTS the characters in quotes, makes the
calculation and PRINTS the result. it doesn't matter whether the text
or calculation comes first. In fact, you can use both several times in
one PRINT command. Type the following statement:

? 4*(2+ 3)“ is the same as "4'S SBETURN.

Noftice that even spaces inside the quotation marks are printed on
the screen. Type:

P OVER HERE” =REFURE=

Printing in Different Colors

The Commodore 128 is capable of displaying 16 different colors on
the screen. You can change colors easily. All you do is hold down the
CTRL key and press a numbered key between 1 and 8 on the top row
of the main keyboard. Notice that the cursor changes color accord-
ing to the numbered key you pressed. All the succeeding characters
are displayed in the color you selected. Hold down the Commodore
key and press a numbered key between 1 and 8, and eight additional
colors are displayed on the screen.

TJable 3-1 lisis the colors available on in C128 mode, for both 40- and
80-column screen formats.

Color Code Color Color Code Color
1 Black 9 Orange
2 White 10 Brown
3 Red 11 Light Red
4 Cyan 12 Dark Gray
5 Purple 13 Medium Gray
6 Green 14 Light Green
7 Blue 15 Light Blue
8 Yellow 16 Light Gray
Color Numbers in 40-Column Format
Color Code Color Color Code Color
1 Black 9 Dark Purple
2 White 10 Dark Yellow
3 Dark Red 11 Light Red
4 Light Cyan 12 Dark Cyan
5 Light Purple 13 Medium Gray
6 Dark Green 14 Light Green
7 Dark Blue 15 Light Blue
8 Light Yellow 16 Light Gray

Color Numbers in 80-Column Format

L.

(

L C & & O C C 0

NUN N

{

C

]

—

-]

)

1

]

3

B B

)

-}

]

N

Beginning to
Program

Using the Cursor Keys Inside Quotes with the PRINT
Command

When you type the cursor keys inside quotation marks, graphic char-
acters are shown on the screen to represent the keys. These charac-
ters will NOT be printed on the screen when you press RETURN. Try
typing a question mark (?), open guotes (SHIF Ted 2 key); then press
either of the down cursor keys 10 times, enter the words “DOWN
HERE", and close the quotes. The line should look like this:

7 ‘{elele]elelolele]ele: DOWN HERE”

Now press RETURN. The Commodore 128 prints 10 blank lines, and
on the eleventh line, it prints *“DOWN HERE". As this example
shows, you can tell the computer 1o print anywhere on your screen
by using the cursor controi keys inside quotation marks.

So far most of the commands we have discussed have been per-
formed in DIRECT mode. That is, the command was executed as
soon as the RETURN key was pressed. However, most BASIC com-
mands and functions can also be used in programs.

What a Programlis

A program is just a set of numbered BASIC instructions that tells your
computer what you want it to do. These numbered instructions are
referred to as statements or lines.

Line Numbers

The lines of a program are numbered so that the computer knows in
what order you want them executed or RUN. The computer executes
the program lines in numerical order, unless the program instructs
otherwise. You can use any whole number from 0 to 63998 for & line
number. Never use a comma in a line number.

Many of the commands you have learned to use in DIRECT mode
can be easily made into program statements. For example, type this:

10 ? “COMMODORE 128" SEETHEIE

USING C128 MODE—Getting Started in BASIC

Notice the computer did not display COMMODORE 128 when you
pressed RETURN, as it would do if you were using the PRINT com-
mand in DIRECT mode. This is because the number, 10, that comes
before the PRINT symbol (7) tells the computer that you are entering
a BASIC program. The computer just stores the numbered statement
and waits for the next input from you.

Now type RUN and press RETURN. The computer prints the words
COMMODORE 128. This is not the same as using the PRINT com-
mand in DIRECT mode. What has happened here is that YOU HAVE
JUST WRITTEN AND RUN YOUR FIRST BASIC PROGRAM as small
as it may seem. The program is still in the computer’s memory, so
you can run it as many times as you want.

Viewing Your Program=The LIST Command

Your one-line program is still in the C128 memory. Now clear the
screen by pressing the SHIFT and CLR/HOME keys together. The
screen is empty. At this point you may want to see the program list-
ing to be sure it is stitt in memory. The BASIC language is equipped
with a command that lets you do just this—the LIST command.

Type LIST and press RETURN. The C128 responds with:
10 PRINT “COMMODORE 128"
READY.

Anytime you want {0 see all the lines in your program, type LIST. This
is especially helpful if you make changes, because you can check to
be sure the new lines have been registered in the computer’s mem-
ory. In response 1o the command, the computer displays the
changed version of the ling, lines, or program. Here are the rules for
using the LIST command. {Insert the line number you wish to see in
place of the N.)

—To see line N only, type LIST N and press RETURN.

—To see from line N to the end of the program, type LIST N- and
press RETURN.

—To see the lines from the beginning of the program to ine N,
type LIST-N and press RETURN.

—To see from line N1 to line N2 inclusive, type LIST N1-N2 and
press RETURN.

USING C128 MODE—Getting Siarted in BASIC
A

C C CCcCcCocto bt CoitbifCchoChCh &t rohe

)

]

-l

2

)

R

}

]

]

]

N

]

)

J

N

)

-]

33

A Simple Loop—The GOTO Statement

The line numbers in a program have another purpose besides put-
ting your commands in the proper order for the computer. They
serve as a reference for the computer in case you want to execute
the command in that line repetitively in your program. You use the
GOTO command to tell the computer to go to a line and execute the
command(s) in it. Now type:

20 GOTO 10

When you press RETURN after typing line 20, you add it to your pro-
gram in the computer's memory.

Notice that we numbered the first line 10 and the second tine 20. Itis
very helpful to number program lines in increments of 10 (that is, 10,
20, 30, 40, etc.) in case you want to go back and add lines in
between later on. You can number such added lines by fives {15, 25
...yones(1,2...)}—infact, by any whole number—to keep the lines
in the proper order. (See the RENUMBER and AUTO commands in
the BASIC Encyclopedia.)

Type RUN and press RETURN, and watch the words COMMODORE
128 move down your screen. To stop the message from printing on
the screen, press the RUN/STOP key on the ieft side of your
keyboard.

The twae lines that you have typed make up a simple program that
repeats itself endtessly, because the second line keeps referring the
computer back to the first line, The program will continue indefinitely
uniess you stop it or turn off the computer.

Now type LIST ZBE] . The screen should say:
10 PRINT “COMMODORE 128"
20 GOTO 10
READY.

Your program is still in memory. You can RUN it again if you want to.
This is an important difference between PROGRAM mode and
DIRECT mode. Once a command is executed in DIRECT mode, it is
no longer in the computer's memory. Notice that even though you
used the ? symbol for the PRINT statement, your computer has con-
verted it into the full command. This happens when you LIST any
command you have abbreviated in a program.

USING C128 MODE—Getting Started in BASIC

Clearing the Computer’s Memory—The NEW Command

Anytime you want to start all over again or erase a BASIC program in
the computer’'s memory, just type NEW and press RETURN. This
command clears out the computer’s BASIC memory, the area where
programs are stored.

Using Color in a Program

To select color within a program, you must include the color selec-
tion information within a PRINT statement. For example, clear your
computer’s memory by typing NEW and pressing RETURN, then
type the fottowing, being sure to [eave space between each letter:

10PRINT“SPECTRU M”SRERIBNE

Now type line 10 again but this time hold down the CTRL key and
press the 1 key directly after entering the first set of quote marks.
Release the CTRL key and type the “S”. Now hold down the CTRL
again and press the 2 key. Release the CTRL key and type the “P"".
Next hold down the CTRL again and press the 3 key. Continue this
process until you have typed all the letters in the word SPECTRUM
and selected a color between each letter. Press the SHIFT and the 2
keys to type a set of closing quotation marks and press the RETURN
key. Now type RUN and press the RETURN key. The computer dis-
plays the word SPECTRUM with each letter in a different color. Now
type LIST and press the RETURN key. Notice the graphic characters
that appear in the PRINT statement in line 10. These characters tell
the computer what color you want for each printed jetter. Note that
these graphic characters do not appear when the Commodore 128
PRINTs the word SPECTRUM in different colors.

The color selection characters, known as control characters, in the
PRINT statement in line 10 tell the Commodore 128 to change cal-
ors. The computer then prints the characters that foliow in the new
color until another color selection character is encountered. While
characters enclosed in quotation marks are usually PRINTed exactly
as they appear, controt characters are only displayed within a pro-
gram LISTing.

USING C128 MODE—Getting Started in BASIC

-

—

N I S A A

(_

S A

)

-]

_}

-

-)

1

}

]

-

|

J

-]

1

_J

)

]

)

Editing Your
Program

The following paragraphs will help you to type in your programs and
make corrections and additions to them.

Erasing a Line from a Program

Use the LIST command to display the program you typed previously.
Now type 10 and press RETURN. You just erased line 10 from the
program. LIST your program and see for yourself, If the old line 10 is
still an the screen, move the cursor up so that it is blinking anywhere
on that line, Now, if you press RETURN, line 10 is back in the comput-
er's memory.

Duplicating a Line

Hold down the SHIFT key and press the CLR/HOME key on the upper
right side of your keyboard. This will clear your screen. Now LIST
your program. Move the cursor up again so that it is blinking on the
“0" inthe line numbered 10. Now type a 5 and press RETURN. You
have just duplicated (i.e., copied) line 10. The duplicate line is num-
bered 15. Type LIST and press RETURN to see the program with the
duplicated lines.

Replacing a Line

You can replace a whole line by typing in the old line number fol-
lowed by the text of the new line, then pressing RETURN. The old
version of the line will be erased from memory and replaced by the
new line as soon as you press RETURN.

Changing a Line

Suppose you want to add something in the middle of a line. Simply
move the cursor to the character or space that immediately follows
the spot where you want to insert the new material. Then hold down
the SHIFT key and the INST/DEL key together untit there is enough
gpace to insert your new characters.

Try this example. Clear the computer's memory by typing NEW and
pressing RETURN. Then type:

10 ? “MY 128 IS GREAT”

USING C128 MODE—Getling Started in BASIC

Mathematical
Operations

36

Let’s say that you want to add the word COMMODORE in front of the
number 128. Just move the cursor 8o that itis blinking onthe “1” in
128. Hold down the SHIFT and INST/DEL keys until you have encugh
room to type in COMMODORE {don't forget to leave enough room for
a space after the E). Then type in the word COMMODORE.

If you want to delete something in a line {including extra blank
spaces), move the cursor to the character following the material you
want to remove. Then hotd down the INST/DEL key by itself. The cur-
sor will move to the lett, and characters or spaces will be deleted as
long as you hold down the INST/DEL key.

You can use the PRINT command to perform calcutations like addi-
tion, subtraction, multiplication, division and exponentiation. You
type the calculation after the PRINT command.

Addition and Subtraction

Try typing these examples:
PRINT 6 + 4 SRETORN=
PRINT 50 - 20 SREIRRE
PRINT 10 + 15 — 5 SEETGRN=
PRINT 75— 100 SEETHRIE
PRINT 30 + 40,55 — 25 SHETHREE
PRINT 30 + 40;55 — 25 SRETHURN=

Naotice that the fourth calculation (75-100) resulted in a negative

number, Also notice that you can tell the computer to make more
than one calculation with a single PRINT command. You can use
either a comma or a semicolon in your command, depending on

whether or not you want spaces separating your results.

Multiplication and Division

Find the asterisk key (*) on the right side of your keyboard. This is the
symbol that the Commodore 128 uses for multiplication. The stash (/)
key, located next to the right SHIFT key, is used for division.

USING C128 MODE—Getting Started in BASIC

C

-

R S

C C C

(-

[

C £ ¢ & - &=

)

]

]

]

-

]

]

|

]

]

}

]

]

]

1

)

)

°]

-~

J

Try these examples:
PRINT 5*3 &
PRINT 100/2 SRESRRE

Exponentiation

Exponentiation means 1o raise a number to a power. The up arrow
key (1), located next to the asterisk on your keyboard, is used for
exponentiation. If you want to raise a number to a power, use the
PRINT command, followed by the number, the up arrow and the
power, in that order. For example, to find out what 3 squared is, type:

PRINT 312 SRETORRE

Order of Operations

You have seen how you can combine addition and subtraction in the
same PRINT command. If you combine multiplication or division with
addition or subtraction operations, you may not get the result you
expect. For example, type:

PRINT 4 + 6/2 SREFIBRN=

If you assumed you were dividing 10 by 2, you were probably sur-
prised when the computer responded with the answer 7. The reason
you got this answer is that multiplication and division operations are
performed by the computer before addition or subtraciion. Multiphi-
cation and division are said to take precedence over addition and
subtraction. It doesn't matter in what order you type the operation. In
computing, the order in which mathematical operations are per-
formed is known as the order of operations.

Exponentiation, or raising a number to a power, takes precedence
over the other four mathematical operations. For example, if you
type:

PRINT 16/412

the Commodore 128 responds with a 1 because it squares the 4
before it divides 16.

USING C128 MODE—Getting Started in BASIC

Constants,
Variables and
Strings

Using Parentheses to Define the Order of Operations

You can tell the Commodore 128 which mathematical operation you
want performed first by enclosing that operation in parentheses in
the PRINT command. For instance, in the first example above, if you
want to tell the computer to add before dividing, type:

PRINT (4 + 6)f2 SRETHRNE
This gives you the desired answer, 5.
If you want the computer to divide before squaring in the second
example, type:

PRINT (16/4)12 SRETHRE=
Now you have the expected answer, 16.
If you don't use parentheses, the computer performs the calcula-
tions according to the above rules. When all operations in a calcula-

tion have equal precedence, they are performed from left to right.
For example, type:

PRINT 4*5/10*6

Since the operations in this example are performed in order from left
to right, the resultis 12 (4*5=20...2010=2...2*6=12). lf you
want to divide 4*5 by 10*6 you type:

PRINT (4*5)(10*6) SEEERS
The answer is now 333333333,

Constants

Constants are numeric values that are permanent: that is, they do
not change in value over the course of an equation or program. For
example, the number 3 is a constant, as is any number. This state-
ment illustrates how your computer uses constants:

10 PRINT 3

No matier how many times you execute this line, the answer will
always be 3.

USING C128 MODE—Getting Started in BASIC

BN N

(

L

-

(_

T

OO

[

(-

(.

)

7]

1

1

)

)

}

1

3

]

]

)

|

7]

~)

|

-

_J

Variables

Variables are values that can change over the course of an equation
or program statement. There Is a part of the computer’s BASIC mem-
ory that is reserved for the characters {(numbers, letters and sym-
bots) you use in your program. Think of this memory as a number of
storage compartments in the computer that store information about
your program; this part of the computer’s memory is referred to as
variable storage. Type in this program:

10 X=5
20 7X

Now RUN the program and see how the computer prints a 5 on your
screen. You told the computer in fine 10 that the letter X will repre-
sent the number 5 for the remainder of the program. The letter Xis
called a variable, because the value of X varies depending on the
value 1¢ the right of the equals sign. We call this an assignment state-
ment because now there is a storage compartment labeied X in the
computer’s memory, and the number 5 has been assigned to it. The
= sign telts the computer that whatever comes to the right of it will
be assigned to a storage compartment {(a memory location) labeled
with the letter X to the left of the equals sign.

The variable name on the ieft side of the = sign can be either one or
two letters, or one letter and one number {the letter MUST come
first). The names can be longer, but the computer only looks at the
first two characters. This means the names PA and FART would refer
to the same storage compartment. Also, the words used for BASIC
commands (LOAD, RUN, LIST, etc.) or functions {INT, ABS, SQR, etc.)
cannot be used as names in your programs. Refer to the BASIC
Encyclopedia in Chapter 5 if you have any questions about whether a
variabte name is a BASIC keyword. Notice that the = in assignment
statements is not the same as the mathematical symbol meaning
“equats”, but rather means allocate a variable (storage compart-
ment) and assign a value to i,

In the sample program you just typed, the value of the variable X
remains at 5 throughout. You can put calculations tc the right of the
= sign to assign the result to a variable. You can mix text with con-
stants in a PRINT statement to identify them. Type NEW and press
RETURN to clear the Commodore 128’s memory; then try this
program;

10 A=3"100

20 B=3"200

30 7“A IS EQUAL TO A

40 7B IS EQUAL TO "B

USING C128 MODE—Getting Started in BASIC

Now there are two variables, labeled A and B, in the computer’s
memory, containing the numbers 300 and 600 respectively. If, later in
the program, you want to change the value of a variabte, just put
another assignment statement in the program. Add these lines to the
program above and RUN it again.

50 A =900*3010
60 B=95+32+128
70 GOTO 30

You'll have to press the STOP key to halt the program.

Now LIST the program and trace the steps taken by the computer.
First, it assigns the value to the right of the = signin line 10 to the
letter A. It does the same thing in line 20 for the letter B, Next, it
prints the messages in lines 30 and 40 that give you the values of A
and B. Finally, it assigns new values to A and B in lines 50 and 60.
The old values are replaced and cannot be recovered unless the
computer executes lines 10 and 20 again. When the computer is
sent to line 30 to begin printing the vatues of A and B again, it prints
the new values caiculated in lines 50 and 60. Lines 50 and 60 reas-
sign the same values to A and B and line 70 sends the computer
back to tine 30. This is called an endless loop, because lines 30
through 70 are executed over and over again until you press the
RUN/STOP key to halt the program. Other methods of looping are
discussed later in this and the following two sections.

$Strings

A string is a character or group of characters enclosed in quotes.
These characters are stored in the computer's memory as a variable
in much the same way numeric variables are stored. You can also
use variable names 1o represent strings, just as you use them to rep-
resent numbers. When you put the doltar sign ($) after the string vari-
able name, it telis the computer that the name is for a string variable,
and not a numeric variable.

Type NEW and press RETURN to clear your computer’s memory,
then type in the program below:

10 A$ =“COMMODORE ”

20 X=128

30 B$ =" COMPUTER”

40 Y =1

50 ? “THE “A$;X;B$" IS NUMBER Y

USING C128 MODE—Getting Started in BASIC

GURE SR S I S

N NN U RO AU AN SNV AN AN (U SN

1)

]

!

)

)

]

-l

1

]

1

]

-
-

1 1

-)

3

]

Sample Program

Storing and
Reusing Your
Programs

41

See how you can print numeric and string variables in the same
statement? Try experimenting with variables in your own short
programs,

You can print the value of a variable in DIRECT mode, after the pro-
gram has been RUN. Type 7A%;B%$;X;Y after running the program
above and see that those four variable values are still in the comput-
er's memory.

If you want to clear this area of BASIC memory but still leave your
program intact, use the CLR command. Just type CLR {RETURN)
and all constants, variables and strings are erased. But when you
type LIST, you can see the program is still in memory. The NEW com-
mand discussed earlier erases both the program and the variables.

Here is a sample program incorporating many of the technigques and
commands discussed in this section.

This program calculates the average of three numbers (X, Y and Z)
and prints their values and their averages on the screen. You can
edit the program and change the assignments in lines 10 through 30
to change the values of the variables. Line 40 adds the variables and
divides by 3 to get the average. Note the use of parentheses to tell
the computer to add the numbers before it divides.

TIP: Whenever you are using more than one set of parentheses
in a statement, it's a good idea to count the number of left
parentheses and right parentheses to make sure they are
equal.

10 X=46

20Y=72

30Z=114

WA=X+Y+2)3

60 7“THE AVERAGE OF"X:Y;“AND "Z:*“IS”A;
90 END

Once you have created your program, you will probably want to store
it permanently so you will be abte to recall and use it at some later
time. To do this, you'll need either a Commodore disk drive or the
Commodore 1530 Datassette.

USING €128 MODE —Getting Started in BASIC

42

You will learn several commands that let you communicate between
your computer and your disk drive or Datassette. These commands
are constructed with the use of a command word followed by several
parameters. Parameters are numbers, letters, words or symbols ina
command that supply specific information to the computer, such as
a filename, or a numeric variable that specifies a device number.
Each command may have several parameters. For example, the
parameiers of the disk format command include a name for the disk
and an identifying number or code, plus several other parameters.
Parameters are used in aimost every BASIC command; some are
variables which change and others are constants. These are the
parameters that supply disk information to the C128 and disk drive;

Disk Handling Parameters

disk name— arbitrary 16 character identifying name
you supply.

file name— arbitrary 16 character identifying name
you supply.

i.d— arbitrary two-character identifier you
supply

drive number— must use O for a single disk drive, D or 1
in a dual drive.

device number— a preassigned number for a peripheral
device. For example, the device num-
ber for a Commaodore disk drive is
usually 8.

Formatting a Disk—The HEADER Command

To store programs on a new (or blank) disk, you must first prepare the
disk to receive data. This is called “formatting” the disk. NOTE:
Make sure you turn on the disk drive before inserting any disk.

The formatting process divides the disk into sections called fracks
and sectors. A table of contents, called a directory, is created. Each
time you store a program on disk, the name you assign to that pro-
gram will be added to the directory.

The Commodore 128 has two kinds of formatting commands. One
can be used only in C128 mode, and one ¢an be used in both C64
and C128 mode. The following paragraphs describe C128 mode
format commands here. See Chapter il on C64 mode for more infor-
mation about C64 programming and disk handling.

USING C128 MODE—Getting Started in BASIC

(R I A IR (U A AN A U A (U S I

(-

G

.

-]

)

.

]

a0

1

]

B

N

1

}

3

)

-]

The command that formats a diskette is called the HEADER com-
mand. It has a long form and a short form. To format a blank {(new)
disk, you MUST use the long form as follows:

HEADER “diskname”, li.d.[,Ddrive number] [,JON]U device number]j

After the word HEADER, you type a name of your choice for the disk,
within quotes. You can choose any name with up to 16 characters.
You should choose disk names that help you identify what will be
stored on the disk.

Follow the diskname with a comma and the letier “I”". Now a two
character i.d., followed by a comma. Your disk i.d. does not have 1o
be numbers; you ¢an also choose letters. You may want to develop a
consecutive coding system for your disks, such as A1, A2, B1, B2.

If you have one single disk drive, just press RETURN at this point
since the Commodore 128 automatically assumes the drive number
is 0 and the device number is 8. You can specify these parameters it
you have more than one drive or a dual drive.

The next parameter in the command selects the drive number. Press
the "D" key and if you have a single disk drive, press the zero key
followed by a comma, Dual drives are labeled 0 and 1. The device
number parameter starts with the letter U so press the “U" key fol-
lowed by the preassigned device number for a Commodore disk
drive which is 8.

Here is an example of the long form of the HEADER command;
HEADER“RECS”,|A1,D0,U8 =REFHRN=

This command formats the diskette, calling the directory RECS, the
i.d. number A1, on drive 0, unit 8.

The default values for disk drive (0) and device number (8) will be
used if none are supplied. This is an acceptable long form of the
HEADER command:

HEADER “MYDISK”, 123 SREFSRN=

The HEADER command can also be used to erase all data from a
used disk, so the disk can be reused as if it were a brand new disk.
Be careful that you don’t erase a disk that contains data you may
want someday.

43 USING C128 MODE~Getting Started in BASIC

44

The quick form of the HEADER command can be used if the disk
was previously formatted with the long form of the HEADER
command.

The quick form clears the direclory, gives it a new name, but keeps
the same i.d. as was previously used. Here is what the quick
HEADER might look like:

HEADER “NEWPROGS” =REFHRN=

SAVEing on Disk

In C128 mode, you can store your program on disk by using either of
the following commands:

DSAVE“PROGRAM NAME” =RH
SAVE“PROGRAM NAME”,8 m

Either command can be used. Remember that the character
sequence “"DSAVE" can be displayed on the screen by pressing the
function key labeled F5, or you can type the sequence yourself. The
program name can be any name you choose, up 1o 16 characters
long. Be sure to enclose the program name in quotes. You cannot
put two programs with the same name on the same disk. If you do,
the second program will not be accepted; the disk will retain the first
one. In the second example, the 8 indicates that you are saving your
program on device number 8. You do not need the 8 with DSAVE,
because the computer automatically assumes you are using device
number 8.

SAVEing on Cassette

If you are using a Datassette to store your program, insert a blank
tape in the recorder, rewind the tape if necessary, and type:

SAVE “PROGRAM NAME” ZREFHRIE
You must type the word SAVE, followed by the program name. The
program name can be any name you choose up to 16 characters.

NOTE: The screen will go blank while the program is being
SAVEd, but returns to normal when the process is completed.

Unlike disk, you can save two programs 1o tape under the same
name. However when you load it back into the computer, the first
program sequentially on the tape will be loaded, so avoid giving pro-
grams the same name.

USING C128 MODE—Getting Started in BASIC

S G GO S SO O

C C C oC C CCCc .t

C =

R

.

}

1

)

o

-

1

1

]

|

]

Once a program has been SAVEd, you can LOAD it back into the
computer’s memory and RUN it anytime you wish.

LOADiIng from Disk

Loading a program simply copies the contents of the program from
the disk into the computer’s memory. If a BASIC program was
altready in memory before you issued the LOAD command, it is
erased.

To load your BASIC program from a disk, use either of the following
commands in C128 mode:

DLOAD“PROGRAM NAME”
LOAD“PROGRAM NAME”,8

Remember, in C128 mode you can use the F2 function key {(which
you activate by pressing SHIFT and F1) to display the sequence
DLOAD", or you can type the letters yourself. In the second exam-
ple, the 8 indicates to the computer that you are loading from device
number 8. Again, like DSAVE, DLOAD assumes the disk-drive device
number is 8. Be carefut to type the program name exactly as you
typed it when SAVEing the program, or the computer will respond
“FILE NOT FOUND.”

Once the program is loaded, type RUN to execute. The Commodore
128 has a special form of the RUN command used to LOAD and
RUN the program in C128 mode with one command. Type RUN, fol-
lowed by the name of the program {also known as the filename) in
quotes:

RUN“MYPROG” SREFERN=

LOADing from Cassette

To LOAD vyour program from cassetie tape, type:
LOAD “PROGRAM NAME” SRETURN=

If you do not know the name of the program, you can type:
LOAD SREEURE

and the next program on the tape will be found. While the Datassette
is searching for the program the screen is blank. When the program
is found, the screen displays:

FOUND PROGRAM NAME

USING C128 MODE—Getting Started in BASIC

To actually load the program, you then press the Commodore key.

You can use the counter on the Datassette to identify the starting
position of the programs. Then, when you want to retrieve a pro-
gram, simply wind the tape forward from Q00 {o the program’s start
location, and type:

program will load automatically because it is the next program on
the tape.

Other Disk-Related Commands

Veritying a To verify that a program has been correctly
Program saved, use the following command in C128
mode:

DVERIFY“PROGRAM NAME"

If the program in the computer is identical to the
one on the disk, the screen display will respond
with the letters “OK.”

The VERIFY command also works for tape pro-
grams. You type;

VERIFY“PROGRAM NAME” BEFSER=

You do not enter the comma and a device
number.

Displaying Your 1nC128 mode, you can see a list or directory of
Disk Directory the programs on your disk by using the following
command:

DIRECTORY

This lists the contents of the directory. The easy
way is 10 press the F3 function key. When you
press F3, the C128 disptays the word “DIREC-
TORY™ and performs the command.

48 USING C128 MODE--Getting Started in BASIC

- L CC CcC - &L

. [C [

L =

{

C C

)

)

-

1

)

-]

)

-

I .

0

N

)

47

For further information on SAVEing and LOAD-
ing your programs, or other disk related informa-
tion, refer to your Datassette or disk drive man-
ual. Also consuli the LOAD and SAVE command
descriptions in the Chapter V, BASIC 7.0
Encyclopedia.

[IEEEEEEESIEREE SRR EERE R SRR AR A SRR EREREEEESEEESERELSSEESS]

You now know something about the BASIC language and some éle-
mentary programming concepts. The next section builds on these
concepts, introducing additional commands, functions and tech-
niques that you can use to program in BASIC.

USING €128 MODE—Getting Started in BASIC

4 73 73 9 73133 3337733370,

]

]

-]

1

)

-

:‘])

]

N

2]

1

)

N

1

[}

~)

SECTIONA4 COMPUTER DECISIONS—The IF-THEN Statement
Basic Using the Colon
Programming

LOOPS—The FOR-NEXT Command
Empty Loops—Inserting Delays in a Program
The STEP Command

INPUTTING DATA

The INPUT Command
Assigning a Value to a Variable
Prompt Messages

The GET Command

Sample Program

The READ-DATA Command

The RESTORE Command

Using Arrays
Subscripted Variables
Dimensioning Arrays
Sample Program

PROGRAMMING SUBROUTINES
The GOSUB-RETURN Command
The ON GOTO/GOSUB Command

USING MEMORY LOCATION
Using PEEK and POKE for RAM Access
Using PEEK
Using POKE

BASIC FUNCTIONS
What Is a Function?
The INTEGER Function (INT)
Generating Random Numbers—The RND Function
The ASC and CHR$ Commands
Converting Strings and Numbers
The VAL Function
The STR$ Function
The Square Root Function (SQR)
The Absolute Value Function (ABS)

THE STOP AND CONT (CONTINUE) COMMANDS

49 USING C128 MODE— Advanced BASIC Programming

J 333 3 33 33 3 3 30 3 d 3 33 30

]

1

j

)

~3

t

,-.

1

1

.

1l

1

-

B

}

Computer
Decisions—
The IF-THEN
Statement

This section describes how to use a number of powerful BASIC com-
mands, functions and programming techniques that can be usedin
both C128 and C64 modes.

These commands and functions allow you to program repeated
actions through looping and nesting technigues; handle tables of
values; branch or jump to ancother section of a program, and return
from that section; assign varying values to a quantity—and more.
Examples and sampie programs show just how these BASIC con-
cepis work and interact.

Now that you know how to change the values of variables, the next
step is 1o have the computer make decisions based on these
updated values. You do this with the IF-THEN statement. You tell the
computer to execute a command onty IF a condition is true (e.g., IF
X =15). The command you want the computer to execute when the
condition is true comes after the word THEN in the statement. Clear
your computer’s memory by typing NEW and pressing RETURN,
then type this program;

10J=0

20 ? J“COMMODORE 128”
W0 J=J+1

40 IF J{)5 THEN 20

60 END

You no longer have 1o press the STOP key to break out of a looping
program. The IF-THEN statement tells the computer to keep printing
“"COMMODORE 128" and incrementing (increasing) J untilJ=5is
true. When an IF condition is false, the computer jumps to the next
line of the program, no matter what comes after the word THEN.

Notice the END command in line 80. It is good practice to put an

END statement as the last line of your program. It tells the computer
where 10 stop executing statements.

USING C128 MODE -~ Advanced BASIC Programming

Below is a list of comparison symboats that may be used in the IF
statement and their meanings:

SYMBOL MEANING

EQUALS

GREATER THAN

LESS THAN

NOT EQUALTO

GREATER THAN OR EQUAL TO
LESS THAN OR EQUAL TO

You shoutd be aware that these comparisions work in expected

e et e

nn~

mathematical ways with numbers. There are different ways to deter-

mine if one string is greater than, tess than, or equal to another, You
can tearn about these “string handling” functions by referring to
Chapter V, BASIC 7.0 Encyclopedia.

Section 5 describes some powerful extensions of the IF-THEN con-
cept, consisting of BASIC 7.0 commands tike BEGIN, BEND, and
ELSE.

Using the Colon

A very useful tool in programming is the colon (). You can use the
colon to separate two (or more) BASIC commands on the same line.

Statements after a colon on a line will be executed in order, from left
to right. In one program line you can put as many statements as you
can fit into 160 characters, including the line number. This is equiva-
lent to four full screen lines in 40-column format, and two full lines in
80-column format. This provides an exceltent opportunity to take
advantage of the THEN part of the IF-THEN statment. You can tell
the computer to execute several commands when your IF condition
is true. Clear the computer’s memory, type in the foltowing program
and RUN it.

10 N=0

15 N=N+1

20 IF N{5 THEN PRINT N;*“LESS THAN 5":GOTO 15
30 ? N; “GREATER THAN OR EQUAL TO 5”

40 END

USING G128 MODE— Advanced BASIC Programming

=

N

(-

C C C 4L CCcC o &«

()

]

]

1

o

]

1

1

.

Loops—The
FOR-NEXT
Command

53

Now change iine 10 to read N = 20, and RUN the program again.
Notice you can telt the computer to execute more than one state-
ment when N is less than 5. You can put any statement(s) you want
after the THEN command. Remember that the GOTO 15 will not be
reached until N¢5 is true. Any command that should be followed
whether or not the specified condition is met should appearona
separate line.

In the first RUN of the program used in the previous example, we
made the computer print the variable N five times by telling it to
increase or “increment’” the variable N by units of one, until the
value of N equalled five; then we ended the program. There is a sim-
pler way to do this in BASIC. We can use a FOR-NEXT loop, like this:

10FORN=1TOS5

20 ?N; “1S LESS THAN OR EQUAL TO 5”
30 NEXT N

40 END

Type and RUN this program and compare the result with the result of
the IF-THEN program—they are similar. In fact, the steps taken by
the computer are aimost identical for the two programs. The FOR-
NEXT loop is a very powerful programming tool. You can specify the
number of times the computer should repeat an action. Let's trace
the computer'’s steps for the program above.

First, the computer assigns a value of 1 to the variable N. The 5 in
the FOR statement in line 10 tells the computer to execute all state-
ments between the FOR statement and the NEXT statement, until N
is equal 10 5. In this case there is just one statement—the PRINT
statement.

This is how the computer interprets the inner workings of a FOR
NEXT loop—it operates in much the same way as the IF. .. THEN
exampte on the previous page. First, the G128 assigns a value of 1 to
the variable N. It then executes all instructions between the FOR and
NEXT keywords. When the NEXT statement is encountered, it tells
the computer to increment the counter variable N (in this case by 1),
compare N to 5 and continue with another cycle through the FOR

... NEXT loop if N =5 is false. The increment defaults to 1 if no other
increment is specified in the FOR statement. After five passes
through the loop, and once N =5 is trug, the computer processes
the staternent which immediately follows the NEXT statement and
resumes with the rest of the program. Since the computer does not
compare the vatue of N to the start value of the loop variable until
the NEXT statement is encountered, every 10op is executed at least
once.

USING C128 MODE-—Advanced BASIC Programeing

54

Empty Loops—Inserting Delays in a Program

Before you proceed any further, it will be helpful to understand about
loops and some ways they are used to get the computer to do what
you want. You can use a lcop to slow down the computer (by now
you have witnessed the speed with which the computer executes
commands). See if you can predict what this program will do before
you run it.

10 A$ =“COMMODORE Ci128”
20FORJ=1TO 20

30 PRINT

40 FOR K=1 TO 1500

50 NEXT K

60 PRINT A$

70 NEXT J

80 END

Did you get what you expected? The loop contained in lines 40 and
50 tells the computer to count to 1500 before executing the remain-
der of the program. This is known as a delay loop and is often useful.
Because it is inside the main loop of the program, it is called a
nested loop. Nested loops can be very useful when you want the
computer to perform a number of tasks in a given order, and repeat
the entire sequence of commands a certain number of times.

Section 5 describes an advanced way to insert delays through use
of the new BASIC 7.0 command, SLEEP.

The STEP Command

You can tell the computer to increment your counter by units (e.g. 10,
0.5 or any other number). You do this by using a STEP cormmand with
the FOR statement. For example, if you want the computer to count
by tens te 100, type:

10 FOR X =0 TO 100 STEP 10

207X

30 NEXT
Notice that you do not need the X in the NEXT statement if you are
only executing one loop at a time—NEXT refers to the most recent
FOR statement. Also, note that you do not have to increase (or

“increment”) your counter—you can decrease (or “decrement”) it
as well. For example, change line 10 in the program above to read:

10 FOR X =100 TO 0 STEP-10

USING C128 MODE—Advanced BASIC Programming

L. L

L L =

SN IR A A AN AU A

S

1 9

]

)

.

.

9

a4 1 1 1 -

;

]

-]

Inputting Data

The computer wili count backward from 100 to 0, in units of 10.

If you don't use a STEP command with a FOR statement, the com-
puter wilt automatically increment the counter by units of 1.

The parts of the FOR-NEXT command in tine 10 are:
FOR — word used to indicate beginning of loop
X — counter variable; any number variable can be used
1 — starting value; may be any number, positive or nega-
five
TO — connects starting value to ending vatue
100 — ending value; may be any number, posifive or negative
STEP — indicates an increment other than 1 will be used
— 10 — increment; can be any number posilive ¢r negative

The INPUT Command
Assigning a Clear the computer’s memory by typing NEW
Valuetoa and pressing RETURN, and then type and RUN
Varlable this program.

10K=10

20FORI=1TOK
30 ? “COMMODORE”
40 NEXT

In this program you can change the value of K in
line 10 to make the computer execute the loop
as many times as you want it to. You have to do
this when you are typing the program, before it
is RUN. What if you wanted to be able to tell the
computer how many times to execute the loop
at the time the program is RUN?

In other words, you want to be able to change
the value of the variable K each time you run the
program, without having to change the program
itself. We call this the ability to interact with the
computer. You can have the computer ask you
how many times you want it to execute the loop.
To do this, use the INPUT command. For exam-
ple, replace jine 10 in the program with;

10 INPUT K

USING C128 MODE— Advanced BASIC Programming

Prompt
Messages

Now when you RUN the program, the computer
responds with a 7 to let you know it is waiting for
you to enter what you want the vatue of K to be.
Type 15 and press RETURN. The computer wili
execute the ioop 15 times.

You can also make the computer print a mes-
sage in an INPUT statement to tell you what
variable it's waiting for. Replace line 10 with:

10 INPUT“PLEASE ENTER A VALUE FOR

K"K
Remember tc enclose the message to be
printed in quotes. This message is called a
prompt, Also, notice that you must use a semi-
colon between the ending quote marks of the
prompt and the K. You may put any message
you want in the prompt, but the INPUT state-
ment must fit within 160 characters, just as any
BASIC command must.

The INPUT statement can alsc be used with
string variabtes. The same rules that apply for
numeric variables apply for strings. Don't forget
to use the § to identify all your string variables.
Clear your computer’s mermory by typing

NEW and pressing RETURN. Then type in this
program.

10 INPUT*“WHAT IS YOUR NAME”;N$
20 ? “HELLO ”,N$

Now RUN the program. When the computer
prompts “WHAT IS YOUR NAME?", type your
name. Don't forget 1o press RETURN after you
type your name.

Once the value of a variable (numeric or string)
hag been inserted into a program through the
use of INPUT, you can refer to it by its variable
name any time in the program. Type ?N$
{BETURN }—your computer remembers your
name.

USING C128 MODE —Advanced BASIC Programming

/S IRV N U B

—C CCoCoCoree b

O

1l

»

1

I

)

3

J 1 1 31 3

1

1

]

)

1

2]

57

The GET Command

There are other BASIC commands you can use in your program o
interact with the computer. One is the GET command which is simi-
far to INPUT. To see how the GET command works, clear the comput-
er's memory and type this program.

10 GET A$

20 IF A$S=""" THEN GOTO 10
30 7 AS

40 END

When you type RUN and press RETURN, nothing seems o happen.
The reason is that the computer is waiting for you to press a key. The
GET command, in etfect, tells the computer to check the keyboard
and find out what character or key is being pressed. The computer is
satisfied with a nult character (that is, no character). This is the rea-
son for line 20. This line telts the computer that if it gets a null charac-
ter, indicated by the two double quotes with no space between them,
it should go back to line 10 and try to GET another character. This
loop continues until you press a key. The computer then assigns the
character on that key to A$.

The GET command is very important because you can use it, in
effect, to program a key on your keyboard. The example below prints
a message on the screen when Q is pressed. Type the program and
RUN it. Then press Q and see what happens.

10 ?“PRESS @ TO VIEW MESSAGE”

20 GET A$

30 IF A$ =" THEN GOTO 20

40 IF A$="Q” THEN GOTO 60

50 GOTO 20

60 FORI=1TO 25

70 2 “NOW | CAN USE THE GET STATEMENT”
80 NEXT

90 END

Notice that if you try 1o press any key other than the Q, the computer
will not display the message, but wilt go back to line 20 to GET
another character.

Section 5 describes how to use the DO/LOOP and GETKEY state-

ments, which are new and more powerful BASIC 7.0 commands that
can be used to perform a similar task.

USING C128 MODE—Advanced BASIC Programming

Sample Program

Now that you know how to use the FOR-NEXT loop and the INPUT
command, clear the computer's memory by typing NEW

BEFEIEREE | then type the following program:

10T=0
20 INPUT“HOW MANY NUMBERS”;N

30 FORJ=1TON

40 INPUT“PLEASE ENTER A NUMBER ™:X

50 T=T+X

60 NEXT

70 A=TIN

80 PRINT

90 ? “YOU HAVE™N“NUMBERS TOTALING™T
100 ? “AVERAGE ="™A

110 END

This program lets you telt the computer how many numbers you want
to average. You can change the numbers every time you run the
program without having to change the program iiself.

Let’s see what the program does, line by line:

Line 10 assigns a value of 0 to T {(which will be the running total
of the numbers).

Line 20 lets you determine how many numbers to average,
stored in variable N.

Line 30 tells the computer to execute a loop N times.
Line 40 lets you type in the actual numbers 10 be averaged.
Line 50 adds each number to the running total.

Line 60 tells the computer t¢ go back to line 30, increment the
counter (J) and start the loop again.

Line 70 divides the total by the amount of numbers you typed
{N) after the loop has been executed N times.

Line 80 prints a blank tine on the screen.

Line 90 prints the message that gives you the amount of num-
bers and their totat.

Line 100 prints the average of the numbers.
Line 110 tells the computer that your program is finished.

58 USING G128 MODE—Advanced BASIC Programming

(N U SN AU I B

(L

- C C - C °

S

1

)

)

]

]

.

t

1 1

)

B S

-

]

n

]

)

59

The READ-DATA Command

There is another powerful way to tell the computer what numbers or
characters to use in your program. You can use the READ statement
in your program to tell the computer to get a number or character(s)
from the DATA statement. For example, if you want the computer to
find the average of five numbers, you can use the READ and DATA
statements this way:

10T=0
20FORJ=1TO5

30 READ X
T=T+X

50 NEXT

60 A=TI5

70 ? “AVERAGE =";A
80 END

90 DATA 5,12,1,34,18

When you run the program, the computer will print AVERAGE = 14.
The program uses the variable T 1o keep a running total, and calcu-
lates the average in the same way as the INPUT average program.
The READ-DATA average program, however, finds the numbers to
average on a DATA line. Notice line 30, READ X. The READ com-
mand tells the computer there must be a DATA statement in the pro-
gram. It finds the DATA line, and uses the first number as the current
value for the variable X. The next time through the Icop the second
number in the DATA statement will be used as the value for X, and
SO On.

You can put any number you want in a DATA statement, but you can-
not put calculations in a DATA statement. The DATA statement can
be anywhere you want in the program—aeven after the END state-
ment. This is because the computer never really executes the DATA
statement; it just refers to it. Be sure to separate your data items
with commas, but be sure not to put a comma between the word
DATA and the first number in the list.

If you have more than one DATA statement in your program, the com-
puter will refer to the one that is closest after the READ statement
being executed at the time. The computer uses a pointer to remind
itself which piece of data it read last. After the computer reads the
first number in the DATA statement, the pointer points to the second
number. When the computer comes to the READ statement again, it
assigns the second number to the variable name in the READ
statement.

USING C128 MODE— Advanced BASIC Programming

60

You can use as many READ and DATA statements as you needin a
program, but make sure there is enough data in the DATA statements
for the computer 1o read. Remove one of the numbers from the DATA
statement in the last program and run it again. The computer
responds with ?0UT OF DATA ERROR IN 30. What happened is that
when the computer executed the loop for the fifth time, there was no
data for it to read. That is what the error message is telling you. Put-
ting too much into the DATA statement doesn't create a problem
because the computer never realizes the extra data exists.

The RESTORE Command

You can use the RESTORE command in a program to reset the data
pointer to the first piece of data if you need tc. Replace the END
statement {line 80} in the program above with:

80 RESTORE
and add:
85 GOTO 10

Now RUN the program. The program will run continuously using the
same DATA statement. NOTE: If the computer gives you an OUT OF
DATA ERROR message, it is because you forgot to replace the num-
ber that you removed previously from the DATA statement, so the
data is all used before the READ statement has been executed the
specified number of times.

You can use DATA statements to assign values to string variables.
The same rules apply as for numeric data. Clear the computer’s
memory and type the following program:

10FORJ=1TO3

20 READ A$

30 ? A$

40 NEXT

50 END

60 DATA COMMODORE, 128, COMPUTER

If the READ statement calls for a string variabte, you can ptace let-
ters or numbers in the DATA statement. Notice however, that since
the computer is READIng a string, numbers will be stored as a string
of characters, not as a value which can be manipulated. Numbers
stored as strings can be printed, but not used in calcutations. Also,
you cannot place letters in a DATA statement if the READ statement
calls for a number variable.

USING C128 MODE— Advanced BASIC Programming

U SN I A A I

. & C

.

L C [

([

]

_}

B

1

]

1 1 1

]

1 1

aJ 3

_l

N

]

Using Arrays

You have seen how to use READ-DATA to provide many values for a
variable. But what it you want the computer 1o remember alt the data
in the DATA statement instead of replacing the value of a variable
with the new data? What if you want to be able to recall the third
number, or the second string of characters?

Each time you assign a new value to a variable, the computer erases
the old value in the variable’s box in memory and stores the new
value in its place. You can tell the computer to reserve a row of
boxes in memory and store every value that you assign to that varia-
ble in your program. This row of boxes is called an array.

Subscripted If the array contains all of the values assigned to

Variables the variable X in the READ-DATA example, it is
called the X array. The first value assighed io X
in the program is named X(1), the second value
is X(2), and so on, These are called subscripted
variables. The numbers in the parentheses are
called subscripts. You can use a variable or a
calculation as a subscript. The following is
another version of the averaging program,
this time using subscripted variables.

5 DIM X(5)
10T=0
15:
20 FORJ=1TOS
30 READ X{J)
D T=T+X{J
50 NEXT
55
60 A=Ti5
70 ? “AVERAGE =""A
80 END
85:
90 DATA 5,12,1,34,18

Notice there are not many changes. Line 5is the
only new statement. It tells the computer to set
aside five storage compartments (25 bytes) in
memory for the X array. Line 30 has been
changed so that each time the computer exe-
cutes the loop, it assigns a value from the DATA
statement 1o the position in the X array that cor-
responds to the loop counter (J). Line 40 calcu-

61 USING C128 MODE—Advanced BASIC Programming

Pimensioning
Arrays

lates the total, just as it did before, but you must
use a subscripted variable to do it.

After you run the program, if you want to recali
the third number, type ?X{3){RETURN). The
computer remembers every number in the array
X. You can create string arrays to store the char-
acters in string variables the same way. Try
updating the COMMODORE 128 COMPUTER
READ-DATA program so the computer will
remember the elements in the A array.

5 DIM A$(3)
10 FORJ=1TO 3

20 READ A$(J)

30 2 AS(J)

40 NEXT

50 END

60 DATA COMMODORE,C128,COMPUTER

TIP; You do not need the DIM statement in your
program unless the array you use has more than
10 elements. See DIMENSIONING ARRAYS.

Arrays can be used with nested loops, 30 the
computer can handle data in a more advanced
way. What if you had a large chart with 10 rows
and 5 numbers in each row. Suppose you
wanted to find the average of the five numbers
in each row. You could create 10 arrays and
have the computer calculate the average of the
five numbers in each one. This is not necessary,
because you can put ali the numbers in a two-
dimensional array. This array would have the
same dimensions as the chart of numbers you
want to work with—10 rows by 5 columns. The
DIM statement for this array (we will call it array
X) should be:

10 DIM X(10,5)

This tells the computer to reserve space inits
memory for a two-dimensional array named X.
The computer reserves enough space for 50
numbers. You do not have 1o fill an array with as
many numbers as you DIMensioned it for, but
the computer will still reserve enough space for
ali of the positions in the array.

USING C128 MODE-—Advanced BASIC Programming

L L

(N AN AU AR N M U N

[

{

[

[

(

[

31 0 1]

1]

1 1

b1

S S D R B

1

_

Sample Now it becomes very easy to refer to any num-

Program ber in the chart by its column and row position.
Refer to the chart below. Find the third eiement
in the tenth row (1500). You would refer to this
nurmber as X(10,3) in your program. The pro-
gram at the bottom of this page reads the num-
bers from the chart into a two-dimensional array
{X) and calculates the average of the numbers in

each row.
Column
Row 1 2 3 4 5
1 1 3 5 7 9
2 2 4 6 8 10
3 5 10 15 20 25
4 10 20 30 40 50
5 20 40 60 80 100
6 30 60 90 120 150
7 40 80 120 160 200
8 50 100 150 200 250
9 100 200 300 400 500
10 500 1000 1500 2000 2500

Programming
Subroutines

The GOSUB-RETURN Command

Untit now, the only method you have had to tell the computer to jump
to another part of your program is to use the GOTO command. What
if you want the computer to jump to another part of the program,
execute the statements in that secticn, then return to the point it left
off and continue executing the program?

The part of program that the computer jumps to and executes is
calied a subroutine. Clear your computer’s memory and enter the
program below.

10 A$ = “SUBROUTINE":B$ = “PROGRAM”
20 FORJ=1TO 5

30 INPUT “ENTER A NUMBER";X

40 GOSUB 100

50 PRINT B$:PRINT

60 NEXT

70 END

100 PRINT AS$:PRINT

110 Z=X12:PRINT 2

120 RETURN

This program will square the numbers you type and print the result.
The other print messages tell you when the computer is executing
the subroutine or the main program. Line 40 tells the computer to
jump to line 100, execute it and the statements following it until it
sees a RETURN coemmand. The RETURN statement tells the com-
puter to go back in the program to the statement following the
GOSUB command and continue executing. The subroutine can be
anywhere in the program—including after the END statement. Also,
remember that the GOSUB and RETURN commands must always
be used together in a program (like FOR-NEXT and IF-THEN}, other-
wise the computer will give an error message.

USING €128 MODE— Advanced BASIC Programming

I N

[

L

-

[N U A U S S

C L

(.

-n

[

1

1 D

]

]

1

]

N

]

Using Memory
Locations

65

The ON GOTOIGOSUB Command

There is another way to make the computer jump to another section
of your program (called branching). Using the ON statement, you can
have the computer decide what part of the program to branch to
based on a calculation or keyboard input, The ON statement is used
with either the GOTO or GOSUB-RETURN commands, depending on
what you need the program to do. A variabte or calculation should be
after the ON command. After the GOTO or GOSUB command, there
should be a list of line numbers. Type the program below to see how
the ON command works.

10 ? “ENTER A NUMBER BETWEEN ONE AND FIVE”
20 INPUT X

30 ON X GOSUB 100,200,300,400,500

40 END

100 ? “YOUR NUMBER WAS ONE”:RETURN

200 ? “YOUR NUMBER WAS TWO™:RETURN

300 ? “YOUR NUMBER WAS THREE™:RETURN

400 ? “YOUR NUMBER WAS FOUR":RETURN

500 ? “YOUR NUMBER WAS FIVE”:RETURN

When the value of Xis 1, the computer branches to the first line num-
ber in the list (100). When X is 2, the computer brarches to the sec-
ond number in the list (200), and sc on.

Using PEEK and POKE for RAM/ROM Access

Each area of the computer's memory has a special function. For
instance, there is a very large area tc store your programs and the
variables associated with them. This part of memory, called RAM, is
cleared when you use the NEW command. Other areas are not as
large, but they have very specialized functions. For instance, there is
an area of memory locations that controls the music features of the
computer.

There are two BASIC commands—PEEK and POKE—that you can
use to access and manipulate the computer's memory. Use of PEEK
and POKE commands can be a powerful programming device
because the contents of the computer’'s memory locations deter-
mine exactly what the computer should be deing at a specific time.

USING €128 MODE—Advanced BASIC Programming

ey

Using POKE

PEEK can be used to make the computer tell
you what value is being stored in a memory
location (a memory location can store any value
between 0 and 255). You can PEEK the value of
any memory location (RAM or ROM) in DIRECT
or PROGRAM mode. Type:

P = PEEK(2594) SRETHEIE
? P SRETOEN

The computer assigns the vatue in memory
location 2594 to the variable P when you press
RETURN aiter the first line. Then it prints the
value when you press RETURN after entering
the 7 P command. Memory location 2594 deter-
mines whether ar not keys like the spacebar and
CRSR repeat when you hold them down. A 128
in location 2594 tells the computer o repeat
these keys when you hold them down. Hold
down the spacebar and waich the cursor move
across the screen.

To change the value stored in a RAM location,
use the POKE command. Type:

POKE 2594,96 —RETURE

The computer stores the value after the comma
(96) in the memory location before the comma
{2594). A 96 in memory location 2594 tells the
computer not to repeat keys like the spacebar
and CRSR keys when you hold them down, Now
hold down the spacebar and watch the cursor.
The cursor moves one position to the right, but it
does not repeat. To return your computer to its
normal state, type:

POKE 2594,128

You cannot alter the value of all the memory
locations in the computer—the values in ROM
can be read, but not changed.

NOTE: These examples assume you are in
bank @. See the description of the BANK
command in Chapter V, BASIC 7.0 Encyclo-
pedia for details on banks. Refer to the
Commaodore 128 Programmer’s Reference

USING C128 MODE—Advanced BASIC Programming

C CC CCCCcCcocroceoiic oo

S A

J]

_J

N

1]

]

1

]

30 1 1

]

B I I B

Basic Functions

67

Guide for a complete memory map of the
computer, which shows you the contents of
all memory locations.

What Is a Function?

A function is a predefined operation of the BASIC language that gen-
erally provides you with a single value. When the function provides
the value, it is said to “return” the value. For instance, the SQR
(square root) function is a mathematical function that returns the
root value of a specific number before it is raised to the second
power—i.e., the value returned when multiplied by itself (squared) is
equal to the argument used in the function.

There are two kinds of functions:

Numeric—returns a result which is a single number, Numeric
functions range from calculating mathematical values to speci-
fying the numeric value of a memory location.

String—returns a result which is a character.

Following are descriptions of some of the more commonly used
functions. For a complete list of BASIC 7.0 functions see Chapter V,
BASIC 7.0 Encyclopedia.

The INTEGER Function (INT)

What if you want to round off a number to the nearest integer? You'll
need to use INT, the integer function. The INT function takes away
everything after the decimal point {for positive numbers only). Try
typing these examples:

2 INT(4.25)
2 INT({4.75) ZRE
2 INT(SOR(50))

If you want to round off to the nearest whole number, then the sec-

ond example should return a value of 5. In fact, you should round up .
any number with a decimal of 0.5 and above. To do this, you have to i
add 0.5 to the number before using the INT function. In this way, :
numbers with decimal portions of 0.5 and above will be increased by

1 before being rounded down by the INT function. Try this:

? INT(4.75 + 0.5) SRETEREE !

USING C128 MODE—Advanced BASIC Programming

sl

68

The computer added 0.5 to 4.75 before it executed the INT function,
so that it rounded 5.25 down to 5 for the result. If you want to round
off the result of a calculation, do this:

? INT{(100/6) + 0.5) SEELERK

You can substitute any calculation for the division shown in the inner
parentheses,

What if you want to round off numbers to the nearest 0.017? Instead of
adding 0.5 to your number, add 0.005, then multiply by 100. Let's say
you want to round 2.876 to the nearest 0.01. Using this method, you
start with:

2 (2.876 + 0.005)*100 RETERIE

Now use the INT function to get rid of everything after the decimal
point (which moves two places to the right when you multiply by
100). You are left with:

? INT({2.876 + 0.005)*100) =REEHURN=

which gives you a value of 288. All that’s left to do is divide by 100 to
get the value of 2.88, which is the answer you want. Using this tech-
nique, you can round off calculations like the foliowing to the nearest
0.01:

? INT({(2.876 + 1.29 + 16.1-9.534) + 0.005)* 100/100 =REXHRN

Generating Random Numbers—The RND Function

The RND functions tells the computer to generate a random number.
This can be useful in simulating games of chance, and in creating
interesting graphic or musi¢ programs. All random (RND) numbers
are nine digits, in decimal form, between the values 0.000000001
and 0.999999999. Typ--

? RND (0)

Multiplying the randomty generated number by six makes the range
of generated numbers increase to greater than 0 and less than 6. In
order to include 6 among the numbers generated, we add one to the
result of RND(0)*8. This makes the range 1{X{7. [f we use the INT
function to eliminate the decimal places, the command will generate
whole numbers from 1 o0 8. This process ¢an be used to simulate the
rolling of a die. Try this program:

10 R= INT(RND(1)*6 + 1)

207R
30 GOTO 10

USING €128 MODE— Advanced BASIC Programming

[[

[

L L L

P R I R

El [.:J ’:! L [:!

J

—
-

)

]

)

)

]

)

-]

0 R R N B

]

-

)

-1

Each number generated represents one toss of a die. To simulate a
pair of dice, use two commands of this nature. Each number is gen-
erated separately, and the sum of the two numbers represents the
total of the dice.

The ASC and CHRS Functions

Every character that the Commodore 128 can display (including
graphic characters) has a number assigned to it. This numbey is
called a character string code (CHR$) and there are 256 of themin
the Commodore 128. There are two functions associated with this
concept that are very usetul. The first is the ASC function. Type:

2ASC(“Q™

The computer responds with 81. 81 is the character siring code for
the Q key. Substitute any character for Q in the command above to
find out the Commodore ASCII code number for any character.

The second function is the CHR$ function. Type:
2CHR$(81) =&

The computer responds with Q. In effect, the CHR$ function is the
opposite of the ASC function. They both refer to the table of charac-
ter string codes in the computer’s memory. CHRS vatues can be
used to program function keys. See Section 5 for more information
about this use of CHRS. See Appendix E of this Guide for a full listing
of ASC and CHR$ codes.

Converting Strings and Numbers

Sometimes you may need to perform calcutations on numeric char-
acters that are stored as string variabtes in your program. Other
times, you may want to perform string operations on numbers. There
are two BASIC functions you can use to convert your variables from
numeric to string type and vice versa.

69 WSING C128 MODE— Advanced BASIC Prograrmming

The STOP and

CONT (Continue)

Commands

70

The VAL The VAL function returns a numeric value for a
Function string argument. Clear the computer's memory
and type this program:

10 A$ =“64”

20 A=VAL(AS)

30 ? “THE VALUE OF”;A$;“IS™A
40 END

The STRS The STR$ function returns the string representa-
Function tion of a numeric value. Clear the computer’s
memory and type this program.

10 A=65
20 AS=STR$(A)
30 ? A“ IS THE VALUE OF”;AS

The Square Root Function (SQR}

The square root function is SQR. For example, to find the square root
of 50, type:

? SQR(50) =&
You can find the square root of any positive number in this way.

The Absolute Value Function (ABS)

The absclute value function (ABS) is very useful in dealing with nega-
tive numbers. You can use this function to get the positive vatue of
any number—positive or negative. Try these examples:

? ABS(- 10) HETORRE:
2 ABS(5)* 1S EQUAL TO "ABS(— 5) SRETHRRE

You can make the computer stop a program, and resume running it
when you are ready. The-STOP command must be included in the
program. You can put a STOP statement anywhere you want to in a
program. When the computer “breaks” from the program (that is,
stops running the program), you can use DIRECT mode commands
to find out exactly what is going on in the program. For example, you

can find the value of a loop counter or other variable. This is a power-

ful device when you are “debugging” or fixing your program. Clear
the computer’s memory and type the program below.

USING €128 MODE—Advanced BASIC Programming

L=

L.

(2

(.

(-

C C C C C L

[C [

(-

[

(-

L

)

)

1

ot

)

-]

]

-

)

]

]

-]

N

)

)

]

)

]

]

]

10 X = INT(SQR(630))

20 Y = (.025*80)12

30 Z = INT(X*Y)

40 STOP

45 7 “RESUME PROGRAMMING”
50A=(X*Y) + Z

80 END

Now RUN the program. The computer responds with "BREAK IN
407, At this point, the computer has calculated the values of X, Y and
Z. 11 you want to be abte to figure out what the rest of the program is
supposed to do, tell the computer to PRINT X;Y;Z. Often when you
are debugging a large program (or a complex small one), you'll want
to know the value of a variable at a certain point in the program.

Once you have all the information you need, you can type CONT (for
CONTinue)} and press RETURN assuming you have not edited any-
thing on the screen. The computer then CONTinues with the pro-
gram, starting with the statement after the STOP command.

[EZE RS SR SRR SRR RS S SRR EREE SRR EEEEEEERERSERERLESESES.]

This section and the preceding one have been designed to familiar-
ize you with the BASIC programming language and some of its capa-
bilities. The remaining four sections of this chapter describe com-
marnds that are unique to Commodore 128 mode. Many Commodore
128 mode commands provide capabilities that are not available in
C64 mode. Other Commodore 128 mode commands let you do the
same thing as certain C64 commands, but more easily. Remember
that more information on every command and programming tech-
nique in this book can be found in the Commodore 128 Program-
mer's Reference Guide, The syntax for all Commodore 7.0 com-
mands is given in Chapter V| BASIC 7.0 Encyciopedia.

USING C128 MODE—Advanced BASIC Programming

o3 3 0 3 33 3 33 30 320 30 3

]

)

-]

-J

_1

)

)

IS R R R R

)

)

SECTIONS
Advanced BASIC
7.0 Commands

73

INTRODUCTION

ADVANCED LOOPING
TheDO/LOOP Statement
Until
While
Exit
The ELSE Clause with IF-THEN
The BEGIN/BEND Sequence with IF-THEN
The SLEEP Command

FORMATTING OUTPUT
The PRINT USING Command
The PUDEF Command

SAMPLE PROGRAM
INPUTTING DATA WITH THE GETKEY COMMAND

PROGRAMMING AIDS

Entering Programs
AUTO
RENUMBER
DELETE

Identifying Problems in Your Programs
HELP
Error Trapping—The TRAP Command
Program Tracing—The TRON and TROFF Commands

WINDOWING
Using the WINDOW Command to Create a Window
Using the ESC key to Create a Window

2 MHZ OPERATION
The FAST and SLOW Commands

KEYS UNIQUE TO C128 MODE
Function Keys
Redefining Function Keys
Other Keys Used in C128 Mode Only
HELP
NO SCROLL
CAPS LOCK
40/80 DISPLAY
ALT
TAB
LINE FEED

USING C128 MODE-—Some BASIC Commands and Keyboard Operations Unigque to

£128 Mode

T 0307733733303 3905039070

9

)

)

-]

_l

)

-]

)

D

]

2}

]

]

]

-]

]

Introduction

Advanced
Looping

This section introduces you to some powerful BASIC commands and
statements that you probably haven't seen before, even if you are an
experienced BASIC programmer. If you're familiar with programming
in BASIC, you've probably encouniered many situations in which you
could have used these commands and statements. This section
explains the concepts behind each command and gives examples of
how to use each command in a program. {A complete list and an
explanation of these commands and statements may be found in
Chapter V, BASIC 7.0 Encyciopedia.) This section also describes how
to use the special keys that are available to you in C128 mode.

The DOILOOP Statement

The DOILOOP statement provides more sophisticated ways to cre-
ate a loop than do the GOTO, GOSUB or FOR/NEXT statements. The
DO/LOOP statement combination brings to the BASIC language a
very powerful and versatite technique normally available only in
structured programming languages. We'll discuss just a few possible
uses of DO/LOOP in this explanation.

If you want {o create an infinite loop, you start with a DO statement,
then enter the line or lines that specify the action you want the com-
puter to perform. Then end with a LOOP statement, like this:

100 DO
110 PRINT “REPETITION”
120 LOOP

Press the RUNISTOP key to stop the program.

The directions following the DO statement are carried out until the
program reaches the LOOP statement (line 120); control is then
transferred back to the DO statemen’ {line 100}). Thus, whatever
statements are in between DO and LOOP are performed indefinitety.

Until Another useful technique is to combine the DO/
LOOP with the UNTIL statement. The UNTIL
statement sets up a condition that directs the
loop. The loop will run continually unless the
condition for UNTIL happens.

100 DO:

110 : INPUT “DO YOU LIKE YOUR COMPUTER”;A$
120 LOOP UNTIL A$=“YES”

130 PRINT “THANK YOU”

USING 0128 MODE-—Some BASIC Commands and Keyboard Operations Unique to
128 Mode

The DO/LOOP statement is often used to repeat
an entire routine indefinitely in the body of a
program, as in the following:

“10 PRINT" THE PROGRAM RUNS UNTIL You TYPE ‘QuIT "
.20-D0O .

30 3 INPUT“DEGREES FAHRENHEIT“ F

40 3 C=(5/9)*{F-32)

55 PRINT F;"DEGREES FAHRENHEIT"; _
ﬁSﬁg:--c:iPRINT"EQUALs W.Cs " DEGREES CELSIUS"

60 : INPUT "AGAIN OR QUIT";AS

‘70 LOOP UNTIL AS$="QUIT"

‘80 END _

Another use of DO/LOORP is as a counter, where
the UNTIL statement is used to specify a certain
number of repetitions,

10 N=2%2
-_PRINT"TWO DOUBLED EQUALS“ N

X=X+1

N=N*2 g .
: . PRINT"DOUBLED";X+1;"TIMES...";N
LOOP UNPIL X=25 , B :

"END -

Notice that if you leave the counter statement
out (the UNTIL X = 25 part in line 70), the num-
ber is doubled indefinitely until an OVERFLOW
error occurs.

While The WHILE statement works in a similar way to
UNTIL, but the loop is repeated only while the
condition is in effect, such as in this reworking

of this brief program:
10 po C '
20 INPUT“DO YOU LIKE YOUR COMPUTER";AS
LE A$<>"YES"™
THANK -YOU"

An EXIT statement can be placed within the
body of a DO/LOOP. When the EXIT statement is
encountered, the program jumps to the next
statement following the LOOP statemient.

USING (128 MODE—Some BASIC Commands and Keyboard Operations Unigue to
€128 Mode

[

[

I

L

(-

-

[

]

-l

]

_l

°)

-

]

]

1

)

]

)

2]

]

)

]

The ELSE Clause with IF-THEN

The ELSE clause provides a way to tell the computer how to respond
if the condition of the IF-THEN staterment is false. Rather than contin-
uing io the next program line, the computer will execute the com-
mand or branch to the program line mentioned in the ELSE clause.
For example, if you wanted the computer to print the square of a
number, you could use the ELSE clause like this:

10 DO '_
20 1. . INPUT | "ENTER A NUMBER T{ BE SQUARED",N
30 :' IF N <. 100 THEN PRINT N*N:ELSE 60

40 : ' PRINT'PRESS Q" TO QUIT" :

50 & . INPUT AS.

602 . BRI

70 LOOP UNTIL

80 END

Notice that you must use a colon between the IF-THEN statement
and the ELSE clause.

The BEGIN/BEND Sequence with IF-THEN

BASIC 7.0 allows you to take the IF-THEN condition one step further.
The BEGIN/BEND sequence permits you to include a number of pro-
gram lines to be executed if the IF condition is true, rather than one
simple action or GOTO. The command is constructed like this:

IF condition THEN BEGIN:
(program lines):
BEND:ELSE

Be sure to place a colon between BEGIN and any instructions to be
executed and again between the last command in the sequence and
the word BEND. BEGIN/BEND can be used without an ELSE clause,
or can be used following the ELSE clause when only a smgle com-
mand follows THEN. Try this program:

10 DO :

20 : INPUT “ENTER A NUMBER":A

30 : - IP A< 100 THEN BEGIN L

40 : PRINT"YOUR NUMBER WAS F;A .

50 : SLEEP 2:REM DELAY

60 : FOR X=1 TO A

70 PRINT"THIS IS A BEGIN/BEND EXAMPLE® -
80 : NEXT X

90 PRINT"THAT 'S ENGUGH"

100 BEND :ELSE PRINT"TOO MANY®.
110::. . INPUT'DO YQU WANTIT0 QUIT. (¥/N)"id$
120 LOOP UNTIL A§="Y" :

130 END

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unigue to
G128 Mode

Formatting
Output

78

This program asks for a number from the user. IF the number is less
than 100, the statements between the keywords BEGIN and BEND
are performed, along with any siatements on the same line as BEND
(except for ELSE). The message "YOUR NUMBER WAS N” appears
on the screen. Line 50 is a delay loop used to keep the message on
the screen fong enough so it can be read easily. Then a FOR/NEXT
loop is used to display a message for the number of times specified
by the user. If the number is greater than 100, the THEN condition is
skipped, and the ELSE condition {printing “TOO MANY")is carried
out. The ELSE keyword must be on the same line as BEND.

The SLEEP Command

Note the use of the SLEEP command in line 50 of the program just
discussed. SLEEP provides an easier, more accurate way of insert-
ing and timing a delay in program operation. The format for the
SLEEP command is

SLEEP n

where n indicates the number of seconds, inthe range 1 to 65535,
that you want the program to delay. In the command shown in line
50, the 2 specifies a delay of two seconds.

The PRINT USING Command

Suppose you were writing a sales program that calculated a dottar
amount. Total sales divided by number of salespeopie equals aver-
age sales. But performing this calculation might result in dollar
amounts with four or five decimal places! You can format the results
the computer prints so that only two decimal places are displayed.
The command which performs this function is PRINT USING.

PRINT USING lets you create a format for your output, using spaces,
commas, decimal points and doftar signs. Hash marks (the # sign)
are used to represent spaces or characters in the displayed result.
For example:

PRINT USING *“#S#####.#1";A

tells the computer that when A is printed, it should be in the form
given, with up to five places to the left of the decimal point, and two
places to the right. The hash mark in front of the dollar sign indicates
that the $ should fleat; that is, it should aiways be placed next to the
teft-most number in the format.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

L CCoC

(=

L

[

-

)

)

]

)

]

)

]

]

]

)

J

1

—

)

1

]

3

If you want a comma 1o appear before the last three dollar places, as
in $1,000.00, inciude the comma in the PRINT USING statement.
Remember you can format output with spaces, commas, decimal
points, and dollar signs. There are several other special characters
for PRINT USING, see the BASIC Encyclopedia for more information.

The PUDEF Command

If you want formatted output representing something other than do!-
lars and cents, use the PUDEF {Print Using DEFine) command. You
can reptace any of four format characters with any character on the
keyboard.

The PUDEF command has four positions, but you do not have to
redefine all four. The command looks like this:

PUDEF“_, - §”
1234
Here:

» position 1 is the filler character. A blank will appear if you do
not redefine this position.

* position 2 is the comma character. Default is the comma.

* position 3 is the decimal point.

¢ position 4 is the dollar sign.

If you wrote a program that converted dollar amounts to English
pounds, you could format the output with these commands:

10 PUDEF “ €”
20 PRINT USING “#$#tith.ii#";X

Sample Program This program calculates interest and loan payments, using some of
the commands and statements you just learned. It sets a minimum
value for the toan using the ELSE clause with an IF-THEN statement,
and sets up a dollar and cents format with PRINT USING.

10 INPUT "LOAN AMOUNT IN DOLLARS";A

20 IF A<100 THEN 70: ELSE P=.l5

30 I=A*pP

40 PRINT"TOTAL PAYMENT EQUALS";

50 PRINT USING “"#S$SH###4##.44";A+T

60 GO TO 80

70 PRINT"LOANS OF UNDER $100 NOT AVAILABLE"
80 END

USING €128 MODE—Some BASIC Commands and Keyboard Operations Unique to
79 C128 Mode

Inputting Data

with the GETKEY

Command

80

You have learned to use INPUT and GET commands to enter DATA
during a proagram. Another way for you to enter data while a program
is being RUN is with the GETKEY statement. The GETKEY statement
accepts only one key at a time. GETKEY is usually followed by a
string variable (A$, for example). Any key that is pressed is assigned
to that string variable. GETKEY is useful because it allows you to
enter data one character at a time withcut having to press the
RETURN key after each character. The GETKEY statement may only
be usedin a program.

Here is an example of using GETKEY in a program:

1000 PRINT “PLEASE CHOOSE A, B,C,D,E,OR F”
1010 GETKEY A$
1020 PRINT AS;“ WAS THE KEY YOU PRESSED.”

The computer waits until a single key is pressed; when the key is
pressed, the character is assigned to variable A%, and printed out in
line 1020. The following program features GETKEY in more complex
and useful fashions: for answering a multiple-choice question and
also asking if the question should be repeated. If the answer given is
incorrect, the user has the option to try again by pressing the “Y™”
key (line 90). The key pressed for the multiple choice answer is
assigned to variable A$ while the “TRY AGAIN" answer is assigned
to BY, through the GETKEY statements in lines 60 and 90. IF/THEN
statements are used for loops in the program to get the proper com-
puter reaction to the different keyboard inputs.

10 PRINT “WHO WROTE ‘THE RAVEN'?”

20 PRINT “A. EDGAR ELLEN POE”

30 PRINT “B. EDGAR ALLAN POE”

40 PRINT “C. IGOR ALLEN POE”

50 PRINT “D. ROB RAVEN"

60 GETKEY A%

70 IF A$=%B” THEN 150

80 PRINT “WRONG. TRY AGAIN? (Y OR N)”

90 GETKEY B$

100 IF B$ =“Y” THEN PRINT “A,B,C, OR D?":GOTO 60
110 IF B$ =“N” THEN 140

120 PRINT “TYPE EITHER Y OR N—TRY AGAIN”
130 GOTO 90

140 PRINT “THE CORRECT ANSWER IS B.”

145 GOTO 160

150 PRINT “CORRECT!”

160 END

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

I

A NN U N U IR A S|

[.

[

(-

.

(-

C

)

-)

}

1

]

]

]

)

1

1

]

)

)

]

-l

GETKEY is very similar to GET, except GETKEY will automatically
wait for a key 1o be pressed.

Programming in earlier sections, you learned how to make changes in your pro-
Aids grams, and correct typing mistakes with INST/DEL. BASIC also pro-
vides other commands and functions which hetp you locate actual
progam errors, and commands which you can use to make program-
ming sessions flow more smoothly.

Entering Programs

Auto C128 BASIC provides an auto-numbering pro-
cess. You determine the increment for the line
numbers, Let's say you want to number your
program in the usual manner, by tens. Before
you begin to program, while in DIRECT mode,

type:
AUTO 10

The computer will automaticalty number your
program by tens. When you press the RETURN
key, the next line number appears, and the cur-
soris in the correct place for you to type the
next statement. You can choose 1o have the
computer number the commands with any
increment; you might choose 5 or even 50, Just
place the number after the word AUTO and
press RETURN. To turn off the auto-numbering
feature, type AUTQ with no increment, and
press RETURN.

Renumber If you write a program and later add statements
to it, sometimes the line numbering can be awk-
ward. Using the RENUMBER command you can
change the line numbers to an even increment
for part or all of your program. The RENUMBER
command has several optional parameters, as
listed below in brackets:

RENUMBER [new starting line|,
incrementf,old starting line]])

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unie .
81 €128 Mode

Delete

The new starting line is what the first program
line will be numbered after the RENUMBER
command is used. if you don’t specify, the
defaultis 10. The increment is the spacing
between line numbers, and it also defaults to 10.
The old starting line number is the line number
where renumbering is to begin. This feature
allows you to renumber a portion of your pro-
gram, rather than all of it. 1t defaults to the first
ling of the program. For example,

RENUMBER 40,,80

tells the computer to renumber the program
starting at line 80, in increments of 10. Ling 80
becomes line 40.

Notice that this command, like AUTO, can only
be executed in DIRECT mode.

You know 1o delete program lines by typing the
line number and pressing the RETURN key. This
can be tedious if you want to erase an entire
portion of your program. The DELETE command
can save you time because you can specify a
range of program lines to erase all at once. For
example,

DELETE 10—50

will erase lines 10, 50, and any in between. The
use of DELETE is similar to that of LIST, in that
you can specify a range of lines up to a given
line, or following it, or a single line only, as in
these examples:

DELETE—120

erases all lines up 10 and including 120
DELETE 120—

erases line 120 and any line after it
DELETE 120

erases line 120 only

R e e T e

-

(-

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique 1o
82 G128 Mode

-

]

)

]

2)

]

R

_

I B R

]

-]

]

N

)

-]

Identifying Problems in Your Programs

When a program doesn’t work the way you expected, an error mes-
sage usually occurs. Sometimes the messages are vague, however,
and you still don’t understand the problem. The Commodore 128
computer has several ways of helping you locate the problem.

Help The Commodore 128 provides a HELP com-
mand that specifies the line in which a problem
has occurred. To actuaie the HELP command,
just press the special HELP key on the row of
keys located above the main keyboard.

Type the following statement. It contains an
intentional error, o type it just as is:

10 73:4:5:6

When you RUN this one-line program, the com-
puter prints 3 and 4 as expected, but then
responds “SYNTAX ERROR IN 10". Let’s sup-
pose you can't see the error (a colon instead of
a semicolon between 4 and 5). You press the
HELP key. (You can also type HELP and press
RETURN.) The computer displays the line again,
but the 5;6 is highlighted to show the error is in
that line,

Error Usually, if an error oceurs in a program, the pro-

Trapping—The gram “crashes” (stops running). At that point,

TRAP Command you can press the HELP key to track down the
evror. However, you can use the BASIC 7.0
TRAP command to inciude an error-trapping
capability within your program. The TRAP com-
mand advises you to locate and correct an error,
then resumes program operation. Usually, the
error-trapping function is set in the first ling of a
program.

5 TRAP 100

tells the computer that if an error occurs to go to
a certain line (in this case, line 100}. Line 100
appears at the end of the program, and sets up

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unigue to
C128 Mode

a contingency. Neither line is executed UNLESS
there is an error. When an error occurs, the line
with the TRAP statement is enacted, and control
is directed to another part of the program. You
can use these statements to catch anticipated
errors in entering data, resume execution, or
return to text mode from a graphics mode, 1o
name just a few options. If you run the DO/LOOP
example (which doubled numbers) without an
UNTIL statement, you can get an OVERFLOW
error and the program crashes. You can prevent
that from happening by adding two lines, one at
the beginning of the program and one at the
end. For this example, you might add these two
lines:

5 TRAP 100
100 IF N>1 THEN END

Even though N has been much greater than one
for the entire program, the statement isn’t con-
sidered until therg is an error. When the number
“overflows" (is greater than the computer can
accept), the TRAP statement goes into effect.
Since N is greater than one, the program is
directed to END (rather than crashing.}

Here is an exampie in which trapping is used to
prevent a zero from being input for division:

L L C & O C & =

C & . C -«

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unigue to
84 C128 Mode

C

)

-}

}

_}

)

]

1

J

]

]

]

N

1

-]

]

I

1

Program
Tracing—The
TRON and
TROFF
Commands

Notice the RESUME in line 1100. This tells the
computer to return to the line mentioned (in this
case, 120) and continue. Depending on the error
that was trapped, resuming execution may or
may not be possible.

For additionat information on error trapping, see
the error functions ERR3, EL and ER, described
in Chapter V, BASIC 7.0 Encyclopedia.

When a problem in a program occurs, or you do
not get the resulis you expect, it can be useful to
methodically work through the program and do
exactly what the computer would do. This pro-
cess is called tracing. Draw variable boxes and
update the values according to the program
statements. Perform calculations and print
results following each instruction.

Tracing may show you, for example, that you
have used a GOTO with an incorrect line num-
ber, or calculated a result but never storeditin a
variable. Many program errors can be located
by pretending to be the computer, and following
only one instruction at a time. Your C128 can
perform a type of trace using the special com-
mands TRON and TROFF (short for TRace ON
and TRace OFF). When the program is run, with
TRACE ON the computer prints the line num-
bers in the order they are executed, as well as
any results. In this way, you may be able to see
why your program is not giving the results you
expected.

Type any short program we have used so far, or
use one of your own design. To activate trace
mode, type TRON in DIRECT mode. When you
run the program, notice how line numbers
appear in brackets before any results are dis-
played. Try to follow the line numbers and see
how many steps the computer needed to arrive
at a certain point. TRON will be more interesting
if you pick a program with many branches, such
as GOTO, GOSUB and IF-THEN-tine number.
Type TROFF to turn trace mode off before con-
tinuing.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
G128 Mode

Windowing

You don't have to trace an entire program. You
can place TRON within a program as a line prior
to the program section causing problems. Put
the word TROFF as a program ling after the trou-
blesome section. When you run the program,
only the lines between TRON and TROFF will be
bracketed in the results.

Windows are a specific area of the screen that you define as your
workspace. Everything you type (lines you type, listings of programs,
etc.) after setting a window appears within the window’s boundaries,
not affecting the screen outside the window area. The Commodore
128 provides two methods of creating windows: the WINDOW com-
mand and ESCAPE key functions.

Using the WINDOW Command to Create a Window

The Commodore 128 BASIC 7.0 language features a command that
allows you to create and manipulate windows: the WINDOW com-
mand. The command format is:

WINDOW top-left column, top-left row, bottom-right column,
bottom-right row [,clear option]

The first two numbers after WINDOW specify the column and row
number of where you want the top left corner of the window to be;
the next two numbers are the coordinates for the bottom right cor-
ner. Remember that the screen format (40 or 80 columns) dictates
the acceptable range of these coordinates. You can also include a
clear option with this command. If you add 1 to the end of the com-
mand, the window screen area is cleared, as in this example:

WINDOW 10, 10, 20, 20, 1

Here’s a sample program that creates four windows on the screen, in

either 40- or 80-column format.

USING C128 MODE~—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

- L=

[

(=

L & & C C C &

. L T £t

-

10
20
30
40
50
60
63
65

a0
20

100
110
115
120
130
140
15¢
160

PRINT":E' :REM CLEAR THE SCREEN
A$="ABCDEFGHIJKLMNOPQRSTUVHXYZ"
BS=AS+AS+AS :
FOR I=1T0 25 :PRINT B$:;NEXT ;REM FILL SCREEN WITH CHARACTERS
WINDOW 1 ,1 ,8 ,20 :REM DEFINE WINDOW 1
PRINT"ER"
REM THE PREVIOUS LINE FILLS WINDOW 1 WITH RED
REM HOLD DOWN <CONTROL> THEN PRESS THE 3 KEY {RED) TO GET THE “£" CHARACTER
REM HOLD DOWN <CONTRCL> THEN PRESS THE 9 KEY (RVS ON) TO GET THE "R" .CHAR
WINDOW 15,15,39,20,1 :REM DEFINE 2ND WINDOW
PRINT "*%: BS:A$ {REM FILL WINDOW WITH CHARACTERS
REM HOLD DOWN <CONTROL> THEN PRESS THE 6 KEY {GREEN) TO GET THE "_" CHARACTER
WINDOW 30,31,39,22,1 :REM DEFINE 3RD WENDOW -
PRINT""": LIST :REM SELECT YELLOW AND LIST IN WINDOW
REM HOLD DOWN <CONTROL> THEN PRESS THE 8 KEY (YELLOW) TO GET THE "~" CHAR
WINDGW 5,5,33,18,1 :REM DEFINE 4TH WINDOW ON TOP OF THE OTHER THREE
PRINT"a®+ PRINTAS :LIST: REM CHANGE COLOR - 'PRINT A$ AND LIST IN WINDOW .
REM HOLD DOWN <COMMODORE> THEN PRESS THE 1 KEY {ORANGE} TO GET THE “a" CEAR
REM IN 80 COLUMN MODE THE "a” CHAR DISPLAYS PURPLE
REM ALL COLOR CHANGE CHARACTERS ARE ONLY DISPLAYED WITHIN QUOTES

Using the ESC Key to Create a Window
To set a window with the ESC (Escape) Key, follow these steps:

1. Move the cursor to the screen position you want as the top
left corner of the window.

2. Press the ESC key and release it, and then press T.

3. Move the cursor to the position you want to be the bottom
right corner of the window.

4. Press ESC and release, then B. Your window is now set.

You ¢an manipulate the window and the text inside using the ESC
key. Screen editing functions, such as inserting and deleting text,
scrolling, and changing the size of the window, can be performed by
pressing ESC followed by another key. To use a specific function,
press ESC and release it. Then press any of the following keys listed
for the desired function:

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
87 €128 Made

88

@ Erase everything from cursor to end of screen window
Automatic insert mode

Set the bottom right corner of the screen window (at the
current cursor location)

Cancel insert mode

Delete current line

Set cursor to non-flashing mode

Set cursor {o flashing mode

Enable bell (by Cantrol-G)

Disable bell

Insert a line

Move to the beginning of the current line

Move to the end of the current line

Turn on scrolling

Turn off scrolling

Return to normal {(non-reverse video) screen display
{80-column only)

Cancel quote mode

Erase everything from the beginning of line to the cursor
Erase everything from the cursor to the end of the line
Reverse video screen display (80-column only)

Change to block cursor () (80-cclumn only)

Set the top left corner of the screen window (at the current
cursor location)

Change to underline cursor {_} {80-column only}

Scroll screen up one line

W Scroll screen down one line

X Toggle between 40 and 80 columns

Y Restore default TAB stops

Z Clear all TAB stops

<C =HMOIOVO ZFIrX=«"IOHTMOO W)

Experiment with the ESCape key functions. You will probably find
certain functions more useful than cthers. Note that you can use the
usual INST/DEL key to perform text editing inside a window as well,

When a window is set up, all screen output is confined to the “box™
you have defined. If you want to clear the window area, press SHIFT
and CLEAR/HOME together. To cancel the window, press the CLEAR/
HOME key twice. The window is then erased, and the cursor is posi-
tioned in the top left corner of the screen. Windows are particularly
usefu! in writing, listing and running programs because they allow
you to work in one area of the screen while the rest of the screen
stays as is.

USING C128 MODE—Some BASIC Commands and Keybeard Operations Unique to
C128 Mode

A GO N

‘

-

L - L O (=

L

(

-

(-

(.

(-

)

2l

]

3

]

-]

1

]

)

1

_}

)

2 MHz
Operation

Keys Unique To
€128 Mode

a9

The FAST and SLOW Commands

The 2 MHz operating mode allows you to run non-graphic programs
in 80-column format at twice the normal speed. You can switch nor-
mal and fast operation by using the FAST and SLOW commands.

The FAST command places the Commodore in 2 MHz mode. The
format of this command is:

FAST

The SLOW command returns the Commodore 128 to 1 MHz mode.
The default speed for the Commodore 128 microprocessor (8502) is
1 MHz. The format of this command is:

SLOw

Function Keys

The four keys on the Commaodore 128 keyboard on the right side
above the numeric keypad are special function keys that let you save
time by performing repetitive tasks with the stroke of just one key.
The first key reads F1/F2, the second F3/F4, the third F5/F6, and the
last F7IF8. You can use functions keys 1, 3, 5, 7 by pressing the key
by itself. To use function keys 2, 4, 6 and 8, press SHIFT along with
the function key.

Here are the standard functions for each key:

F1 F2 F3 F4
GRAPHIC DLOAD* DIRECTORY SCNCLR
F5 Fé F7 F8
DSAVE RUN LIST MONITOR

Here's what each function involves:

KEY 1 enters one of the GRAPHICS modes when you supply
the number of the graphics area and press RETURN.
The GRAPHICS command is necessary for giving graph-
ics commands such as CIRCLE or PAINT. For more on
GRAPHICS, see Section 6.

KEY 2 prints DLOAD * on the screen. All you do is enter the
program name and end quotes and hit RETURN to load
a program from disk, instead of typing out DLOAD your-
self,

KEY 3 lists a DIRECTORY of files on the disk in the disk drive.

KEY 4 clears the screen using the SCNCLR command.

USING €128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

KEY 5 prints DSAVE ' on the screen. Alt you do is enter the
program name, and press RETURN to save the current
program on disk.

KEY 6 RUNSs the current program.

KEY 7 displays a LISTing of the current program.

KEY 8 iets you enter the Machine Language Monitor. See
Appendix J for a description of the Manitor.

Redefining Function Keys

You can redefine or program any of these keys to perform a function
that suits your needs. Redefining is easy, using the KEY command.
You can redefine the keys from BASIC programs, or change them at
any time in direct mode. A situation where you might want tc rede-
fine a function key is when you use a command frequently, and want
o save time instead of repeatedly typing in the command. The new
definitions are erased when you iurn off your computer. You can
redefine as many keys as you want and as many times as you want,

If you want 1o reprogram the F7 function key to return you to text
mode from high-resotution or multicolor-graphic modes, for example,
you would use the key command in this fashion;

KEY 7,“GRAPHIC 0” + CHR${(13)

CHR%$(13) is the ASCII code character for RETURN. So when you
press the F7 key after redefining the key, what happens is the com-
mand “GRAPHIC 0" is automatically typed cut and entered info the
computer with RETURN., Entire commands or series of commands
may be assigned to a key.

Other Keys Used in €128 Mode Only

Help As noted previousty, when you make an error in
a program, your computer displays an error
message 1o ielt you what you did wrong. These
error messages are further explained in Appen-
dix A of this manual. You can get more assis-
tance with errors by using the HELP key. After
an error message, press the HELP key to locate
the exact point where the error occurred, When

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unigue to
128 Mode

L

-

{

L C C CC L CCCcoCoc

—

(

-

i

)

L m—

)

2}

2l

]

]

]

-

|

]

-]

)

]

3}

3

!

e

1

91

No Scroll

Caps Lock

40180 Display

Alt

you press HELP, the line with the error is high-
lighted on the screen in reverse video (in 40
coiumny), or underlined (in 80 column cutput).
For example:

PSYNTAX ERROR IN LINE 10 Your computer
displays this.

HELP You press HELR.

10 PRONT “COMMODORE COMPUTERS”
The line with the mistake is highlighted in
reverse if in 40-column output, or underlined
in 80-column output.

Press this key down to stop the text from scroll-
ing when the cursor reaches the bottom of the
screen. This turns off scrolling until you press
the NO SCROLL key again.

When the keyboard is in upper/lower case
mode, this key lets you type in all capital letters
without using the SHIFT key. The CAPS LOCK
key locks when you press it, and must be
pressed again to be released. CAPS LOCK only
affects the lettered keys.

The 40180 key selects the main (default) screen
format: either 40 or 80 column. The selected
screen displays alt messages and output at
power-up, or when RESET, reset or RUN/STOP/
RESTORE are used. This key may be used to set
the display format only before turning on or
resetting the computer. You cannot change
meodes with this key after the computer is
turned on. Section 8 provides an explanation of
40/80 column modes.

The ALT key allows programs to assign a special
meaning 1o a given key or set of keys.

Unless a specific application program redefines
it, hotding down the ALT key and any other key
has no additional effect.

USING C128 MODE--Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

92

Tab This key works like the TAB key on a typewriter.
it may be used to move the cursor to the next
tab position. Tabs are set every 8th column
starting from column 1.

Line Feed Pressing this key advances the cursor 1o the
next line, similar t¢ a cursor down key.

[EEEEXEEESEEESESESEEN AL AR SRR SRS R RS AR SR SR AR R R R R EEES.]

This section covers only some of the concepts, keys and commands
that make the Commodore 128 a special machine. You can find
further explanations of the BASIC language in the BASIC 7.0
Encyclopedia in Chapter Vi

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unigue to
C128 Mode

L.

(

(=

(=

,_.
—

(

C C C C L CChC

C

]

1

.

1

_}

1

]

5

J

!

7]

)

SECTIONG

Color, Animation

and Sprite
Graphics
Statements
Unique to the
c128

93

GRAPHICS OVERVIEW
Graphics Features
Command Summary

GRAPHICS PROGRAMMING ON THE COMMODORE 128
Choosing Colors
Types of Screen Display
Selecting the Graphic Mode
Displaying Graphics on the Screen
Drawing a Circle—The CIRCLE Command
Drawing a Box—The BOX Command
Drawing Lines, Points and Other Shapes—The DRAW
Command
PAINTing Outlined Areas—The PAINT Command
Displaying Characters on a Bit-Mapped Screen—
The CHAR Command
Changing the Size of Graphic Images—The SCALE
Command
Creating a Graphics Sample Program

SPRITES: PROGRAMMABLE, MOVABLE OBJECT BLOCKS
Sprite Creation
Sprite Definition Mode—The SPRDEF Command
Sprite Creation Procedure in SPRite DEFinition Mode
Using Sprite Statements in a Program
Drawing the Sprite Image
Storing the Sprite Data with SSHAPE
Saving the Picture Data in a Sprite
Turning on Sprites
Moving Sprites with MOVSPR
Creating a Sprite Program
Adjoining Sprites
Storing Sprite Data in Binary Files
BSAVE
BLOAD

USING C128 MODE—Color, Animation and Sprite Graphics Statements

95
95
96

97
97
98

101
101
102

102
103

104

104
106

109
109
109
110
112
113
114
115
115
116
118
119
123
125
126

o T e s Nes s e Mias N e e R R B N O B R

1

] 1

]

)

|-

Graphics
Overview

95

In C128 mode, the Commodore 128 BASIC 7.0 tanguage provides
many new and powerful commands and statements that make
graphics programming much easier. Each of the two screen formats
available in G128 mode (40 columns and 80 columns) is controtied by
a separate microprocessor chip. The 40-column chip is called the
Video Interface Controller, or VIC for short. The 80-column chip is
referred to as the 8563. The VIC chip provides 16 colors and controls
all the highly detailed graphics called bit-mapped graphics. The 80-
colurmn chip, which also offers 16 colors, displays characters and
character graphics. The new BASIC graphics commands are not
supported in 80 column output, though you can program the 80
column chip to support a bit map display with your own machine
language programs. Thus, all detaited BASIC graphic programs in
C128 mode must be done in 40-column format.

Graphics Features

As part of its impressive C128 mode graphics capabilities, the Com-
modore 128 provides:

+ 13 specialized graphics commands

¢ 16 colors

» Six different display modes

* Eight programmable movable objects called SPRITES
* Combined graphicsitext displays

All these features are integrated to provide a versatile, easy-to-use
graphics system.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

96

Command Summary
Here is a brief exptanation of each graphics command:

BCX — Draws rectangles cn the bit-map screen

CHAR — Displays characters on the bit-map screen

CIRCLE — Draws circles, ellipses and other geometric
shapes

COLOR — Selects colors for screen border, foreground,
background and characters

DRAW — Displays lines and points on the bit-map screen

GRAPHIC — Selects a screen display (text, bit map or split-
screen bit map)

GSHAPE — Retrieves the text-string variable stored by

SSHAPE

MOVSPR — Positions or moves sprites on screen

PAINT — Fills area on the bit-rap screen with color

SCALE — Setsthe relative size of the images on the bit-map
screen

SPRDEF — Enters sprite definition mode to edit sprites

SPRITE — Enables, colors, sets sprite screen pricrities, and
expands a sprite

SPRSAVY — Stores & text string variable inio a sprite storage

area and vice versa

SSHAPE — Stores the image of a portion of the bit-map
screen into a text-string variable

Most of these commands are described in the examples in this sec-
tion. See Chapter V, BASIC 7.0 Encyclopedia, for detailed format and
information on all graphics commands and functions, including those
not discussed in this section.

USING C128 MODE—‘—-Color, Animation and Sprite Graphics Statements

C C CC CCc o0 & B b

C O

=

C'—ﬁ

)

S5 I B

i1

I

]

100

B

)

]

N

Graphics

Programming on

the C128

97

The following section describes a step-by-step graphics program-
ming example. As you learn each graphics command, add it to a
program you will build as you read this section. When you are fin-
ished, you wilt have a complete graphics program.

Choosing Colors

The first step in graphics programming is to choose colors for the
screen background, foreground and border. To select colors, type:

COLOR source, color

where source is the section of the screen you are coloring {back-
ground, foreground, border, etc.), and eolor is the color code for the
source. See Figure 8-1 for source numbers, Figure 6-2 for 40-
column-format color numbers, and Figure 6-3 for 80-column-format
color numbers.

Number Source

0 40-column background color (VIC)
1 Foreground for the graphics screen (VIC)
2 Foreground color 1 for the multicolor screen (VIC)
3 Foreground color 2 for the multicolor screen (VIC)
4 40-column (VIC) border (whether in text or graphics
mode)
5 Character color for 40- or 80-column text screen
6 80-column background color (8563)
Figure 6-1. Source Numbers
Color Code Color Color Code Color
1 Black 9 Orange
2 White 10 Brown
3 Red 11 Light Red
4 Cyan 12 Dark Gray
5 Purple 13 Medium Gray
6 Green 14 Light Green
7 Blue 15 Light Blue
8 Yellow 16 Light Gray

Figure 6-2. Color Numbers in 40-Column Output

USING G128 MODE—Color, Animation and Sprite Graphics Statements

Types of Screen
Display

928

Color Code Color Color Code Color
1 Black 8 Dark Purple
2 White 10 Dark Yellow
3 Dark Red 1 Light Red
4 Light Cyan 12 Dark Cyan
5 Light Purple 13 Medium Gray
6 Dark Green 14 Light Green
7 Dark Blue 15 Light Blue
8 Light Yellow 16 Light Gray

Figure 6-3. Color Numbers in 80-Column Qutput

Your C128 has several different ways of displaying information on the
screen; the parameter “source” in the COLOR command pertains to
different modes of screen display. The types of video display fall into
four categories.

The first one is text display, which displays only characters, such as
letters, numbers, special symbols and the graphics characters on
the front faces of most C128 keys. The C128 can display text in both
40-column and 80-column screen formats.

The second and third categories of display modes are used for highly
detailed graphics, such as pictures and intricate drawings. This type
of display mode includes standard bit-map mode and multicolor bit-
map mode. Bit-map modes allow you to control each and every indi-
vidual screen dot or pixel {picture element). This allows consid-
erable detail in drawing pictures and other computer art, These
graphic displays are only available in 40-column format. The
80-column display is dedicated to text display.

The difference between text and bit-map modes lies in the way in
which each screen addresses and stores information. The text
screen can only manipulate entire characters, each of which covers
an area of 8 by 8 pixels on your screen. The more powerful bit-map
mode exercises control aver each and every pixel on your screen.

The fourth type of screen display, split screen, is a mixture of the first

two types. The split-scren disptay outputs part of the screen as text
and part in bit-map mode (either standard or multicolor). The C128 is

USING C128 MODE—Color, Animation and Sprite Graphics Statements

C C - C L CC ¢

[

L C C C ¢

]

:]

1

)

1 1 1

I

1

B I

)

]

]

1

capable of this because it uses twa separate parts of the computer’s
memory to store the two screens: one part of the text, and the other
for the graphics screen.

Type the following short program:

10 COLOR 0,1: REM TEXT BACKGROUND COLOR = BLACK

20 COLOR 1,3: REM FOREGROUND COLOR FOR BIT MAP
SCREEN = RED

30 COLOR 4,1: REM BORDER COLOR = BLACK

This example colors the background black, the foreground red and
the border black.

Selecting the Graphic Mode

The next graphics programming step is to select the appropriate
graphic mode. This is done using the GRAPHIC command, whose
format is as follows:

GRAPHIC Mode [,c]l,;s] or GRAPHIC CLR

where mode is a digit between 0 and 5, cis eitheraQor 1 andsisa
value between 0 and 25. Figure 6-4 shows the values corresponding
1o the graphic modes.

_Mode Description
40-column standard text
Standard bit map

Standard bit map {split screen)
Multicolor bit map

Multicolor bit map (split screen)
80-column text

NEaWN=O

Figure 6-4. Graphic Modes

The parameter ¢ stands for CLEAR. Figure 6-5 explains the values
associated with CLEAR,

C Value Description
0 Do not clear the graphics screen
1 Clear the graphics screen

Figure 6-5. CLEAR Parameters

USING C128 MODE—Color, Animation and Sprite Graphics Statements

100

When you first run your program, you will want to clear the graphics
screen for the first time, s0 set ¢ equal to 1 in the GRAPHIC com-
mand. If you runit a second time, you may want to leave your picture
on the screen, instead of drawing it all over again. In this case, setc
equal to 0.

The s parameter specified where the start of the text screen in split-
screen mode is to begin at the line after the specified line number. [f
you omit the s parameter and select a split-screen graphic mode (2
or 4), the text screen portion is displayed in rows 20 through 25; the
rest of the screen is bit mapped. The s parameter allows you to
change the starting line of the text screen to any line on the screen,
ranging from 1 through 25. A zero as the s parameter indicates the
screen is not split, and is all text.

The final GRAPHIC command parameter is CLR. When you first
issue a bit-map graphic command, the Commodore 128 allocates a
9K area for your bit-mapped screen information. 8K is reserved for
the data for your bit map and the additional 1K is dedicated for the
color data {video matrix). Since 9K is a substantial block of memory,
you may want to use it again for another purpose later on in your
program. This is the purpose of CLR. !t reorganizes the Commodore
128 memory and gives you back the 8K of memory that was dedi-
cated to the bit-map screen, s you can use it for other purposes.

The format for CLR is as follows:
GRAPHIC CLR

When using this format, omit all other GRAPHIC command
parameters.

Add the following command to your program. It places the C128 in
standard bit-map mode and allocates an 8K bit-map screen (and 1K
of color data) for you to create graphics.

40 GRAPHIC 1,1

The second 1 in this command clears the bit-map screen. If you do
not want to clear the screen, change the second 1 to 0 (or omit it
completely).

NOTE: If you are in bit-map mode and are unable to return to
the text screen, press the RUNISTOP and RESTORE keys at the
same time, or press the ESC key followed by X, to return to the

USING C128 MODE-—Caolor, Animation and Sprite Graphics Statements

L . [

[

L L O O C C [C

L [[

L L

(-

B B B

]

]

[B B R

I I Y I

]

N N R

1

80-column screen. Even though you can only display graphics
with the VIC (40-column} chip, you can still write graphics pro-
grams in 80-column format. If you have the Commodore 1902
dual monitor and you want to view your graphics program while
it is running, you must select the 40-column output by switching
the slide switch on the monitor to 40-column output.

Displaying Graphics on the Screen

So far, you have selected a graphics mode and the colors you want.
Now you can start displaying graphics on the screen. Start with a
circle.

Drawing a To draw a circle, use the CIRCLE statement as
Circle—The follows:

CIRCLE 60 CIRCLE 1, 150, 100,40,40

Command

This displays a circte in the center of the screen. The CIRCLE state-
ment has nine parameters you can select to achieve various types of
circles and geometric shapes. For example, by changing the num-
bers in the CIRCLE statement in line 60 you can obtain different size
circles or variations in the shape (e.g., an oval). The CIRCLE state-
ment adds power and versatility in programming Commodore 128
graphics in BASIC. The meaning of the numbers in the CIRCLE state-
ment is explained under the CIRCLE listing in Chapter V, BASIC 7.0
Encyclopedia.

On your Commodore 128 screen, the pointwhere X = 0andY = 0
is at the top left corner of the screen, and is referred to as the HOME
position. In standard geometry, however, the point where X and Y
both equal O is the bottom teft corner of a graph. Figure 6-6 shows
the arrangement of the X (horizontal) and Y (verticte) screen coordi-
nates and the four points at the corners of the C128 screen.

X Coordinate

0,0 319,0
Y Coordinate
0,199 319,199

Figure 6-6. Arrangement of X and Y Coordinates

USING €128 MODE—Color, Animation and Sprite Graphics Statements

102

Drawing aBox— Now try a box. To draw a box, type:

The BOX
Command 80 BOX1,20,100,80,160,90,1

This draws a solid box to the left of the circle. To find out what the
numbers in the box statement mean, consult Chapter V, BASIC 7.0
Encyclopedia. The BOX statement has seven parameters you can
select and modify to produce different types of boxes. Change the
foreground color and draw the outline of a box to the right of the CIR-
CLE with these statements:

90 COLOR1,9:REM CHANGE FOREGROUND COLOR
100 BOX1,220,100,280,160,90,0

Experiment with the BOX statement to produce different variations
of rectangtes and boxes.

Drawing Lines, You now know how to select graphic modes and

Points and colors and how to display circles and boxes on

Other Shapes— the screen. Another graphics statement, DRAW,

The lets you draw lines on the screen just as you

DRAW Command would with a pencil and a piece of papet. The
following statement draws a line below the
boxes and circte.

120 DRAW 1,20,180 TO 280,180

Here's what the numbers mean:

¢ 1 is the color source {in this case the foreground)
* 20 is the starting X (horizontal} coordinate

» 180 isthe starting Y (verticle) coordinate

* 280 is the ending horizontal coordinate

* 180 s the ending verticle screen coordinate.

To erase a drawn line, change the source (1) in the DRAW statement
to 0. The line is drawn with the background color which erases the

line. Try using different coordinates and other sources to become
accustomed to the DRAW statement.

The DRAW statement can take another form that allows you to
DRAW a line, change direction and then DRAW ancther ling, so the
lines are continuous. For example, try this statement:

130 DRAW 1,10,20 TO 300,20 TO 150,80 TO 10,20

This statement DRAWS a triangle on the top of the scren. The four
pairs of numbers represent the X and Y coordinates for the three
points of the triangles. Notice the first and last coordinates are the

USING C128 MODE—Color, Animation and Sprite Graphics Statements

L [C

.

L [[

[A—

. L L C C C

[

1 1 1

_1

1 1 1

B R B

1

0 R N

103

same, since you must finish drawing the triangle on the same point
you started. This form of draw statement gives you the power t0
DRAW almost any geometric shape, such as trapezoids, parallelo-
grams and polygons.

The DRAW statement also has a third form.
You can DRAW one point at a time by specifying the starting X and Y
values as follows:
150 DRAW 1,150,175
This statement DRAWS a dot below the CIRCLE.
As you can see, the DRAW statement has versatile features which

give you the capability to create shapes, lines points and a virtually
unlimited number of computer drawings on your screen.

PAINTing The DRAW statement allows you to outline
Outlined areas on the screen. What if you want to fill
Areas—The areas within your drawn lines? That’s where the

PAINT Command PAINT statement comes in. The PAINT state-
ment does exactly what the name implies—it
filts in, or PAINTSs, outlined areas with color. Just
as a painter covers a canvas with paint, the
PAINT statement covers the areas of the screen
with any of the 16 colors. For example, type:

160 PAINT 1,150,97

Line 160 PAINTS the circle you have drawn in line 80. The PAINT
statement fills a defined area until a specified boundary is detected
according to which source is indicated. When the Commodore 128
finishes PAINTing, it leaves the pixel cursor at the point where PAINT-
ing began (in this case, at point 150,97).

Here are two more PAINT statements:

180 PAINT 1,50,25
200 PAINT 1,225,125

Line 180 PAINTS the triangle and line 200 PAINTS the empty box.

*IMPORTANT PAINTING TIP: If you choose a starting point in
your PAINT statement which is already colored from the same
source, the Commodore 128 will not PAINT that area. You must
choose a starting point which is entirely inside the boundary of
the shape you want to PAINT. The starting point cannot be on

USING C128 MODE-—Color, Animation and Sprite Graphics Statements

the boundary line of a pixel that is colored from the same
source. The source numbers of the screen coordinate and the
coordinate specified in the PAINT command must be different.

Displaying Characters on a Bit Mapped Screen—The CHAR
Command

So far, the example program has operated in standard bit map mode.
Bit map mode uses a completely different area of memory to store
the screen data than text mode (the mode in which you enter pro-
grams and text). If you enter bit map mode, and try to type charac-
ters onto the screen, nothing happens. This is because the charac-
ters you are typing are being displayed on the text screen and you
are looking at the bit map screen. Sometimes it is necessary to dis-
play characters on the bit map screen, when you are creating and
plotting charts and graphs. The CHAR command is designed espe-
cially for this purpose. To display standard characters on a bit map
screen, use the CHAR statement as follows:

220 CHAR 1, 11,24,“GRAPHICS EXAMPLE”

This displays the text “GRAPHICS EXAMPLE" starting at line 25,
column 12. The CHAR command can also be used in text mode,
however, it is primarily designed for the bit map screen.

Changing the Size of Graphic Images—
The SCALE Command

The Commodore 128 has another graphics statement which offers
additional power 1o your graphics system. The SCALE statement
offers the ability to scale up {enlarge} or scale down (reduce) the size
of graphic images on your screen. The SCALE statement also
accomplishes another task, which can be explained as foltows.

In standard bit-map mode, the 40-column screen has 320 horizontal
coordinates and 200 vertical coordinates. In multicotor bit map

USING C128 MODE—Color, Animation and Sprite Graphics Statements

L L [

-

—_——

l

L C [=

[L [[

[

. [[

[

0 B B

N

]

1

1

[I

]

n

_]

)

105

mode, the 40-column screen has only half the horizontal resclution
of standard bit map mode, that is, 160 by 200. This reduction in reso-
lution is compensated for by the additional capability of using one
additional color for a total of three colors, within an 8 by 8 character
matrix. Standard bit map mode can only display two colors within an
8 by 8 character matrix.

The SCALE command atlows you to size your graphic images on a
scale of 0-32767 in both the X and Y directions, instead of only the
320 by 200 defautt scale.
To SCALE your screen, type:

SCALE 1, x, ¥

and the screen coordinates range from Q to 32767 whether you are
in standard or multicotor high-res mode. The default for SCALIng is
1023 by 1023 if X and Y are not specified in the SCALE command.
To turn off SCALEing, type:

SCALE 0
and the coordinates return to their normal values.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

106

Creating a Sample Graphics Program

So far, you have learned several graphics statements. Now tie the

program together and see how the statements work at the same
time. Here’s how the program looks now. The color statements in

lines 70, 110, 140, 170, 190 and 210 are added to display each object

in a different color.

10 CCLOR 0,1 :REM SELECT BKGRND COLOR
20 COLOR 1,3 :REM SELECT FORGRND COLOR
30 COLOR 4,1 :REM SELECT BORDER COLOR
40 GRAPHIC],l1:REM SELECT STND HI RES
&0 CIRCLE ,150%130,40,40:REM CIRCLE

|70 COLOR 1,6 :REM CHANGE FORGRND COLOR .
80 BOX,20,100;80,160;,90; 1:REM BOX :

9¢ COLOR 1,9 :REM CHANGE FORGRND COLOR

100 BOX,220,100,280,160,90,0:REM BOX

110 COLOR 1,8 :REM CHANGE FORGRND CCQLOR
120 DRAW 1,20,180 TO 280,180:REM CRAW LINE

13C¢ DRAaW 1,10,20 TC 300,20 TO150,80 TO 1G,20:REM DRAW TRIANGLE

140 COLOR 1,15 ;REM CHANGE FORGRND COLOR
150 DRAW 1,15Q,175:REM DRAW 1 POINT
160 PAINT 1,150,97:REM PAINT CIRCLE
17¢ COLOR 1,5 :REM CHANGE FORGREND CCLOR
180 PAINT 1,50,25:REM PAINT TRIANGLE
190 COLOR 1,7 :REM CHANGE FORGRND COLOR
200 PAINT 1,225,125:REM PAINT BOX
-210 COLOR 1,1} :REM CHANGE FORGRND CCOLOR

" 220 CHAR,11,24,"GRAPHICS EXAMPLE":REM DISPLAY TEXT

.'230 FORI=1T05000: NEXT: "GRAPHIC 0,1:COLOR 1,2

Here's what the program does:
* Lines 10 through 30 select a COLOR for the background, fore-

ground and border, respectively.
* Line 40 chooses a graphic mode.
¢ Line 60 displays a CIRCLE.
¢ Line 80 DRAWSs a colored-in BOX,
s |ine 100 DRAWSs the outline of a box.
» Line 120 DRAWSs a straight line at the bottom of the screen.
* Line 130 DRAWS a triangte,
» Line 150 DRAWS a single point below the CIRCLE.
¢ Line 160 PAINTs the circle.
¢ Line 180 PAINTS the triangle.
¢ Line 200 PAINTSs the empty box.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

N I I A

[

I I N O

. C C ¢ O C »*CL L »

)

-]

)

)

_)

)

)

]

]

]

]

)

)

]

)

_J

107

e Line 220 prints the CHARacters “"GRAPHICS EXAMPLE" at

the bottom of the screen.

* Line 230 delays the program so you can watch the graphics

on the screen, switches back to text mode and colors the
characters black.

If you want the graphics to remain on the screen, omit the GRAPHIC

statement in line 230.

Here are some additional example programs using the graphics
statements you just learned.

10
20
30
40
50
60
70

90

COLOR 0,1
COLOR 1,8

80

100 CIRCLE1,I,100,50,50
110 NEXT

120 COLOR 1,7 : T

130 FORI=50T0280 STEP10

140 CIRCLEl,I,100,25,25

150 NEXT

160 ‘FORI=1TO7500: NEXT: Gaapurco 1z COLDRI 2

COLOR: 4,1
GRAPHICI, 1 o
FORI=8070240 STEPL0
CIRCLEL,I,100,75,75
NEXT

COLOR-1,5 .
FORT=80TO250 STEP10 -

10
20
30
40
50
60
70
80
90

100 V—INT(HRND(IH*20)+1]*10
110 DRAW,X,Y TO U,V

120 NEXT

130 SCNCLR

140 GOTO4C

GRAPHIC 1,1

COLORO, 1

COLOR4, 1 -

FORI=1T050

Z=INT({((RND(1)}}*16)+1)* 1

COLOR1 ,2

X=INT(({RND(1}}*30)+1)*10

Y=INT({(RND{1})*20)+1)*10
=INT(((RND(1))*30)+1)*10

USING C128 MODE—Color, Animation and Sprite Graphics Statements

108

Type the examples into your computer. RUN and SAVE them for
future reference. One of the best ways to learn programming is to
study program examples and see how the statements perform their
functions. You'll soon be able to use graphics statements to create
impressive graphics with your Commodore 128.

If you need more information on any BASIC statement or command,
consult the Chapter V, BASIC 7.0 Encyclopedia.

You now have a set of graphic commands that allow you to create an
atmost unlimited number of graphics displays. But Commodore 128
graphics abilities do not end here. The Commodore 128 has another
set of statements, known as SPRITE graphics, which make the crea-
tion and control of graphic images fast, easy and sophisticated.
These high-tevel statements allow you to create sprites—moveable
graphic objects. The G128 has its own built-in SPRite DEFinition abil-
ity. These statements represent the new technology for creating and
controlling sprites. Read the next section and take your first stepin
learning computer animation.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

L C

,_
——

{

,_
-

-

[

—
Lw—_,

(.

C C C ¢ C

[

(-

(.

-

(-

L

)

)

1

-]

]

-]

-}

] I

]

]

-

_]

)

]

_J

)

]

]

J

Sprites:
Programmable,
Movable Object
Blocks

109

You atready have learned about some of the Commodore 128's
exceptional graphics capabilities. You've learned how to use the first
set of high level graphics statements to draw circles, boxes, lines and
dots. You have also learned how to color the screen, switch graphic
modes, paint objects on the screen and scale them. Now it's time to
take the next step in graphics programming—sprite animation.

If you have worked with the Commaodore 64, you already know some-
thing about sprites. For those of you who are not familiar with the
subject, a sprite is a movable object that you can form into any
shape or image. You can color sprites in 16 colors. Sprites can even
be multicolor. The best part is that you can move them on the
screen. Sprites open the door to computer animation.

Sprite Creation

The first step in programming sprites is designing the way the sprite
looks. For example, suppose you want to design a rocket shipor a
racing car sprite. Before you can color or move the sprite, you must
first design the image. In C128 mode, you can create sprites in these
three ways:

1. Using SPRite DEFinition mode (SPRDEF)
2. Using the new SPRITE statements within a program
3. Using the same method as the Commodore 64.

Sprite Definition Mode—The SPRDEF Command

The Commeodore 128 has a built-in SPRite DEFinition mode which
enables you 10 create sprites on your Commodore 128. You may be
familiar with the Commodore 64 method of creating sprites, in which
you are required to either have an additional sprite editor, or design a
sprite on a piece of graph paper and then READ in the coded sprite
DATA and POKE it into an available sprite block. With the new Com-
modore 128 sprite definition command SPRDEF, you can construct
and edit your own sprites in a special sprite work area.

To enter SPRDEF mode, type:

SPRODEF

and press RETURN. The Commodore 128 displays a sprite grid on
the screen. In addition, the computer displays the prompt:

SPRITE NUMBER?

E‘nter a number between 1 and 8. The computer fills the grid and
displays the corresponding sprite in the upper right corner of the
screen. From now on, we will refer to the sprite grid as the work area.

USING €128 MODE—Color, Animation and Sprite Graphics Statements

110

The work area has the dimensions of 24 characters wide by 21 char-
acters tall. Each character position within the work area corres-
ponds to 1 pixel within the sprite, since a sprite is 24 pixels wide by
21 pixels tall. While within the work area in SPRDEF mode, you have
several editing commands available to you. Here's a summary of the
commands on the following page:

Sprite Definition Mode Command Summary

CLR key—Erases the entire work area

M key—Turns on/off multicolor sprite

CTRL 1-8—Selects sprite foreground color 1-8

C 1-8—Selects sprite foreground color 9-16

1 key—Sets the pixel at the current cursor location to the
background color

2 key—Sets the pixel at the current cursor location to the
foreground color

3 key—Sets the pixel at the current cursor location to
multicolor1

4 key—Sets the pixel at the current cursor location to
multicolor2

A key—1Iurns on/off automatic cursor movement

CRSR keys—Moves the cursor { +) within the work area
RETURN—moves cursor to the start of the next line

HOME key—Moves cursor to the top left corner of work area.

X key—Expands sprite horizontally

Y key—Expands sprite vertically

Shift RETURN—Saves sprite from work area and returns to
SPRITE NUMBER prompt

C key—copies one sprite to another

STOP key—Turns off displayed sprite and returns to
SPRITE NUMBER prompt without changing the sprite
RETURN key—(at SPRITE NUMBER prompt) Exits
SPRDEF mode

Sprite Creation Procedure in SPRite DEFinition Mode

Here's the general procedure to create a sprite in SPRite DEFinition
mode:

1.
2.

Clear the work area by pressing the shift and CLR/HOME keys at
the same time.

If you want a muiticolor sprite, press the M key and an additional
cursor appears next to the original one. Two cursors appear
since multicolor mode actually turns on two pixels jor every one
in standard sprite mode. This is why multicolor mode is only half
the horizonial resolution of standard high-res mode.

USING €128 MODE~—Color, Animation and Sprite Graphics Statemenis

&

C

C . C =

(-

- C C

—

-

(-

(-

(

]

-]

J

2]

_)

]

)

-]

]

)

]

)

]

2]

)

J

-]

J

Select a color for your sprite. For colors between 1 and 8, hold
down the CONTROL key and press a key between 1 and 8. To
select color codes between 9 and 16, hold down the Commo-
dore {€&) key and press a key between 1 and 8.

Now you are ready to start creating the shape of your sprite. The
numbered keys 1 through 4 filt in the sprite and give it shape. For
a single color sprite, use the 2 key to fill a character position
within the work area. Press the 1 key 1o erase what you have
drawn with the 2 key. If you want to fill one character position at a
time, press the A key. Now you have to move the cursor manually
with the cursor keys. H you want the cursor to move automati-
cally to the right while you hold it down, do not press the A key
since it is already set to automatic cursor movement. As you fill
in a character position within the work area, you can see the
corresponding pixel in the displayed sprite turn on. Sprite editing
QCCUrs as soon as you edit the work area.

In multicolor mode, the 3 key fills two character positions in the
work area with the multicolor 1 color, the 4 key fills two character
positions with the multicolor 2.

You can turn off {color the pixel in the background color) filled
areas within the work area with the 1 key. In multicotor mode, the
1 key turns off two character positions at a time.

While constructing your sprite, you can move freely in the work
area without turning on or off any pixels using the RETURN,
HOME and cursor keys.

At any time, you may expand your sprite in both the vertical and
horizontat directions. To expand vertically, press the Y key. To
expand horizontally, press the X key. To return to the normal size
sprite display, press the X or Y key again.

When a key turns on AND ofi of the same control, it is referred to
as toggling, sothe X and Y keys toggle the vertical and horizontal
expansion of the sprite.

When you are finished creating your sprite and are happy with
the way it looks, save it by holding down the SHIFT key and
pressing the RETURN key. The Commodore 128 SAVESs the sprite
data in the appropriate sprite storage area. The displayed sprite
in the upper right corner of the screen is turned off and control is
returned to the SPRITE NUMBER prompt. if you want to create
another sprite enter another sprite number and edit the new
sprite just as you did with the first one. If you want to display the
original sprite in the work area again, enter the original sprite

USING C128 MODE—Color, Animation and Sprite Graphics Statements

132

number. If you want to exit SPRITE DEFinition mode, simply
press RETURN at the SPRITE NUMBER prompit.

8. You can copy one sprite into another with the “C" key.

9. If you do not want to SAVE your sprite, press the STOP key. The
Commodore 128 turns off the displayed sprite and returns to the
SPRITE NUMBER prompt.

10. To EXIT SPRite DEFinition mode, press the RETURN key while
the SPRITE NUMBER prompt is displayed on the screen when no
sprite number follows it. You can exit under either of the follow-
ing conditions:

Immediately after you SAVE your sprite {shift RETURN),
Immediately after you press the STOP key

Once you have created a sprite and have exited SPRite DEFinition
mode, your sprite data is stored in the appropriate sprite storage
area in the Commodore 128’s memory. Since you are now back in the
control of the BASIC language, you have to turn on your sprite in
order to see it on the screen. To turn it on again, use the SPRITE
command. For example, you created sprite 1 in SPRDEF mode. To
turn it onin BASIC, color it blue and expand it inboth the Xand Y
directions enter this command:

SPRITE 1,1,7,0,1,1,0
Now use the MOVSPR command to move it at a 90-degree angle at a
speed of 5, as follows:

MOVSPR 1,90 # 5

The SPRITE and MOVSPR commands are discussed in greater detail
in the next section.

Now you know alt about SPRDEF mode. First, create the sprite, save
the sprite data and exit from SPRDEF mode to BASIC. Next turn on
your sprite with the SPRITE command. Move it with the MOVSPR
command. When you're finished programming, SAVE your sprite
data in a binary file with the BSAVE command.

See Storing Sprite Data in Binary Files later in this section for
more information on the BSAVE and BLOAD commands.

USING €128 MODE—Color, Animation and Sprite Graphics Statements

C

[

(

C C

(-

.

[

C C C C

(~

[

-

C

-

]

)

]

)

)

]

]

)

I RN N B R

)

-~}

]

)

Using Sprite Statements in a Program

This method uses buitt-in statements so you don’t have to use any
aids outside your program to design your sprite, as the other two
methods require. This method uses some of the graphics statements
you learned in the previous section. Here's the general procedure.
The details will be added as you progress.

1. Draw a picture with the graphics statements you learned in
the last section, such as DRAW, CIRCLE, BOX and PAINT.
Make the dimensions of the picture 24 pixels wide by 21 pix-
els tall in standard bit map mode or 12 pixels wide by 21 tall in
multicolor bit map mode.

2. Use the SSHAPE statement to store the picture data into a
string variable.

3. Transfer the picture data from the string variable into a sprite
with the SPRSAV statement.

4. Turn on the sprite, color it, select either standard or mutti-
color mode and expand it, all with the SPRITE statement.

5. Move the sprite with the MOVSPR statement.

Drawing the Sprite Image

Here are the actual statements that perform the sprite operations.
When you are finished with this section, you will have written your

first sprite program. You'li be able to RUN the program as much as
you like, and SAVE it for future reference.

The first step is to draw a picture (24 by 21 pixels) on the screen
using DRAW, CIRCLE, BOX or PAINT. This example is performedin
standard bit map mode, using a black background. Here's the state-
ments that set the graphic mode and color the screen background
black.

8 COLOR 0,1 :REM COLOR BACKGROUND BLACK
10 GRAPHIC 1,1 :REM SET STND BIT MAP MODE

The following statements DRAW a picture of a racing car in the
upper-teft corner of the screen. You already learned these state-
ments in the tast section.

USING C128 MODE—Color, Anirmation and Sprite Graphics Statements

5 COLCR 0,1

10
15
20
22
24
26
28
.30
32
35
37
49
42

- 44

GRAPHIC 1,1

BOX -11_2!2:4'51'45 - T

DRAW 1,17,10 TO 28,10 TO 26,30 TO 19,30 TO 17,10 :REM CAR BODY
DRAW 1,11,10 TO 15,10 TO 15,18 TO 11,18 TC 11,10: REM UP LEFT WHEEL
DRAW 1,30,10 TO 34,10 TC 34,18 TO 30,18 TO 30,10:REM RGHT WHEEL
DRAW 1,11,20 TO 15,20 TO 15,28 TO 11,28 TO 11,20:REM LOW LFT WHEEL
DRAW 1,30,20 TO 34,20 TO 34,28 TO 30,28 TO 30,20:REM LU RGHT WHEEL
DRAW 1,26,28 T0 19,28

1,20,14,26,18,90,1

1,150,35,195,4Q0,90,1;REM STREET

1,150,135,195,140,90,1:REM STREET

1,150,215,195,220,90,1:REM STRT

1,50,180,300,194

BOX
BOX

BOX

BOX

'BOX 1 :
CHAR *1,18,23, "FINISH"

114

RUN the program. You have just drawn a white racing car, enclosed
in a box, in the upper-teft corner of the screen. You have atso drawn
a raceway with a finish line at the bottom of the screen. At this point,
the racing car is still only a stationary picture. The car isn’t a sprite
yet, but you have just completed the first step in sprite
programming—creating the image.

Storing the Sprite Data with SSHAPE

The next step is to save the picture into a text string. Here's the
SSHAPE statement that does it:

45 SSHAPE A$,11,10,34,30:REM SAVE THE PICTURE IN A
STRING

The SSHAPE command stores the screen image (bit pattern)into a
string variable for later processing, according to the specified
screen coordinates.

The numbers 11, 10, 34, 30 are the coordinates of the picture. You
must position the coordinates in the correct place or the SSHAPE
statement can't store your picture data correctly into the string varia-
ble A$. If you position the SSHAPE statement on an empty screen
location, the data string is empty. When you later transfer itinto a
sprite, you'll realize there is no data present. Make sure you position
the SSHAPE statement directly on the correct coordinate. Also, be
sure 1o create the picture with the dimensions 24 pixels wide by 21
pixels tall, the size of a single sprite.

The SSHAPE statement transters the picture of the racing car into a
data string that the computer interprets as picture data. The data

USING C128 MODE—Color, Animation and Sprite Graphics Statements

(-

(-

U N

[

[

-

C C C C L&

L

(-

L .

]

]

]

.__,

)

2)

-1

]

)

]

_J

]

I R

)

]

]

i

string, A$, stores a string of zeroes and ones in the computer’s mem-
ory that make up the picture on the screen. As in all computer graph-
ics, the computer has a way it can represent visual graphics with bits
in its memory. Each dot on the screen, called a pixel, has a bit in the
computer's memory that controls it. In standard bit-map mode, if the
bit in memaory is equal to a 1 {(on), then the pixel on the screen is
turned on. if the controlling bit in memory is equal to a 0 (off), then
the pixel is turned off.

Saving the Picture Data in a Sprite

Your picture is now stored in a string. The next step is to transfer the
picture data from the data string (A$) into the sprite data area so you
can turn it on and animate it. The statement that does this is SPRSAV.
Here are the statements:

50 SPRSAV A$,1:REM STORE DATA STRING IN SPRITE 1
55 SPRSAV A$,2:REM STORE DATA STRING IN SPRITE 2

Your picture data is transferred into sprite 1 and 2. Both sprites have
the same data, so they ook exactly the same. You can’t see the
sprites yet, because you have to turn them on.

Turning on Sprites

The SPRITE statement turns on a specific sprite (numbered 1
through 8), colors it, specifies its screen priority, expands the sprite's
size and determines the type of sprite display. The screen priority
refers to whether the sprite passes in front of or behind the objects
on the screen. Sprites can be expanded to twice their original size in
gither the horizontal or vertical directions. The type of sprite display
determines whether the sprite is a standard bit map sprite, or a mul-
ticolor bit mapped sprite. Here are the two statements that turn on
sprites 1 and 2.

60 SPRITE 1,1,7,0,0,0,0:REM TURN ON SPR 1
65 SPRITE 2,1,3,0,0,0,0:REM TURN ON SPR 2

Here's what each of the numbers in the SPRITE statements mean;
SPRITE #,0,C,RPX,Y;M

—Sprite number (1 through 8)

O —TurnOn{O=1)or Off (O=0)

C —Color (1 through 16)

P —Priority— If P=0, sprite is in front of objects on the screen
If P =1, sprite is in back of objects on the screen

USING C128 MODE—Color, Animation and Sprite Graphics Statements

116

X —IifX=1, expands sprite in horizontal (X} directicn
If X =10, sprite is normal horizontal size
Y —IfY =1, expandspriteinvertical (Y)direction
If Y =0, sprite is normal vertical size
M—=It M=1, spriteismuliicolor
HM=0, spriteisstandard

As you can see, the SPRITE statement is powerful, giving you control
over many sprite qualities.

Moving Sprites with MOVSPR

Now that your sprite is on the screen, all you have to do is move it.
The MOVSPR statement controls the motion of a sprite and allows
you to animate it on the screen. The MOVSPR statement can be used
in two ways. First, the MOVSPR statement can place a sprite at an
absolute location on the screen, using verticat and horizontal coordi-
nates. Add the following statements to your program:

70 MOVSPR 1,240,70:REM POSITION SPRITE 1—X=240, Y=70
80 MOVSPR 2,120,70:REM POSITION SPRITE 2—X=120, Y=70

Line 70 positions sprite 1 at sprite coordinate 240,70. Line 80 places
sprite 2 at sprite coordinate 120,70. You can also use the MOVSPR
statement to move sprites relative to their original positions. For
example, place sprites 1 and 2 at the coordinates as in lines 70 and
80. You want to move them from their original locations to another
location on the screen. Use the following statements to move sprites
along a specific route on the screen:

80 MOVSPR, 1,180 # 6:REM MOVE SPRITE 1 FROM THE TOP
TO THE BOTTOM
87 MOVSPR 2,180 # 7:REM MOVE SPRITE 2 FROM THE TOP
TO THE BOTTOM

The first number in this statement is the sprite number. The second
number is the direction expressed as the number of degrees to move
in the clockwise direction, relative to the original position of the
sprite. The pound sign (#) signifies that the sprite is moved at the
specified angle and speed relative to a starting position, instead of
an absolute location, as in lines 70 and 80. The final number speci-
fies the speed in which the sprite moves along its route on the
screen, which ranges from 0 through 15.

The MOVSPR command has two alternative forms. See Chapter V,
BASIC 7.0 Encyclopedia for these notations.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

-

.

(

L

I

(

(

. C ¢ [

(

-

L

-

C |

)

]

1

]

)

gl

)

)

)

_J

)

]

)

)

]

DI

117

Sprites use an entirely different coordinate plane than bit-map coor-
dinates. The bit-map coordinates range from points 0,0 {the top left
corner) to 319,199 (bottom right corner). The visible sprite coordi-
nates start at point 24,50 and end at point 344,250, The rest of the
sprite coordinates are off the screen and are not visible, but the
sprite still moves according 10 them, The off-screen locations allow
sprites to move smoothly onte and off of the screen. Figure 6-7 illus-
trates the sprite coordinate plane and the visible sprite positions.

VISIBLE VIEWING AREA

NTSC*
40 COLUMNS
2% ROWS

-—— 120 uEn
= 2%0 uFN
]

"
1 i
] I
1 1 1

4B (IER 29 ain 320 mam 349 sk

Figure 6-7. Visible Sprite Coordinates

Now RUN the entire program with all the steps included. You have
just written your first sprite program. You have created a raceway
with two racing cars. Try adding more cars and more objects on the
screen. Experiment by drawing other sprites and include them in the
raceway. You are now well on the way in sprite programming. Use
your imagination and think of other scenes and objects you can
animate. Soon you will be able to create all kinds of animated com-
puter “movies.”

To stop the sprites, press RUN/STOP and RESTORE at the same
time.

USING C128 MODE—Color, Animaiion and Sprite Graphics Statements

Creating a Sprite Program

You now have a working sprite program example. Here's the com-
plete program listing:

5 COLOR 0,1

10 GRAPHIC 1,1

15 BOX 1,2,2,45,45

20 DRAW 1,17,10 TO 28,10 TO 26,30 TO 19,30 TO 17,10 :REM CAR BODY

22 DRAW 1,11,1Q 70 15,10 TO 15,18 10 11,18 TO 11,10: REM UP LEFT WHEEL
24 DRAW 1,30,10 TO 34,10 TO 34,18 TO 30,18 TO 30,10:REM RGHT WHEEL

26 DRAW | TO 15,20 TO 15,28 TO 11,28 70 11,20:REM LOW LPT WHEEL
'28,"DRAW ¥ TO 34,20 TO 34,28 TO 30,28 TO 30,20:REM LO RGHT WHEEL
30" DRAW TO 19,28

32 BOX 1,30,14,26,18, 90,1

35 BOX 1,150,35,195,40,90,1:REM STREET

37 BOX 1,150,135,195,140,90,1:REM STREET

40 BOX 1,150,215,195,220,90,1:REM STRT

42 BOX 1,50,180,300,194

44 CHAR 1,18,23,"FINISH"

45 SSHAPE A$,11,10,34,30:REM SAVE SPR IN AS$
50. SPRSAV A$,1:REM SPRD DATA

55 SPRSAV A$,2:REM SPR1 DATA

60 SPRITE 1, 1 7,0,0,0,0:REM SPR1 ATTRIB

65 SPRITE 2,1,3,0,0,0,0:REM SPR2 ATTRIB

] K 40; 0 :REM MOVE SP1 TO ABSOLUTE COORD. 240,0
0,0:REM

"~ B0 'y MOVE SP2 TO ‘ABSOLUTE COORD. 120,0

85 MOVSPR 1,180 # 6:REM MOVE SPl 180 DEGREES RELATIVE TO 240,0
90 MOVSPR 2,180 # 7:REM MOVE SP2 180 DEGREES RELATIVE TO 120,0
95 SLEEP 15 :REM DELAY

99 GRAPHIC 0;1:REM RETURR TQ TEXT MODE

Here's what the program does:

¢ Line 5 COLORs the screen black.

¢ Line 10 sets standard high-resolution GRAPHIC mode.

¢ Line 15 DRAWSs a box in the top-left corner of the screen.

¢ Lines 20 through 32 DRAW the racing car.

* Lines 35 through 44 DRAW the racing lanes and a finish line.

* Line 45 transfers the picture data from the racing car into a
string variable.

» | ines 50 and 55 transter the contents of the string variable
into sprites 1 and 2.

* Lines 60 and 65 turn on sprites 1 and 2.

* Lines 70 and 80 position the sprites at the top of the screen.

* Lines 85 and 90 animate the sprites as through two cars are
racing each other across the finish line.

118 USING C128 MODE—Color, Animatien and Sprite Graphics Statements

(

[

(

L

L

(

[

[

o

_ -

]

)

7

]

_

]

]

1

J

119

In this section, you have learned how to create sprites, using the
built-in C128 graphics statements such as DRAW and BOX. You
learned how to control the sprites, using the Commaodore 128 sprite
statements. The Commodore 128 has two other ways of creating
sprites. The first is with the built-in SPRite DEFinition ability, as
described in the following paragraphs. The other method of creating
sprites is the same as that used for the Commodore 64, see the C64
Programmer’s Reference Guide for details on this sprite-creation
technique.

Adjoining Sprites

You have learned how to create, color, turn on and animate a sprite.
An occasion may arise when you want to create a picture that is too
detailed or too large to fit into a single sprite. In this case, you can
join two or more sprites so the picture is larger and more detailed
than with a single sprite. By joining sprites, each one can move inde-
pendently of one another. This gives you much more control over
animation than a single sprite.

This section includes an example using two adjoining sprites. Here's
the general procedure (algorithm) for writing a program with two or
more adjoining sprites.

1. Draw a picture on the screen with Commodore 128 graphics state-
ments, such as DRAW, BOX and PAINT, just as you did in the race-
way program in the tast section. This time, make the picture twice
as large as a single sprite with the dimensions 48 pixels wide by 21
pixels tall.

2. Use two SSHAPE statements 1o store the sprites into two sepa-
rate data strings. Position the first SSHAPE statement coordinates
over the 24 by 21 pixel area of the first half of the picture you drew.
Then position the second SSHAPE statement coordinates over
the second 24 by 21 pixel area. Make sure you store each half of
the picture data in a different string. For example, the first
SSHAPE statement stores the first half of the picture into A$, and
the second SSHAPE statement stores the second half of the pic-
ture in BS.

3. Transfer the picture data from each data string intc a separate
sprite with the SPRSAV statement.

4, Turn on each sprite with the SPRITE statement.

5. Position the sprites so the beginning of cne sprite staris at the
pixel next to where the first sprite ends. This is the step that actu-

USING C128 MODE—Color, Animation and Sprite Graphics Statements

ally joins the sprites. For exampte, draw a picture 48 by 21 pixels.
Position the first sprite (1, for exampte) at location 10,10 with this
statement:

100 MOVSPR 1,10,10

where the first number is the sprite number, the second number is
the horizontal (X} coordinate and the third number is the vertical
(Y) coordinate. Position the second sprite 24 pixels to the right of
sprite 1 with this statement:

200 MOVSPR 2,34,10

At this point, the two sprites are displayed directly next to each

other. They look exactly like the picture you drew in the beginning

of the program, using the DRAW, BOX and PAINT statements.

6. Now you can move the sprites any way you like, again using the
MOVSPR statement. You can move them together along the same
path or in different directions. As you learned in the last section,
the MOVSPR statement allows you to move sprites to a specific
location on the screen, or to a location relative to the sprite’s origi-
nal position.

The following program is an example of adjoining sprites. the pro-
gram creates an outer space environment. it draws stars, a planet
and a spacecraft simifar to Apollo. The spacecraft is drawn, then
stored into two data strings, A$ and B$. The front of the spaceship,
the capsute, is stored in sprite 1. The back half of the spaceship, the
retro rocket, is stored in sprite 2. The spacecraft flies slowly across
the screen twice. Since itis traveling so slowly and is very far from
Earth, it needs to be launched earthward with the retro rockets.
After the second trip across the screen, the retro rockets fire and
propel the capsule safely toward Earth,

Here's the program listing:

USING C128 MODE—Coior, Animation and Sprite Graphics Statements

CoC

[~

J—

.

[C

C C [

CC C = .

(

(

5 COLOR 4,1:COLOR 0,1:COLOR 1,2:REM SELECT BLACK BORDER & BKGRND, WHITE FRGRD

10
17
18

19
21

22
23
24

25
26

28
35
38

ab

42
43
44
45
47
48
50
55
60
65
82
83
85
87
990
92
93
- 85
96
97

99

GRAPHIC 1,1:REM SET HI RES MODE
FOR I=1T0O40
X=INT{RND(1)*320)+]1 :REM DRAW STARS
¥Y=INT(RND{1}*200}+1:REM DRAW S5TARS

-DRAW 1:X,Y:NEXT :REM DRAW STARS

BOX 0,0,5,70,40,,1:REM CLEAR BOX

BOX 1,1,5,70,40:REM BOX-IN SPACESHIP

COLCR 1,8:CIRCLE 1,190,90,35,25:PAINT 1,190,95:REM DRAW & PAINT PLANET
CIRCLE l 190,90,65,10: CIRCLE 1,190,93, 65 10:CIRCLE 1,190,95,65,10:COLOR 0,1
DRAW 1, 10 17 TO 16,17 TO 32,10 TO 33 20 TO 32,30 TO 16 23 TO 10 23 TG 106, 1?
DRAW 1.19,24 TO 20,21 TO 27,25 TQ 26,28:REM BOTTOM WINDOW

DRAW 1,20,19 TO 20,17 TO 29,13 TO 30,18 TO 28,23 TO 20,19:REM TOP WINDOW
PAINT 1,13,20:REM PAINT SPACESHIP

DRAW 1,34,10 TO 36,20 TO 34,30 TO 45,30 TO 46,20 TO 45,10 TC 34,10:REM SFl
DRAW 1,45,10 T0 51,12 TO 57,10 70 57,17 TO 51,15 TO 4&,17:REM ENG1

DRAW 1,46,22 TC 51,24 TO 57,22 TC 57,29 TO 51,27 TO 45,29:REM ENG2

PAINT 1,40,15:PAINT 1,47,12:PAINT 1,47,26:DRAW 0,45,30 TO 46,20 TO 45,10
DRAW 0,34,14 TO 44,14 :DRAW 0,34,21 TO 44,21:DRAW 0, 34,28 TO 44,28

SSHAPE A$,10,10,33,30:REM SAVE SPRITE IN AS

SSHAPE BS,34,10,57,30:REM SAVE SPRITE IN B$

SPRSAV A%,1:REM SPR1 DATA

EPRSAV B%,2:REM SPR2 DATA

SPRITE 1,1,3,0,0,0,0:REM SET SPR1 ATTRIBUTES

SPRITE 2,1,7,0,0,0,0:REM SET SPR2 ATTRIBUTES

MOVSER 1,150 ,150:REM ORIGINAL POSITION OF SPR1

MOVSPR 2,172 ,150:REM ORIGINAL POSITION OF SPR2

MOVSER 1,270 # 5 :REM MOVE SPR1 ACROSS SCREEN

MOVSPR 2,270 # 5 :REM MOVE SPR2 ACROSS SCREEN

FOR I=1T0 5950:NEXT:REM DELAY

"MOVSFR 1,150,150:REM POSITION SPR! FOR RETRO ROCKET LAUNCH

MOVSPR 2,174,150:REM PCSITION SPR2 FOR RETRO ROCKET LAUNCH
MOVSPR 1,270 % 10 :REM SPLIT ROCKET

MOVSPR 2,125 # 5 :REM SPLIT ROCKET

FOR I=1TO 1200:NEXT:REM DELAY

SPRITE 2,0:REM TURN OFF RETRO ROCKET (SPR2)

FOR I=1TGC 20500:NEXT:REM DELAY

100 ‘GRAPHIC 0,1:REM RETURN TO TEXT MODE

Here's an explanation of the program:

* Line 5 COLORs the background black and the foreground
white.

high-res screen.

* Lines 17 through 21 DRAW the stars.

¢ Line 23 BOXes in a display area for the picture of the space-
craft in the top-left corner of the screen.

* Line 24 DRAWSs and PAINTs the planet.

* Line 25 DRAWSs the CIRCLESs arcund the planet.

¢ Line 26 DRAWS the outline of the capsule portion of the
spacecrafi.

121 USING €128 MODE—Cotor, Animaticon and Sprite Graphics Statements

¢ Line 10 selects standard high-resolution mode and clears the

* Line 28 DRAWS the bottom window of the space capsule.

* Line 35 DRAWSs the top window of the space capsule.

¢ Line 38 PAINTs the space capsule white.

* Line 40 DRAWSs the outline of the retro rocket portion of the
spacecraft,

* Line 42 and 43 DRAW the retro rocket engines on the back of
the spacecrait,

» Line 44 PAINTS the retro rocket engines and DRAWS an out-
line of the back of the retro rocket in the background cotor.

¢ Line 45 DRAWSs lines on the retro rocket partion of the space-
craft in the background color. (At this point, you have dis-
played only pictures on the screen. You have not used any
sprite statements, so your rocketship is not yet a sprite.)

¢ Line 47 positions the SSHAPE coordinates above the first half
(24 by 21 pixels), of the capsule of the spacecraft and stores it
in & data string, A$.

¢ Line 48 positions the SSHAPE coordinates above the second
hali (24 by 21 pixels) of the spacecraft and stores it in a data
string, BS.

* | ine 50 transfers the data from A$ into sprite 1.

* Line 55 transfer the data from B$ into sprite 2.

* Line 60 turns on sprite 1 and colors it red.

¢ Line 65 turns on sprite 2 and colors it blue.

» Line 82 positions sprite 1 at coordinate 150,150,

* Line 83 positions sprite 2, 24 pixels to the right of the starting
coordinate of sprite 1.

¢ Lines 82 and 83 actually join the two sprites.

+ Lines 85 and 87 moves the joined sprites across the screen.
e Line 90 delays the program. This time, delay is necessary for
the sprites to complete three trips across the screen. If you
leave out the delay, the sprites do not have enough time to

maove across the screen.

¢ Lines 92 and 93 position the sprites in the center of the
screen, and prepare the spacecraft to fire the retro rockets.

s Line 95 propels sprite 1, the space capsule, forward. The
number 10 in line 95 specifies the speed in which the sprite
moves. The speed ranges from 0, which is stop, to 15, which
is lightning fast.

* Line 96 moves the expired retro rocket portion of the space-
craft backwards and off the screen.

* Line 97 is another time detay so the retro rocket, sprite 2, has
time to move off the screen.

« Line 98 turns off sprite 2, once it is off the screen.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

S N

(-

N N O

C C C °C C =

L. -

(-

(-

)

-]

1l

1

)

]

-]

]

]

-}

_J

I

)

)

1l

]

J

123

* Line 99 is another delay so the capsule can continue to move
across the screen.
* Line 100 returns you to text mode.

Working with adjoining sprites ¢can be more interesting than working
with a single sprite. The main points to remember are: (1) Make sure
you position the SSHAPE coordinates at the correct locations on the
screen, S0 you save the picture data properly; and (2) be certain to
position the sprite coordinates in the correct location when you are
joining them with the MOVESPR statement. In this example, you posi-
tioned sprite 2 at a tocation 24 pixels to the right of sprite 1.

Once you master the technique of adjoining two sprites, try more
than two. The more sprites you join, the better the detail and anima-
tion will be in your programs.

The C128 has two additional SPRITE commands, SPRCOLOR and
COLLISION, which are not covered in this chapter. To learn about
these commands, refer to Chapter V, the BASIC 7.0 Encyclopedia.

Storing Sprite Data in Binary Files

The Commodore 128 has two new commands, BLOAD and BSAVE,
which make handling sprite data neat and easy. The “B’" in BLOAD
and BSAVE stand for BINARY. The BSAVE and BLOAD commands
save and load binary files to and from disk. A binary file consists of
either a portion of a machine language program, or a coilection of
data within a specified address range. You may be familiar with the
SAVE Command within the built-in machine language monitor. When
you use this SAVE command, the resulting file on disk is considered
a binary file. A binary file is easier to work with than an object code
file since you can load a binary file without any further preparation.
An object code file must be loaded with a lcader, as in the Commo-
dore 64 Assembler Development System; then the SYSTEM com-
mand (SYS) must be used to execute it.

You're probably wondering what this has to do with sprites. Here's
the connection. The Commodore 128 has a dedicated portion of
memory ranging from decimal address 3584 ($0EQQ) through 4095
($OFFF), where sprite data is stored. This portion of memory takes
up 512 bytes. As you know, a sprite is 24 pixels wide by 21 pixels tall.
Each pixel requires one bit of memeory. If the bit in a sprite is off
{(equal to 0), the corresponding pixel on the screen is considered off
and it takes on the color of the background. If a pixel within a sprite is

USING C128 MODE —Color, Animation and Sprite Graphics Statemants

124

on {equal to 1), the corresponding pixel on the screen is turned on in
the foreground cotor. The combination of zeroes and ones produces
the image you see on the screen.

Since a sprite is 24 by 21 pixels and each pixel requires one bit of
storage in memory, one sprite uses up 63 bytes of memory. See Fig-
ure 6-8 to understand the storage requirements for a sprite’s data.

12345678 12345678 12345678

Each Row = 24 bits = 3 bytes
Figure 6-8. Sprite Data Requirements

A sprite requires 63 bytes of data. Each sprite block is actually made
up of 64 bytes; the extra byte is not used. Since the Commodore 128
has eight sprites and each one consists of a 84-byte sprite block, the
computer needs 512 (8 X 64) bytes to represent the data of all eight
sprite images.

USING C128 MODE—Calor, Animation and Sprite Graphics Statéﬁﬁents -

O - . =

-

I N

C C C

E

[

C

-

)

]

[

)

)

]

-}

)

The entire area where all eight sprite blocks reside starts at memory
location 3584 ($0E0Q) and ends at location 4095 ($0FFF). Figure 6-9
lists the memory address ranges where each individual sprite stores

its data.

$OFFF (4095 Decimal)

]—Sprite 8
$0FCO

]—Sprite 7
$0F80
$0F40

$0F00

]—Sprite 4
$0ECO

]—Sprite 3

]—Sprite 6
|—Sprite 5

—

]—Sprite 2

$O0E40
]—Sprite 1
$0E00 (3584 Decimal)

Figure 6-9. Memory Address Ranges for Sprite Storage

BSAVE Once you exit from the SPRDEF mode, you can
save our sprite data in binary sprite fites. This
way, you can load any collection of sprites back
into the Commodore 128 neatly and easily. Use
this command to save your sprite data into a
binary file:

BSAVE “filename”, B0, P3584 TO P4096

The binary filename is a name you give to the file. The “B0O" specifies
that you are saving the sprite data from bank 0. The parameters
“P3584 TO P4096" signify you are saving the address range 3584
(SOE00Q) through 4095 ($0FFF), which is the range where all the sprite
data is stored.

You do not have to define all of the sprites when you BSAVE them.
The sprites you do define are BSAVEd from the correct sprite block.
The undefined sprites are also BSAVEd in the binary file from the
appropriate sprite block, but they do not matter fo the computer. Itis

125 USING C128 MODE—Color, Animation ano Sprite Graphics Statements

easier to BSAVE the entire 512 bytes of all eight sprites, regardless if
all the sprites are used, rather than BSAVE each sprite block individ-

ually.

BLOAD Later on, when you want to use the sprites
again, just BLOAD the entire 512 bytes for ali of
the sprites into the range starting at 3584
(BOE00Q) and ending at 4095 ($0FFF). Here's the
command to accomplish this:

BLOAD “filename”], B0, P3584]

Use the same filename you entered when you BSAVEd your original
sprite data. The “B0’" stands for the bank number 0 and the P3584
specifies the starting location where the binary sprite data file is
loaded. The last two parameters are optional.

NOTE: When you BLOAD sprite data into the sprite storage area, all
the data that was previously there is overwritten with the
binary sprite data file. If you used SPRite DEFinition mode to
create sprites, BSAVE them before you BLOAD new data, or
your original data will be tost.

LA AR S AR RN EEEESEREESE R ERESAESEREEERERSELEERESESESESESESESS]

In this section you have seen how much the new Commodore 7.0
BASIC commands can simplify the usually complex process of cre-
ating and animating graphic images. The next section describes
some other new BASIC 7.0 commands that do the same for music
and sound.

126 USING C128 MODE—Color, Animation and Sprite Graphics Statements

SRR I S

-

CCCCcCcCcCCCcoC

(=

-

]

2J

-

)

)

-

1

]

I

}

]

-

-]

N

-]

2]

]

-}

N

SECTION 7

Sound and Music

inC128 Mode

127

INTRODUCTION

THE SOUND STATEMENT
Writing a SOUND Program
Random Sounds

ADVANCED SCUND AND MUSIC IN C128 MODE
A Brief Background: The Characteristics of Sound
Making Music on the Commodore 128
The ENVELOPE Statement
The TEMPO Statement
The PLAY Statement
The SID Filter
The FILTER Statement
Tying your Music Program Together
Advanced Filtering

CODING A SONG FROM SHEET MUSIC

USING €128 MODE—Sound and Music in C128 Mode

129

130
132

138
138
140
140
143
143
147

151
152

154

232300333333 370323709

)

]

I

1

]

]

|

]

1

J

Introduction The Commodore 128 has one of the most sophisticated built-in
sound synthesizers available in a microcomputer. The synthesizer,
called the Sound Interface Device (SID), is a chip dedicated solely to
generating sound and music. The SID chip is capable of producing
three independent voices (sounds) simultaneously. Each of the
voices can be playad in one of four types of sounds, called wave-
forms. The SID chip also has programmable Attack, Decay, Sustain
and Release (ADSR) parameters. These parameters define the qual-
ity of a sound. In addition, the synthesizer has a filter you can use to
choose certain sounds, eliminate others, or modify the characteris-
tics of a sound or sounds. In this section you will learn how to control
these parameters to produce almost any kind of sound.

To make it easy for you 1o select and manipulate the many capabili-

ties ot the SID chip, Commaodore has developed new and powerful
BASIC music statements,

Here are the new sound and music statements available on the
Commodore 128:

SOUND
ENVELOPE
VOL
TEMPO
PLAY
FILTER

This section explains these sound statements, one at atime, in the
process of constructing a sampte musicat program. When you are
finished with this section, you will know the ingredients that go intc a
musical program. You'll be able to expand on the example and write
programs that play intricate musical compositions. Eventually, you't
be able to program your own musical scores, make your own sound
effects and play works of the great classical masters such as
Beethoven and contemporary artists like the Beatles. You can even
add computer-generated music to your graphics programs to create
your own "videos.”

129 USING C128 MODE—Sound and Music in C128 Mode

The SOUND
Statement

130

The SOUND statement is designed primarily for quick and easy
sound effects in your programs. You will learn a more intricate way of
playing complete musical arrangements with the other sound state-
ments later in this section.

The format for the SOUND statement is as follows:
SOUND VC, FREQ, DURL, DIR[, MIN[, SVI, WFI, PWI1I1}

Here’s what the parameters mean:
VC —SelectVoiCe1,20r3

FREQ —Set the FREQuency level of sound (0-65535)

DUR —Set DURation of the sound {in 60ths of a second)
(0-32767)

DIR —Set the DIRection in which the sound is incremented/
decremented

0 = Increment the frequency upward
1 = Decrement the frequency downward
2 = Oscillate the frequency up and down

MIN —Select the MINimum frequency (0-65535) if the
sweep (DIR) is specified

SV —Choose the Step Value for the sweep (0-32767)
WF —Select the Wave Form (0-3)

0 = Triangle
1 = Sawtooth
2 = Variable Pulse
3 = White Noise
PW —Set the Pulse Width, the width of the variable pulse
waveform

Note that the DIR, MIN, SV, WF and PW parameters are optional.

USING C128 MODE—Sound and Music in G128 Mode

L

[

[

(_

-

L C C - CC @ CcCc

-

—

L

]

]

-}

)

)

J

—

)

]

The first parameter (VC) in the SOUND statement selects which
voice will be played. The second parameter (FREQ) determines the
frequency of the sound, which ranges from 0 through 65535. The
third setting (DUR) specifies the amount of time the sound is played.
The duration is measured in 60ths of a second. If you want to play a
sound for one second, set the duration to 60, since 60 times 1/60
equals 1. To play the sound for two seconds, specify the duration to
be 120. T play the sound 10 seconds, make the duration 600, and so
on.

The fourth parameier (DIR) selects the direction in which the fre-
quency of the sound is incremented or decremented. This is referred
to as the sweep. The fifth setting (MIN} sets the minimum frequency
where the sweep begins. The sixth setting (SV) is the step value of
the sweep. It is similar to the step value ina FOR . . . NEXT loop. !f
the DIR, MIN and SV values are specified in the SOUND command,
the sound is played first at the original level specified by the FREQ
parameter. Then the synthesizer sweeps through and plays each
level of the entire range of frequency values starting at the MIN fre-
quency. The sweep is incremented or decremented by the step value
(SV) according to the direction specified by the DIR parameter and
the frequency is played at the new level.

The seventh parameter (WF) in the SOUND command selects the
waveform for the sound. (Waveforms are explained in detail in the
paragraph titled, Advanced Sound and Music in C128 Mode.)

The final setting (FW} in the SOUND command determines the width
of the pulse width waveform if it is selected as the waveform param-
eter. (See the Advanced Sound discussion for an ittustration of the
pulse width waveform.)

USING C128 MODE-Sound and Music in C128 Mode

132

Writing a SOUND Program

Now it's time to write your first SOUND program. Here's an example
of the SOUND staterment:

10VOL S
20 SOUND 1, 4096, 60

RUN this program. The Commodore 128 plays a short, high-pitched
beep. You must set the volume before you can play the sound state-
ment, so ling 10 sets the VOLume of the sound chip. Line 20 plays
voice 1 at a frequency of 4096 for a duration of 1 second (60 times 1/
60). Change the frequency with this statement:

30 SOUND 1, 8192, 60

Notice line 30 plays a higher tone than line 20. This shows the direct
relationship between the frequency setting and the actual frequency
of the sound. As you increase the frequency setting, the Commodore
128 increases the pitch of the tone. Now try this statement:

40 SOUND 1, 0, 60

This shows that a FREQ value of 0 plays the lowest frequency (which
is so low it is inaudable). A FREQ value of 65535 plays the highest
possible frequency.

Now try placing the sound statement withina FOR . . . NEXT loop.
This allows you to play the complete range of frequencies within the
loop. Add these statements to your program:

50 FOR | = 1 TO 65535 STEP 100
60 SOUND 1, 1,1
70 NEXT

USING C128 MODE —Sound and Music in G128 Mode

L.

[~

A G

R U A A A N A

e

[

— C

(=

-

)

5

]

)

2}

]

]

1

)

]

: '"']

'j

-

This program segment plays the variabte pulse waveform in the
range of frequencies from 1 through 65535, in increments of 100,
from lowest frequency to highest. If you don’t specify the waveform,
the computer selects the default value of waveform 2, the variable
pulse waveform.,

Now change the waveform with the foltowing program line (60} and
try the program again:

60 SOUND 1,1,1,0,0,0,0,0

Now the program playsvoice 1, using the triangle waveform, for the
range of frequencies between 1 and 85535 in increments of 100.
This sounds like a typical sound effect in popular arcade games. Try
waveform 1, the sawtooth waveform, and see how it sounds with
this line:

60 SOUND 1,),1,0,0,0,1,0

The sawtooth waveform sounds similar to the triangte waveform
though it has less buzz. Finally, try the white noise waveform (3).
Substitute line 60 for this line:

60 SOUND 1,1,1,0,0,0, 3,0

Now the program loop plays the white noise generator for the entire
range of frequencies. At first, there is a low-pitched rumbling sound.
As the frequency increases in the loop, the pitch increases and
sounds like a rocket taking off.

USING C128 MODE—Sound and Music in C128 Mode

134

Notice that so far, we have not specified all of the parameters in the
SOUND statement. Take line 60, for example:

60 SOUND 1,1,1,0,0,0, 3,0
The three zeros following 1, |, 1 pertain to the sweep parameters

within the SOUND statement. Since none of the parameters is speci-

fied, the SOUND does not sweep. Add this line to your program:
100 SOUND 1, 49152, 240,1, 0, 100,1, 0

1L A A Yy
Voice |
Frequency

Duration
Sweep Direction
Minimum Sweep Frequency
Step Value for Sweep
Waveform
Pulse Width for Variable Width

Waveform

Line 100 starts the sweep frequency at 49152 and decrements the
sweep by 100 in the downward direction, until it reaches the mini-
mum sweep frequency at 0. Voice 1, using the sawtooth waveform
{#1), plays each SOUND for four seconds (240 * 1/60 sec.). Line 100
sounds like a bomb dropping, as in many “'shoot ‘em up” arcade
games.

Now try changing some of the parameters in line 100. For instance,
change the direction of the sweep 1o 2 (oscillate}, change the mini-
mum frequency of the sweep to 32768; and increase the step value
to 3000. Your new SCUND command looks like this:

110 SOUND 1, 49152, 240, 2, 32768, 3000, 1

Line 110 makes a siren sound as though the police were right on
your tail. For a more pleasant sound, try this:

110 SOUND 1, 65535, 250, 0, 32768, 3000, 2, 2600

This should remind you of a popular space-age TV show, when the
space crew unleashed their futuristic weapons on the unsuspecting
aliens.

Until now, you have been programming in only one voice. You can
produce interesting sound effects with the SOUND statement using

USING C128 MODE~Sound and Music in G128 Mode

.

(-

-

(-

. L C

[

I W

{-

L

[

(-

[

up to three voices. Experiment and create a program which utilizes
alt three voices.

Here’s a sample program that will help you understand how to pro-
gram the Commodore 128 synthesizer chip. The program, when run,
asks for each parameter, and then plays the sound. Here's the pro-
gram tisting. Type it into your computer and RUN it.

PRINT: PRINT:PRINT:PRINT"[] = & - - SOUND PLAYER":PRINT: PRINT: PRINT
PRINT" INPUT SOUND PARAMETERS. TO PLAY":PRINT : PRINT o _
30 INPUT "VOICE (1-3)";V .

0. INPUT "FREQUENCY {(0-65535)"; F oo
) INPUT ,"DURATION (0-32767)";D: PRINT

: “WANT TO SPECIFY OPTIONAL:PARAMETERS Y/N“'B$:PRINT_
0, ="N" THEN 130 S E
0 INPUT “SWEEP DIRECTION 0=UP,1=DOWN,2=0SCILL";DIR
0 INPUT "MINIMUM SWEEP FREQUENCY (0-65535)";M
0-INPUT- *SWEEP STEP VALUE {0-32767)";5 . .- .
“INPUT "WAVEFOKM (0=TRI, 1=SAW,2=VAR PUL, 3= NOISE" W
20 IF W=2 THEN INPUT "PULSE WIDTH (0-4095)";P
0 SQUND V, F, D, DIR, M, S, W, P

INPUT"DO YOU WANT TO HEAR THE.. SOUND: AGAIN /N A8
BAS="Y"THEN 130 _

Here's a quick explanation of the program. Lines 10 and 20 PRINT
the introductory messages on the screen. Lines 30 through 50
INPUT the voice, frequency and duration parameters. Line 60 asks if
you want to enter the optional SOUND parameters, such as the
sweep settings and waveform. If you don’t want to specify these
parameters, press the “N’’ key and the program jumps to line 130
and plays the sound. If you do want to specify the optional SOUND
settings, press the “Y” key and the program continues with line 80.
Lines 80 through 110 specify the sweep direction, minimum sweep
frequency, sweep step value and waveform. Line 120 INPUTSs the
pulse width of the variable pulse waveform only if waveform 2 (varia-
ble pulse) is selected. Finally, line 130 plays the SOUND according to
the parameters that you specified earlier in the program.

Line 140 asks if you want to hear the SOUND again. If you do, press
the “Y" key; otherwise, press the “N’" key. Line 150 checks to see if
you pressed the “Y" key. If you did, program controi is returned to
line 130 and the program plays the SOUND again. If you do not press

135 USING C128 MODE~—Sound and Music in €128 Mode

the “Y" key, the program continues with line 160, which returns pro-
gram control to line 10 and the program repeats. To stop the Sound
Player program, press the RUN/STOP and RESTORE keys at the
same time.

Random Sounds

The following program generates random sounds using the RND
function. Each SOUND parameter is calculated randomly. Type the
program into your computer, SAVE it and RUN it. This program illus-
trates how many thousands of sounds you can produce by specify-
ing various combinations of the SOUND parameters. Here's the
listing:

10
20

40
50

70

- 80

100
110
120
130
140
150

PRINT"VC FREQ DIR MIN SV WF PW "
PRINT"

30 V=INT(RND(1}*3)+1:REM VOICE

FP=INT(RND(1)*65535) :REM FREQ
D=INT(RND{1l}*32767) :REM DURATION
DIR=INT(RND(1)*3) :REM STEP DIR
M=INT(RND(1)*65535) :REM MIN FREQ
S=INT{RND(1})*32767) :REM STEP VAL
W=INT(RND(1)*4) :REM WAVEFORM
P=INT(RND(1}*4095) :REM PULSE W
PRINTV; F;DIR;M;S;W;P:PRINT:PRINT
SOUND Vf F; D; DIR; M; S; W; P’
SLEEP 4
sounp v, 0, 0, DIR, G, O, W, P
GOTO10

Lines 10 and 20 PRINT parameter column headings and the under-
line. Lines 30 through 100 calcutate each SOUND parameter within
its specific range. For example, line 30 calculates the voice number
as follows:

30 V = INT(RND(1)*3) + 1

The notation RND (1) specifies the seed value of the random num-
ber. The seed is the base number generated by the computer, The 1
tells the computer to generate a new seed each time the command
is encountered. Since the Commodore 128 has three voices, the
notation * 3 telts the computer to generate a random number within
the range O through 3. Notice, however, there is no voice 0, so the

136 USING C128 MODE~—Sound and Music in C128 Mode

—~—

—

.

(-

]

l

]

+ 1in line 30 tells the computer to generate a random number in the
range between 1 and 3. The procedure for generating a random
number in a specific range is to multiply the given random number
times the maximum value of the parameter (in this case, 3). If the
minimum value of the parameter is greater than zero, add to the ran-
dom number a value that will specify the minimum value of the range
of numbers you want to generate (in this case, 1). For instance, line
40 generates a random number in the range between 0 and 65535.
Since the minimum value is zero in this case, you do not need o add
a value to the generated random number.

Line 110 PRINTs the values of the parameters. Line 120 plays the
SOUND specified by the random numbers generated in lines 30
through 100. Line 130 delays the program for 4 seconds while the
sound is ptaying. Line 140 turns off the SOUND after the 4 second
delay. All sounds generated by this program play for the same
amount of time, since they are all turned off after 4 seconds with line
140. Finally, fine 150 returns control to line 10, and the process is
repeated until you press the RUN/STOP and RESTORE keys at the
same time.

So far you have experimented with sample programs using only the
SOUND statement. Although you can use the SOUND statement to
play musical scores, it is best suited for quick and easy sound
effects. The Commodore 128 has other statements designed specifi-
cally for song piaying. The following paragraphs describe the
advanced sound and music statements that enable you to play com-
ptex musical scores and arrangements with your Commodore 128
synthesizer.

137 USING 128 MODE—Sound and Music in G128 Mode

Advanced Sound
and Music in
C128 Mode

138

A Brief Background: The Characteristics of Sound

Every sound you hear is actually a sound wave traveling through the
air. Like any wave, a sound (sine) wave can be represented graphi-
cally and mathematically (see Figure 7-1).

Figure 7-1. Sine Wave

The sound wave moves {oscillates) at a particular rate (frequency)
which determines the overall pitch {the highness or lowness of the
sound).

The sound is also made up of harmonics, which are accompanying

multiples of the overall frequency of the sound or note. The combina-
tion of these harmonic sound waves give the note its gualities, called
timbre. Figure 7-2 shows the relationship of basic sound frequencies

and harmonics.

RESULTANT WAVE

FUNDAMENTAL (ST HARMONIC)

2NDHARMONIC 3RDHARMONIC

Figure 7-2. Frequency and Harmonics

The timbre of a musical tone, {i.e., the way a tone sounds,) is deter-
mined by the tone's waveform. The Commodore 128 can generate
four types of waveforms: triangle, sawtooth, variable pulse and
noise. See Figure 7-3 for a graphic representation of these four
waveforms.

USING C128 MODE—50und and Music in C128 Mode

U N IRV IS S

- C

I R

[

-

]

)

1

B

)

n

139

AN AN

TRIANGLE

SV

SAWTOQOTH

f—PULSE WIDTH -

VARIABLE
PULSE

NOISE

Figure 7-3. Sound Waveforms Types

USING G128 MODE—Sound and Music in C128 Made

140

Making Music on the Commodore 128

The ENVELOPE The volume of a sound changes throughout the

Statement duration of the note, from when you first hear it
untit it is no longer audible. These volume quali-
ties are referred to as Attack, Decay, Sustain
and Release (ADSR). Attack is the rate at which
amusical note reaches its peak vclume. Decay
is the rate at which a musical note decreases
from its peak volume to its midranged (sustain)
level. Sustain is the level at which a musical
note is played at its midranged volume. Release
is the rate at which a musical note decreases
from its sustain level to zero volume, The ENVE-
LOPE generator controls the ADSR parameters
of sound. See Figure 7-4 for a graphicat repre-
sentation of ADSR. The Commodore 128 can
change each ADSR parameter to 16 different
rates. This gives you absolute flexibility over the
ENVELOPE generator and the resulting proper-
ties of the volume when the sound is originated.

! 1
I i
' i
' !

Figure 7-4. ADSR Phases

One of the most powerful Commodore 128
sound statements—the one that controls the
ADSR and waveform—is the ENVELOPE state-
ment. The ENVELOPE statement sets the differ-
ent controls in the synthesizer chip which
makes each sound unique. The ENVELOPE
gives you the power to manipulate the SID syn-
thesizer. With ENVELOPE, you can select partic-
ular ADSR settings and choose a waveform for
your own music and sound effects. The format
for the ENVELOPE statement is as follows:

ENVELOPE e[,a[,dl,s[.r[,wfl,Pwl]]]]]

USING C128 MODE—Sound and Music in C128 Mode

U I I B

R

C C C

(A R IR A A

I

1

]

]

]

N

)

1
[

-

1

2

|

1

]

-1

)

.

-

141

Here's what the letters mean:

e — envelope number (0-9)
a — attackrate (0-15)
d — decayrate(0-15)
s — sustain levet(0-15)
r —releaserate(0-15)
wf — waveform—O0 = friangle
1 = sawtooth
2 = pulse (square)
= noise
4 = ring modulation
pw — pulse width {0-4095)

Here are the definitions of the parameters not
previously defined:

Envelope -The properties of a musical
note specified by the wave-
form and the attack, decay,
sustain and release settings
of the note. For example, the
envelope for a guitar note
has a different ADSR and
waveform than a flute.

Waveform -The type of sound wave
created by the combination
of accompanying musical
harmaonics of a tone. The
accompanying harmonic
sound waves are multiples
of, and are based on the
overall frequency of the
tone. The qualities of the
tone generated by each
waveform are recognizably
different from one another
and are represented graphi-
cally in Figure 7-3.

Pulse Width—-The length of time between
notes, generated by the
pulse waveform.

Now you can realize the power of the ENVE-
LOPE statement. 1t controls most of the musical
qualities of the notes being played by the sound

USING C128 MODE— Sound and Music in C128 Mode

synthesizer. The Commodore 128 has 10 prede-
fined envelopes for 10 different musical instru-
ments. In using the predefined envelopes you

do not have to specify the ADSR parameters,
waveform and pulse width settings—this is
already done for you. All you have to do is spec-
ify the envelope number. The rest of the parame-
ters are chosen automatically by the Commo-
dore 128. Here are the preselected envelopes
for different types of musical instruments:

Envelope Wave-.
Number Instrument Attack Decay Sustain Release form Width
0 Piano o 9 0 1] 2 1536
1 Accordion 12 (] 12 (] 1

2 Calliope 0 0 25 0 0

3 Drum 0 5 5 0 3

4 Flute 9 4 4 o 0

5 Guitar 0 9 2 1 1

6 Harpsichord 0 9 0 0 2 512
7 Organ 0 9 9 0 2 2048
8 Trumpet 8 9 4 1 2 512
9 Xylophone 0 9] 0 0

Figure 7-5. Default Parameters for ENVELOPE Statement

Now that you have a little background on the
ENVELOPE statement, begin another example
by entering this statement into your Commodore
128.

10 ENVELOPE 0, 5, 8, 2, 2, 2, 1700

This ENVELOPE statement redefines the default
piano envelope (0) to the following: Attack = 5,
Decay = 9, Sustain = 2, Release = 2, wave-
form remains the same (2) and the pulse width
of the variable pulse waveform is now 1700. The
piano envelope will not take on these properties
untit it is selected by a PLAY statement, which
you will learn later in this section.

142 USING C128 MODE—Sound and Music in C128 Mode

. O T

(-

==

L

[

-

L L [[[

L [[

N

Pl

1 3

]

]

The TEMPO
Statement

The PLAY
Statement

The next step in programming music is setting
the volume of the sound chip as follows:

20VOL 8

The VOL statement sets the volume of the sound
chip between 0 and 15, where 15 is the maxi-
mum and 0 is off (no volume).

The next step in Commodore 128 music pro-
gramming is controlling the tempo, or speed of
your tune. The TEMPO statement does this for
you. Here's the format:

TEMPO n

where nis a digit between 1 and 255 (and 255
is the fastest tempo}. If you do not specify the
TEMPO statement in your program, the Com-
modore 128 automatically sets the tempo to 8.
Add this statement to your musical example
program:

30 TEMPO 10

Now it’s time to learn how to play the notes in
your song. You already know how the PRINT
statement works. You play the notes in your tune
the same way as PRINTIing a text string to the
screen, except you use the PLAY statement in
ptace of PRINT. PRINT outputs text, PLAY out-
puts musical notes.

Here's the general format for the play statement:

PLAY“string of synthesizer control
characters and musical notes”

The total number of characters (including musi-
cal notes and synthesizer control characters)
that can be put into a PLAY command is 255.
However, since this exceeds the maximum
number of characters (160) allowed for a single
program line in BASIC 7.0, you have to concate-
nate {that is, add together} at least two strings to
reach this length. You can avoid the need to
concatenate strings by making sure your PLAY
commands do not exceed 160 characters, i.e.,

USING C128 MODE~—Sound and Music in G128 Mode

one program line in length. (This is equivalent to
four screen lines in 40-column mode, and two
screen tines in 80-column mode.) By deing this,
you will produce PLAY command strings that
are easier to understand and use.

To play musical notes, enclose the letter of the
note you want to play within quotes. For exam-
ple, here’s how to play the musical scale:

4OPLAY*CDEFGAB”

This plays the notes C, D, E, F, G, Aand B in the
piano envelope, which is envelope 0. After each
time you RUN this example program you are
creating, hold down the RUN/STOP key and
press the RESTORE key to reset the synthesizer
chip.

You have the option of specifying the duration of
the note by preceding it in quotes with one of
the following letters:

W-Whale note

H -Half note
Q-Quarter note
{ -Eighth note

S —Sixteenth note

The default setting, if the duration is not speci-
fied, is for Whole (W) notes.

You can PLAY a rest by including the following in
the PLAY string:

R-Rest

Yeu can instruct the computer to wait until all
voices currently playing reach the end of a mea-
sure by including the following in quotes:

M-Wait for end of measure

The Commodore 128 also has synthesizer con-
trot characters you can enclose within quotes in
a PLAY string. This gives you absolute control
over each note and allows you to change syn-
thesizer controls within a string of notes, Follow

USING C128 MODE—Sound and Music in 128 Mode

I

L

|

[

-

[

- C - C L

{

.

N

“_‘J

)

]

1

] .

the control character with a number in the allow-
able range for that character. The control char-
acters and the range of numbers for each are
shown in Figure 7-6, The “n" foliowing the con-
trol character refers to the number you select
from the specified range.

Control Default
Character Description Range Setting
Vn Voice 1-3 1
On Octave 0-6 4
Tn Envelope 0-9 0
Un Volume 0-15 9
Xn Filter 0 = off, 0

1=on

Figure 7-6. Sound Synthesizer
Control Characters

Although the SID chip can process these con-
trol characters in any order, for the best results,
piace the control characters in your string in the
order that they appear in Figure 7-6.

You don't absolutely have to specify any of the
control characters, but you should 1o maximize
the power from your synthesizer. The Commo-
dore 128 automatically sets the synthesizer
controls to the default settings in Figure 7-6. [f
you don’t assign speciat control characters, the
SID chip can PLAY only one envelope, one voice
and one octave without any FILTERIing. Specify
the control characters to exercise the most con-
trol over the notes within your PLAY siring.

If you specify an ENVELOPE statement and
select your own settings instead of using the
default parameters from Figure 7-5, the enve-
lope control character number in your PLAY
string must match the envelope number in your
ENVELOPE statement in order to assume the
parameters you assigned. You don’t have to
specify the ENVELOPE statement at all if you
just want to PLAY the default envelope settings
from Figure 7-6. In this case, simply select an
envelope number with the (T) control character
in the PLAY statement.

USING C128 MODE~—Sound and Music in €128 Mode

Here's an example of the PLAY statement using
the SID chip control characters within a string.
Add this line 1o your program and notice the
difference between this statement and the
PLAY statement in line 40.

50 PLAY “V2O5T7US XOCDEFGAB”

This statement PLAYS the same notes as in line
40, but voice 2 is selected, the notes are played
one octave higher (5) than line 40, the volume
setting is turned down 1o 5 and the FILTER is
specified as off. For now, leave the filter off.
When you learn about FILTERing in the next
section, you can come back and turn the filter
on to see how it affects the notes being played.
Notice line 50 selects a new instrument, the
organ envelope, with the T7 control character,
Now your program PLAYS two different instru-
ments in two of the independent voices. Add
this statement to PLAY the third voice:

60 PLAY “V3O6T6U7XOCDEF G AB”

Here’s how line 60 controls the synthesizer. The
V3 selects the third voice, 06 places voice 3 one
octave higher (6) than voice two, T6 selects the
harpsichord envelope, U7 sets the volume to 7
and X0 leaves the filter off for all three voices.
Now your program PLAYS all three voices, each
one octave higher than the other, in three sepa-
rate instruments, piano, organ and harpsichord.

So far, your PLAY statements only played whole
notes. Add notes of different duration by placing
duration control characters in your PLAY string
as follows:

TOPLAY “V2O6 TOUZXOHCDQEFIG
ASB”

Line 70 PLAYs voice 2 in octave 6 at volume
level 7 with the redefined piano envelope (0) on
and filter turned off. This statement PLAYS the
notes C and D as half notes, E and F as quarter
notes, G and A as eighth notes and B as a six-
teenth note. Notice the difference between the

USING C128 MODE—Sound and Music in C128 Made

A A I B

- L [

(I A U

. C L

-

1 1]

1l

]

i

a0

-]

]

147

The SID Filter

piano envelope in line 40 and the redefined
piano envelope in line 70. Line 40 actually
sounds more like a piano than line 70.

You can PLAY sharp, flat and dotted notes by
preceding the notes within quotes with the fol-
lowing characters;

#— Sharp
$ - Flat
.— Dotted

A dotted note plays one-and-a-half times longer
than a note that is not dotted.

Now try adding sharp, flat and dotted notes with
this statement;

80 PLAY“V1I04T4UBX0O.HCDQH#EFI
$GAS#B”

Line 80 PLAYS voice 1in octave 4 at volume
level 8 with the flute envelope turned on and the
filter turned off. It also PLAYS C and D as dotted
half notes, E and F as sharp quarter notes, G
and A as flat eighth notes and B as a sharp dot-
ted sixteenth note. You can add resis (R) at any
place within your PLAY string. The spacesin the
new PLAY statement examples are not neces-
sary. They are used only for readability.

Up until now your statement examples have left
the filter off within the sound synthesizer and
have not realized the true power behind it. Now
that you have digested most of the sound and
music statements and the SID control charac-
ters, move on to the next section to learn how to
enhance your musical quality with the FILTER
statement.

Once you have selected the ENVELOPE, ADSR,
VOLume and TEMPO, use the FILTER to perfect
your synthesized sounds. In your program, the
FILTER statement will precede the PLAY state-
ment. First you should become comfortable
with generating the sound and worry about FIL-
TERing last. Since the SID chip has only one

USING C128 MODE—Sound and Music in C128 Mode

filter, it applies to all three voices. Your comput-
erized tunes will play without FILTERing, but to
take full advantage of your music synthesizer,
use the FILTER statement to increase the sharp-
ness and quality of the sound.

In the first paragraph of this section, The Char-
acteristics of Sound, we defined a sound as a
wave traveling {oscillating) through the air at a
particular rate. The rate at which a sound wave
oscillates is called the wave's frequency. Recall
that a sound wave is made up of an overall fre-
quency and accompanying harmonics, which
are multiples of the overall frequency. See Fig-
ure 7-2. The accompanying harmonics give the
sound its timbre, the qualities of the sound
which are determined by the waveform. The
filter within the SID chip gives you the ability to
accent and eliminate the harmonics of a wave-
formn and change its timbre,

The SID chip filers sounds in three ways: low-
pass, band-pass and high-pass filtering. These
filtering methods are additive, meaning you can
use more than one filter at a time. This is dis-
cussed in the next section. Low-pass filters out
frequencies above a certain level you specify,
called the cutoff frequency. The cutoff fre-
guency is the dividing line that marks the bound-
ary of which frequency level will be played and
which will not. In low-pass filtering, the SID chip
plays all frequencies below the cutotf frequency
and filters out the frequencies above it. As the
name implies, the low frequencies are allowed
to pass through the filter and the high ones are
not. The low-pass filter produces full, solid
sounds. See Figure 7-7.

USING G128 MODE—Sound and Music in C128 Mode

C C C C C CCc & b &L

C o C ok

]

_

4

N

1]

J 1 3 1

]

]

]

]

2l

N

CUTOFF
]

FREQUENCY

AMOUNT PASSED

Figure 7-7. Low-pass Filter

Conversely, the high-pass filter allows all the
frequencies above the cutoff frequency to pass
through the chip. All the ones below it are fil-
tered out. See Figure 7-8. The pass filter pro-
duces tinny, hollow sounds.

AMOUNT PASSED

CUTOFF
|

FREQUENCY

Figure 7-8. High-pass Filter

The band-pass filter allows a range of frequen-
cies partialty above and below the cutoff fre-
quency to pass through the SID chip. All other
frequencies above and below the band sur-
rounding the cutoff frequency are filtered out.
See Figure 7-9.

AMOUNT PASSED

CUﬁOFF

FREQUENCY

Figure 7-9. Band-pass Filter

149 USING C128 MODE —Sound and Music in C128 Mode

The FILTER
Statement

The FILTER statement specifies the cutoff fre-
quency, the type of filter being used and the
resonance. The resonance is the peaking effect
of the sound wave frequency as it approaches
the cutoff frequency. The resonance determines
the sharpness and clearness of a sound: the
higher the resonance, the sharper the sound.

This is the format of the FILTER statement:
FILTER cf, Ip, bp, hp, res
Here's what the parameters mean:

cf —Cutoff frequency (0-2047)

Ip —Low-passfilter0 = off, 1 = on
bp -Band-passfilter 0 = off, 1 = on
hp -High-pass filter 0 = off, 1 = on
res —Resonance {0-15)

You can specify the cutoff frequency to be any
value between 0 and 2047. Turn on the low-pass
filter by specifying a 1 as the second parameter
inthe FILTER statement. Turn on the band-pass
filter by specifying a 1 as the third parameter
and enable the high-pass filter with a 1 in the
fourth parameter position. Turn off any of the

three filters by placing a 0 in the respective posi-

tion of the filter you want to disable. You can
enable or disable one, two or all three of the
filters at the same time.

Now that you have some background on the
FILTER statement, add this line to your sound
program, but do not RUN the program yet,

45 FILTER 1200, 1, 0, 0, 10

Line 45 sets the cutoff frequency at 1200, turns
on the low-pass filter, disables the high-pass and
band-pass filters and assigns a 10 as the reso-
nance level. Now go back and turn the filter on
in your PLAY statements by changing all the X0
filter control characters to X1. Reset the sound
chip by pressing the RUN/STOP and RESTORE
keys and RUN your sound program again.
Notice the differences between the way the

USING C128 MODE—S50und and Music in C128 Mode

A B

[

[

I

C [[L L C (=

C [[

C

_l

]

I

]

]

]

]

]

11]

]

)

]

1

1

N

151

notes sound and how they sounded without the
filter. Change line 45 to:

45 FILTER 1200, 0,1, 0, 10

The new line 45 turns off the low-pass filter and
enables the band-pass filter. Press RUN/STOP
and RESTORE and RUN your sound program
again. Notice the difference between the low-
pass and band-pass filters. Change line 45 again
to:

45 FILTER 1200, 0, 0, 1, 10

Reset the sound chip and RUN your example
program again. Notice the difference between
the high-pass filter and the low-pass and band-
pass filters. Experiment with different cutoff
frequencies, resonance levels and filters to per-
fect the music and sound in your own programs.

Tying Your Music Program Together

Your first musical program is complete. Now you can program your
favorite songs. Let’s tie all the components together. Here's the pro-
gram listing. Don’t be alarmed, this is the same program you built in
this section except the print statements are added so you know
which program lines are being played.

5 PLAY'W2 05 T7
0 PRINT"LINE 65

USING C128 MODE—Sound and Music in C128 Mode

152

Line 10, the ENVELOPE statement, specifies the envelope for piano
(0), which sets the attack t¢ 5, decay to 9, sustain to 2 and release to
0. It also selecis the variable pulse waveform with a puise width of
1700. Line 15 sets the VOLUme to 8. Line 20 chooses the TEMPO to
be 10.

Line 35 FILTERS the notes that are played in lines 30 through 115. It
sets the FILTER cutoff frequency to 1200. In addition, line 35 turns
off the low-pass and band-pass filters with the two zeros following
the cutoff frequency (1200). The high-pass filter is turned on with the
1 foltowing the two zeros. The resonance is set to 10 by the last
parameter in the FILTER statement.

Line 30 PLAYS the notes C, D, E, F, G, A, B in that order. Line 45
PLAYS the same notes as line 30, but it specifies the SID control
characters U5 as volume level 5, V2 as voice 2 and 05 as ociave 5.
Remember, the SID control characters altow you to change the syn-
thesizer controis within a string and exercise the most control over
the synthesizer. Line 65 specifies the control characters U7 for vol-
ume level 7, V3 for voice 06 for octave 6 and X0 to turn off the filter.
Line 65 PLAYS the same noles as lines 30 and 45, but in a different
volume, voice and octave,

Line 85 has the same volume and octave as line 65, and it specifies
half notes for the notes C and D, quarter notes for the notes Eand F,
gighth notes for notes G and A and a sixteenth note for the B note.
Line 105 sets the volume at 8, voice 1, octave 4 and turns off the
filter. It also specifies the C note as a dotted hali note, E as a sharp
quarter note, G and A as flat eighth notes and B as a dotted sharp
sixteenth note.

Advanced Filtering

Each of the previous FILTERing examples used only one filter at a
time. You can combine the SID chip’s three filters with each cther to
achieve different filtering effects. For example, you can enable the
low-pass and high-pass filters at the same time to form a notch
reject filter. A notch reject filter allows the frequencies below and
above the cutoff to pass through the SID chip, while the frequencies
close to the cutoff frequency are filtered. See Figure 7-10 for a
graphic representation of a notch reject filter.

USING C128 MODE~—Scund and Music in G128 Mode

. [

.

[

[

L L C

I

[[[

I I N

]

-] 1

I

I

I I DR B

]

)

153

—

AMOUNT PASSED

CUTOFF
FREQUENCY
Figure 7-10. Notch Reject Filter

You can also add either the low-pass or high-pass filter to the band-
pass filter to obtain interesting effects. By mixing the band-pass filter
with the low-pass filter, you can select the band of frequencies
beneath the cutoff frequency and below. The rest are filtered out.

By mixing the band-pass and the high-pass filters, you can select the
band of frequencies above the cutoff frequency and higher. Alt the
frequencies below the cutoff are filtered out.

Experiment with the different combinations of filters to see all the
different types of accents you can place on your musical notes and
sound effects. The filters are designed to perfect the sounds created
by the other components of the SID chip. Once you have created the
musical notes or sound effects with the SID chip, go back and add
the FILTERing to your programs to make them as crisp and clean as
possible,

Now you have all the information you need to write your own musical
pregrams in Commodore 128 BASIC. Experiment with the different
waveforms, ADSR settings, TEMPOs and FILTERing. Look in a book
of sheet music and enter the notes from a musical scale in sequence
within a play string. Accent the notes in the string with the SID con-
trol characters. You can combine your Commaodore 128 music syn-
thesizer with C128 mode graphics 1o make your own videos or “mov-
ies,” complete with sound tracks.

USING C128 MODE-—Sound and Music in C128 Mode

Coding A Song
from Sheet Music

154

This section provides a sample piece of sheet music and illustrates
how to decode notes from a musical staff and transtate them into a
form the Commodore 128 can understand. This exercise is substan-
tially faster and easier if you know how to read music. However, you
don’t have to be a musician to be able to play the tune on your Com-
modore 128. For those of you who cannot read music, Figure 7-11
shows how a typical musical staff is arranged and how the notes on
the staff are related to the keys on a piano.

¢t Middle [
c
Figure 7-11. Musical Staff

Figure 7-12 is an excerpt from a composition titled /nvention 13
{inventio 13 in Italian), by Johann Sebastian Bach. Although this com-
position was written a few hundred years ago, it can be played and
enjoyed on the most modern of computer synthesizers, such as the
SID chip in the Commodore 128. Here are the opening measures of
invention 13.

BCOPYRIGHT
SHEET MUSH: COURTESY
OF CF. FETEARS. CORP,

N romg Inventio 13

Figure 7-12. Part of Bach’s Invention 13

USING C128 MODE—Sound and Music in 128 Mode

I N I

CC

- CC

. [[[

[[[

l

[

]

)

)

.}

b

-

ey

The best way to start coding a song into your Commodore 128 is by
breaking the notes down into an intermediate code. Write down the
upper staff notes on a piece of paper. Now write down the notes for
the lower staff. Precede the note values with a duration code, For
instance, precede an eighth note with an 8, precede a sixteenth note
with a 16, and so on. Next, separate the notes so the notes on the
upper staff for one measure are proportional in time with the notes
for one measure on the lower staff.

If the musical composition had a third staff, you would separate it so
the duration is proportional to the two other upper staffs. Once the
notes for ail the staffs are separated into equal durations, a separate
dedicated voice would play each note for a particular staff. For
example, voice 1 would play the upper staff, voice 2 will play the 2d
staff and voice 3 would play the lowest staff if it existed.

Let's say the upper staff begins with a string of four eighth notes. In
addition, say the lower staff begins with a string of eight sixteenth
notes. Since an eighth note is proportional in time to two sixteenth
notes, separate the notes as shown in Figure 7-13.

Vi= B8A 8B 8C 8D

V2= 16D16E 16F16G 16A16B 16C 16D
Figure 7-13. Synchronizing Notes for Two Voices

Since the synchronization and timing in a musical composition is
critical, you must make sure the notes in the upper staff for voice 1,
for example, are in time agreement with the notes in the lower staff
for voice 2. The first note in the upper staff in Figure 7-13is an A
eighth note. The first two notes for voice 2 are D and E sixteenth
notes. In this case, you must enter the voice 1 eighth note in the
PLAY string first, then follow the voice 2 sixteenth notes immediately
after it. To continue the example, the second note in Figure 7-13 for
voice 1 (ihe upper staff}is a B eighth note. The B eighth note is equal
in time to the two sixteenth notes, F and G, which appear in the bot-
tom staff for voice 2. In order to coordinate the timing, enter the B
gighth note in the string for voice 2 and follow it with the two six-
teenth notes, F and G, for voice 2.

USING C128 MODE-—Sound and Music in C128 Mode

As a rule, always start with the note with the longer duration. For
example, if a bar starts with a series of two sixteenth notes on the
lower staff for voice 2 and the upper staff starts with an eighth note
for voice 1, enter the eighth note in the string first since it must play
for the duration while the two sixteenth notes are being fetched by
the Commodore 128. You must give the computer time to play the
longer note first, and then PLAY the notes of shorter duration, or else
the composition will not be synchronized.

Here's the program that plays invention 13, Enter it into your C128,
SAVE it for future use, and then RUN it.

290
300
310
320
330
340

REM INVENTION 13 BY BACH

TEMPO &

PLAY"V1O4T7U8X0" :REM VOICE 1=0RGAN

PLAY"V204TOUBX0" ;REM VOICE 2=BIANO

REM FIRST MEASURE

A$="V201IAVI1O3IEV202QAV103SA04ACO3IBEV202T#GV103SBO4DVIO4ICV202SAEM"
B$=“V104IEV2023A03CV103I#GV202SBEV104IEVZOZSBO3D“

REM SECOND MEASURE N

C$="V203ICV1035AEV202IAVIQ3SA04CY202 I#GV103SBEV202TIEV1O3SBO4D™
D$="V104ICV202SAEVIQ3IAV202SA03CVIC4QRV202SBEBO3D"

REM REM THIRD MEASURE
E$="V203ICV104SREV202IAV104SCEV203ICV103SA04CV202IAVI025EG"
F$="ViQ3IFV2038D02AVIO3TAV2028FAVIO4TDV202SDFVIOAIFV201SA02C"
REM FQURTH MEASURE
G$="V201IBV104SFDV202IDV103SBO4DV202IGVI03SGRV2021BV1O3SDF"
H$=“V103IEV2OZSGEV103IGVZOZSEGV104ICV202SCEV104IEV201SGB"

-REM FIFTH MEASURE
I$=“V201IAV104SECV202ICV103SAO4CV103IFV202SDFV104IDV20lSBO2D“
J§= "V201IGV103SDBV201IBV103SGBV103IEV202SCEV104ICV201SAO2C"

REM SIXTH MEASURE

K$ = “V201IFV104SCO3AV201IDVl03SFAVl03IDV20lSGOZGV103IBVZOZSFG“

M$—“V201IAV104SCO3AV202I#FV]04SCEV201IBV104SDO3BV2021#GV104SDF“

REM SEVENTH MEASURE -
$—"v202Icv104SEcv202IAv104SEGv202IDV1045FEV202I$Bv1o4snc"

08="V202I#GVI03ISBO4CV202IFV1I04SDEV202IDVI04SFOV201IBV1OASHGD"

REM EIGHTH MEASURE

P5="V202I#GV104SBDV202IAV]IC4SCAV2021IDVI04SFDV202IEV1O3SBO4D"

Q8="V202IFVIO3S#GBV202I#DV104SCC3AV202IEVIO3SEAV202IEVIO3SBEG"

REM NINTH MEASURE

R$="V201HAVIO3SAECEQ2QA"

PLAY A$:PLAY B$:PLAY C$:PLAY DS:PLAY ES

PLAY F$:PLAY G$:PLAY HS:PLAY T$:PLAY J§

PLAY K$:PLAY M$:PLAY N$:PLAY O$:PLAY PS5

PLAY Q$:PLAY RS

156 USING G128 MODE—Using 80 Columns

it

]

~

)

]

-

]

)

2]

g

_]

]

]

]

1

)

)

]

)

-]

)

You can use the technigues described in this section to code your
favorite sheet music and play it on your Commodore 128.

LR EERAEE R RS ERERE S SR AR R ERIEEEEERERESEERERERSRERERSELEESEESSEE

You now have been introduced to most of the powerful new com-
mands of the BASIC 7.0 language that you can use in C128 mode. In
the following section you will learn to use both 40- and 80-coiumn
screen displays with the Commodore 128.

USING C128 MODE—-Using 80 Cotumns

0 e s A e M s s s s e Ny N Ao s s N N O

)

]

2]

]

]

]

-]

]

]

]

SECTION G
Using 80 Columns

159

INTRODUCTION
THE 40/80 KEY
VIDEO PORTS AND MONITORS
Connecting a Monitor
Types of Monitors
Composite Monitors
RGBI Monitors
Dual Monitors
USING PREPACKAGED 80-COLUMN SOFTWARE
CREATING 80-COLUMN PROGRAMS

USING 40 AND 80 COLUMNS TOGETHER

USING C128 MODE—Using 80 Columns

161

161

162
162
162
162
163
163
163
163

164

177 7337737333930 073303

)

-}

)

_J

-]

-]

]

)

]

]

N

]

]

]

]

8

.\

introduction

The 40180 Key

In G128 and CP/M modes, you can choose between a 40- and 80-
cotlumn screen display. You can even use both in a single program.

Each screen size has special uses. The 40-column screen is the
same size screen the Commodore 64 uses. With the 40-cotumn
screen you can use the Commodore 128's full graphics capabilities.
You can draw circles, graphs, sprite characters, boxes and other
shapes in high-resolution or mutticolor graphic modes. You can also
use sprites.

If you are using an 80-column display, you get twice the number of
characters per screen line. In 80-column mode, you can use the
standard graphic characters and colors available through the
keyboard.

You can also write programs using two monitors to take advantage
of both screen display formats with each monitor screen performing
different aspects of the program. For example, text cutput could be
displayed on the 80-column monitor while graphics output could be
seen on the 40-column monitor.

You can use the 40/80 key 10 set the screen width as either 40 or 80
columns. Pressing this key wilt only have an effect when one of the
following actions is taken:

1, Poweristurned ON.

2. The RESET button is pressed.

3. The RUN/STOP and RESTORE keys are pressed simultane-
ously.

The 40/80 key acts like a SHIFT/LOCK key: it locks when you press it,
and does not release until you press it again. If this key is up {not
pressed) when one of the three conditions above occurs, the screen
is set to 40 columns. If before power-up you press the key down,
causing it to lock, and one of the three conditions listed above then
occurs, the screen is set to 80 columns. Once the computer is run-
ning in one screen format (40 or 80 columns}, you cannot switch to
the other format using the 40/80 key. In this case you must press and
release the ESC key and then press the X key.

USING C128 MODE—Using 80 Columns

Video Ports and

Monlitors

162

Connecting a Monitor

Make sure that you connect your monitor properly to the ports on the
back of your computer. There are two openings: one is labeled
VIDEO and ane is labeled RGBI.

VIDEOQ RGBI

VIDEQ is the connecting port for 40-column composite video moni-
tors while RGBI is used for 80-column monitors. Dual monitors like
the Commodore 1902, which can display either 40-column compos-
ite or 80 column RGBI screens, are connected to both ports.

Types of Monitors
Composite Compaosite monitors are designed to display 40-
Monitors column output on their screens. Examples of

composite monitors are the Commodore 1701
and 1702 monitors. These monitors can be used
for all 40-column programs and programming in
all three modes. However, they cannot be used
for 80-column work.

USING C128 MODE--Using 80 Columns

L. [

(

(-

(-

(-

(-

(. [C C

(

[

[

(-

(

]

]

]

)

)

)

Using
Prepackaged 80-
Column Software

Creating 80-
Column Programs

183

RGBI Monitors RGB! monitors are specially designed to display
80-column output. Although RGBI stands for
Red Green Blue Intensity, RGBI monitors can be
either color or monochrome {single color). The
most popular monochrome monitors use green
or amber displays. An RGBI monitor connected
to the RGBI port ¢can handle 80-column output in
both C128 and CP/M modes.

Dual Monitors Dual monitors like the Commodore 1902 can
provide either a composite video (40-column) or
RGBI (80-column) display. A dual monitor con-
nects to both video ports. A switch on the moni-
tor lets you select either screen output. The 40/
80 key on your computer determines the type of
screen display upon power-up. Make sure the
40/80 key setting corresponds o the 40/80
column slide switch setting on the front control
panel of the monitor. NOTE: You can still switch
back and forth between 40 and 80 column out-
put by pressing and releasing the ESC key and
then pressing the X key, regardtess of which
position the 40/80 key is in.

Most CP/M programs utilize an 80-column screen, as do many of the
other buisness application packages you can use in C128 mode.
Since the width of a normal printed page is 80 columns, an 80-
column wordprocessor can display information on the screen
exactly as that information will appear on paper. Spreadsheet pro-
grams often specify an 80-column format, in order to provide enough
space for the necessary columns and categories of information.
Many database packages and telecommunications programs also
require or ¢an use an 80-column screen,

In addition to running prepackaged software, the 80-column screen
width can be useful in designing your own programs. You've proba-
bly noticed what happens when you type a line that is wider than 40
columns on a 40-column screen. The lines “wrap around”—that is,
they continue onto the next screen line. This may cause confusion in
reading the line, and can even lead to programming errors. An
80-column screen helps eliminate these problems. In general,

an 80-column screen allows for a clearer screen and better
organization.

USING C128 MODE—Using 80 Columns

Using 40 and 80
Columns Together

164

The main advantage of 40-column composite video output is the
availability of bit mapped graphics, while 80 columns gives you out-
put for word processing and other business applications. If you have
two monitors, you can write programs that are "shared™, using the
text features 80 columns affords you and the graphics of 40
columns. A special command, (GRAPHIC 1,1) can be used within a
program to transfer the execution of graphics commands to the 40-
column display. If you have a dual monitor (one that can display both
40- and 80-column formats) you can place GRAPHIC 1,1 statements
in your program so that graphics will be output in 40-column screen
format. In order to view the graphic output, however, you will need to
change the video switch on the monitor to 40 columns. If you write a
program like this, it might be a good idea to include on-screen direc-
tions to the user to change the video switch,

For example, you might write a program which asked the user to
input data, then created a bar graph based on the user'sinput. The
message “CHANGE TO 40 COLUMN TO VIEW GRAPH" would tell
the user to switch modes and see the results.

As noted previously, you can switch between the 80- and 40-column
formats after power up, with the ESCape/X sequence.

USING G128 MODE—Using 80 Columns

[

(U I H |

[_

N A D IR N |

(-

The following example shows how dual screens can be used within a
program:

i0 IF RGR(C}= €& THEN 80:REM CHECK FOR 40 COLUMN TEXT MODE-IF TRUE GO TC LI'E 80
_ZULGRAPHIC 5,1 :REM THIS STATEMENT. SWITCHES TO 80 COLUMN TEXT MCDE:
3 CST' T IN 40 COLUMN. OUTPUT" PRINT - ’

0 HE SWITCH ON:THE: FRONT OF THE 1902 D 1, MON MOR
~50*PRINT:PRINT-PRESS RETURN WHEN READY“ S : L
60 ‘GRAPHIC 0,1:REM SWITCH TO 40 COLUMN TEXT MODE
70 PRINT:+PRT IT"PRESS RETURN WHEN. READY" 'GETEREY A$:1F A
‘80" COLOR 1,5: COLOR 4,1:COLOR 0,1 :REM COLOR THE SCREENK
90 GRAPHIC 2,1 :CHAR 1,8,18,"BIT MAP/TEXT SPLIT SCREEN" :REM SELECT SPLIT SCREEN
100 FOR I=70 TO 220 STEP 20 :CIRCLE 1,X,50,30,30:NEXT - .
110 PRINT" SWITCH TO 80 COLUMN OUTPUT" L -
ﬁI2U”PRINT"- SLIGDE THE MONITOR SWITCH* ‘0N THE FRONT PO THE EXTREME RIGHT™ :
.’130. PRINTY . PRESS THE RETURN KEY WHEN READY":GETKEY A$:IF ASC CHR${13)TH
140 GRAPHIC 54 1 .REM THES STATEMENT. SWITCHES TO 80 -COLUMN TEXT MODE =

>¥CHR$(13}THEN

ARE IN 80 coLy :OUTPUT"

",PRINT"NOW SWITCH BACK TO 40 COLUMN OUTEUT" : PRINT :
PRINT"SLIDE THE SWETCH ON THE FRONT GF THE MONITOR TQ THE MIDDLE" 'PRINT .
_'PRINT"PRESS THE RETURN KEY WHEN READY":GETKEY A$:IF A$<>. CHR${13}THEN 200
0- GRAPHIC 0,I:REM THIS STATEMENT SWITCHES TO 40 COLUMN TEXT MODE -
FOR J=1TO 70

] PRINT "NOW YOU ARE IN 40 COLUMN TEXT MODE"
vNEXT S

Each screen display format offers certain advantages; yet the two
types of displays can be combined in a program to complement
each other. Using a 40-column screen, you get the fult power of
advanced BASIC graphics. The 80-column display gives you more
space for your own programs. In addition, it lets you run the wide
variety of software designed to run on an 80-column screen.

LE AR SRS R RS R ERRERESEEEERESEESEREEEEREESEREREEESERSEERSEES]

The sections of this chapter have introduced you to the many fea-
tures and capabilities provided by the Commodore 128 in C128
mode. The following chapter tells you how fo use the Commodore
128 in C64 mode.

165 USING C128 MODE—Using 80 Columns

7737133337773 30 0

_J

]

)

1

2

]

-]

1

]

)

)

]

USING C64 MODE

CHAPTER

D7 37 3T 3333330333300

J

)

1

]

J

1

]

1

[S T B

SECTIONS®
Using the

Keyboard In C64

Mode

169

USING BASIC 2.0

KEYBOARD CHARACTER SETS

USING THE TYPEWRITER-STYLE KEYS

USING THE COMMAND KEYS

MOVING THE CURSOR IN C64 MODE
PROGRAMMING FUNCTION KEYS IN C64 MODE

USING C64 MODE —Using the Keyboard in C64 Mode

171
17
171
171
17
172

-+ 73 3 933333333333 30 3

i

]

-}

1

_1

-]

',l]

]

]

| I N B

USING BASIC 2.0

Keyboard
Character Sets

Using The

Typewriter-Style

Keys

Using The
Command Keys

Moving The
Cursorin C64
Mode

171

The entire BASIC 2.0 language built into the Commodore 64 com-
puter has been incorporated into the BASIC 7.0 language of the
Commodore 128. You can use the BASIC 2.0 commands in both
C128 and C64 modes. Refer to Sections 3 and 4 in Chapter Il fora
description of these commands.

In the keyboard illustration in Section 3, the shaded keys are the
ones that can be used in C64 mode. The keyboard in C64 mode has
the same two character sets as in G128 mode:

—Upper-casefgraphic character set
—Upper/lower-case character set

When you enter C64 mode, the keyboard is in the upper-case/
graphic character set, so that everything you type is in capital let-
ters. in C64 mode you can only use one character set at atime. To
switch back and forth between character sets, press the SHIFT key
and the € key (the COMMODORE key) at the same time.

As in C128 mode, you can use the typewriter-style keys in C64 mode
to type both upper-case letters {capitals) and lower-case letters
(small letters}. You can also type the numerals shown on the top row
of the main keyboard. In addition, you can type the graphics symbols
on the fronts of the keys.

Most COMMAND keys (i.e., the keys that send messages to the com-
puter, like RETURN, SHIFT, CTRL, etc.) work the same in C64 mode
as they do in C128 mode.

The only difference is that in C64 mode, you can only move the cur-
sor by using the two CRSR keys at the bottom-right corner of the
main keyboard. (In C128 mode, you can also use the four arrow keys
located just above the top right side of the main keyboard.)

In C&4 mode, you use two CRSR keys on the main keyboard and the
SHIFT key to move the cursor, as described in Section 3.

USING C64 MODE—Using the Keyboard in C64 Mode

Programming

Function Keys In

C64 Mode

172

The four keys to the right side of the keyboard, just above the
numeric keypad, are called function keys. The keys are marked F1,
F3, F5 and F7 on the tops and F2, F4, F6 and F8 on the fronts. These
keys can be programmed—that is, they can be instructed to per-
form a specific task or function. For this reason, these keys are
often called programmable function keys.

You must hold down the SHIFT key to perform the functions associ-
ated with the markings on the front of the keys—that is, F2, F4, F6
and F8. Therefore, these keys are sometimes called the SHIF Ted
programmable function keys.

The function keys in C64 made do not have a printed character
assigned to them. They do, however, have CHR$ codes assigned. In
fact, each of them has two CHR$ codes—one for when you press
the key by itself, and one for when you press the key while holding
down the SHIFT key. To get the even-numbered function keys, hold
down the SHIF T key while pressing the function key. For example, to
get F2, hold down SHIFT and press F1.

The CHR$ codes for the F1-F8 keys range from 133 to 140. However,
the codes are not assigned to the keys in numerical order. The keys
and their corresponding CHR$ codes are as follows:

F1 CHR$(133)

F2 CHR$(137)

F3 CHR%${134)

F4 CHR$(138)

F5 CHR$(135)

F6 CHR$(139)

F7 CHR$(136)

F8 CHR$(140)
You can use the function keys in your program in several ways. 1o do
this, you'll need to use the GET statement. (See Section 4 for a
description of the GET statement.) As an example, the program
below prepares the F1 key to print a message on the screen.

10 7 “PRESS F1 TO CONTINUE”
20 GET A$

30 IF A${>CHRS(133) THEN 20
40 ? “YOU HAVE PRESSED F1”

USING C64 MODE—Using the Keyboard in C64 Mode

L &

I |

(

- - . C & C L

[

]

]

)

)

|

173

Lines 20 and 30 do most of the work in this program. Line 20 makes
the computer wait until a key is pressed before executing any more
of the program. Note that when the command immediately after
THEN is a GOTO, only the line number is necessary. Also note that a
GOTO command can GOTO the same line it is on. Line 30 tells the
computer to go back and wait for another key to be pressed unless
the F1 key has been pressed.

USING C64 MODE—Using the Keyboard in C64 Mode

21 3 37 9 3333337373330 3

3

]

]

-

]

)

b=

SECTION 10
Storing And
Reusing Your

Programs In C64

Mode

175

FORMATTING A DISK IN C64 MODE

THE SAVE COMMAND
SAVEing on Disk
SAVEing on Cassette

THE LOAD AND RUN COMMANDS
LOADing and RUNning from Disk
LOADing and RUNning from Cassette

OTHER DISK-RELATED COMMANDS
Verifying a Program
Displaying Your Disk Directory
Initializing a Disk Drive

USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

177

177
177
178

178
178
178

179
179
179
179

7 311D 33133333333 330

)

1

)

]

)

]

Once you have edited a program, you will probably want to store it
permanently so that you will be able to recall and use it at some later
time. To do this you’ll need either a Commodaore disk drive or the
Commodore Datassette.

Formatting a Disk To store programs on a new (or blank) disk, you must first prepare the
in C64 Mode disk to receive data. This is calted formatting the disk. Make sure that
you turn on the disk drive before inserting any disk.

To format a blank disk in C64 mode, you type this command:

OPEN 15,8,15: PRINT# 15,NO:NAME,|D” =REFoRN=

In place of NAME, type a disk name of your choice; you can use up
to 16 characters to identify the disk. In place of ID, type a two-
character code of your choice {(such as W2 or 10).

The cursor disappears during the formatting process. When the cur-
sor blinks again, type the following command:
CLOSE 15 =REEIRiE

NOTE: Once a disk is formatted in C64 or C128 mode, that disk can
be used in either mode,

The SAVE You can use the SAVE command to store your program on disk
Command or tape.
SAVEing on Disk
If you have a Commodore disk drive, you can store your program on
disk by typing:

SAVE “PROGRAM NAME”,8 SREHRIE

The 8 indicates to the computer that you are using a disk drive to
store your program.

The same rules apply for the PROGRAM NAME whether you are
using disk or tape. The PROGRAM NAME can be anything you want
it to be. You can use letters, numbers andfor symbols—up to 16
characters in all. Note that you must enclose the PROGRAM NAME
in quotation marks. The cursor on your computer disappears while
the program is being SAVEd, but it returns when the process is com-

pleted.

177 USING C64 MOBE—Storing and Reusing Your Programs in C64 Mode

The LOAD and
RUN Commands

178

SAVEing on Cassette

If you are using a Datassette to store your program, insert a blank
tape in the recorder, rewind the tape (if necessary) and type:

SAVE “PROGRAM NAME” SRERUBRN=

Once a program has been SAVEd, you can LOAD it back into the
computer’s memory and RUN it anytime you wish.

LOADiIng and RUNning from Disk
To load your program from a disk, type:
LOAD“PROGRAM NAME”,8 =RETGRN=

Again, the 8 indicates to the computer that you are working with a
disk drive.

To RUN the program, type RUN and press (RETURN}.

LOADing and RUNning from Cassette

To LOAD your program from cassette iape, type:
LOAD “PROGRAM NAME”

If you do not know the name of the program, you can type:
LOAD

and the next program on the tape will be retrieved.

You can use the counter on the Datassette to identify the starting
position of the programs. Then, when you want to retrieve a pro-

gram, simply wind the tape forward from 000 to the program'’s start
location, and type:

program will load automatically because it is the next program on
the tape.

NOTE: During the LOAD process, the program being LOADed
is not erased from the tape; it is simply copied into the com-
puter. However, LOADIng a program automatically erases any

BASIC program that may have been in the computer's memory.

To RUN the program, type RUN and press (RETURN).

USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

-

. C & [

(

[

)

)

1

]

)

1

)

Other Disk-
Related
Commands

Verifying A Program
To verify that a program has been correctly saved or loaded, type;
VERIFY“PROGRAM NAME”.8 SREFGRIE

If the program in the computer is identical to the one on the disk, the
screen display will respond with the letters "“OK."

The VERIFY command also works for tape programs. You type:
VERIFY“PROGRAM NAME” ZRETGRIE

Note that you do not need to enter the comma and the number 8,
since 8 indicates that you are working with a disk program.

Displaying Your Disk Directory
To see a list of the programs on your disk, first type:
LOAD“$”,8

The cursor disappears during this process. When the cursor re-
appears, type:

LIST SREFURN=

A list of the programs on your disk will then be displayed. Note that
when you load the directory, any program that was in memory is
erased.

Initializing A Disk Drive

if the disk drive's ready light is blinking, it indicates a disk error. You
can restore the disk drive to the condition it was in before the error
occurred by using a procedure called INITIALIZING. To initialize a
drive, you type:

OPEN 1,8,15,“":CLOSE 1 SREFURRE

If the light is still blinking, remove the disk and turn the drive off,
then on.

For further information on SAVEing and LOADIng your programs,
refer to your disk drive or Datassette manual. Also consult the
LOAD and SAVE command descriptions in Chapter V, BASIC 7.0
Encyclopedia.

USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

o Nt T S N N T A N N N Hoee S o W My S s B

]

]

]

N

]

]

USING CP/M MODE

CHAPTER

50 T T Res s s H s s A ey A s M o N st s N

]

1

-

-]

1

7]

SECTIOM 11
Introduction Yo
CPIM 3.0

183

WHAT CPIM 3.01S
WHAT YOU NEED TO RUN CP/M 3.0
GETTING STARTED WITH CP/M 3.0
Loading or Booting CP/M 3.0
The Opening CP/M Screen Display
THE COMMAND LINE

Types of Commands
How CP/M Reads Command Lines

USING CP/M MODE—Introduction to CP/M 3.0

185
185

186
186
186

188
188
189

O30 33 3 333 33333333315 333 3 3

-}

1

i
1

]

]

B

WhatCPIM3.01s

What You Need to
Run CPIM 3.0

185

CPIM is a product of Digital Research, Inc. The version of CP/M used
on the Commaodore 128 is CP/M Ptus Version 3.0. In this chapter,
CP/M is generally referred to as CPIM 3.0, or simply CP/M. This chap-
1er summarizes CP/M on the Commodare 128, For detailed informa-
tion on CP/M 3.0, fill out and return the order form included in this
chapter.

CP/M 3.0 is a popular operating system for microcomputers. As an
operating system, CP/M 3.0 manages and supervises your comput-
er’s resources, including memory and disk storage, the console
(screen and keyboard), printer, and communication devices. CP/M
3.0 also manages information stored in disk files. CPfM 3.0 can copy
fites from a disk to your computer’s memory, or to a peripheral
device such as a printer. To do this, CP/M 3 places various programs
in memory and executes them in response to commands you enter
at your console. Once in memory, a program executes through a set
of steps that instructs your computer to perform a certain task.

You can use CP/M to create your own programs, or you can choose
from the wide variety of available CP/M 3.0 application programs.

The general hardware requirements for CP/M 3.0 are a computer
containing a Z80 microprocessor, a console consisting of a keyboard
and a display screen, and at least one floppy disk drive. For CP/M 3.0
on the Commodore 128 Personal Computer, the Z80 microprocessor
i$ built-in; the console consists of the fult Commaodore 128 keyboard
and an 80-column moniter; and the disk drive is the new Commodore
1571 fast disk drive. The CP/M system is packed, in disk format, in
the computer carton, The material on disk includes the CP/M 3.0
system and an extensive HELP utility program, as well as a number
of other utility programs.

NOTE: Althcugh CP/M can be used with a 40-column monitor, only
40 columns can be disptayed at one time. To view all 80 columns of
the display, you must scroll the screen horizontally by pressing the
CONTROL key and the appropriate cursor key (left or right).

CP/M can also be used with the 1541 disk drive. In this case only

single-sided GCR disks may be used, and the speed of operation wiil
be one-gighth to one-tenth the speed using the 1571 disk drive.

USING CP/M MODE—Introduction to CP/M 3.0

Getting Started
With CPIM 3.0

The following paragrapns tell you how to start or "boot” CP/M 3.0,
how to enter and edit the command line.

NOTE: Before you start to use CP/M, you should make a backup
copy of your CP/M disk data. Follow the procedure for copying disks
described in Section 12.

Loading Or Booting CPIM 3.0

Loading or “booting” CP/M 3.0 means reading a copy of the operat-
ing system from your CP/M 3.0 system disk into your computer's
memaory.

You can boot CP/M 3.0 in several ways, If your computer is off, you
can boot CP/M by first turning on your disk drive and inserting the
CP/M 3.0 system disk, and then turning on the computer. CP/M 3.0
will load automatically. If you are already in C128 BASIC mode, you
can boot CP/M 3.0 by inserting the CP/M system disk into the drive
and then typing the BASIC command BOOT. CP/M 3.0 will then load.
In C128 mode, you can also boot CP/M by inserting the system disk
and pressing the RESET button.

If you are in C64 mode, and you want to enter CP/M mode, first turn
off the computer. Then load the CP/M system disk in the drive and
turn on the computer.

Caution: Always make sure that the disk is fully inserted in the 1571
drive before you close the drive door.

In CP/M 3.0 on the Commodore 128, the user has a 59K TPA (Tran-
sient Program Area), which in effect is user RAM.

The Opening CPIM Screen Display

After CP/M 3 is loaded into memory, a message similar to the follow-

ing is displayed on your screen. (The screen shown here is the
80-column format.)

USING CP/M MODE —Introduction to CR/M 3.0

.

-

(-

-

-

.

[_

P

I |

(-

L

“]

-}

.

-]

1

187

(38 In dhe Lamcdore 128

An impoertant part of the opening display is the following two-
character message:

A)

This is the CP/M 3.0 system prompt. The system prompt tells you
that CP/M is ready to read a command entered by you from your
keyboard. The prompt alsc tells you that drive A is your default drive.
This means that until you tell CPM 1o do otherwise, it looks for pro-
gram and data files on the disk in drive A. It also tells you that you are
logged in as user 0 (the default user number, indicated by the
absence of any user number).

NOTE: In CP/M a single disk drive is identified as drive A, This is
equivalent to unit number 8, drive 0 in C128 and C64 modes. Usually,
the maximum number of drives in CP/M 3.0 is 16. However, on the
Commodore 128 the number of drives is limited to four physical
drives, identified as A, B, C or D) and one logical or virtual drive,
identified as drive E. See page 198 for more information on the
virtual drive E,

USING CP/M MODE—Introduction toc CP/M 3.0

The Command
Line

188

CP/M 3.0 performs tasks according to specific commands that you
type at your keyboard. These commands appear on the screen in
what is called a command line. A CP/M 3.0 command line is com-
posed of a command keyword and an optional command tail. The
command keyword identifies a command {program} to be executed.
The command tail can contain extra infarmation for the command,
such as a filename or parameters. The following example shows a
command line.

A)DIR MYFILE

Throughout this chapter, the characters that a user would type are in
slanted (italic) bold face type to distinguish them from characters
that the system displays. In this example, DIR is the command key-
word and MYFILE is the command tail. To send the command line to
CP/M 3.0 for processing, press the RETURN key, as indicated in

this book by the SHEESRE

As you type characters at the keyboard, they appear on your screen.
The cursor moves 1o the right as you type. If you make a typing error,
press either the INST/DEL key or CTRL-H to move the cursor 1o the
teft and correct the error. CTRL is the abbreviation for the CONTROL
key. To specify a control character, hold down the CTRL key and
press the appropriate letter key. (A list of control characters and their
uses is given in Section 13.)

You can type the keyword and command tail in any combination of
upper-case and lower-case letters. CP/M 3.0 interprets all letters in
the command ling as uppercase.

Generally, you must type a command line directly after the system
prompt. However, CP/M 3.0 does allow spaces between the prompt
and the command keyword.

Types Of Commands

CP/M 3.0 recognizes two different types of commands: built-in com-
mands and transient utility commands. Built-in commands execute
programs that reside in memary as a part of the CP/M operating
system. Built-in commands can be executed immediately. Transient
utility commands are stored on disk as program files. They must be
loaded from disk to perform their task. You can recognize transient
utility program files when a directory is displayed on the screen
because their filenames are followed by a period and COM ((COM).
Section 14 presents lists of the CP/M built-in and transient utility
commands.

USING CPIM MODE-Introduction to CP{M 3.0

[

[

. [

(-

R IV A B O

[[[

(=

(-

(

L=

[IS R B

I RS R R B

]

For transient utilities, CP/M 3.0 checks only the command keyword.
Many utilities require unique command tails. I you include a com-
mand tail, CP/M 3.0 passes it to the utility without checking it. A
command tail cannot contain more than 128 characters.

How CPI/M Reads Command Lines

Let's use the DIR command to demonstrate how CP/M reads com-
mand lines. DIR, which is an abbreviation for directory, tells CP/M to
display a directory of disk files on your screen. Type the DIR keyword
after the system prompt, and press RETURN:

ASDIR

CP/M responds to this command by displaying the names of all the
files that are stored on whatever disk is in drive A. For example, if the
CPIM system disk is in disk drive A, a list of filenames like this
appears on your screen:;

A:CPM+ SYS:.CCP COM:HELP COM:HELP HLP:KEYFIG COM
AKEYFIG HLP:FORMAT COM:PIF COM:DIR COM:COPYSYS COM

CP/M 3.0 recognizes only correctly spelled command keywords. If
you make a typing error and press RETURN befare correcting your
mistake, CP/M 3.0 repeats or “echoes” the command line, followed
by a question mark. For example, suppose you mistype the DIR
command, as in the following example:

A)DJR =BETURN-
CP/M replies with:
DJR?

This tells you that CP/M cannot find a command keyword spelled
DJR. To correct typing errors like this, you can use the INST/DEL key
to delete the incorrect letters. Another way to delete charactersisto
hold down the CTRL key and press H to move the cursor to the left.
CP/M provides a number of other control characters that help you
edit command lines. Section 13 tells how to use contro! characters
to edit command lines and other information you enter at your
console.

DIR accepts a filename as a command tail. You can use DIR with a
filename to see if a specific file is on the disk. For example, to check
that the file program MYFILE is on your disk, type:

A>DIR MYFILE SREFGRN=

USING CP/M MODE— Introduction to CP/M 3.0

130

CP/M 3.0 performs this task by displaying either the name of the file
you specified, or the message:

No Flle

Be sure you type at least one space after DIR to separate the com-
mand keyword from the command tail. If you do not, CP/M 3.0 re-
sponds as follows;

A)DIRMYFILE
DIRMYFILE?

NOTE: The Digitat Research Inc. COPYSYS command, normaity
used in copying CP/M systems disks, is not implemented on your
computer. As described in Section 13, page 199, your Commodore
128 uses a different method to prepare a new system disk. To obtain
information on this method, type:

HELP COPYSYS

at any system prompt. Be sure to include a space between HELP
and COPYSYS.

USING CP/M MODE—Introduction to CPIM 3.0

I D O

-

[~

N I I

I A S |

]

-]

1

1

-1

1]

]

]

L I D B

J

B N

1

SECTION 12

Files, Disks and
Drives In CP/M

3.0

WHAT IS A FILE?
CREATING A FILE

NAMING A FILE
File Specification
Drive Specifier
Filename
Filetype
Password
Sample File Specification
User Number
Using Wildcard Characters to Access More Than
One File
Reserved Characters
Reserved Filetypes

CPI/M SYSTEM FILES
CPIM +.SYS
CCP COM
Other .COM Files

WHAT IS ON YOUR CP/M DISK

HOW TO MAKE COPIES OF YOUR CP/M 3.0 DISKS
AND FILES

USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

193
193

193
193

A

3 3 3 32 33 3 330 a3 a0 3 3333 3 0

01 R I B

[I

b1 1 1 1 31 7]

1 1

Whatls A File?

Creating A File

Naming A File

193

One of CP/M’s most important tasks is to access and maintain files
on your disks. Files in CP/M are fundamentally the same as in C128
or C64 modes—that is, they are collections of information. However,
CP/M handles files somewhat differently than do C128 and C64
modes. This section defines the two types of files used in CP/M; tells
how to create, name and access a file; and describes how files are
stored an your CP/M disks.

As noted above, a CP/M 3.0file is a collection of information. Every
file must have a unique name by which CP/M identifies the file. A
directory is alsc stored on each disk. The directory contains a list of
the filenames stored on that disk and the locations of each file on the
disk.

There are two kinds of CP/M files: program {command) files, and
data files. A program fite contains a series of instructions that the
computer follows step-by-step to achieve some desired result. A
data file is usually a collection of related information (e.g., a list of
names and addresses, the inventory of a store, the accounting
records of a business, the text of a document).

There are several ways to create a CP/M file. One way is 10 use a text
editor. The CP/M text editor ED is used to create and name a file. You
can also create a file by copying an existing file to a new location;
you can rename the fite in the process. Under CP/M, you can use the
PIP command to copy and rename files. Finally, some programs
(such as MAC, a CP/M machine language program) create output
files as they process input files.

The ED and PIP commands are summarized in Section 14, together
with other commonly used CP/M commands. Details on these and all
other CP/M 3.0 commands may be found in the CP/M Plus User's
Guide, which you can obtain by responding to the offer on the card
inserted in this chapter.

File Specification

CP/M identifies every file by a unique file specification. A file speci-
fication can have four parts: a drive specifier, a filename, a file-
type and a password. The only mandatory part is the filename.

USING CPiM MODE —Files, Disks and Disk Drives in CP{M 3.0

Drive Specifier

Filename

Flletype

The drive specifier is a single letter (A-P) fol-
lowed by a colon. Each disk drive in your system
is assigned a letter. When you include a drive
specifier as part of the file specification, you are
telling CP/M to look for the file on the disk cur-
rently in the specified drive. For example, if you
enter:

B:MYFILE =8

CP/M looks in drive B for the file MYFILE. If you
omit the drive specifier, CP/M 3.0 looks for the
file in the default drive (usually A).

A filename can be from one to eight characters
tong, such as:

MYFILE

A file specification can consist simply of a
filename. When you make up a filename, try to
let the name tell you something about what the
file contains. For example, if you have a list of
customer names for your business, you could
name the file:

CUSTOMER

5o that the name gives you some idea of what is
in the file.

To help you identify files belonging to the same
category, CP/M allows you to add an optional
one- to three-character extension, called a file-
type, to the fitename. When you add a filetype to
the filename, separate the filetype from the
filename with a period. Try to use letters that tell
something about the file's category. For exam-
ple, you could add the following filetype to the
file that contains a list of customer names:

CUSTOMER.NAM

When CP/M displays file specifications, it adds
blanks to short filenames so that you can com-
pare filetypes quickly. The program files that
CPiM loads into memory from a disk have the
filetype COM.,

USING CP/M MODE-—Files, Disks and Disk Drives in CP/M 3.0

L C L L =

- [

L L. [[

a

.

L

n

]

N

)

1.1

_J

J

n

N

1

1

_

i I T .

195

Password [n the Commodore 128’s CP/M 3.0 you can
include a password as part of the file specifica-
tion. The password can be from one to eight
characters. If you include a password, separate
it from the filetype (or filename, if no filetype is
included) with a semicolon, as follows:

CUSTOMER.NAM;ACCOUNT

A password is optional. However, if a file has
been protected with a password, you MUST
enter the password as part of the file specifica-
tion to access thefile.

Sample File Afile specification containing all four possible

Specification elements consists of a drive specification, a
primary filename, a filetype and a password, all
separated by the appropriate characters or
symbols as in the following example:

A:DOCUMENTLAW;SUSAN

User Number

CPIM 3.0 further identifies all files by assigning each one a user
number which ranges from 0 to 15. CP/M 3.0 assigns the user num-
ber to a fite when the file is created. User numbers atlow you to sepa-
rate your files into 16 file groups.

The user number always precedes the drive identifier except for
user 0, which is the defauli user number and is not displayed in
the prompt. Here are some examples of user numbers and their
meanings.

4A) User number 4, drive A
A User number 0, drive A
2B) User number 2, drive B

You can use the built-in command USER to change the current user
number like this:

Ay USER
The screen disptays:
ENTER USER #:
You enter a 3 and press
3A)

B=. The screen display is then:

USING CP/M MODE~—Files, Disks and Disk Drives in CP/M 3.0

196

If you want to return to the normal A) prompt, you simply enter the
USER command, like this:

3A) USER RETURNE
The screen prompts you to:
ENTER USER #:
If you then enter a Q, the screen prompt returns to the A}y format.

Most commands can access only those fites that have the current
user number. However, if a file resides in user 0 and is marked with a
system file attribuie, the file can be accessed from any user number.

Using Wildcard Characters to Access More Than One Flle

Certain CP/M 3.0 built-in and transient commands can select and
process several files when special wildcard characters are included
in the filename or filetype. A wildcard is a character that can be used
in place of some other characters. CP/M 3.0 uses the asterisk (*) and
the question mark (?) as wildcards. For instance, if you use a ? as the
third character in a filename, you are telling CP/M to let the ? stand
for any character that may be encountered in that position. Similarly,
an * tells CP/M to filt the filename with 7 question marks as indicated.
A file specification containing wildcards is called an ambiguous files-
pec and can refer to more than one file, because it gives CPIM 3.0 a
pattern to match. CP/M 3.0 searches the disk directory and selects
any fite whose filename or filetype matches the pattern. For exam-
ple, if you type:

Ay ?2?2?TAX.LIB

then CP/M 3.0 selects all files whose filename end in TAX and whose
filetypeis .LIB.

Reserved Characters

The characters in Table 12-1 have special meaning in CP/M 3.0, so

do not use these characters in file specifications except as indi-
cated.

USING CP/M MODE—Fites, Disks and Disk Drives in CP/M 3.0

L

. C C

C £ L C [C L

[

L [

[

1

I

]

1 1 1 1

J 1

]

I

]

197

Table 12-1. CP/M 3.0 Reserved Characters

Character

(3,01
tab space
carriage return

*?

OG&U[N + —
il
(0

%

Meaning

file specification delimiters

drive delimiter in file specification
filetype delimiter in file specification
password delimiter in file specification

comment delimiter at the beginning of a com-
mand line

wildcard characters in an ambiguous file specifi-
cation.

option list delimiters
option list delimiters for global and local options.

delimiters for multiple modifiers inside square
brackets for options that have modifiers.

option delimiters in a command line.

Reserved Filetypes

CPiM 3.0 has already established several file groups. Table 12-2 lists
some of their filetypes with a short description of each.

Tabie 12-2. CP/M 3.0 Reserved Filetypes

Filetype

ASM
BAS
COM
HEX
HLP
358
PRN
REL
SuB
SYM
SYS
RSX

Meaning

Assembler source file

BASIC source program

Z80 or equivalent machine language program
QOutput file from MAC (used by HEXCOM)
HELP message file

Temporary file

Print file from MAC or RMAC

Qutput file from RMAC (used by LINK)

List of commands to be executed by SUBMIT
Symbol file from MAC, RMAC or LINK
System file

Resident System Extension (a file automatically
loaded by a command file when needed)

USING CPIM MODE-—Files, Disks and Disk Drives in CP/M 3.0

CPIM System
Files

CPM +.SYS

CCPR.COM

Other
. COM Files

198

The following information is important for technically oriented users
who may want to create their own programs in CP/M mode.

CPM +.5YS is the main CP/M 3.0 system file. It contains alt parts of
the system that remain permanently resident in memory: the Basic
Input/Output System (BIOS), which loads into the top of memory; the
Basic Disk Operating System (BDOS), which loads into memory
immediately below the BIOS; and the System Parameters, which
load into the bottom page of memory.

On booting CP/M the Consote Command Processor (CCP) is loaded

into memaory immediately below the BDOS. The remaining memory,

below CCP and above page 0, known as the Transient Program Area
(TPA) is the area into which applications are loaded. CP/M 3.0 on the
C128 has a TPA of 59K,

CCP processes any input in response to the system prompt (A))). It
contains the built-in commands listed in Table 14-1, and also supports
the 14 console editing commands listed in Table 13-1.

Any word entered in response 1o the system prompt which is not one
of the built-in commands is treated by CCP as a transient command.
When a transient command is encountered, CCP attempts to find
and execute a file whose name is the command word plus the .COM
extension. If CCP does not find such a file on the currently logged
disk, the command word is displayed, followed by a question mark.
CCP then redisplays the system prompt. If more than one word is
entered in response to the system prompt, all words after the first
are treated as parameters to be passed to the transient command.

A language or applications program is loaded and run by invoking it
as if it were a command. All CP/M programs include a .COM file. As
shown in the following pages, the CPM + . 8YS and CCP. COM files
are contained on the CP/M system disk.

The other . COM files are transient commands (see Table 14-2). The
fite HELP COM displays messages about the G128 CP/M system and
its commands. If you are not familiar with CP/M and have no other
manuals or books about it, you can print out any HELP you look at.
Press CONTROL and P to send any screen output to the printer;
press CONTROL P again to turn off this facility. [f you are printing and
do not want pauses after each screen is printed, enter HELP C128
CP/M [NOPAGE] and follow the directions given on the screen.

USING CP/M MODE-—Files, Disks and Disk Drives in CPM 3.0

C C C C C CCCCcCCc o b L B

.

]

:r Whatls On Your You can get a list of what is on your CP/M system disk by inserting a
CPIM Disk disk into a disk drive and entering a DIR command. You can geta
detailed tisting of system programs, including program size and num-
ﬁ ber of records, by entering the following form of the DIR command:
DIR [FULL)
;“'? Shown below is a typical display in response to a DIR[FULL]
‘ COMMAND.
p—— Directory For Drive A: User 0
bt Hamea Bytes Recs Attributes Namsa Bytes Recs attributes
CCP COoM 4k 25 Dir EW COPYSYS COCM 1k 3 Dir RW
— CPM+ SYS 23k 184 Dir RW DIR coM 15k 114 Dir RW
f N FORMAT COoM Sk 35 Dir RW HELP COM Tk 56 Dir RW
HELP HLFP 81k 664 Dir RW KEYFIG COM 10k 75 Dir RW
KEYFIG HLFP 9k 72 Dir RW EFIFP COM 9k 68 Dir RW
= Total Bytes = 166k Total Records = 1296 Files Found = 10
I Total 1k Blocks = 166 Used/Max Dir Entries For Drive A: 14/ 64
p—_— How To Make You can back up your CP/M 3.0 disks, using either one or two disk
P Copies Of Your drives. The back-up disks can be new or used. You might want 1o
CPIM 3.0 Disks format new disks, or reformat used disks with an appropriate CP/M
r=— And Files disk formatting program. If the disks have been used previously, be
o sure that there are no other files on the disks.
To make backups use the format and PIP utility programs found on

)

your CP/M system disk. FORMAT formats the disk as either a G128
single-sided or double-sided diskette.

-]

Making Copies With a Single Disk Drive
You can copy the contents of a disk to ancther disk with a single

E_? Commodore disk drive (1541 or 1571). First type:
A) FORMAT
m and follow the instructions given on the screen. For instance, the
following sequence of commands creates a bootable CP/M system
—_— disk. First, when the copy disk is formatted, type:
oo Ay PIP E:= A: CPM +. SYS
— When the CPM + . SYS file is copied, you type:
o A) PIP E:= A: CCR COM
— If you want to copy everything on a disk, use the following command
roa sequence:
Ay FORMAT
r— Ay PIPE:=A: *.*

199 USING CPIM MODE—Files, Disks and Disk Drives in CP/M 3.0

The system will prompt you to change disks as required.

Use drive A as the source drive and drive E as the destination drive.
Drive E is referred to as a virtual drive—that is, it does not exist as
an actual piece of hardware.

Making Copies With Two Disk Drives

This section shows how to make distribution disk back-ups on a sys-
tem that has two drives: drive A and drive B. Your drives might be
named with other letters from the range A through D. To make a copy
of your CP/M 3.0 system disk, first use the FORMAT utility to copy
the operating system loader. Make sure that your distribution system
disk is in drive A, the default drive, and the blank disk is in drive B.
Then enter the following command at the system prompt:

A) PIP B: =A: CPM +. §YS

During the copying process, you will be prompled to place the
source disk in drive A and the destination or copy disk in drive B.

When you have copied the CPM + SYS file you use the PIP com-
mand to copy the CCPCOM file. You now have a copy of the operat-
ing system only, To copy the remaining files from the system disk,
enter the following PIP command;

A>PIP B: = A:*.*

This PIP command copies all the files in your disk directory to drive B
from drive A. PIP displays the message COPYING followed by each
filename as the copy operation proceeds. When PIP finishes copy-
ing, CP/M 3 displays the system prompt, A).

Now you have an exact copy of the system disk in drive B. Remove
the origina! system disk from drive A and store it in a safe place. As
tong as you retain the original in an unchanged condition, you witl be
able to restore your CP/M program files if something happens o your
working copy.

USING CPIM MODE—Commodore Enhancements to CPIM 3.0

.

-

-

T

.

(-

([

(.

[

¢

(2

r
——-

]

)

N

)

]

)

]

)

]

]

]

)

_]

]

-

)

SECTION 13

Using the Console

and Printer in
CcPIM 3.0

201

CONTROLLING CONSOLE OUTPUT

CONTROLLING PRINTER OUTPUT

CONSOLE LINE EDITING

USING CONTROL CHARACTERS FOR LINE EDITING

USING CP/M MODE—Using the Console and Printerin CPIM 3.0

203
203
203
204

033330303330 33300 3

)

]

1

N

)

N

]

]

)

)

)

]

]

N

1

N

Controlling
Console Qutput

Controlling
Printer Qutput

Console Line
Editing

203

This section describes how CP/M 3.0 communicates with your con-
sole and printer. It tells how to start and stop console and printer
output, and edit commands you enter at your console.

Sometimes CP/M 3.0 displays information on your screen too quickly
for you to read it. To ask the system to wait while you read the disptay,
hold down the CONTROL (CTRL) key and press S. A CTRL-S key-
stroke sequence causes the display to pause. When you are ready,
press CTRL-Q to resume the dispiay. If you press any key besides
CTRL-Q during a display pause, CP/M 3.0 sounds the console bell.
Pressing the NO SCROLL key will also pause the system and place a
pause window on the status line at the bottom of the screen (line 25).
To resume the display, press NO SCROLL again.

Some CP/M 3.0 utilities {like DIR and TYPE) support automatic pag-
ing at the console. This means that if the program’s output is longer
than the screen can display at one time, the display automatically
halts when the screen is fitted. When this occurs, CP/M 3.0 prompts
you to press RETURN to continue. This option can be turned on or
off using the SETDEF command.

You can also use a control command to echo (that is, display) con-
sole output to the printer. To start printer echo, press CTRL-P. Abeep
occurs to tell you that echo is on. To stop, press CTRL-P again. (There
is no beep at this point.) While printer echo is in effect, any charac-
ters that appear on your screen are listed at your printer,

You can use printer echo with a DIR command to make a list of files
stored on a floppy disk. You can also use CTRL-P with CTRL-S and
CTRL-Q to make a hard copy of part of a file. Use a TYPE command
io start a display of the file at the console. When the display reaches
the part you need to print, press CTRL-S to stop the display, CTRL-P
to enable printer echo, and then CTRL-Q to resume the display and
start printing. You can use another CTRL-S, CTRL-F, CTRL-Q
sequence 10 terminate printer echo.

NOTE: Not all printers wilt respond properly to the CTRL-P
command.

As noted previously, you can carrect simple typing errors by using
the INST/DEL key or CTRL-H. CP/M 3.0 also supports additional ling-
editing functions that you perform with control characters. You can
use the control characters to edit command lines or input lines to
most programs.

USING CP/M MODE—Using the Console and Printer in CF/M 3.0

Using Control
Characters for
Line Editing

By using the line-editing control characters listed in Table 13-1, you
can move the curser lett and right to insert and delete charactersin
the middie of a command line. In this way you do not have to retype
everything 1o the right of your correction.

In the following sample example, the user mistypes PIP, and CP/M
3.0 returns an error message. The user recalls the erroneous com-
mand line by pressing CTRL-W and corrects the error {the underbar
character represents the cursor):

AYPOP A:=B:*." (PIP mistyped)

POP?

AYPOP A:=B:"." (CTRL-W recalls the line)

A>POP A:=B:".* {CTRL-B moves cursor to beginning of ling)
A>POP A:=B:*.* (CTRL-F moves cursor to right)

ASPP A:=B:*." (CTRL-G deletes error)

APIP A:=B:"" (type | corrects the command name)

After the command line is corrected, the user can press RETURN
even though the cursor is in the middle of the line. A RETURN key-
stroke, {or one of the equivalent control characters) not only exe-
cutes the command, but also stores the command in a buffer so that
you can recall it for editing or reexecution by pressing CTRL-W.

When vou insert a characier in the middle of a line, characters tg the
right of the cursor move to the right. If the line becomes tonger than
your screen is wide, characters disapper off the right side of the
screen. These characters are not lost. They reappear if you delete
characters from the line or if you press CTRL-E when the cursor is in
the middle of the line. CTRL-E maves all characters to the right of the
cursor to the next line on the screen.

Table 13-1 gives a complete list of line-editing control characters for
the CP/M 3.0 systerm on the Commodore 128.

Table 13-1. CP/M 3.0 Line-editing Control Characters

Character Meaning
CTRL-Aor Moves the cursor one character to the left.
SHIFT-LEFT
CURSOR
CTRL-B Moves the cursor to the beginning of the com-

mand line without having any effect on the con-
tents of the line. If the cursor is at the beginning,
CTRL-B moves it 1o the end of the line.

USING CP/M MODE—Using the Conscle and Printerin CPiM 3.0

(.

L

(-

(A

.

O

(.

(- -

[

[

(-

(-

-

(

C

)

)

)

]

J

-

)

]

]

)

J

)

)

]

)

|

-.,

°]

N

205

Table 13-1. CP/M 3.0 Line-editing Control Characters

(Continued)
Character Meaning
CTRL-E Forces a physical carriage return but does not

send the command line to CP/M 3.0. Moves the
cursor 1o the beginning of the next line without
erasing the previous input.

CTRL-F or Moves the cursor one character to the right.
RIGHT

CURSOR
CTRL-G Deletes the character at current cursor position.

The cursor does not move. Characters to the
right of the cursor shift left one place.

CTRL-H Deletes the character to the left of the cursor
and moves the cursor left one character posi-
tion. Characters to the right of the cursor shift
jeft one place.

CTRL-I Moves the cursor to the next tab stop. Tab stops
are automatically set at each eighth column.
Has the same efiect as pressing the TAB key.

CTRL-J Sends the command line to CP/M 3.0 and
returns the cursor to the beginning of a new line.
Has the same effect as a RETURN or a CTRL-M

keystroke.
CTRL-K Deletes to the end of the line from the cursor.
CTRL-M Sends the command line to CP/M 3.0 and

returns the cursor to the beginning of a new line.
Has the same effect as a RETURN or a CTRL-J
keystroke.

CTRL-R Retypes the command line. Places a # charac-
ter at the current cursor location, moves the
cursor to the next line, and retypes any partial
command you typed so far.

CTRL-U Discards all the characters in the command line,
places a # character at the current cursor posi-
tion, and moves the cursor to the next line. How-
ever, you can use a CTRL-W to recall any char-
acters that were to the left of the cursor when

you pressed CTRL-U.
CTRL-W or Recalls and displays previously entered com-
TCRSRI mand line both at the operating system level and

within executing programs, if the CTRL-W is the

USING CP/M MODE—Using the Conscle and Printerin CP/M 3.0

206

Table 13-1. CP/M 3.0 Line-editing Control Characters
(Continued)

Character Meaning

first character entered after the prompt. CTRL-J,
CTRL-M, CTRL-U and RETURN define the com-
mand line you can recall. If the command line
contains characters, CTRL-W moves the cursor
to the end of the command line. |1 you press
RETURN, CP/M 3.0 executes the recalled
command.

CTRL-X Discards all the characters left of the cursor and
maoves the cursor to the beginning of the current
line. CTRL-X saves any characters right of the
CUrsor.

USING CP/IM MODE—1Jsing the Conscle and Printerin CP/M 3.0

R U

(

(-

-

[

(-

(

(

(.

—_

[_

(-

(Z

(.

(.

-

)

2)

Y R R

)

_)

)

)

)

2]

)

)

)

-]

)

SECTION 14
Summary Of
Major CPIM 3.0
Commands

207

THE TWO TYPES OF CP/M 3.0 COMMANDS
BUILT-IN COMMANDS

TRANSIENT UTILITY COMMANDS
REDIRECTING INPUT AND OUTPUT
ASSIGNING LOGICAL DEVICES

FINDING PROGRAM FILES

EXECUTING MULTIPLE COMMANDS
TERMINATING PROGRAMS

GETTING HELP

USING CP/M MODE—Summary of Major CP/M 3.0 Commands

209
209
210
212
212
213
213
214
214

Bt T e e s Mo Mo e e Mo M Mo sy S B N N B

-)

")

)

)

2]

-)

]

2]

J

-

2]

-

)

]

J

)

The Two Types of
CPIM 3.0
Commands

Built-In
Commands

209

As noted in Section 11, a CP/M 3.0 command line consists of a com-
mand keyword, an optional command tail, and a RETURN keystroke.
This section describes the two kinds of commands the command
keyword can identify, and summarizes individual commands and
their functions. The section also gives examples of some commonly
used commands. In additicn, the section explains the concept of
logical and physical devices under CP/M 3.0. This section then tells
how CP/M 3.0 searches for a program file on a disk, tells how to exe-
cute multiple commands, and how to reset the disk system. Finally,
the section explains how to use the HELP command to get informa-
tion on various CP/M topics including command formats and usage,
right at the keyboard.

There are two types of commands in CP/M 3.0:

¢ Built-in commands—which identify programs in memory
* Transient utility commands—which identify program files
on a disk

CP/M 3.0 has six built-in commands and over 20 transient utility com-
mands. You can add utilities to your system by purchasing various
CP/M 3.0-compatible application programs. If you are an experi-
enced programmer, you can also write your own utilities that operate
with CP/M 3.0.

Built-in commands are parts of CP/M 3.0 that are always avaitable
for your use, regardiess of which disk you have in which drive. Built-
in commands are entered in the computer’s memory when CP/M 3.0
is loaded, and therefore execute more quickly than the transient
utilities. Table 14-1, on the next page, lists the Commodore 128 CP/M
3.0 built-in commands.

Some built-in commands have options that require support from a

related transient utility. The related transient utiltiy command has the
same name as the built-in command and has a filetype of COM.

USING CPiM MODE—Sumemary of Major CP/M 3.0 Commands

Transient Utllity

Commands

210

Command
DIR

DIRSYS

ERASE

RENAME
TYPE

USER

Table 14-1. Built-in Commands
Function
Displays filenames of all files in the directory
except those marked with the SYS attribute.

Disptays filenames of files marked with the SYS
{system) attribute in the directory.

Erases a filename from the disk directory and

releases the storage space occupied by the file.

Renames a disk file.

Displays contents of an ASCII (TEXT) file at your
screen.

Changes to a different user number.

Some of the major CP/M 3.0 transient utility commands are listed in
Table 14-2. (The actual list of transient commands may change from
time to time as the CP/M system is updated or added t0.) When you
enter a command keyword that identifies a transient utility, CP/M 3.0
loads the program fite from the disk and passes that file any
filenames, data or parameters you entered in the command tail.

NOTE: The built-in commands, DIR, RENAME, and TYPE have
optional transient extensions,

USING CPM MODE— Summary of Major CP/M 3.0 Commands

S R

(

-

(-

—

— (

(-

(-

(=

(-

(Z

(-

(-

(=

-

)

)

]

)

2}

)

]

_J

)

3

]

]

]

_1

]

_l

-]

]

Table 14-2. Transient Utility Commands
Name Function

DATE Sets or displays the date and time.

DEVICE Assigns logical CP/M devices to cne or more
physical devices, changes device driver proto-
¢ol and baud rates, or sets console screen size.

DIR Displays directory with files and their character-
istics.

DUMP Displays a file in ASCIl and hexadecimal format.

ED Creates and alters ASCI| files.

ERASE Used for wildcard erase.

GENCOM Creates a special COM file with attached RSX
file.

GET Temporarily gets console input from a disk fite
rather than the keyboard.

FORMAT Copies files.

HELP Displays information on how to use CP/M 3.0
commands.,

INITDIR initializes a disk directory to allow time and date
stamping.

KEYFIG Allows redefinition of keys

PATCH Displays or installs patches to CP/M system.

PIP Copies files and combines files.

PUT Temporarily directs printer or console output to
a disk fite.

RENAME Changes the name of a file, or a group of files
using wildcard characters.

SAVE Saves a program in memory to disk.

SET Sets file options inctuding disk labels, file attri-
butes, type of time and date stamping and pass-
waord protection.

SETDEF Sets system options including the drive search
chain.

SHOW Displays disk and drive statistics.

susmMIT Automatically executes multiple commands.

TYPE Disptay contents of text file (or group of files, if
wildcard characters are used) on screen {and
printer if desired).

211 USING CP/IM MODE—Summary of Major CP/M 3.0 Commands

Redirecting Input

and Output

Assigning Loglcal

Devices

CP/M 3.0's PUT command allows you to direct console or printer
output to a disk file. You can use a GET command to make CP/M 3.0
or a utility program take console input from a disk file. The following
examples illustrate some of the capabilities offered by GET and PUT.

You can use a PUT command 1o direct conscle output to a disk file
as well as to the conscle. With PUT, you can create a disk file con-
taining a directory of all files on that disk, as shown in Figure 14-1.

AYPUT CONSOLE QUTPUT TO FILE DIR.PRN
PUTTING CONSOLE OUTPUT TO FILE: DIR.PRN

AYDHR

A: FILENAME TEX : FRONT TEX : FRONT BAK : ONE BAK : THREE TEX
A FOUR TEX : ONE TEX © LINEDIT TEX : EXAMP1 TXT : TWQ BAK
AL TWO TEX : THREE BAK : EXAMP2 TXT

AYTYPE DIR PRN

A: FILENAME TEX : FRONT TEX : FRONT BAK : ONE BAK : THREE TEX
A FOUR TEX : ONE TEX @ LINEDIT TEX : EXAMP1 TXT : TWQ BAK
A TWO TEX : THREE BAK : EXAMP2 TXT

Figure 14-1. PUT Command Example

A GET command can direct CP/M 3.0 or a program to read console
input from a disk file instead of from the keyboard. If the file is to be
read by CP/M 3.0, it must contain standard CP/M 3.0 command lines.
If the file is to be read by a utility program, it must contain input
appropriate for that program. A file can contain both CP/M 3.0 com-
mand lines and program input if it also includes a command to start
a program.

The minimal Commodore 128 CP/M 3.0 hardware includes a console
consisting of a keyboard and screen display, and a 1571 disk drive.
You may want to add another device to your system, such as a
printer or a modem. To help keep track of these physically different
input and output devices, Table 14-3 gives the names of CP/M 3.0
togical devices. It also shows the physical devices assigned to these
logical devices in the Commodore 128 CPIM 3.0 system.

USING CP/M MODE—Summary of Major CP/M 3.0 Commands

C

-

I DU S T

(

N U I S A A N O

(.

)

)

|

-}

2}

_

-]

1

_J

]

1

1

3

)

]

1

_)

]

Finding Program
Files
Executing
Multiple
Commands

213

Table 14-3. CP/M 3.0 Logical Devices

Logical Physical Device
Device Name Device Type Assignment
CONIN: Console input Keys
CONOUT;: Console output 80 COL or 40 COL
AUXIN: Auxiliary input Null
AUXOUT: Auxiliary cutput Null
LST: List output PTR1 or PTR2

You can change these assignments with a DEVICE command.

If a command keyword identifies a utility, CP/M 3.0 looks for that
program file on the default or specified drive. It tooks under the cur-
rent user number, and then under user 0 for the same file marked
with the SYS attribute. At any point in the search process, CP/M 3.0
stops the search if it finds the program file. CP/M 3.0 then loads the
program into memory and executes it. When the program termi-
nates, CP/M 3.0 displays the system prompt and waits for your next
command. However, if CP/M 3.0 does not find the command file, it
repeats the command line followed by a question mark, and waits for
your next command.

In the examples so far, CP/M 3.0 has executed only one command at
a time. CP/M 3.0 can also execute a sequence of commands, You
can enter a sequence of commands at the system prompt, or you
can put a frequently needed sequence of commands in a disk file,
using a fitetype of SUB. Once you have stored the sequence in a disk
file, you can execute the sequence whenever you need 1o with a
SUBMIT command.

USING CP/M MODE—Summary of Major CP/M 3.0 Commands

Terminating
Programs

Getting Help

You can uge the two keystroke command CTRL-C to terminate pro-
gram execution or reset the disk system. To enter a CTRL-C com-
mand, hold down the CTRL key and press C.

Most application programs that run under CP/M and most CP/M tran-
sient utilities can be terminated by a CTRL-C. However, if you try to
terminate a program while it is sending a display 1o the screen, you
may need to press a CTRL-S to halt the display before you enter

CTRL-C.

CP/M 3.0 includes a transient utility command calted HELP that will
display a summary of the fermat and use for the most common CP/M
commands. To access HELP, simply enter the command:

AYHELP

You can press the HELP key instead of typing the word HELP and
pressing the RETURN key,

The list of available topics is then displayed, like this:
Topics available:
C128—CP/M COMMANDS CNTALCHARS COPYSYS DATE DEVICE

DIR DUMP ED ERASE FILESPEC GENCOM
GET HELP HEXCOM INITDIR KEYFIG LIB

LINK MAC PATCH PIP (COPY) PUT RENAME
RMAC SAVE SET SETDEF SHOW SiD
SUBMIT TYPE USER XREF

NOTE: Some of the topics listed are not included with the basic
CPIM system. These topics are supplied when the user purchases
the additional CP/M materials, including manuals and disks, by filling
out the order form preceding page 219.

Suppose you type:
HELP) PIP

USING CPIM MODE—Summary of Major CP/M 3.0 Commands

.

[~

[

(-

R I U A B A

[

(_

.

S

L

)

2]

-}

1

]

-3

1

)

)

]

)

1

215

CPIM then displays the following information:
PIP (COPY)
Syntax:
DESTINATION SOURCE
PIP d: {Gn}pilespec {[Gn]} = filespec {[o]} R {[o]}

Explanation:

The file copy program PiP copies files, combines files,
and transfers files between disks, printers, consoles, or
other devices attached to your computer. The first
filespec is the destination. The second filespec is the
source. Use two or more source filespecs separated by
commas to combine two or more files into one file. [o] is
any combination of the available options. The [Gn] option
in the destination filespec tells PIP to copy your file to
that user number.

PIP with no command tail displays an * prompt and
awaits your series of commands, entered and processed
one line at a time. The source or destination can be any
CPI/M 3.0 lagical device.

The HELP facility provides information like this on alt the CP/M 3.0
built-in and transient utility commands. If you want information on a
specific area, you can type HELP subject after the system prompt,
where subject is a command tail describing the subject you are inter-
ested in. For example:

A) HELP PIP
A) HELP DIRSYS

You can refer to HELP any time you need information on a specific
command. Or you can just browse through HELP to broaden your
knowledge of CP/M 3.0.

USING CP/M MODE—Summary of Major CP{M 3.0 Commands

'3 3 3333333373379 337

)

)

L

)

-}

2}

)

)

_

)

g

)

n

]

1

.

-]

)

SECTION 15
Commodore

Enhancements To

CPIM 3.0

217

KEYBOARD ENHANCEMENTS
KEYFIG
Defining a Key
Defining a String
Using ALT Mode

SCREEN ENHANCEMENTS
MFM DISK FORMATS

USING CP/M MODE —Commodore Enhancements to CPIM 3.0

218
219
P4
221
222

S e Nt N T O U U N U O e

)

)

-3

|

o

]

1

|

1

|

)

-

]

—
i

Commodore has added a number of enhancements to CP/M 3.0.
These enhancements tailor the capabilities of the Commodore 128
to those of CP/M 3.0. They include such things as a seiectively dis-
played disk status line, a virtual disk drive, local/remote handling of
keyboard codes, programmable function keys (strings), and a num-
ber of additicnal functions/characters that are assigned to various
keys. This section describes these enhancements.

Keyboard Any key on the keyboard can be defined to generate a code or func-
Enhancements tion, except the following keys:

Left SHIFT key
Right SHIFT key
Commodore key
CONTROL key
RESTORE key
40-80 key

CAPS LOCK key

In defining a key, the keyboard recognizes the following special func-
tions. To indicate these functions, hold down the CONTROL key and
the right SHIFT key, and press the desired function key simultane-
ousty.

Key Function
CURSORLEFTkey Defines key
CURSOR RIGHT key Defines string (points to function
keys)
ALT key Toggles key filter

KEYFIG

The KEYFIG utility program allows you to alter the definition of
almost ANY key on the keyboard. The only keys that you CANNOT
modify are: the SHIFT keys, the SHIF T LOCK key, the CONTROL key,
the 40/80 DISPLAY key and the COMMODORE key. At each step,
options are presented in menu form. You can scroll through the
options in the menus by using the up and down arrow keys at the top
of the keyboard; pressing the return key selects the choice that is
highlighted.

At almost any point, you can exit the program by typing ‘CTRL C' {the
CONTROL and C keys simultaneously).

219 USING CPIM MODE —Commodore Enhancements to CPM 3.0

220

Defining A Key

A user can define the code that a key can produce. Each key has
four possible definitions: Normal, Alpha Shift, Shift and Control. The
Alpha Shift is toggled on/off by pressing the Commodore key. After
entering this mode, a small box will appear on the bottom of the
screen. The first key that is pressed is the key to be defined. The
current HEX (hexadecimal) value assigned to this key is displayed;
the user can then type the new HEX code for the key, or abort by
typing a non-HEX key. The following is a detinition of the codes that
can be assigned to a key. (In ALT mode, codes are returned to the
application; see ALT Mode below.)

Code Function
00h Null (same as not pressing a key)
Othto 7Fh Normal ASCIll codes
80h to 9Fh String assigned
AQh to AFh 80-column character color
BOh to BFh 80-column background color
COhto CFh 40-column character color
DOh to DFh 40-column background color
EOh to EFh 40-column border color
FOh Toggle disk status onfoff
Fih System Pause
F2h {Undefined)
F3h 40-column screen window right
F4h 40-column screen window left
F5h to FFh {Undefined)
Defining A String

This function allows the user to assign more than one key code to a
single key. Any key that is typed in this mode is placed in the string.
To access this function, press CTRL, RIGHT SHIFT and RIGHT CUR-
SOR. Then press the key to be defined. The user can see the resulis
of typing in a box at the bottom of the screen.

NOTE: Some keys may not display what they are. To provide the user
with control over the process of entering data, the following tive spe-
cial key functions, are available. To access these functions, press
the CONTROL and right SHIFT keys and the desired function keys.

Key Function
RETURN Complete string definition
+ (on main keyboard) Insert space into string
— {on main keyboard) Delete cursor character
Left arrow Cursor left
Right arrow Cursor right

USING CPiM MODE—Commodore Enhancements ta CP/M 3.0

-

(-

-

(-

-

N N A

[

(

(- [[T

-

-}

) B

_1

]

—

1

1

]

]

)

n

1

3)

)

1

Screen
Enhancements

CTRLG
CTRLH
CTRL J
CTRLK
CTRLL
CTRLM
CTRLZ
ESC = RC

ESCT
ESCt
ESCY
ESCy
ESC:
ESC*

ESCQ
ESCW
ESCE
ESCR

Using ALT Mode

ALT mode is a toggle function {that is, it can be switched between
ON and OFF.) The default vaiue is OFF. This function allows the user
to send 8-bit codes to an application.

The default screen in CP/IM 3.0 emulates an ADM31 terminal. The
following screen functions emulate ADM 3A operation, which is a
subset of ADM31 operation.

Sound bell

Cursor left

Cursor down

Cursorup

Cursor right

Move cursor to start of current line (CR)

Home cursor and clear screen

Cursor position where R is the row location (with
vatues from space to 8) and C is the column loca-
tion (next values from space to 0), referenced to
the status line

Additional functions in ADM31 mode include:

Clear to end of line

Clear to end of screen

Home cursor and clear screen (including the
status line)

Insert character
Delete character
Insert line
Delete line

* ESC ESC ESC color# sets a screen color from a table of 16
color entries. (These are the same color values listed in Chapter
I, Section 6, Figure 6-2.} The color # will be set as follows:

20h 10 2Fh physical character color

30h to 3Fn physical background color

40h to 4Fh physical border color {40 column only)
50h to 5Fh logical character color

60hto 6Fh logical background color

70hto 7Fh logicat border color (40 column only)

NOTE: Physical and logical colors have the same default vaiues.

221 USING CP/M MODE—Commodore Enhancements to CP/M 3.0

MFM Disk
Formats

222

The visual effects associated with following functions are visible only
with the 80-column screen format.

ESC» Half intensity
ESC ¢ Full intensity
ESCG4 Reverse video ON
*ESCG3 Turn underline ON
ESC G2 Blink ON
* ESC G Select the alternate character set
ESC GO All ESC G attributes OFF

*NOTE: This is NOT a normal ADM31 sequence.

For non-Commodore CP/M programs you will probably need to spec-
ity the format of the CP/M program disk. Format in this case refers 10
a particular way of arranging the data on a disk. These disk formats
(referred to as MFM formats) generally are designed to match the
specific capabilities of the system for which the particular CP/M
program was created.

When used with the fast 1571 disk drive, the Commodaore 128 sup-
ports a variety of double density MFM disk formats (for reading and/
or writing), including:

Epson QX10 (512 byte sectors, double sided, 10 sec-
tors per track)

IBM-8 SS (CP/IM 86) (512 byte sectors, single sided, 8 sectors
per track)

IBM-8 DS {CP/M 86) (512 byte sectors, double sided, 8 sectors
per track)

KayPro Il (512 byte seciors, singte sided, 10 sectors
per track)

KayPro IV (512 byte sectors, double sided, 10 sec-
tors per track)

QOsborne DD (1024 byte sectors, single sided, 5 sectors
per track)

When you insert one of these disks into the disk drive and try to
access it, the system senses the type of disk with respect to the
number of bytes per sector and the number of sectors per track. If
the disk format is not unique, a box is disptayed near the bottom left
corner of the screen, showing which disk type you are accessing.
The system requires you to select the specific disk type by scrolling
through the choices given in this window. Note: The choices are
given one at a time; scroll through using the right and left arrow keys.
Type RETURN when the disk type that you know is in the disk drive is
displayed. Typing CONTROL RETURN witt lock this disk format so
that you will not need to select the disk type each time you access
the disk drive.

USING CP/M MODE - Commaodore Enhancements to CP/IM 3.0

N B

O C =

(

[:I:[;EEEECC

(-

(-

-}

]

]

1

]

-

2]

}

-

.

223

EPSON is a registered trademark of EPSON Corp.

IBM is a registered trademark of International Business
Machines Corp.

Kaypro is a registered trademark of Kay Computers, a division
of Non-Linear Systems.

Osborne is a registered trademark of Osborne Computer Corp.

LA AR RS RS SRR EERERERERERRSRESRERERERRSRSRERSRERERESESERS]

The sections in this chapter provide a summary of the structure and
wide-ranging capabilities of CP/M 3.0 For detailed information on any
facet of CP/M 3.0, you shouid respond to the offer described on the
card included in this chapter. In return you will receive a copy of the
Digitaf Research, inc. book, CPIM Plus User's Guide.

7171332333377

)

2}

}

.

-

_-

)

n

.

]

-~}

)

)

_)

23

)

1

BASIC 7.0 ENCYCLOPEDIA

CHAPTER

3373303333333 3 200

1

-

7

-]

1

]

]

]

SECTION 16
Introduction

227

ORGANIZATION OF ENCYCLOPEDIA
COMMAND AND STATEMENT FORMAT

BASIC 7.0 ENCYCLOPEDIA—Introduction

229
229

g4 333333333 33333333303

)

]

)

_)

]

n

l

)

-}

Organization of
Encyclopedia

Command and
Statement Format

229

This chapter lists BASIC 7.0 language elements. It gives a complete
list of the rules (syntax) of Commodore 128 BASIC 7.0, along with a
concise description of each.

BASIC 7.0 includes all the elements of BASIC 2.0. The new com-
mands, statements, functions and operators provided in BASIC 7.0
are highlighted in color.

The ditferent types of BASIC operations are listed in individual sec-
tions, as follows:

1. COMMANDS and STATEMENTS: the commands used to
edit, store and erase programs; and the BASIC program
statements used in the numbered lines of a program.

2. FUNCTIONS: the string, numeric and print functions.

3. VARIABLES AND OPERATORS: the different types of vari-
ables, legal variable names, arithmetic operators and logical
operators.

4. RESERVED WORDS AND SYMBOLS: the words and sym-
bols reserved for use the BASIC 7.0 language, which cannot
be used for any other purpose.

The commands and statements definition in this encyclopedia are
arranged in the following format:

Command name— AUTO

Briatf definition— —Enableldisable automatic line numbering

Comrmand format— AUTO [line#]

Discussion of This command turns on the automatic ling-numbering fea-
format and use—~ ture. This eases the job of entering programs, by automaii-

cally typing the line numbers for the user. As each program
line is entered by pressing RETURN, the next line number is
printad on the screen, and the cursor is positioned two
spaces to the right of the ling number. The line number
argument refers to the desired increment between line
numbers, AUTO without an argument turns off the auto ling
numbering, as does RUN. This statement can be used only
in direct mode {outside of a program).

EXAMPLES:

AUTO 10 Automatically numbers program lings in
Example(s)= increments of 10,

AUTO 50 Automatically numbers lings in increments
of 50.

AUTO Turns off automatic line numbering.

BASIC 7.0 ENCYCLOPEDIA —Introduction

230

The boldface line that defines the format consists of the following
elements:
DLOAD “program name* [,D0,U8]
t t

1
keyword argument additional arguments

{possibly optional)

The parts of the command or statement that must be typed exactly
as shown are in capital letters. Words the user supplies, such as the
name of a program, are not capitalized.

When quote marks (" ") appear (usually around a program name or
fitename), the user should include them in the appropriate place,
according to the format example.

KEYWORDS, also called reserved words, appear in upper-case
letters. Keywords are words that are part of the BASIC language.
They are the central part of a command or statement, and they tell
the computer what kind of action to take. These words cannot be
used as variable names. A complete list of reserved words and sym-
bols is given in Section 20.

Keywords may be typed using the full word or the approved abbrevi-

ation. (A full list of abbreviations is given in Appendix K). The keyword
or abbreviation must be entered correctly or an error will result. The

BASIC and DOS error messages are defined in Appendices A and B,
respectively.

ARGUMENTS, also called parameters, appear in lower-case letters.

Arguments complement keywords by providing specific information
to the command or statement. For example, the keyword load tells
the computer to load a program while the argument tells the com-
puter which specific program to load. A second argument specifies
from which drive to load the program. Arguments include filenames,
variables, line numbers, etc.

SQUARE BRACKETS [] show optional arguments. The user selects
any or none of the arguments listed, depending on reguirements.

ANGLE BRACKETS () indicate the user MUST choose one of the
arguments listed.

BASIC 7.0 ENCYCLOPEDIA-—~Introduction

I B

-

C

[

o CCCc oD

(-

]

1

-

3

3

1

_]

]

1

2

)

-~

23

A VERTICAL BAR | separates items in a list of arguments when the
choices are limited to those argumenits listed. When the vertical bar
appears in a list enclosed in SQUARE BRACKETS, the choices are
limited to the items in the list, but the user stitt has the option not to
use any arguments. If a vertical bar appears within angie brackets,
the user must choose one of the listed arguments.

ELLIPSIS ... asequence of three dots means an option or argu-
ment can be repeated more than once.

QUOTATION MARKS “ ” enclose character strings, filenames and
other expressions. When arguments are enclosed in quotation
marks, the quotation marks must be included in the command or
statement. Quotation marks are not conventions used to describe
formats; they are required parts of a command or statement.

PARENTHESES () When arguments are enclosed in parentheses,
they must Be included in the command or statement. Parentheses
are not conventions used to describe formats; they are required
parts of a command or statement.

VARIABLE refers to any valid BASIC variable names, such as X, A$,
T%, etc.

EXPRESSION refers to any valid BASIC expressions, such as
A+B+2, 5*(X+3),efc.

BASIC 7.0 ENCYCLOPEDIA—Introduction

1 77 33330 33T T] T

]

3

]

]

I

-l

7

)

o

-]

SECTION 17
BASIC Commands
and Statements

233

BASIC 7.0 ENCYCLOPEDIA—~Basic Commands and Statements

APPEND

AUTO

—Append data to the end of a sequential file.

APPEND #logical file number,“filename”[,Ddrive number]
[(ON|,)Udevice]

This command opens the file having the specified filename, and
positions the pointer ai the end of the file. Subsequent PRINT#
(write) statements will cause data to be appended to the end of this
togical file number. Default vatues for drive number and device num-
ber are 0 and 8 respectively.

Variables or expressions used as filenames must be enclosed within
parentheses.

EXAMPLES: Append # 8, “MYFILE” OPEN logical file 8
called “MYFILE™ for
appending with
subsequent PRINT#
statements.

Append # 7, (A$),D0,U8 OPEN logical file
named by the
variable in A$ on
drive 0, device
number 9, and
prepare to APPEND.

—Enable/disable automatic line numbering
AUTO [lineif]

This command turns on the automatic line-numbering feature. This
eases the job of entering programs, by automatically typing the line
numbers for the user. As each program line is entered by pressing
RETURN, the next line number is printed on the screen, and the cur-
80T is positioned two spaces o the right of the line number. The line
number argument refers to the desired increment between line num-
bers. AUTO without an argument turns off the auto line numbering,
as does RUN. This statement ¢an be used only in direct mode (out-
side of a program).

BASIC 7.0 ENCYCLOPEDIA— Basic Commands and Statements

BACKUP

BANK

236

EXAMPLES:
AUTO 10 Automatically numbers program lines in increments of 10,
AUTO 50 Automatically numbers linés in increments of 50.

AUTO Turns off automatic line numbering.

—Copy the entire contents from cne disk to another on a dual disk
drive

BACKUP source Ddrive number TO destination Ddrive
number [{ON|,)Udevice]

This command copies all the files from the source diskette onto the
destination diskette, using a dual disk drive. With the BACKUP com-
mand, a new destination diskette can be used without first format-
ting it. This is because the BACKUP command copies all the infor-
mation on the diskette, including the format, and destroys any
information already on the destination disk. Therefore, when backing
up onto a previously used diskette, make sure it contains no pro-
grams you mean to keep. As a precaution the computer asks “ARE
YOU SURE?" before it starts the operation. Press the Y™ key to
perform the BACKUP, or any other key to stop it. You should atways
create a backup of alt your disks, in case the original diskette is lost
or damaged. Also see the COPY command. The default device num-
ber is unit 8.

NOTE: This command can be used only with a dual-disk drive.

EXAMPLES:

BACKUP DO to DA Copies all files from the disk in drive
0 to the disk in drive 1, in dual disk
drive unit 8.

BACKUP DO TO D1 ON U9 Copies all files from drive 0 to drive
1, in disk drive unit 9.

—Select one of the 16 BASIC banks (default memory configura-
tions), numbered 0-15

BANK bank number

This statement specifies the bank number and corresponding mem:-
ory configuration for the Commodore 128 memory. The default bank

is 15. Here is a table of available BANK configurations in the Commo-
dore 128 memory:

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

[

[

I N ['

— C - & o

[

A U

)

)

_}

]

¥

1]

-

]

i

BEGIN/BEND

237

BANK CONFIGURATION

0 RAM(0) only

1 RAM({1) only

2 RAM(2) only

3 RAM(3) only

4 Internal ROM , RAM(0), /0

5 Internal ROM , RAM(1), 1/O

6 Internal ROM , RAM(2), I/O

7 Internal ROM , RAM{(3), I/O

8 External ROM , RAM(0), /0

9 External ROM , RAM(1), I/O
10 External ROM , RAM{2), 110
1 External ROM , RAM(3), 110
12 Kernal and Internal ROM (LOW), RAM(0), l/O
13 Kernal and External ROM (LOW), RAM(1), iO
14 Kernal and BASIC ROM, RAM(0), Character ROM
15 Kernal and BASIC ROM, RAM(0), 110

To look at a particular bank, type BANK n{n=0-15).

To access these banks within the machine language monitor, pre-
cede the four-digit hexadecimal number of the address range you
are viewing with a hexadecimal digit (0-F).

Banks are described in detail in the Commodore 128 Program-
mer’s Reference Guide, published by Bantam Books.

A conditional statement like IF. . . THEN: ELSE, siructured so that
you ¢an include several program lines between the start (BEGIN)
and end {BEND) of the structure. Here's the format:

IF Condition THEN BEGIN : statement

statement

statement BEND : ELSE BEGIN
statement

statement BEND

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

BLOAD

238

For EXAMPLE:

10 IF X=1 THEN BEGIN: PRINT “X=1 is True”

20 PRINT “So this part of the statement is performed”

30 PRINT “When X equals 1”

40 BEND: PRINT “End of BEGIN/BEND structure™:GO to 60
50 PRINT “X does not equal 1”:PRINT “The statements
between BEGIN/BEND are skipped”

60 PRINT “Rest of Program”

If the conditional {IF.. THEN) statement in line 10 is true, the state-
ments between the keywords BEGIN and BEND are performed,
including all the statements on the same line as BEND. If the
(IF.. THEN) conditional statement in line 10 is FALSE, all statements
between the BEGIN and BEND, including the anes on the same pro-
gram line as BEND are skipped, and the program resumes with the
first program line immediately following the line containing BEND.
The BEGIN/BEND essentially treats lines 10 through 40 as one long
line.

The same rules are true if the ELSE:BEGIN clause is specified. If the
condition is true, all statements between ELSE:BEGIN and BEND
are performed, including all statements on the same line as BEND. If
false, the program resumes with the line immediately following the
line containing BEND.

—Load a binary file starting at the specified memory location

BLOAD “filename”[,Ddrive number},Udevice number]
[,Bbank number][,Pstart address)

where;

s filename is the name of your file

* bank number lets you select one of the 16 BASIC banks
¢ start address is the memory location where loading
begins

Abinary file is a file, whether a program or data, that has been
SAVEd either within the machine language maonitor or by the BSAVE
command. The BLOAD command loads the binary file into the loca-
tion specified by the start address.

EXAMPLES:

BLOAD “SPRITES”, B0, P3584 LOADS the binary file

"SPRITES" starting in
location 3584 (in BANK 0).

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

L

[

——

C C C & oot

. C (

—

-

N

L

]

]

2

]

——

-]

]

]

‘:"_1
<1

A

BOOT

BOX

239

BLOAD “DATA1”, DO, U8, B1, P4096 LOADS the binary file
“DATA 17 into location 4096
(BANK 1) from Drive Q,
unit 8.

—Load and execute a program which was saved as a binary file
BOOT “filoname” [,Ddrive number][(ON |,)Udevice]

The command loads an executable binary file and begins execution
at the predefined starting address. The default device number is 8
(drive Q).

EXAMPLE:

BOOT BOCT a bootable disk (CP/M Plus for
exampie).

BOOT “GRAPHICS 17, LOADS the binary program

De, U9 “GRAPHICS 1" from unit 9, drive 0,

and executes it.

—Draw box at specified position on screen
BOX [color source], X1, Y1[,X2,Y2][,[angle][,paint]]

where;
colorsource 0 =Background color
1 = Foreground color
2 = Mulsicolor 1
3=Multicolor 2
xih,yl....... thresaanas Top left corner coordinate (scaled)
X2,¥2. . i icenanananans Bottom right corner opposite x1, y1,
(scaled); default is the PC location.
angle..........o0vnnn Rotation in clockwise degrees;
defaultis 0 degrees
paint + « « « .Paint shape with color
0 = Do not print
1 = Paint
(default =0)

This statement allows the user to draw a rectangle of any size on the
screen. Rotation is based on the center of the rectangle. The pixel
cursor (PC)is located at x2, y2 after the BOX statement is executed.
The color source number must be a zero (0) or one (1} if in standard

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

bit map mode, or a 2 or 3 if in multicolor bit map mode. Also see the
GRAPHIC command for selecting the appropriate graphic mode to
be used with the BOX color source number.

The x and y values can place the pixel cursor at absolute coordi-
nates such as (100, 100) or at coordinates relative to previous posi-
tion (+/—xand +/—y)of the pixel cursor such as (+ 20, — 10). The
coordinate of one axis (x or y) can be relative and the other canbe
absolute. Here are the possible combinations of ways to specify the
x and y cocrdinates:

Xy absolute x, absolute y
+ .y relative x, absolute vy
X, + 1y absolute x, relative y
+iX, + by relative x, relative y

Also see the LOCATE command for information on the pixet cursor.

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE and
GSHAPE have an additional notation which allows you to specify a
distance and an angle relative to the previous coordinates of the
pixet cursor (PC). The notation is as follows:

KEYWORD source, distance; angle
where:

KEYWORD is a graphics command such as DRAW, CIRCLE,
PAINT, LOCATE, BOX or GSHAPE

SOURCE is the same code as in all of the graphics
commands

DISTANCE is the number of pixels to move the pixel cursor

ANGLE is the number of degrees to move relative to the
previous pixel cursor coordinate

EXAMPLE:

BOX 1, 100; 90

displays a BOX in the foreground color, 100 pixels away from and 90

degrees retative to the previous pixel cursor coordinate. The angle is
calculated as follows: %)

(360°)

270° — PC —(90%)

180°

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

U N S

- [

. C L

I

L L C C C

BSAVE

241

EXAMPLES:

BOX 1, +10, +10 Draw a box 10 pixels to the right and
10 down from the current pixel cursor
location.

BOX 1, 10, 10, 60, 60 Draws the outline of a rectangle.

BOX , 10, 10, 60, 60, 45, 1 Draws a painted, rotated box (a
diamond).

BOX, 30, 90, , 45,1 Draws a filled, rotated polygon.

Any parameter can be omitted but you must include a comma inits
place, as in the last two examples.

NOTE: Wrapping occurs if the degree is greatef than 360.

—Save a binary file from the specified memory locations

BSAVE ‘‘filename’’[,Ddrive number][,Udevice number]
[[Bbank number],Pstart address TO Pend address

where:

« filename is the name you give the file

+ drive number is either 0 or 1 on a dual drive (O is the default
for a single drive)

* device number is the number of disk drive unit (default is 8)

* bank number is the number of the BASIC bank you specify

(0-15)

» start address is the starting address where the program is
SAVEd from

¢ end address is the last address + 1 in memory which is
SAVEd

This is similar to the SAVE command in the Machine Language
Monitor.

EXAMPLES:

BSAVE “SPRITE DATA”,B0,P3584 TO P4096 Saves the binary file
named “SPRITE
DATA”, starting at
location 3584 through
4095 {(BANK 0).

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

BSAVE “PROGRAM.SCR”,D0,U9,B0,P3182 TO P7999

Saves the binary

file named
“PROGRAM.SCR" in
the memory address
range 3182 through
7999 (BANK 0) on

I

{

CATALOG

CHAR

242

drive 0, unit 9.

—Disgplay the disk directory

CATALOG [Ddrive number][{ON|,)Udevice
number][,wildcard string]

The CATALOG command displays the directory on the specified
drive, just like the DIRECTORY command. See the DIRECTORY
command.

EXAMPLE:
CATALOG Displays the disk directory on drive 0.

—Display characters at the specified position on the screen
CHAR [color source],x,y[,string][,RVS]

This is primarily designed to display characters on a bit mapped
screen, but it can also be used on a text screen. Here's what the
parameters mean:

colorsource 0 = Background
1=Foreground

. Character column {0-79)
(wraps around to the next line in 40-
column mode)

Veriranannanaanasanana Character row (0-24)
string. String to print
TEVRISE. .. .cvvnnrncesn Reverse field flag (0 = off, 1 =on)

Texi (alphanumeric sirings) can be displayed on the screen at a given

location by the CHAR statement. Character data is read from the

Commodore 128 character ROM. The user supplies the x and y coor-

dinates of the starting position and the text string to be displayed.
Color source and reverse imaging are optional.

BASIC 7.0 ENCYCLOPEDIA— Basic Commands and Statements

L L L L

{

C C© [L C

L C

L

L.

J

.1

]

B

.

)

-l

]

]

]

1]

]

B

]

2

)

_J

CIRCLE

In 40-column format the string is continued on the next line if it
atlempts to print past the (40th column) right edge of the screen.
When used in TEXT mode, the string printed by the CHAR command
works just like a PRINT command, including cursor and cotor control.
These control functions inside the string do not work when the CHAR
command is used to display text in bit map mode. Upper/lower case
controls (CHR$ (14) or CHR$ (142)) alsc operate in bit map mode.

Multicolor characters are handled differently than standard charac-
ters. First select multicolor1 and multicolor 2 with the COLOR com-
mand. Set the GRAPHIC mode to multicolor. To display the fore-
ground on multicolor 1, set the color source in the CHAR command
to zero and the reverse flag to zero. To display the foreground on
multicolor 2, set the color source to @ and the reverse flag to 1. The
following example displays the foreground character color using a
red background. Change the reverse flag to 1 and the characters are
displayed in multicolor 2 (blue).

10 Color 2,3: REM multicolor 1 = Red
20 Color 3,7: REM multicolor 2 = Blue
30 GRAPHIC 3,1

30 CHAR 0,10,10,“TEXT",0

—Draw circles, ellipses, arcs, etc. at specified positions on the
screen

CIRCLE [color source], X, Y[, Xr][,Yr]
[,sa]l,ea),angle]l,inc]
where:
colorsource 0 = background color
1 ="fareground color

2 = multicolor 1
3=multicolor 2

XY vevnrnsasnnnnaranns Center coordinate of the CIRCLE

XPeereeavnnannonnnnsns X radius (scaled)

| PR Ceeassenennas ¥ radius {default is xr)

BB vinernvanaasasana Starting arc angle (default 0 degrees)

7 1 Ending arc angle (defauit 360 degrees)

angle.......cenenennns Rotation is clockwise degrees {default
is O degrees)

iNC....covvvvreainanas Degrees between segments (deifault is
2 degrees)

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

ab xr

yr

With the CIRCLE statement, the user can draw a circle, ellipse, arc,
triangle, octagon or other polygon. The pixel cursor (PC) is left at the
circumference of the circle at the ending arc angle. Any rotation is
retative to the center. Setting the y radius equal to the x radius does
not draw a perfect circle, since the x and y coordinates are scaled
differently (x =0—320 and y = 0 —~200). Arcs are drawn from the
starting angle clockwise to the ending angle. The increment controls
the smaoothness of the shape; using lower values results in more
nearly circutar shapes. Specifying the inc greater than 2 creates a
rough-edged, boxed-in shape.

The x and y values can place the pixel cursor at absolute coordi-
nates such as (100,100) or at coordinates relative to the previous
position {4+ /- x and + /- y) of the pixel cursor such as (+ 20, — 10).
The coordinate of one axis (x or y) can be relative and the other can
be absolute. Here are the possible combinations of ways to specify
the x and vy coordinates:

Xy absolute x, absolute y
+i—-xy relative x, absolute y
X+1-y absolute x, relative y
+i=x+1-y relative x, relative y

Also see the LOCATE command for information on the pixel cursor.

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE AND
GSHAPE have an additional notation which allows you to specify a
distance and an angle relative to the previous coordinates of the
pixel cursor {PC). The notation is as fotlows:

KEYWORD source, distance; angle

where:

KEYWORD is a graphics command such as DRAW,
CIRCLE, PAINT, LOCATE, BOX or GSHAPE

SOQURCE is the same code as in all of the graphics
commands

DISTANCE is the number of pixels to move the pixel
cursor

BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements

.

-

[

N I

.

C C - [L

I N

N

]

i I R T B

[I

ol

1

11 0

CLOSE

CLR

CMD

245

ANGLE is the number of degrees to move relative to
the previous pixel cursor coordinate
EXAMPLES:
CIRCLE1, 160,100,65,10 Draws an ellipse.
CIRCLE1, 160,100,65,50 Draws a circle.
CIRCLE1, 60,40,20,18,,,,45 Draws an oclagon.
CIRCLE1, 260,40,20,,,,,90 Draws a diamond.
CIRCLE1, 60,140,20,18,,,,120 Draws a triangle.

CIRCLE 1,+2,+2,50,50 Draws a circle {two pixels down and
twe o the right) relative to the
original coordinates of the pixel
cursor.

You may omit a parameter, but you must still place a comma in the
appropriate position. Omitted parameters take on the default values.

—Close logical file
CLOSE file number

This statement closes any files used by the DOPEN or OPEN state-
ments. The number following the word CLOSE is the file number to
be closed.

EXAMPLE:
CLOSE 2 Logical file 2 is closed.

—Clear program variables
CLR

This statement erases any variables in memory, but leaves the pro-
gram intact. This statement is automatically executed when a RUN
or NEW command is given. There is no need to use CLR after edit-
ing, because variables and text no longer share memory.

—Redirect screen output
CMD logical file number [,write list]

This command sends the output, which normally goes to the screen
(i.e., PRINT statement, LIST, but not POKES into the screen) to

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

COLLECT

COLLISION

246

another device, such as a disk data file or printer. This device or file
must be OPENed first. The CMD command must be followed by a
number or numeric variable referring to the file. The write list can be
any alphanumeric string or variable. This command is useful for
printing headings at the top of program listings.

EXAMPLE:

Open 1,4 QOPENS device #4, which is the printer.

CMD 1 All normal output now goes to the printer.

LIST The LISTing goes to the printer, not the
screen—aeven the word READY.

PRINT# Sends output back to the screen.

CLOSE 1 Closes the file.

—Free inaccessible disk space
COLLECT [Ddrive number][(ON|,)Udevice]

Use this command to make avaitable any disk space that has been
allocated to improperly closed (splat) files, and to delete references
to these files from the directory. Splat files are files that appear on
the directory with an asterisk next to them. Defaults to device
number 8.

EXAMPLE:

COLLECT Do Free all available space which has been
incorrectly allocated to improperly closed
files,

—Define handling for sprite collision interrupt
COLLISION type [,statement]

type...........lypeofinterrum, as follows:
1 = Sprite-to-sprite collision
2 = Sprite-fo-display data collision
3 = Light pen

statementBASICline number of a subroutine

When the specified situation occurs, BASIC will finish processing
the currently executing instruction and perform a GOSUB to the line
number given. When the subroutine terminates (it must end with a
RETURN;j, BASIC will resume processing where it left off. Interrupt
action continues until a COLLISION of the same type without a line

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

I I

[

I

[I I B

CCCCCoC

21

]

_)

J

o

COLOR

247

number is specified. More than one type of interrupt may be enabled
at the same time, but only one interrupt can be handled at atime
{i.e., there can be no recursion and no nesting of interrupts). The
cause of an interrupt may continue causing interrupts for some time
unless the situaticn is altered or the interrupt disabled.

When a sprite is completely off-screen and not visible, it cannot gen-
erate an interrupt. To determine which sprites have collided since
the last check, use the BUMP function.

EXAMPLE:

Collision 1, 5000 Detects a sprite-to-sprite collision
and program control sent to
subroutine at line 5000.

Collision 1 Stops interupt action which was
initiated in above example.

Collision 2, 1000 Detects sprite-to-data collision and

program control directed to
subroutine in line 1000.

—Define colors for each screen area

COLOR source number, color number

This statement assigns a color to one of the seven color areas:
Area Source

0 40-column (VIC) background

1 40-column (VIC) foreground

2 multicolor 1

3 muiticolor 2

4 40-column (VIC) border

5 character color (40- or 80-column screen)

6 80-column background color

Colors that are usable are in the range 1-16.

Color Code Color Color Code Calor
1 Black 9 Orange
2 White 10 Brown
3 Red 1 Light Red
4 Cyan 12 Dark Gray
5 Purple 13 Medium Gray
6 Green 14 Light Green
7 Blue 15 Light Blue
8 Yellow 16 Light Gray

Color Numbers in 40-Column Output

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

CONCAY

CONT

248

1 Black 9 Dark Purple
2 White 10 Dark Yellow
3 Dark Red 11 Light Red
4 Light Cyan 12 Dark Cyan
5 Light Purple 13 Medium Gray
6 Dark Green 14 Light Green
7 Dark Blue 15 Light Blue
8 Light Yellow 16 Light Gray
Color Numbers in 80-Column Output
EXAMPLE:
Color 0, 1: Changes background color of 40-
column screen to black.
Color 5, 8: Changes character color 1o yellow.

—Concatenate two data files

CONCAT ‘‘file 2" [,Ddrive number] TO “file 1”

[,Ddrive number][{ON|,)Udevice]

The CONCAT command attaches file 2 to the end of file 1 and retains
the name of file 1. The device number defaults to 8 and the drive

number defaults to 0.
EXAMPLE:

Concat “File B” to “File A" FILE B is attached to FILE A, and
the combined file is designated

FILE A

Concat (A$) to (B$), D1, U9 The file named by B$ becomes a
new file with the same name with
the file named by A% attached to
the end of B§—This is performed on
Unit 9, drive 1 (a dual disk drive}.

Whenever a variable is used as a filename, as in the last example,

the filename variable must be within parentheses.

—Continue program execution
CONT

This_comme_md is used to restart a program that has been stopped
by either using the STOP key, a STOP statement, or an END state-
ment. The program resumes execution where it left off. CONT will

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

N NV

¢

(-

-

("

C

(

[

 C C C

(_

-

)

)

)

-

)

COoPY

not resume with the program if lines have been changed or added to
the program or if any editing of the program is performed on the
screen, If the program stopped due 1o an error; or if you have caused
an error before trying to restart the program, CONT will not work.
The error message in this case is CAN'T CONTINUE ERROR.

—Copy files from one drive to another in a dual disk drive, or within a
single drive

COPY [Ddrive numbenr,})‘source filename?” TO*‘destination
filename”[,Ddrive number][{ON|,}Udevice]

This command copies files from one disk (the source file) to another

{the destination file} on a dual-disk drive. It can also create a copy of

a file on the same disk within a single drive, but the filename must be
different. When copying from one drive to another, the filename may
be the same.

The COPY command can also COPY all the files from one drive to
another on a dual disk drive. In this case the drive numbers are spec-
ified and the source and destination filenames are omitted.

The default parameters for the COPY command are device number
8, drive 0.

NOTE: Copying between two single or double disk drive units cannot
be done. This command does not support unit-to-unit copying. See
BACKUP.

EXAMPLES:

COPY D0, “test” TO D1, “test prog” Copies “test” from drive 0
to drive 1, renaming it
“test prog” on drive 1.

COPY DO, “STUFF” TO D1, “STUFF” Copies "STUFF" from
drive O to drive 1.

COPY DO to D1 Copies all files from drive
0 to drive 1.

COPY “WORK.PROG” TO “BACKUP” Copies "WORK.PROG" as
a file called "BACKUP" on
the same disk (drive Q).

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

DATA

DCLEAR

DCLOSE

—Define data to be used by a program
DATA list of constants

This statement is followed by a list of data items to be input into the
computer's memory by READ statements. The items may be
numeric or string and are separated by commas. String data need
not be inside guote marks, unless they contain any of the following
characters: space, colon, or comma. If two commas have nothing
between them, the value is READ as a zero if numeric, or as an
empty string. Also see the RESTORE statement, which allows the

- Gommodore 128 to reread data.

EXAMPLE:
DATA 100, 200, FRED, “HELLO, MOM”, , 3, 14, ABC123

—Clear all open channels on disk drive
DCLEAR [Ddrive number)[{ON |,)Udevice]
This statement closes all fites and clears all open channels on the

specified device number. Default is DO, U8. This command is anatag-

ous to OPEN 10,8,15, “[0":CLOSE 10.

EXAMPLES:
DCLEAR DO Clears all open files on drive 0,
device number 8.
DCLEAR D1,U9 Clears all open files (channels} on
drive 1, device number 9.
—Close disk fite

DCLOSE [#logical file number][(ON|,)Udevice]

This statement closes a single file or all the files currently open on
a disk unit. If no logical file number is specified, all currently open
files are closed. The default device number is 8. Note the following
examples:

EXAMPLES:
DCLOSE Closes all files currently open on unit 8.
DCLOSE #2 Closes the file associated with the logical file

number on unit 8.

DCLOSE ON U9 Closes all files currently open on unit 9.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

.

[

-

(-

C . [[

L

C C C

—

S T A |

)

DEF FN

DELETE

251

—Return the value of a user-defined function
DEF FN name (variable) = expression

This statement allows the definition of a complex calculation as a
function. In the case of a long formula that is used several times
within a program, this keyword can save valuable program space.
The name given ta the function begins with the letters FN, followed
by any alphanumeric name beginning with a letter. First, define the
function by using the statement DEF, followed by the name given to
the function. Foltowing the name is a set of parentheses () with a
dummy numeric variable name (in this case, X) enclosed. Next is an
egual sign, followed by the formula to be defined. The function can
be performed by substituting any number for X, using the format
shown in line 20 of the exampte below:

EXAMPLE:

10 DEF FNA(X) = 12*(34.75-X/.3) + X
20 PRINT FNAQ7)

The number 7 is inserted each place X is located in the formula
given in the DEF statement. In the example above, the answer
returned is 144, {Function definitions are lost if BASIC is moved—
e.g., from $1C0Q to $4000 when a GRAPHIC call occurs. Invoke a
graphic mode once before defining functions.)

—Delete lines of a BASIC program in the specified range
DELETE [first line] [-last line]
This command can be executed only in direct mode.

EXAMPLES:

DELETE 75 Deletes line 75.

DELETE 10-50 Deletes lines 10 through 50, inclusive.

DELETE-50 Deletes all lines from the beginning of the
program up to and including line 50.

DELETE 75 Deletes al! lines from 75 to the end of the

program, inclusive,

—Declare number of elements in an array
DIM variable (subscripts)} [,variable{subscripts)]...

Before arrays of variables can be used, the program must first exe-
cute a DIM statement to establish DIMensions of the array (unless
there are 11 or fewer elements in the array). The DIM statement IS
followed by the name of the array, which may be any legal variable

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

DIRECTORY

name. Then, enclosed in parentheses, put the number {or numeric
variable) of elements in each dimension. An array with more than
one dimension is called a matrix. Any number of dimensions may be
used, but keep in mind the whole list of variables being created takes
up space in memory, and it is easy to run out of memory if too many
are used, Here's how to calculate the amount of memory used by an
array:

5 bytes for the array name

2 bytes for each dimension

2 bytesfelements for integer variables

5 bytesfelements for normal numeric variables

3 bytesielements for string variables

1 byte for each character in each string element

integer arrays take up two-fifths the space of floating-point arrays
{e.g., DIM A% {100) requires 209 bytes; DIM A (100) requires 512
bytes.)

More than one array can be dimensioned in a DIM statement by sep-
arating the array variable name by commas. If the program executes
a DIM statement for any array more than once, the message
“RE'DIMed ARRAY ERROR" is posted. It is good programming prac-
tice to place DIM statements near the beginning of the program.

EXAMPLE:
10 DIM A$(40),B7(15),CC%(4,4,4)

Dimensions three arrays, where arrays AH, B7, and CC% have,
respectively, 41 elements, 16 elements and 125 elements

—Display the contents of the disk directory on the screen
DIRECTORY [Ddrive number][,{ON|,) Udevice][,wildcard]

The F3 function key in C128 mode displays the DIRECTORY for
device number 8, drive 0. Use CONTROL S or NO SCROLL to pause
the display; any key restarts the display after a pause. Use the COM-
MODORE key to slow down the display. The DIRECTORY command
cannot be used to print a hard copy. The disk directory must be
loaded (LOAD™$",8) destroying the program currently in memory in

order to print a hard copy. The default device number is 8, and the
default drive number is Q.

EXAMPLES:

DIRECTORY Lists all files on the disk in unit 8.

DIRECTORY D1, U8, “work” Lists the file named "work," on
drive 1 of unit 9.

BASIC 7.0 ENCYCLOPEDIA— Basic Commands and Statements

R I

[

(-

(-

(.

C C CCCUroChrfCoerec e &k

.

)

]

)

)

)

]

)

)

]

]

]

]

DIRECTORY “AB*” Lists all files starting with the letters
“AB" like ABOVE, ABOARD, eifc. on
all drives of unit 8. The asterisk
specifies a wild card, where all files
starting with "AB™ are displayed.

DIRECTORY DD, “file 2.BAK"” The 7 is a wild card that maiches
any single character in that position.
For example: file 1.BAK, file 2.BAK,
file 3.BAK all match the string.

DIRECTORY D1,U9,(A%) LISTS the filename stored in the
variable A$ on device number 9,
drive 1, Rermmember, whenever a
variable is used as a filename, put
the variable in parentheses.

NOTE: To print the DIRECTORY of the disk in drive 0, unit 8, use the
following example:

LOAD*$0”,8
OPEN4,4:CMD4:LIST
PRINT#4:CLOSE4

DLOAD —Load a BASIC program from disk
DLOAD “filename? [,Ddrive number][,Udevice number]

This command loads a BASIC program from disk into current mem-
ory. (Use LOAD to load programs from tape.) The program must be
specified by a fitename of up to 186 characters. DLOAD assumes
device number 8, drive 0.

EXAMPLES:

DLOAD “BANKRECS” Searches the disk for the program
“BANKRECS™ and LOADs it.

DLOAD (A%) LOADS from disk a program whose

name is stored in the variable A$,
An error message is given if A% is
empty. Remember, when a variable
is used as a filename, it must be
enclosed in parentheses.

The DLOAD command can be used within a BASIC program to find
another program on disk. This is called chaining.

253 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

DO/LOOCPI/WHILE!
UNTILIEXIT

254

—Define and control a program loop

DO [UNTIL condition I WHILE condition] statements [EXIT]
LOOP [UNTIL condition / WHILE condition]

This loop structure performs the statements between the DO state-
ment and the LOOP statement. If no UNTIL or WHILE modifies either
the DO or the LOOP statement, execution of the statements in
between continues indefinitely. If an EXIT statement is encountered
in the body of a DO loop, execution is transferred to the first state-

ment following the LOOP statement. DO loops may be nested, follow-

ing the rules defined by the FOR-NEXT structure. if the UNTIL
parameter is specified, the program continues looping until the con-
dition is satisfied (becomes true). The WHILE parameter is basicalty
the opposite of the UNTIL parameter: the program continues looping
as long as the condition is TRUE. As soon as the condition is no
longer true, program control resumes with the statement immedi-
ately following the LOOP statement. An example of a condition (bool-
ean argument)is A=1, or G)65.

EXAMPLE:

10 X=25 This example performs the statements
20 DO UNTIL X=0 X=X-1 and PRINT “X=",X unti{ X=0.
30 X=X1 When X =0 the program resumes with
40 PRINT “X=":;X the PRINT “End of Loop” statement
50 LOOP immediately following LOOP.

60 PRINT “End of Loop”

10 DO WHILE A$¢) CHRS (13):GETKEY AS:PRINT A$:LOOP

20 PRINT “THE RETURN KEY HAS BEEN PRESSED”
This DO leop waits for a key to be
pressed, receives input from the
keyboard one character at a time and
prints the letter of the key which was
pressed. If the RETURN key was
pressed, control is transferred out of
the loop and line 20 is executed.

10 DOPEN #8,“SEQFILE” This program opens file “SEQFILE™

20 DO and gets data until the ST system
30 GET #8,A% variable indicates all data is input.
40 PRINT AS;

50 LOOP UNTIL ST

60 DCLOSE #8

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

. L

(-

C— ——

[

.

(

C C C L

(

E

([

. C C

-

{

[

-]

n

]

)

-]

1

-}

]

-

]

]

]

)

DOPEN

DRAW

255

—Open a disk file for a read and/or write operation

DOPEN #logical file number,“filenamel,(SIP)}’[,Lrecord
length][,Pdrive number][{ON|,)Udevice
number][,w]

where:

§ = Sequential File Type

P = Program File Type

L = Record Length = the length of records in a relative file only
W = Write Operation {if not specified a read operation occurs)

This statement opens a sequential, retative or random access file
for a read or write operation. The record length (L) pertains to a rela-
tive file, which can be as long as 255. The "W parameter is speci-
fied only during a write (PRINT#) operation in a sequential file. If it is
not specified, the disk drive assumes the disk operation to be a read
operation.

The logical file number associates a number to the file for future disk
operatons such as a read (input#) or write {print#) operation. The
logical file number can range from 1 to 255. Logical file numbers
greater than 128 automatically send a carriage return and linefeed
with each write (print#) command. Logical file numbers tess than
128 send only a carriage RETURN, which can be suppressed with a
semicoton at the end of the print# command. The default device
number is 8, and the default drive is 0.

EXAMPLES:

DOPEN#1, “ADDRESS”,W Open the sequential file number 1
(ADDRESS) for a write operation

DOPEN#2 “RECIPES”,D1,U8 Open the sequential file number 2
(RECIPES) for a read operation on
device number 9, drive 1

—Draw dots, lines and shapes at specified positions on screen

DRAW [color source], [X1, Y1][TO X2, ¥2]...

This statement draws individual dots, lines, and shapes. Here are the
parameter values:

where:
Color source 0 Bit map background
1 Bit map foreground
2 Multicalor 1
3 Multicolor 2

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

Xi,Y1 Starting coerdinate (0,0 through
320,200)

X2,Y2 Ending coordinate (0,0 through
320,200)

The X and Y values can place the pixel cursor at absolute coordi-
nates such as {100,100) or at coordinates relative to the previous
position {+/— x and +/—y) of the pixel cursor such as (+ 20, — 10}.
The coordinate of cne axis (x or y} can be relative and the other can
be absolute. Here are the possible combinations of ways to specify
the x and y coordinates:

) &Y absolute x, absolute v
+1=-xy relative x, absolute y
x+/-y absolute x, relative y
+i=X+I-y relative x, relative y

Also see the LOCATE command for information on the pixel cursor.

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE AND
GSHAPE have an additional notation which allows you to specify a
distance and an angle relative to the previous coordinates of the
pixel curser (PC). The notation is as follows:

KEYWORD source, distance; angle

where:

KEYWORD is a graphics command such as DRAW,
CIRCLE, PAINT, LOCATE, BOX or GSHAPE

SOURCE is the same code as in all of the graphics
commands

DISTANCE is the number of pixels to move the pixel
cursor

ANGLE is the number of degrees to move relative 1o
the previous pixel cursor coordinate

EXAMPLES:

DRAW 1, 100, 50 Draw a dot.

DRAW , 10,10 TO 100,60 Draw a line.

DRAW , 10,10 TO 10,60 TO 100,60 TO 10,10 Draw a triangle.

DRAW Draw a dot at the present pixel cursor position. Use
LOCATE to position the pixel cursor.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Staterments

S DU I

[

I

[

C C C C &£ & @&

C & C (

]

)

]

)

i

)

_J

1

)

)

DSAVE

DVERIFY

257

You may omit a parameter but you still must include the comma that
would have followed the unspecified parameter. Omitted parameters
take on the default values.

—Save a BASIC program file to disk

DSAVE “*filename” [,Ddrive number][{ON|,)Udevice
number]

This command stores (SAVEs) a BASIC program on disk. (See SAVE
to store programs on tape.) A filename up to 16 characters long must
be supplied. The default device number is 8, while the default drive
number is 0.

EXAMPLES:

DSAVE “BANKRECS” SAVEs the program “BANKRECS™ to
disk.

DSAVE (A$) SAVEs the disk program named in

the variable A%.

DSAVE “PROG 3”,D1,U9 SAVES the pragram "PROG 3" to
disk on unit number 9, drive 1.

-—Verify the program in memory against the one on disk

DVERIFY “filoname*[,Ddrive number][(ON|,)Udevice
number]

This command causes the Cormmodore 128 to check the program
on the specified drive against the program in memory. The default
drive number is 0 and the default device number is 8.

NOTE: If a graphic area is allocated or reallocated after a SAVE, an
error occurs. Because BASIC text is moved from its original (SAVEd)
tocation when a bit mapped graphics area is allocated or dealloca-
ted, the original location where the C128 verified the SAVEd program
changes. Hence, VERIFY, which performs byte-to-byte comparisons,
fails, even though the program is valid. Make sure to VERIFY or
DVERIFY immediately after issuing the SAVE command to avoid this
problem.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

ENVELOPE

To verify Binary data, see VERIFY “filename”,8,1 format, under
VERIFY command description.

EXAMPLES:

DVERIFY “C128" Verifies program “C128" on drive 0,
unit 8,

DVERIFY “SPRITES”,DO,U8 \Verifies program “SPRITES" on
drive 0, device 9.

—Define the end of program execution
END

When the program encounters the END statement, it stops RUNning
immediately. The CONT command can be used to restart the pro-
gram at the next statement (if any) following the END statement.

—Define a musical instrument envelope
ENVELOPE n[,atk] [,dec][,sus] [,relll,wfl[,pw]

where:
3 T Envelope number (0-9)
atk................... Attack rate (0-15)
dot......iitiiriinnans Decay rate {0-15)
BUS.iiiiirrarrar Sustain (0-15)
relcoiiiiiiao., Release rate {0-15)
wh e Waveform: 0 = triangle
1 = sawtooth
2 = variable pulse (square)
3 = noise
4 = ring modulation
PW . iiriiiitiaiinranas Pulse width {0-4095)

A parameter that is not specified will retain its predefined or cur-
rently redefined value. Pulse width applies to the width of the varia-
ble pulse waveiorm (wf = 2) only and is determined by the formuta

pwout = pw/40.95. The Commodore 128 has initialized the following
10 envelopes:

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

L=

C C C C

C C C C & Ln

E

[

(

C

J

-)

)

]

]

FAST

FETCH

259

n A D S R w pw instrument
ENVELOPE 0, 0, 9 0, 0 2 15386 piano
ENVELOPE 1, 12, 0, 12, 0, 1 accordion
ENVELOPE 2, 0, 0 15 0, 0 calliope
ENVELOPE 3, 0, 5 5 0, 3 drum
ENVELOPE 4, 9, 4, 4 0, © flute
ENVELOPE 5, 0, 9 2, 1, 1 guitar
ENVELOPE B, 0, 8, 0, 0 2 512 harpsichord
ENVELOPE 7, 0, 9, 9, 0 2 2048 organ
ENVELCPE 8, 8 9 4, 1, 2 542 trumpet
ENVELOPE 9, 0, 9, 0, 0 O xylophone

To play predefined musical instrument envelopes,you can simply
specify the envelope number and omit the rest of the parameters
since they retain their predefined values.

—Put machine in 2 MHz mode of operation
FAST

This command initiates 2MHz mode, causing the VIC 40-column
screen to be turned off. All operations (except HO) are speeded up
considerably. Graphics may be used, but will not be visible until a
SLOW command is issued. The Commodore 128 powers up in TMHz
mode,

—Get data from expansion (RAM module) memory
FETCH #bytes, intsa, expsa, expb

where bytes = number of bytes to get from expansion memory
(1-65536)
intsa = starting address of host ram (0-65535)
expb = 64k expansion RAM bank number (0-3)
expsa = starting address of expansion RAM (0-65535)
The host BANK is selected with the BANK command.

BASIC 7.0 ENCYCLOPEDIA—RBasic Commands and Statements

FILTER

FORITOISTEP/
NEXT

—Define sound (SID chip) filter parameters
FILTER [freq] [,'p] [,bp] [;hp] [,res]

where:;
freq...... ceeseannan Filter cut-off frequency (0-2047)
p....... Ceesnananen Low-pass filter an (1), off (0)
bp......... v 10 e e Bank-pass filter on (1), off (0)
hp....... veasiacaans High-pass filier on (1), off (0)
F8S vivivvanannnnnnns Resonance (0-15)

Unspecified parameters result in no change to the current value.

You can use more than one type of filter at a time. For example, both
low-pass and high-pass filters can be used together to produce a
notch-(or band-reject) filter response. For the filter to have an audible
effect, at least one type of filter must be selected and at least one
voice must be routed through the filter.

EXAMPLES:

FILTER 1024,0,1,0,2 Set the cutoff frequency at 1024,
select the band pass filter and a
resonance level of 2,

FILTER 2000,1,0,1,10 Set the cutoff frequency at 2000,
select both the low pass and high
pass filters (to form a notch reject)
and set the resonance level at 10.

—Define a repetitive program loop structure.
FOR variable = start value TO end value [STEP increment]

This statement works with the NEXT statement to set up a section of
the program (i.e., a loop) that repeats for a set number of times. This
is useful when something needs to be counted or something must be
done a certain number of times (such as printing).

This statement executes all the commands enclosed between the
FOR and NEXT statements repetitively, according to the start and
end values. The start value and the end value are the beginning and
ending counts for the loop variable. The loop variable is added to or
subtracted from during the FOR/NEXT toop.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

I

C C I

(-

(-

C C C C C o Cc & L

(-

N

-]

]

]

]

1

]

)

1

]

—

1

-]

GET

261

The logic of the FOR/NEXT statement is as follows, First, the loop
variable is set to the start value. When the program reaches a pro-
gram line containing the NEXT statement, it adds the STEP incre-
ment (default = 1)to the value of the loop variabte and checks to
see if it is higher than the end value of the loop. If the loop variable is
less than the end value, the loop is executed again, starting with the
statement immediately following the FOR statement. If the loop vari-
able is greater than the end value, the loop terminates and the pro-
gram resumes immediately following the NEXT statement. The oppo-
site is true if the step size is negative. See also the NEXT statement.

EXAMPLE:

10FORL =1TO 10

20 PRINT L

30 NEXT L

40 PRINT “M DONE!L = "L

This program prints the numbers from one 10 10 followed by the mes-
sage 'MDONE! L = 11,

The end value of the loop may be followed by the word STEP and
another number or variable. In this case, the value foltowing the
STEP is added each time instead of one. This altows counting back-
wards, by fractions, or in increments other than one.

The user can set up loops inside one another. These are known as
nested loops. Care must be taken when nesting loops so the last
loop to start is the first one to end.

EXAMPLE:

10FORL = 1TO 100
20FORA = 5TO 11 STEP .5
30 NEXT A

40 NEXT L

The FOR ... NEXT loop inlines 20 and 30 are nested inside the one
in line 10 and 40. Using a STEP increment of .5 is used to illustrate
the fact that floating point indices are valid.

—Receive input data from the keyboard, one character at a time,
without waiting for a key to be pressed

GET variable list

The GET statement is a way to receive data from the keyboard, one
character at a time. When GET is encountered in a program, the
character that is typed is stored in the C128 memory. If no character

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

GETKEY

is typed, a null (empty) character is returned, and the program con-
tinues without waiting for a key. There is no need to hit the RETURN

key. The word GET is followed by a variable name, either numeric or
string.

If the C128 intends to GET a numeric key and a key besides a num-
ber is pressed, the program stops and an error message is dis-
played. The GET statement may also be put into a loop, checking for
an empty result. The GETKEY statement could also be used in this
case. See GETKEY for more information. The GET and GETKEY
statements can be executed onty within a program.

EXAMPLE:

10 DO:GETAS$:LOOP UNTIL A$ ="A" This line waits for the A key
10 be pressed to continue.

20 GETB,C, D GET numeric variables B,C
and D from the keybcard
without waiting for a key to
be pressed.

—Receive input data from the keyboard, one character at a time and
wait for a key 1o be pressed

GETKEY variable list

The GETKEY statement is very similar to the GET statement. Unlike
the GET statement, GETKEY waits for the user to type a character
on the keyboard. This lets the computer wait for a single character to
be typed. This statement can be executed only within a program.

EXAMPLE:
10 GETKEY A%

This line waits for a key to be pressed. Typing any key continues the
program.

10 GETKEY A$,B$,C$

This line waits for three alphanumeric characters to be entered from
ihe keyboard.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Stalements

C C =

(-

(-

(=

C C C C €

[

—

)

|

]

)

]

]

]

GET# —~Receive input data from a tape, disk or RS232

GETi file number, variable list

This statement inputs one character at a time from a previously
opened fite. Otherwise, it works like the GET statement. This state-
ment can be executed only within a program.

EXAMPLE:
10 GET#1,A% This example receives one character, which is
stored in the variable A$, from file number 1.
This example assumes that file 1 was
previously opened. See the OPEN statement.
G064 —Switch to C64 mode
G064

This statement switches from C128 mode to C64 mode. The ques-
tion “Are You Sure?” is displayed in response to the GO64 statement.
if Y is typed, then the currently loaded program is lost and controt is
given to C64 mode; otherwise, if any other key is pressed, the com-
puter remains in ©128 mode. This statement can be used in direct
mode or within a program. The prompt is not disptayed in program
mode.

GOSUB —Call a subroutine from the specified line number

GOSUB line number

This statement is similar to the GOTO statement, except the Commo-
dore 128 returns from where it came when the subroutine is finished.
When a line with a RETURN statement is encountered, the program
jumps back to the statement immediately following the GOSUB

statement.

The target of a GOSUB statement is called a subroutine. A subrou-
tine is useful if a fask is repeated several times within a program.
Instead of duplicating the section of program over and over, setup a
subroutine, and GOSUB to it at the appropriate time in the program.
See also the RETURN statement.

263 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

QOTO/IGO TO

GRAPHIC

EXAMPLE:

20 GOSUB 800 This example calis the subroutine beginning at
line 800 and executes it. All subroutines must

terminate with a RETURN statement.

800 PRINT “HI THERE”: RETURN

—Transfer program execution to the specified line number
GOTO line number

After a GOTO statement is encountered in a program, the computer
executes the statement specified by the line number in the GOTO
statement. When used in direct mode, GOTO executes (RUNs) the
program starting at the specified line number without clearing the

variables. This is the same as the RUN command except it does not
clear variable values.

EXAMPLES:
10 PRINT"COMMODORE" The GOTO in line 20 makes ling 10
20 GOTO 10 repeat continuously until RUN/STOP is
pressed.
GOTO 100 Starts (RUNs} the program starting at
) line 100, without clearing the variable
storage area.
—Select a graphic mode
1) GRAPHIC mode [,clear]],s]
2} GRAPHIC CLR

This statement puts the Commodore 128 in one of the six graphic
modes:

mode description

40-column text

standard bit-map graphics

standard bit-map graphics (split screen)
multicolor bit-map graphics

multicolor bit-map graphics (split screen)
80-column text

MW =0

BASIC 7.0 ENCYCLOPEDIA —Basic Commands and Statements

C =

[

{

-

-

N D SV O

C

R S O |

)

)

)

1

;

2}

)

B SN S B

HEADER

265

The clear parameter specifies whether the bit mapped screen is
cleared (equal to 1) upon running the program, or teft intact (equal to
0). The S parameter indicates the starting line number of the split
screen when in graphic mode 2 or 4 {multicotor or standard bit map
split screen modes). The default starting line number of the split
screenis 19.

When executed, GRAPHIC 1-4 allocates a 9K-bit mapped area. The
start of BASIC text area is moved above the bit-map area, and any
BASIC program is automatically relocated. This area remains atlo-
cated even if the user returns o TEXT mode (GRAPHIC 0). If the
clear option is specified as 1, the screen is cleared. The GRAPHIC
CLR command deallocates the 9k, bit-mapped area, places itinits
original location below the bit-mapped area and makes it availabte
once again for BASIC text .

EXAMPLES:

GRAPHIC 1,1 Select standard bit map mode and clear the
bit map.

GRAPHIC 4,0,10 Select split screen multicolor bit map mode,
do not clear the bit map and start the split

screen at line 10.
GRAPHIC 0 Select 40-column text.
GRAPHIC 5 Select 80-column text.
GRAPHIC CLR Clear andg deallocate the bit map screen.

—Format a diskette

HEADER “diskname” [,1i.d.] [,Ddrive number]
[{ON!,>Udevice number]

Before a new disk can be used for the first time, it must be formatted
with the HEADER command. The HEADER command can also be
used to erase a previously formatted disk, which can then be reused.

When you enter a HEADER command in direct mode, the prompt
ARE YOU SURE? appears. In program mode, the prompt does not
appear.

This command divides the disk into sections called blocks. It creates
a table of contents of files, called a directory. The diskname can be
any name up to 16 characters long. The i.d. number is any two alpha-
numeric characters. Give each disk a unique i.d. number. Be careful

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

when using the HEADER command because it erases all stored
data.

You can HEADER a diskette quicker if it was aiready formatted, by
omitting the new disk i.d. number. The old i.d. number is used. The
quick header can be used only if the disk was previously formatted,
since it clears out the directory rather than formatting the disk. The
default device number is 8. The drive number must be specified (0
for a single disk drive).

As a precaution, the system asks “ARE YOU SURE?" before the
Commgodore 128 completes the operation. Press the Y™ key to per-
form the HEADER, or press any other key to cancel it.

The HEADER command reads the disk command error channel, and
if an error is encountered, the error message "“7?BAD DISK ERROR”
is displayed.

The HEADER command is analogeous to the BASIC 2.0 command:
OPEN 1,8,15,“N0:diskname,i.d.”
EXAMPLES:

HEADER “MYDISK”, 123, DO This HEADERS “MYDISK”
using i.d. 23 on drive 0,
(default) device number 8,

HEADER "“RECS”, 145, D1 ON U9 This HEADERS “RECS” using
i.d. 45, on Drive 1, device
number 9

HEADER “C128 PROGRAMS”, D0 This is a quick header on
drive O, device number 8,
assuming the disk in the drive
was already formatted. The
old id. is used.

HEADER (A$),)(B$),D0,U9 This example HEADERS the
diskette with the name
specified by the variable A$,
and the i.d. specified by the
variable B$, on drive 0,
device number 9.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

-

-

C C C C B

CCCoC o

J

=
!

1

_

N

1

]

1

_}

HELP

IFITHENIELSE

267

—Highlight the line where the error occurred

HELP

The HELP command is used after an error has been reportedin a

program. When HELP is typed in 40-column format, the line where
the error occurs is listed, with the portion containing the error dis-
played in reverse fiekd. In 80-column format, the portion of the line
where the error occurs is underlined.

—Evaluate a conditional expression and execute portions of a pro-
gram depending on the outcome of the expression

IF expression THEN statements [:ELSE else-clause]

The IF. .. THEN statement evaluates a BASIC expression and takes
one of two possible courses of action depending upon the outcome
of the expression. If the expression is true, the statement(s) following
THEN is executed. This can be any BASIC statement. If the expres-
sion is false, the program resumes with the program line immedi-
ately following the program line containing the [F statement, unless
an ELSE clause is present. The entire IF. . . THEN statement must be
contained within 160 characters. Also see BEGIN/BEND.

The ELSE clause, if present, must be on the same line as the IF. . .
THEN paortion of the statement, and separated from the THEN
clause by a colon. When an ELSE clause is present, it is executed
only when the expression is false. The expression being evaluated
may be a variable or formuta, in which case it is considered true if
nonzero, and faise if zero. In most cases, there is an expression
involving relational operators (=, (, ». {(=,)=,).

The IF. .. THEN statement can take two additional forms:

IF expression THEN line number
or:
IF expression GOTO line number

These forms transfer program execution to the specified line number
if the expression is true. Otherwise, the program resumes with the
program line number immediately following the line centaining the 1F

statement.
EXAMPLE:
50 IF X > 0 THEN PRINT “QK": ELSE END

This line checks the value of X. If X is greater than 0, the statement
immediately following the keyword THEN (PRINT *OK") is executed

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

INPUT

and the ELSE clause is ignored. If X is less than or equal to 0, the

ELSE clause is executed and the statement immediately following
THEN is ignored.

10 IF X=10 THEN 100 This example evaluates the
value of X. IF X equals 10, the

20 PRINT “X does not equal 10” program control is transferred 1o
line 100 and the message “X

99 STOP EQUALS 10" is printed. IF X

100 PRINT “X equals 10” does not equal 10, the program
resumes with line 20, the C128
prints the prompt "X does not
equal 10" and the program
stops.

—Receive a data siring or a number from the keyboard and wait for
the user to press RETURN

INPUT [*prompt string”’;] variable list

The INPUT statement asks for data from the user white the program
is RUNning and places the data into a variable or variables. The pro-
gram stops, prints a question mark (?) on the screen, and waits for
the user to type the answer and hit the RETURN key. The word
INPUT is followed by a prompt string and a variable name or list of
variable names separated by commas. The message in the prompt
string inside quotes suggests (prompts) the information the user
should enter. If this message is present, there must be a semicolon
{;) after the closing quote of the prompt.

When more than one variable is INPUT, separate them by commas,
The computer asks for the remaining values by printing two question
marks (?7). If the RETURN key is pressed without INPUTting a value,
the INPUT variable retains the value previously input. The INPUT
statement can be executed only within a program.

EXAMPLE:

10 INPUT “PLEASE TYPE A NUMBER"”;A
20 INPUT “AND YOUR NAME”;A$
30 PRINT A$ “YOU TYPED THE NUMBER”;A

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

C

(-

(-

(

N N

C C C C - - oL

|

)

]

1

INPUT# —Inputs data from a file into the computer’s memory
INPUT# tile number, variable list

This statement works like INPUT, but takes the data from a previously
OPENed fite, usually on a disk or tape instead of the keyboard. No
prompt string is used. This statement can be used only within a pro-

gram.
EXAMPLE:

10 OPEN 2,8,2
20 INPUT#2, AS, C, D$

This statement INPUTSs the data stored in variables A$, C and D$
from the disk file number 2, which was OPENed in line 10.

—Define or list function key assignments

KEY [key number, string]

There are eight function keys (F1-F8) available to the user on the
Commodore 128: four unshifted and four shifted. The Commodore
128 allows you to perform a function or operation for each time the
specified function key is pressed. The definition assigned to a key
can consist of data, or a command or series of commands. KEY with
no parameters specified returns a listing displaying all current KEY
assignments. If data is assigned to a function key, that data is dis-
played on the screen when that function key is pressed. The maxi-
mum length for all the definitions together is 241 characters.

EXAMPLE:
KEY 7, “GRAPHIC0” + CHRS${13) + “LIST” + CHR%(13)

This tells the computer to select the (VIC) text screen and list the
program whenever the F7 key is pressed {in direct mode). CHR$(13)
is the ASCIll character for RETURN and performs the same action as
pressing the RETURN key. Use CHR$(27) for ESCape. Use CHR$(34)
to incorporate the double quote character into a KEY string. The
keys may be redefined in a program. For example:

10 KEY 2,“PRINT DS$” + CHR${(13)

This tells the computer to check and display the disk drive error
channel variables (PRINT DS$) each time the F2 function key is
pressed,

10 FOR I=1 to 8:KEY |, CHR${l + 132:NEXT
This defines the function keys as CHR$ 133 through CHR$ 140.

KEY

269 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

LET

LIST

To restore all function keys to their BASIC default values, reset the
Commodore 128 by pressing the RESET button.

—Assigns a value to a variable
[LET] variable = expression

The word LET is rarely used in programs, since it is not necessary.
Whenever a variable is defined or given a value, LET is atways
implied. The variable name that receives the result of a calculation is
on the left side of the equal sign. The number, string or formula is on

the right side. You can only assign one value with each {implied) LET
statement. For example, LETA = B = 2isillegal.

EXAMPLE:
10LETA =5 Agsign the value 5 to numeric variable A.
20B=6 Assign the value 6 to numeric variable B.

30C = A*B + 3 Assign the numeric variable C, the value
resulting from 5 times 6 plus 3.

40 D$ = “HELLO” Assign the string “HELLO” to string variable
D$.

—List the BASIC program currently in memory
LIST [first line] [— last line]

The LIST command displays a BASIC program listing that has been
typed or LOADed into the Commodore 128's memory so you ¢can
read and edit it. When LIST is used alone {(without numbers foliowing
it), the Commodore 128 gives a complete LISTing of the program on
the screen. The listing process may be siowed down by holding
down the COMMODORE key, paused by CONTROL S or NO SCROLL
KEY {and resumed by pressing any other key), or stopped by hitting
the RUN/STOR key. If the word LIST is followed by a line number, the
Commodore 128 shows only that line number. If LIST is typed with
two numbers separated by a dash, all lines from the first to the sec-
ond line number are displayed. If LIST is typed followed by a number
and just a dash, the Commodore 128 shows all lines from that num-
ber to the end of the program. And if LIST is typed with a dash, then a
number, all lines from the beginning of the program to that line num-
ber are LISTed. By using these variations, any portion of a program
can be examined or brought to the screen for modification. In Com-
modore 128 mode, LIST can be used in a program and the program
can resume with the CONT command.

BASIC 7.0 ENCYCLOPEDIA— Basic Commands and Statements

-~ C T

[

C C ¢ [C [«

C C L

I SO O S

)

]

-}

3

2}

-1

]

]

1

_}

1

|

LOAD

EXAMPLES:

LIST Shows entire program.

LIST 100 - Shows from line 100 until the end of the
program.

LIST 10 Shows only line 10.

LIST —-100 Shows all line from the beginning through line
100.

LIST 10-200 Shows lines from 10 to 200, inclusive.

—Load a program from a peripheral device such as the disk drive or
Datassette

LOAD ‘“*filename? [,device number][,relocate flag]

This is the command used to recall a program stored on disk or cas-
sette tape. Here, the filename is a program name up to 16 charac-
ters long, in quotes. The name must be followed by a comma (out-
side the quotes) and a number which acts as a device number to
determine where the program is stored (disk ar tape}. If no number is
supplied, the Commodore 128 assumes device number 1 (the Datas-

sette tape recorder).

The relocate flag is a number (O or 1} that determines where a pro-
gram is loaded in memory. A relocate flag of O telts the Commodore
128 to load the program at the start of the BASIC program area. A
flag of 1 tells the computer to LOAD from the point where it was
SAVEd. The detault value of the relocate flag is 0. The program
parameter of 1 is generally used when [oading machine language

programs.

The device most commonly used with the LOAD command is the
disk drive. This is device number 8, though the DLOAD command is
more convient 1o use when working with disk.

If LOAD is typed with no arguments, followed by RETURN, the C128
assumes you are loading from tape and you are prompted to “PRESS
PLAY ON TAPE". If you press PLAY, the Commodore 128 starts jook-
ing for a program on tape. When the program is found, the Commo-
dore 128 prints FOUND"filename”, where the filename is the name
of the first file which the Datassette finds on the tape. Press the
Commodore key to LOAD the found filename, or press the spacebar
to keep searching on the tape. Once the program is LOADed, it can
be RUN, LISTed or modified.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

LOCATE

EXAMPLES:

LOAD Reads in the next program from tape.

LOAD “HELLO” Searches tape for a program called
HELLO, and LOADs it if found.

LOAD (A%),8 LOADs the program from disk whose
name is stored in the variable A$.

LOAD“HELLO” 8 Looks for the program called HELLO on

disk drive number 8, drive 0. (This is
equivalent to DLOAD “HELLO").

LOAD“MACHLANG”,8,1 LOADs the machine language program
called “MACHLANG" into the lccation
from which it was SAVEd.

The LOAD command can be used within a BASIC program to find
and RUN the next program on a tape or disk. This is called chaining.

—Position the bit map pixet cursor on the screen
LOCATE x, ¥

The LOCATE statement places the pixel cursor (PC) at any specitied
pixel ceordinate on the screen.

The pixel cursor {PC) is the coordinate on the bit map screen where
drawing of circles, boxes, lines and points and where PAINTing
begins. The PC ranges from X and Y coordinates 0,0 through
320,200. The PC is not visible like the text cursor but it can be con-
trolled through the graphics statements (BOX,CIRCLE,DRAW etc.)
The default location of the pixel cursor is the coordinate specified as
the X and Y portions in each particular graphics command. So the
LOCATE command does not have to be specified.

The X and Y values can place the pixel cursor at absolute coordi-
nates such as (100,100) or at coordinates relative 1o previous posi-
tion (+/—xand +/—y)of the pixel cursor such as {+ 20, — 10). The
coordinate of one axis (x or y) can be relative and the other can be

absolute. Here are the possible combinations of ways to specify the
X and y coordinates:

X,y absolute x, absolute y
+i=-xy relative x, absolute y
X+l-y absoiute x, relative y
+1=x,+/-y relative x, relative y
272 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

C C L

—

C & L

C L

C C C @

1

1

1

]

-l

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE AND
GSHAPE have an additional notation which allows you to specify a
distance and an angle relative to the previous coordinates of the

pixel cursor (PC). The notation is as follows:

KEYWORD source, distance; angle

where:

KEYWORD i5 a graphics command such as DRAW,
CIRCLE, PAINT, LOCATE, BOX or GSHAPE

SOURCE is the same code as in all of the graphics
commands

DISTANCE is the number of pixels to move the pixel
cursor _

ANGLE is the number of degrees to move relative to

the previous pixel cursor coordinate

EXAMPLE:

LOCATE 160,100 Positions the PC in the center of the bit map
screen. Nothing will be seen until something
is drawn.

LOCATE + 20,100 Move the pixel cursor 20 pixels to the right of
the last PC position and place it at Y
coordinate 100.

LOCATE -30,+20 Move the PC 30 pixels to the left and 20
down from the previous PC position.

The PC can be found by using the RDOT(0) function to get the X-
coordinate and RDOT(1) to get the Y-coordinate. The color source of
the dot at the PC can be found by PRINTing RDOT(2).

MONITOR —Enter the Commodare 128 machine language monitor
MONITOR

See Appendix J for details on the Commodore 128 Machine Lan-
guage Monitor,

273 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

MOVSPR

—Position or move sprite on the screen

1) MOVSPR number,x,y Place the specified sprite at absolute
coordinate x,v.

Z2)MOVSPR number, +/J-x, +)y
Move sprite relative to the position of the
pixel cursor.

3) MOVSPR number,x;y Move sprite distance x at angle y relative
to the pixel cursor.

4) MOVSPR number,x angle #y speed
Move sprite at an angte (x) relative to its
original coordinates, in the clockwise
direciion and at the specified speed {y).
where:
number is sprite’s number (1 through 8)
{,X,¥? is coordinate of the sprite location.

ANGLE is the angle (0-360) of motion in the clockwise direction rela-
tive to the sprites original coordinate.

SPEED is a speed (0-15) in which the sprite moves.

This statement locates a sprite at a specific location on the screen
according to the SPRITE coordinate ptane (not the bit map plane) or
initiates sprite motion at a specified rate. See MOVSPR in Section 6
for a diagram of the sprite coordinate system.

EXAMPLES:

MOVSPR 1,150,150 Position sprite 1 near the center of
the screen, x,y coordinate 150,150.

MOVSPR 1, +20,-30 Move sprite 1 to the right 20

cocrdinates and up 30 coordinates.

MOVSPR 4, —50, +100 Move sprite 4 to the left 50
coordinates and down 100
coordinates.

MOVSPR 5, 45 #15 Move sprite 5 at a 45 degree angle
in the clockwise direction, relative to
its original x and y coordinates. The
sprite moves at the fastest rate (15).

NOTE: Once you specify an angle and a speed in the third form of

the MOVSPR statement, you must set the angle back to zero before
moving other sprites, or their movement will be affected. Also, keep
in mind that the SCALE command affects the MOVSPR coordinates.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

. L L

[

C

L

-

S

I

[

[AU D I N P I

]

]

}

-]

]

»

]

N

]

]

If you add SCALing to your programs, you also must adjust the
sprites new coordinates so they appear correctly on the screen.

NEW —-Clear (erase) program and variable storage
NEW

This command erases the entire program in memory and clears any
variables that may have been used. Unless the program was stered
on disk or tape, it is lost. Be careful with the use of this command.
The NEW command also can be used as a statement in a BASIC
program. However, when the Commodore 128 gets to this line, the
program is erased and everything stops.

ON —Conditionally branch to a specified program line number accord-
ing to the resulis of the specified expression

ON expression (GOTO/IGOSUB) line #1 [, line #2,...]

This statement can make the GOTO and GOSUB statements operate
like special versions of the {conditional) IF statement. The word ON is
fottowed by a logical or mathematical expression, then either of the
keywords GOTO or GOSUB and a list of line numbers separated by
commas. {f the result of the expression is 1, the first line in the list is
executed. If the result is 2, the second line number is executed and
so on. If the result is 0, or targer than the number of Iine numbers in
the list, the program resumes with the tine immediately following the
ON statement. If the number is negative, an ILLEGAL QUANTITY
ERROR results.

EXAMPLE:

10 INPUT X:IF X<0 THEN 10

20 ON X GOTO 30, 40, 50, 60 When X =1,0N sends control to the

25 STOP first line number in the list (30)
When X =2, ON sends control to the
second line {40),etc

30 PRINT “X = 1”
40 PRINT “X = 27
50 PRINT “X = 3"
60 PRINT “X = 4"
OPEN —Open files for input or output

OPEN logical file number, device number [,secondary
address] [,”’filename, filetype, mode”)[,cmd string])

275 BASIC 7.0 ENCYCLOPEDIA—Basic Cormmands and Statements

The OPEN statement allows the Commodore 128 to access files
within devices such as a disk drive, a Datassette cassette recorder,
a printer or even the screen of the Commaodore 128, The word OPEN
is followed by a togical file number, which is the number to which all
other BASIC input/output statements will refer, such as
PRINT#write), INPUT#(read), etc. This number is from 0 to 255.

The second number, called the device number, follows the logicat file
number. Device number 0 is the Commodore 128 keyboard; 1 is the
cassette recorder; 3 is the Commodore 128 screen, 4-7 are the
printer(s), and 8-11 are reserved for disk drives. It is often a good
idea to use the same file number as the device number because it
makes it easy to remember which is which.

Foltowing the device number may be a third parameter called the
secondary address. In the case of the cassette, this can be 0 for
read, 1 for write and 2 for write with END-OF TAPE marker at the
end. In the case of the disk, the number refers to the channel num-
ber. See your disk drive manual for more information on channels
and channel numbers. For the printer, the secondary addresses are
used to select certain programming functions.

There may also be a filename specified for disk or tape OR a string
following the secondary address, which could be a command to the
disk/tape drive or the name of the file on tape or disk. If the filename
is specified, the type and mode refer to disk files only. File types are
PROGRAM, SEQUENTIAL, RELATIVE and USER; modes are READ
and WRITE.

EXAMPLES:
10 QPEN 3,3 QPENs the screen as file number 3.
20 OPEN 1,0 QOPENSs the keyboard as file number 1.

30 OPEN 1,1,0,“DOT” OPENSs the cassette for reading, as file
number 1, using "BOT" ag the filename.

OPEN 4,4 OPENs the printer as file number 4.

OPEN 15,8,15 OPENs the command channel on the disk
as file 15, with secondary address 15.
Secondary address 15 is reserved for the
disk drive error channel.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

L L

C C CCc & ek

-

C

C (C L

-]

.

:

1

—

5 OPEN 8,8,12,“TESTFILE,SEQ,WRITE” OPENs a sequential disk
file for writing called
TESTFILE as file
number 8, with
secondary address 12.

See also: CLOSE, CMD, GET#, INPUT#, and PRINT# statements and
system variables ST, DS, and DS$.

PAINT —Fill area with color
PAINT [color sourcel,x,y[,mode]
where:
colorsource 0 Bit map foreground
1 Bit map background (default)
2 Multicolor 1
3 Multicolor 2
KW eoninnnnnsnnaananas starting coordinate, scaled (default at
pixel cursor (PCY)
mode 0 = paint an area defined by the color

source selected
1 = paint an area defined by any non-
background source

The PAINT command fills an area with color. It fills in the area around
the specified point until a boundary of the same source is encoun-
tered. For example, if you draw a circle in the foreground color
source, start PAINTIng the circle where the coordinate assumes the
background source. The Commodore 128 will only PAINT where the
specified source in the PAINT statement is different than the source
of the x and y pixel coordinate. It cannot PAINT points where the
sources are the same in the PAINT statement and the pixel coordi-
nate. The x and y coordinate must lie completely within the boundary
of the shape you intend to PAINT, and the source of the starting pixel
coordinate and the specified color source must be different.

The x and y values can place the pixel cursor at absolute coordi-
nates such as (100,100) or at coordinates relative to previous posi-
tion{+/—x and +/— y)of the pixel cursor such as (+ 20, — 10). The
coordinate of one axis is (x or y) can be retative and the other can be
absolute. Here are the posible combinations of ways to specify the
x and y coordinates:

) 8 absolute x, absolute y

277 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

PLAY

278

+1=-xy
X, +/-y
+i—-x,+1-y

relative x, absolute y
absolute x, relative y
relative x, relative y

Also see the LOCATE command for information on the pixel cursor.

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE AND
GSHAPE have an additional notation which allows you to specify a distance
and an angle relative to the previous coordinates of the pixel cursor (PC).

The notation is as follows;

KEYWORD
where:
KEYWORD

SOURCE

DISTANCE

ANGLE

EXAMPLE:

source, distance; angle

i a graphics command such as DRAW,
CIRCLE, PAINT, LOCATE, BOX or GSHAPE

is the same code as in all of the graphics
commands

is the number of pixels to move the pixe!
cursor

is the number of degrees to move relative to
the previous pixel cursor coordinate

10 CIRCLE 1, 160,100,65,50 Draws an outline of a circle.

20 PAINT 1, 160,100

Fills in the circle with color from
source 1 {VIC foreground), assuming
point 160,100 is colored in the
background color {source 0).

10 BOX 1, 10, 10, 20, 20 Draws an outline of a box,

20 PAINT 1, 15,15

Fills the box with color from source
1, assuming point 15,15 is colored in
the background source (0).

30 PAINT 1, +10, +10 PAINT the screen in the foreground

color source at the coordinate
relative to the pixel cursor's previous
position plus 10 in both the vertical
and horizontal positions.

—Defines and plays musical notes and elements within a string or

string variable.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

I

- C L

[

M I A A

C C C C C .

]

-]

279

PLAY “¥n,On,Tn,Un,Xn,elements,notes”
where the string or string variable is composed of the following:

Vn = Voice (n=1-3)

On = Octave (n=0-6)

Tn = Tune Envelope Defaults (n = 0-9)
0 = piano
1 = accordion

W~ OO SN
(i

trumpet
9 = xylophone
Un = Volume (n=0-8)
Xn = Filteron(n=1), off (n=0)

Notes: AB.C.D,EFG

Elements: # ... Sharp
$... Flat
W.......... Whole note
H. Half note
Q.. Quarter note
oo Eighth note
S Sixteenth note
. e Dotted
R.......... Rest
M.......... Wait for all voices cur-

rently playing to end
the current “measure”

The PLAY statement gives you the power to select voice, octave and
tune envelope (including ten predefined musical instrument enve-
lopes), the volume and the notes you want to PLAY. All these controls
are enclosed in quotes. You may include spaces in a PLAY string for

readability.

All elements except R and M precede the musical notes in a PLAY
string.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statemenis

PRINT

EXAMPLES:

PLAY “V104TOUSXOCDEFGAB” Play the notes C,D,E,FG,A
and B in voice 1, octave 4,
tune envelope 0 (piano), at
volume 5, with the filter
oft.

PLAY “V305TeU7X1#BS$SAW.CHDQEIF” Play the notes B-sharp, A-
flat, a whole dotted-C note,
a half D-note, a quarter E-
note and an eighth F-note,

A% =“V305T8U3ABCDE" PLAY the notes and
PLAY A$ elements within A$.

—Change the contents of a RAM memory location
POKE address, value

The POKE statement allows changing of any value in the Commo-
dore 128 RAM, and allows maodification of many of the Commodore
128 Input/Output registers. The keyword POKE is always followed by
two parameters. The first is a location inside the Commodore 128
memary. This can be a value from 0 to 65535. The second parameter
is a value from 0 to 255, which is placed in the location, replacing
any value that was there previously. The value of the memory loca-
tion determines the bit pattern of the memory location. The POKE
occurs into the currently selected RAM bank. The POKE address
depends on the BANK number. See BANK in this Encyclopedia for
the appropriate BANK configurations.

EXAMPLE:
10 POKE 53280,1 Changes VIC border color

NOTE: PEEX, a function related to POKE, returns the contents of the
specified memory location, is listed under FUNCTIONS,

—OQutput to the text screen
PRINT [print list]

The PRINT statement is the major output statement in BASIC. While
the PRINT statement is the first BASIC statement most people iearn
to use, there are many variations of this statement. The word PRINT
can be followed by any of the following:

Characters inside quotes (“text™}

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

C C C L L

C C C C C C L

. C C

.

)

-

-

!

-

)

PRINT #

281

Variable names (A, B, AS, X8)
Functions (SIN(23), ABS(33)
Punctuation marks)

The characters inside quotes are often called literals because they
are printed literally, exactly as they appear. Variable names have the
value they contain {either a number or a string) printed. Functions
also have their number values printed.

Punctuation marks are used to heip format the data neatly on the
screen. The comma separates printed output by 10 spaces, while
the semicolon separates printed output by three spaces. Either
punctuation mark can be used as the last symbol in the statement.
This results in the next PRINT statement acting as if it is continuing
the previous PRINT statement.

EXAMPLES: RESULTS

10 PRINT “HELLO” HELLO

20 A$=“THERE":PRINT “HELLO ";A$ HELLC THERE
WA=4B=27A+B 8

40 J = 41:PRINT J;:PRINT J -1 41 40

50 PRINT A;B;:D =A + B:PRINT D;A-B 4262
See atso POS, SPC, TAB and CHAR functions.

—Output data to files
PRINT# file number, print list

PRINT# is followed by a number which refers to the data file previ-
ously OPENed. The number is followed by a comma and a list of
items to be output to the fite which can be strings, numeric or string
variables or numeric data. The comma and semicolon act in the
same manner for spacing with printers as they do in the PRINT state-
ment. Some devices may not work with TAB and SPC.

EXAMPLE:

10 OPEN 4,4 Qutputs the data “HELLO
20 PRINT#4,“HELLO THERE!”,A$,B$ THERE" and the variables
A% and B$ to the printer.

10 OPEN 2,8,2 Quiputs the data variables
20 PRINT#2,A,B$,C,D A, B3, C and D to the disk
file number 2.

BASIC 7.0 ENCYCLOPEDIA—Basic Commangs and Statements

PRINT USING

282

NOTE: The PRINT# command is used by itself to close the channel
to the prinier before closing the file, as follows:

10 OPEN 4,4
30 PRINT#4,"“PRINT WORDS”
40 PRINT#4
50 CLOSE 4

—OQutput using format
PRINT [Hilenumber,] USING*‘format list”; print list

This statement defines the format of string and numeric items for
printing to the text screen, printer or other device. The format is put
in guotes. This is the format list. Then add a semicolon and a list of
what is to be printed in the format for the print list. The list can be
variables or the actual vatues to be printed.

EXAMPLE:

5 X =32 Y =100.23; A$ = “CAT”
10 PRINT USING “SHH.## ";13.25,X,Y
20 PRINT USING “###)#";“CBM” A$

When this is RUN, line 10 prints:

$13.25 $3200 $***** Five asterisks {(*****)are printed
instead of a Y value because Y has five
digits, and this condition does not con-
form to format list (as explained below)

Line 20 prints this:
CBM CAT Leaves three spaces before printing
"CBM" as defined in format list.
CHARACTER NUMERIC STRING
Pound sign (#) X X
Plus sign (+) X
Minus sign(—) X
Decimal Poaint () X
Comma ()} X
Dollar Sign (%) X
Four Up Arrows (1111) X
Equal Sign (=} X
Greater Than Sign ()} X

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

. C L L

C C C C O CcLC oo ..

C

J—

(

283

The pound sign {#) reserves room for a single character in the output
field. If the data item contains more characters than there are #
signs in the format field, the entire field is filled with asterisks {(*); no
characters are printed.

EXAMPLE:
10 PRINT USING “#iH##"; X
For these values of X, this format displays:

A=1234 12
A = 567.89 568
A = 123456 b

For a STRING item, the string data is truncated at the bounds of the
field. Only as many characters are printed as there are pound signs
{(#)in the format item. Truncation occurs on the right.

The plus (+) and minus { —) signs can be used in either the first or
last position of a format field, but not both. The plus sign is printed if
the number is positive. The minus sign is printed if the number is
negative.

If a minus sign is used and the number is positive, a btank is printed
in the character position indicated by the minus sign.

If neither a plus nor a minus sign is used in the format field for a
numeric data item, a minus sign is printed before the first digit or
dollar symbol if the number is negative. No sign is printed if the num-
ber is positive. This means that one additional character, the minus
sign, is printed if the number is negative. If there are too many char-
acters to fit into the field specified by the pound sign and plus/minus
signs, then an overflow occurs and the field is fitted with asterisks

(*)

A decimal point () symbol designates the position of the decimal
paint in the number. There can be only one decimal point in any for-
mat field. If a decimal peint is not specified in the format field, the
vatue is rounded to the nearest integer and printed without decimal
ptaces.

When a decimal point is specified, the number of digits preceding
the decimal point {including the minus sign, if the vaiue is negative)

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

must not exceed the number of pound signs before the decimal
point. If there are too many digits, an overflow occurs and the field is
filled with asterisks (*}.

A comma {,} allows placing of commas in numeric fields. The posi-
tion of the comma in the format list indicates where the commas
appear in a printed number. Only commas within a number are
printed. Unused commas to the left of the first digit appear as filler
character. At least one pound sign must precede the first comma in
a field.

If commas are specified in a field and the number is negative, then a
minus sign is printed as the first character, even if the character posi-
tion is specified as a comma.

EXAMPLES:

FIELD EXPRESSION RESULT COMMENT

#it# -1 -0 Leading zero added.

1 1.0 Trailing zero added.

i —-100.5 — 101 Rounded to no decimal
places.

#H#E — 1000 rEE Overflow because four
digits and a minus sign
cannot fit in field.

. 10 10. Decimal peint added.

#OH# 1 $1 Floating dollar sign.

A dollar sign ($) symbol shows that a dollar sign wilt be printed in the
number. If the dollar sign is to float (always be placed before the
number), at least one pound sign must be specified before the dollar
sign. If a dollar sign is specified without a leading pound sign, the
dollar sign is printed in the position shown in the format field. if com-
mas and/or a plus or minus sign are specified in a format field with a
dollar sign, the program prints a comma or sign before the dollar
sign. The up arrows or caret symboals (AA) are used to specify that
the number is to be printed in E + format (scientific notation). A
pound sign must be used in addition to the four carets to specify the
field width. The carets can appear either before or after the pound
sign in the format field. Four carets must be specified when a num-
ber is to be printed in E format. [f more than one but fewer than four
carets are specified, a syntax error results. If more than four carets
are specified, only the first four are used. The fifth caret is inter-

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

— C [

- C C O C

[

C L [

I

[

(-

]

PUDEF

READ

preted as a no-text symbol. An equal sign{=)isusedto centera
string in a field. The field width is specified by the number of charac-
ters (pound sign and equal sign} in the format field. If the string con-
tains fewer characters than the field width, the string is centered in
the field. If the string contains more characters that can be fit into
the field, then the right-most characters are truncated and the string
fills the entire field. A greater than sign (}) is used to right justify a
string in a field.

—Redefine symbels in PRINT USING statement
PUDEF *nnnn”

Where “nnnn” is any combination of characters, up to four in all,
PUDEF allows you to redefine any of the following four symbols in
the PRINT USING statement: blanks, commas, decimal points and
dollar signs. These four symbols can be changed into some other
character by placing the new character in the correct position in the
PUDEF conirgl string.

Position 1 is the filler character. The default is a blank. Place a new
character here for another character to appear in place of blanks.

Position 2 is the comma character. Default is a comma.
Position 3 is the decimal point. Default is a decimal point.

Position 4 is the dollar sign. Default is a dollar sign.

EXAMPLES:
10 PUDEF “*” PRINTs * in the place of blanks.
20 PUDEF “ (¥ PRINTs ¢ in the place of commas.

—Read data from DATA statements and input it into the computer's
memaory (while the program is RUNning)

READ variable list

This statement inputs information from DATA statements and stores
it in variables, where the data can be used by the RUNning program.
The BEAD statement variable list may contain both strings and num-
bers. Be careful to avoid reading strings where the READ statement
expects a number and vice versa. This produces a TYPE MISMATCH
ERROR message.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

RECORD

The data in the DATA statements are READ in sequential order, Each
READ staiement can read one or more data items. Every variable in

the READ statement requires a data item. If one is not supplied, an
OUT OF DATA ERROR occurs.

In a program, you can READ the data and then re-read it by issuing
the RESTORE statement. The RESTORE sets the seguential data

pointer back to the beginning, where the data can be read again. See

the RESTCRE statement.
EXAMPLES:
10 READ A, B, C READ the first three numeric
20 DATA 3,4, 5 variables from the closest data
statement.
10 READ A$, BS, C$ READ the first three string

20 DATA JOHN, PAUL, GEORGE string variables from the nearest

data statement.

10 READ A, BS, C READ {and input into the C128

20 DATA 1200, NANCY, 345 memaory) a numeric variable, a
string variable and another
numeric variable.

—~Position relative file pointers

RECORD# logical file number, record number [,byte
number]

This statement pesitions a relative file pointer to select any byte
(character) of any record in the relative file, The logical file number
can be in the range between 0 and 255. The record number ¢can be
in the range 0 through 65535. Byte number is in the range 1 through
254. See your disk drive manual for details about relative files.

When the record number value is set higher than the tast record
number in the file, the following occurs:

For a write (PRINT#) operation, additional records are created 1o
expand the iile to the desired record number.

For a read (INPUT#) operation, a null record is returned and a
“RECORD NOT PRESENT ERROR occurs”.

BASIC 7.0 ENCYCIL.OPEDIA—Basic Commands and Statemants

C C CC oL C .k o b *°

C L

.

L

]

B

]

]

1]

1

2l

']

J

-l

]

]

RENAME

EXAMPLES:

10 OPEN 2,8,2“CUSTOMER,R,W"
20 RECORDi#2,10/1

30 PRINT#2,A$

40 CLOSE 2

This example opens an existing relative file called “CUSTOMER" as
file number 2 in line 10. Line 20 positions the relative file pointer at
the first byte in record number 10. Line 30 actually writes the data,
A3, to file number 2.

The RECORD command accepts variables for its parameters. itis
often convienent to place a RECORD command withina FOR . . .
NEXT or DO loop. Also see DOPEN and OPEN.

—Comments or remarks about the operation of a program ling

The REMark statement is a note to whoever is reading a listing of the
program. REM may explain a section of the program, give informa-
tion about the author, etc. REM statements do not affect the opera-
tion of the program, except to add tength to it (and therefore use
maore memaory). Nothing io the right of the keyword REM is inter-
preted by the computer as an executable instruction. Therefore, no
other executable statement can follow a REM on the same line.

EXAMPLE:
10 NEXT X:REM This line increments X.

—Change the name of a file on disk

RENAME ‘‘old filename” TO **‘new filename?” [,Ddrive
number] [;Udevice number]

This command is used to rename a fite on a disk, from the cld
filename to the new filename. The disk drive does not RENAME a file

if itis OPEN.

EXAMPLES:

RENAME “TEST” TO “FINALTEST”,D0 Change the name of the
file “TEST™ to “FINAL

TEST".

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

RENUMBER

RENAME (A$) to {B%),D0,U9 Change the filename
specified in A% to the
filename specified in B$
on drive 0, device
number 9. Rernember,
whenever a variable
name is used as a
filename, it must be
enclosed in parentheses.

—Renumber lines of a BASIC program

RENUMBER [new starting line number][,increment] [,old
starting line number]

The new starting line is the number of the first line in the program
after renumbering; the default value is 10. The increment is the inter-
val between line numbers, (i.e., 10, 20, 30, etc.); the increment
default value is also 10. The old starting line number is the first line
number before you renumber the program. This allows renumbering
of a select portion of the program. The default in this case is the first

line of the program. This command can only be executed from direct
mode.

An “UNRESOLVED REFERENCE" error occurs if any reference to
line number that doesn’t exist is encountered. A “LINE NUMBER
TOO LARGE" error oceurs if RENUMBERIng expands the program
beyond its limits. Either error leaves the program unharmed.

EXAMPLES:

RENUMBER Renumbers the program starting at
10, and increments each additional
line by 10.

RENUMBER 20, 20, 1 Starting at line 1, renumbers the

program. Line 1 becomes line 20,
and other lires are numbered in
increments of 20,

RENUMBER, , 65 Starting at line 65, renumbers in
increments of 10. Line 65 becomes
line 10. If you omit a parameter, you
must still enter a comma as a
placeholder.

BASIC 7.0 ENCYCLOPEDIA—~Basic Commands and Statements

[R R

L

C

L

C C C C C L L L

[

0 I N

]

B

N

]

1

]

RESTORE

RESUME

289

—Reset READ pointer so the DATA can be reREAD
RESTORE [line #]

When executed in a program, the pointer to the item in a DATA state-
ment that is to be read next is reset to the first item in the DATA state-
ment. This provides the capability to reREAD the data. if a line num-
ber follows the RESTORE staterment, the READ pointer is set to the
first data item in the specified program line. Otherwise the pginter is
reset to the beginning of the BASIC program.

EXAMPLES:

MFORI=1TO3 This example READs the data

20 READ X in line 70 and stores it in

30 TOTAL = X + TOTAL numeric variable X. It adds

40 NEXT the total of all the numeric

50 RESTORE data items. Once all the data

60 GOTO 10 has been READ, three cycles through

70 DATA 10,20,30 the loop, the READ pointer is
RESTOREd to the beginning of the
program and it returns to line 10 and
performs repetitively.

10 READ A,B,C This example RESTORES the DATA

20 DATA 100,500,750 pointer to the beginning data

30 READ X,Y,Z item in line 40. When line 60

40 DATA 36,24,38 is executed, it will READ the

50 RESTORE 40 DATA 36,24,38 from line 40,

60 READ S,PQ since you don't need to READ line 20's

DATA again.

—Define where the pragram will continue (RESUME) after an error
has been trapped

RESUME [line # / NEXT]

This statement is used to restart program execution after TRAPping
an error. With no parameters, RESUME attempts to re-execute the
statement in which the error occurred. RESUME NEXT resumes
execution at the statement immediately following the one containing
the error; RESUME followed by a line number will GOTO the specific
line and resume execution from that line number. RESUME can only
be used in program mode.

EXAMPLE:

10 INPUT “CFENTER A NUMBER";A
15 TRAP 100
20 B=100/A

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

RETURN

40 PRINT“THE RESULT =";B: PRINT“THE END”

50 INPUT *“DO YOU WANT TO RUN IT AGAIN (Y/N)";Z$:IF
25 =“Y” THEN 10

60 STOP

100 INPUT“ENTER ANOTHER NUMBER (NOT ZERO)™A
110 RESUME 20

This example traps a “division by zero error™ in line 20 if 0 is entered
intine 10. If zero is entered, the program goes to line 100, where you

are asked to input another number besides 0. Line 110 returns to line
20 to complete the calcutation. Line 50 asks if you want to repeat the

program again. If you do, press the Y key.

—Return from subroutine
RETURN

This statement is atways paired with the GOSUB statement. When
the program encounters a RETURN statement, it goes 1o the state-
ment immediately following the last GOSUB command executed. If
no GOSUB was previously issued, then a RETURN WITHOUT
GOSUB ERROR message is disptayed and the program stops. All
subroutines end with a RETURN statement.

EXAMPLE:

10 PRINT “ENTER SUBROUTINE"
20 GOSUB 100
30 PRINT “END OF SUBROUTINE”

80 STOP
100 PRINT “SUBROUTINE 1”
110 RETURN

This example calls the subroutine at line 100 which prints the mes-
sage “SUBROUTINE 1" and RETURNS to line 30, the rest of the
program.

—Execute BASIC program

1) RUN [line #]
2) RUN **filename”’ [,Ddrive number][,Udevice number]

Once a program has been typed into memory or LOADed, the RUN
command executes it. RUN clears all variables in the program

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

N T

F C C C o o =

C C C C L

[

L C

1 1

1

]

|

B

N

]

B

]

1

7

N

_]

SAVE

before starting program execution. If there is a number following the
RUN command, execution starts at that line number. If there is a
filename following the RUN command, the named file is loaded from
the disk drive and RUN, with no further action required of the user.
RUN may be used within a program. The default drive number is 0
and default device number is 8.

EXAMPLES:

RUN Starts execution from the beginning of the
program,

RUN 100 Starts program execution at line 100.

RUN*“PRG1” DLOADS “PRG1™ from disk drive 8, and runs
it from the starting line number.

RUN(AS) DLOADS the program named in the variable
AS.

—Store the program in memory to disk or tape
SAVE [“filename”][,device number][,EOT flag]

This command stores a program currently in memory onto a cas-
sette tape or digk. If the word SAVE is typed alone followed by
RETURN, the Commodore 128 assumes that the program is to be
stored on cassette tape. It has no way of checking if there is already
a program on the tape in that location, so make sure you do not
record over valuable information on your tape. If SAVE is followed by
a filename in quotes or a string variabte name, the Commodare 128
gives the program that name, so it may be located easity and
retrieved in the future. If a device number is specified for the SAVE,
follow the name with a comma {after the quotes) and a number or
numeric variable. Device number 1 is the tape drive, and number 8 is
the disk drive. After the device number on a tape command, there
can be a comma and a second number, which is 2, If the 2 is
present, the Commodore 128 puts an END-OF-TAPE marker (EOT
flag) after the program (tape output only). If, in trying to LOAD a pro-
gram, the Commodore 128 finds one of these markers, rather than
loading the program, a FILE NOT FOUND ERROR is reported.

EXAMPLES:

SAVE Stores program on tape, without a name.

SAVE “HELLO” Stores a program on tape, under the name
HELLO.

SAVE A3$.8 Stores on disk, with the name stored in
variable A%.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

SCALE

SAVE “HELLO”, 8 Stores on disk, with name HELLO {equivalent
to DSAVE "HELLO").

SAVE “HELLO”, 1, 2 Stores on tape, with name HELLQ, and
places an END-OF TAPE marker after the
program.,

—Alter scaling in graphics mode
SCALE n [,xmax,ymax]

where:
n = 1 {on}or 0 (off)

In Standard bit map mode 320 { =X max { 32767
(default = 1023)
200 (=Y max ¢ 32767
{default = 1023)

In Multicolor mode 160 { =X max { 32767
(default = 511)
160 { =Y max { 32767
(default = 511)

This statement changes the scaling of the bit maps in multicolor and
high-resolution modes. Entering:

SCALE 1

turns scaling on. Coordinates may then be scaled from 0 10 32767 in
bath X and Y, rather than the normal scale values, which are;

multicolormode X=0to159 Y = 010199
bitmapmode X=0to31¢ Y =010150
EXAMPLES:

10 GRAPHIC 1,1 Enter standard bit

20 SCALE 1:CIRCLE 1,180,100,100,100 map, turn scaling on 10

default size (1023,1023)
and draw a circle.

10 GRAPHIC 3,1 Enter multicolor mode,

20 SCALE 1,1000,5000 turn scaling on to size

30 CIRCLE 1,180,100,100,100 {1000,5000) and draw a
circle.

The SCALE command affects the sprite coordinates in the MOVSPR

command. If you add scaling to a program that contains sprites,
adjust the MOVSFR coordinates accordingly.

292 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

C CCCCCcCCcio it o b b

C C C L

)

]

)

Vo

SCNCLR —Clear screen
SCNCLR mode number

The modes are as follows:

Mode Number Mode

44 column (VIC) text

bit map

split screen bit map

multicolor bit map

split screen multicolor bit map
80 column (8563) text

This statement with no argument clears the graphic screen, it it is
present, otherwise the current text screen is cleared.

EXAMPLES:

SCNCLR 5 Clears 80 column text screen,
SCNCLR 1 Clears the (VIC) bit map screen.
SCNCLR 4 Clears the (VIC) split screen multicolor bit map.

[LI e 3 N B e

SCRATCH —Delete a file from the disk directory
SCRATCH ‘‘filename” [,Ddrive number][,Udevice number]

This command deletes a file from the disk directory. As a precaution, -
the system asks “ARE YOU SURE?” (in direct mode only) before the
Commodore 128 completes the operation. Type a Y to perform the
SCRATCH or press any other key to cancel the operation. Use this
command to erase unwanted files, and to create more space on the
disk. The filename may contain template, or wildcards (?,* etc.). The
default drive number is 0 and default device number is 8.

EXAMPLE:
SCRATCH “MY BACK”, DO
This erases the filé MY BACK from the disk in drive 0.

SLEEP —Delay program for a specific period of time
SLEEPN
where N is seconds 0¢ N { 65535.

293 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

SLOW

SOUND

294

—Return the Commaodore 128 to 1Mhz operation
SLOW

The Commodore 128 is capable of running the 8502 microprocessor

at a speed of 1 or 2 megahertz {(Mhz).

The SLOW command slows down the microprocessor to 1 Mega-
hertz from 2 Megahertz. The FAST command sets the Commaodore
at 2 Mhz. The Commaodore 128 can process internally substantially
faster at 2 Mhz than at 1 Mhz. However, there is no increase in the
speed of input and cutput to peripherals. The 8502 microprocessor
defaults to 1 Mhz speed.

—Output sound effects and musical notes
SOUND v,f,d[,dir][,m]l[,s},wll,p]

where : ¥ = voice (1..3)

f = freguency value {D..65535)

d = duration (0..32767)

dir = step direction {D{up} ,1{down) or 2(oscillate)) default=0

m = minimum frequency {if sweep is used) {0..65535)
default=0

s = step value for sweep (0.,32767} default =0

w = waveform (0 = triangle,1 = sawicoth,2 = variable,
3= noise) default=2

P = pulse width (0..4095) default = 2048

The SOUND command is a fast and easy way to create sound
effects and musical tones. The three required parameters v,f and d
select the voice, frequency and duration of the sound. The duration
is in units catted jiffies. Sixty jiffies equals 1 second.

The SOUND command can sweep through a series of frequencies

which allows sound effects to pass through a range of notes. Specify

the direction of the sweep with the DIR parameter. Set the minimum
frequency of the sweep with M and the step value of the sweep with
S. Select the appropriate waveform with W and specify P as the
width of the variable pulse waveform if selected in W.

EXAMPLES:

SOUND 1,40960,60 Play a SOUND at frequency 40960
in voice 1 for 1 second.

BASIC 7.0 ENCYCLOPEDIA~—8asic Commands and Statements

C L

R
g

(.

(-

[

—
-

I

(B N

C € C

(.

C

SPRCOLOR

SPRDEF

295

SOUND 2,20000,50,0,2000,100 Output a sound by sweeping
through frequencies starting at
2000 and incrementing upward in
units of 100 up to 20,000. Each
frequency is played for 50 jiffies.

SOUND 3,5000,90,2,3000,500,1 This example outputs a range of
sounds starting at a minimum
frequency of 3000, through 5000, in
increments of 500. The direction of
the sweep is back and forth
(oscillating). The selected waveform
is sawtooth and the voice selected
is 3.

—Set multicolor 1 and/or multicolor 2 colors for all sprites
SPRCOLOR [smcr-1][,smcr-2]
where:

smer-1 Sets multicolor 1 for all sprites.
smer-2 Sets multicolor 2 for all sprites.

Either of these parameters may be any color from 1 through 16.
EXAMPLES:

SPRCOLOR 3.7 Sets sprite multicolor 1 to red and multicolor 2 to
blue,

SPRCOLOR 1,2 Sets sprite multicolor 1 to black and multicolor 2 to
white.

—Enter the SPRite DEFinition mode to create and edit sprite
images.

SPRDEF
The SPRDEF command defines sprites interactively,

Entering the SPRDEF command, displays a sprite work area on the
screen which is 24 characters wide by 21 characters tall. Each char-
acter position in the grid cerresponds 1o a sprite pixel in the sprite
displayed to the right of the work area. Here is a summary of the
SPRite DEFinition mode operations and the keys that perform them:

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

SPRITE

User Input Description

18 Selects a sprite number.

A Turns on and off autematic cursor
movement.

CRSR keys Maoves cursor.

RETURN key Moves cursor to start of next line,

RETURN key Exits sprite designer mode at the SPRITE
NUMBER? prompt only.

HOME key Moves cursor to top left corner of sprite
work area.

CLR koy Erases entire grid.

14 Selects color source.

CTRL key, 1-8 Selects sprite foreground color (1-B).

Commodore key, 1-8 Selects sprite foreground color {9-18).

STOP key Cancels changes and returns to prompt.

SHIFT RETURN Saves sprite and returns to SPRITE
NUMBER? prompt.

X Expands sprite in X (horizental) direction.

Y Expands sprite in Y {vertical) direction.

M Multicolor sprite.

Cc Copies sprite data from one sprite to

another.

—Turn on and off, color, expand and set screen priorities for a sprite
SPRITE {number) [,onioff][,fgnd][,priority][,x-exp]

L.y-expl[,mode]

The SPRITE statement controls most of the characteristics of a
sprite.

Parameter Description

number Sprite number (1-8)

onloff Turn sprite on (1) or off {0}

foreground Sprite foreground color (1-16)

priority Priority is O if sprites appear in front of objects on

the screen. Priority is 1 if sprites appear in back of
objects on the screen.

X-8Xp Horizontal EXPansion on (1) or off {0)
y-exp Vertical EXPansion on {1) or off (0)
mode Select standard sprite () or multicolor sprite {1)

Unspecified parameters in subsequent sprite statements take on the
characters of the previous SPRITE statement. You may check the
characteristics of a SPRITE with the RSPRITE function.

296 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

[C [

(-

L.

-

.

[

A I I A R |

(

[

(

-

N

]

EXAMPLES:

SPRITE 1,1,3 Turn on sprite number 1 and color it red.

SPRITE 2,1,7,1,1,1 Turn on sprite number 2, color it blue
make it pass behind objects on the
screen and expand it in the vertical and
horizontal directions.

SPRITE 6,1,1,0,0,1,1 Turn on SPRITE number 8, color it black.
The first 0 tells the computer to display
the sprites in front of objects on the
screen. The second O and the 1
following tell the C128 to expand the
sprite verticaly only. The last 1 specifies
multicolor mode. Use the SPRCOLOR
commarl to select the sprite’s
multicolor.

SPRSAV —Store sprite data from a text string variabte into a sprite storage
area or vice versa

SPRSAV {origin),{destination)

This command transfers a sprite image from a string variable to a
sprite storage area. It can also transfer the data from the sprite stor-
age area into a string variable. Either the origin or the destination
can be a sprite number or a string variable but they both cannct be
string variabtes. If you are moving a siring into a sprite, only the first
63 bytes of data are used. The rest are ignored since a sprite can
only hold 63 data bytes.

EXAMPLES:

SPRSAV 1,A$ Transfers the image pattern from sprite 1 to the
string named AS.

SPRSAV B$,2 Transfers the data from string variable 8% into
sprite 2.

SPRSAV 2,3 Transfers the data from sprite 2 to sprite 3.

SSHAPEIGSHAPE —Savelretrieve shapes to/from string variables

SSHAPE and GSHAPE are used to save and load rectangular areas
of multicolor or bit mapped screens to/from BASIC string variables.
The command to save an area of the screen inlo a string variable is:

SSHAPE string variable, X1, Y1 [,X2,Y2]

297 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

where:
string variableString name to save data in
b4 1R 4 I Corner coordinate {0,0 through 319,199)
(scaled)
X2y¥2 Corner coordinate opposite (X1,Y1)

(default is the PC)

Because BASIC limits strings to 255 characters, the size of the area
that can be saved is limited. The string size required can be calcu-
lated using one of the following (unscaled) formutas:

Limem) = INT ((ABS(X1—X2) + 1)/4 + .99) * (ABS(Y1-Y2)+ 1)+ 4
L(h—r)=INT { (ABS(X1~X2) + 1)/ 8 + .99) * (ABS(Y1—Y2)}+ 1)+ 4

The first equation pertains to multicolor bit map mode; the second
equation applies to standard bit map mode.

The command to retrieve {load) the data from a siring variable and
disptay it on specified screen coordinates is:

GSHAPE string variable [,X,Y] [,mode]

where:
string........... Contains shape to be drawn
XY iiiiiianane, Top left coordinate (0,0 through 319,199 telling

where o draw the shape (scaled—the default is
the pixel cursor)

mode........... Replacement mode:

. place shape ag is (default)

invert shape

. OR shape with area

. AND shape with area

: XOR shape with area

The replacement mode allows you to change the data in the string
variable so you caninvert it, perform a logical OR, exlusive OR or
AND operation on the image. The X and Y values can place the pixel
cursor at absolute coordinates such as (100,100) or at coordinates
relative to the previous position (+ /— X and + /-~ Y) of the pixel cur-
sor such as {+ 20, — 10). The coordinate of one axis (X or Y) canbe
relative and the other can be absolute. Here are the posible combi-
nations of ways to specify the X and Y coordinates.

BwWN 2O

XY absolute x, absolute y
+1-xy relative x, absolute y
X,+i-y absolute x, relative y

+/=x,+1=-y relative x, relative y

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

C

L

(-

B

[_

-

C C C b

(-

C C C

-]

]

N

]

I

Also see the LOCATE command for information on the pixel cursor.

0°)
(360°)

270° =—— PC — (90°)

180°

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE AND
GSHAPE have an additional notation which allows you to specify a
distance and an angle retative to the previous coordinates of the
pixel cursor (PC). The notation is as follows:

KEYWORD source, distance; angle

where;

KEYWORD is a graphics command such as DRAW,
CIRCLE, PAINT, LOCATE, BOX or GSHAPE

SOURCE is the same code as in all of the graphics
commands

DISTANCE is the number of pixels t¢ move the pixel
cursor

ANGLE is the number of degrees to move relative to

the previous pixel cursor coordinate

EXAMPLES:

SSHAPE A$,10,10 Saves a rectangular area from the
coordinates 10,10 to the location of the
pixel cursor, into string variable A$.

SSHAPE B$,20,30,47,51 Saves a rectangular area from top left
coordinate (20,30) through bottom right
coordinate (47,51) into string variable
BS.

SSHAPE D$,+10,+ 10 Saves a rectangular area 10 pixels o
the right and 10 pixels down from the
current position of the pixel cursor.

259 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

STASH

sTOP

SWAP

SYS

300

GSHAPE A$,120,20 Retrieves shape contained in string
variable A% and displays it at top left
coordinate (120,20).

GSHAPE B$,30,30,1 Retrieves shape contained in string
variable B$% and displays it at top left
coordinate 30,30. The shape is inverted
due to the replacement mode being
selected by the 1.

GSHAPE C$, +20,4+ 30 Retrieve shape from string variable C$
and displays it 20 pixels to the right and
30 pixels down from the current position
of the pixel cursor,

NOTE: Beware using modes 1-4 with multicolor shapes. You may
obtain unpredictable results.

—Move contents of host memory to expansion RAM
STASH jibytes, intsa, expsa, expb
Refer to FETCH command for description of parameters.

—Halt program execution
STOP

This statement halts the program. A message, BREAK IN LINE XXX,
occurs (only in program mode), where XXX is the line number con-
taining the STOP command. The program can be restarted at the
statement following STOP if the CONT command is used immedi-
ately, without any editing occurring in the listing. The STOP state-
ment is often used while debugging a program.

—Swap contents of host RAM with contents of expansion RAM
SWAP jibytes, intsa, expsa, expb
Refer to FETCH command for description of parameters.

—~Call and execute a machine language subroutine at the specified
address

SYS address [,a] [,x] [,y1 [;s]
This statement performs a call to a subroutine at a given address in a

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

C C C

i

L.

L.

C & [

(

C C C C C

[

"

)

]

-)

]

]

)

)

]

]

J

J

N

N

TEMPO

TRAP

301

memaory configuration set up according to the BANK command.
Optionally, arguments a,x,y and s are loaded into the accumulator, x,
y and status registers, respectively before the subroutine is called.

The address range is 0 to 65535. The program begins executing the
machine-language program starting at that memory location. Also
see the BANK command.

EXAMPLES:

SYS 40960 Calls and executes the machine-language routine at
location 40960.

SYS 81920 Calls and executes the machine-language routine at
location 8192 and load zero into the accumulator.

—Define the speed of the song being played
TEMPOn
where n is a relative duration between {1 and 255)

The actual duration for a whole note is determined by using the for-
mula given below:

whole note duration = 19.22/n seconds
The defauli value is 8, and noie duration increases with n,
EXAMPLES:

TEMPO 16 Defines the Tempo at 16.
TEMPO 1 Defines the TEMPO at the slowest gpeed.
TEMPO 250 Defines the TEMPO at 250.

—Detect and correct program errors while a BASIC program is
RUNnRing

TRAP [line #]

When turned on, TRAP intercepts most error conditions {excluding
DOS error messages but including the STOP KEY) except an
“UNDEF’D STATEMENT ERROR.” In the event of any execution
error, the error flag is set and execution is transferred to the line
number specified in the TRAP statement. The line number in which
the error occurred can be found by using the system variable EL.
The specific error condition is contained in system variable ER. The
string function ERR$ (ER) gives the error message corresponding to
any error condition,

The RESUME statement can be used to resume program execution.
TRAP with no line number turns off error trapping. An error in a TRAP

BASIC 7.0 ENCYCLOPEDIA-—Basic Commands and Statements

TROFF

TRON

VERIFY

routine cannot be trapped. Also see system variables ST, DS and
DS§.

EXAMPLES:

100 TRAP 1000 If an error occurs, go to line 1000.

1000 ?ERR$ (ER);EL Print the error message, and the error
number.

1010 RESUME Resume with program execution.

—Turn off error tracing mode
TROFF
This statement turns off trace mode.

—Turn an eryor tracing mode
TRON

TRON is used in program debugging. This statement begins trace
rmode. When you RUN the program, the line numbers of the program
appear in brackets before any action for that line cccurs.

—Verify program in memory against one saved 1o disk or tape
VERIFY ‘‘filename” [,device number][,relocate flag]

This command causes the Commodore 128 to check the program
on tape or disk against the one in memory, to determing if the pro-
gram is really SAVEd. This command is also very useful for position-
ing a tape so that the Commodore 128 writes after the last program
on the tape. It will do so, and inform the user that the programs don™t
match. The tape is then positioned properly, and the next program
can be stored without fear of erasing the old one.

VERIFY, with no arguments after the command, causes the Commo-
dore 128 to check the next program on tape, regardless of its name,
against the program now in memory. VERIFY, foliowed by a program
name in quotes or a string variable in parentheses, searches the
tape for that program and then checks it against the program in
memeory when found. VERIFY, followed by a name, a comma and a
number, checks the program on the device with that number (1 for
tape, 8 for disk). The relocate flag is the same as in the LOAD com-
mand. It verifies the program from the memory location from which
it was SAVEd.

EXAMPLES:
VERIFY Checks the next program on the tape.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

R M

(-

—

-

{

S SN

C £ (

N

)

)

-

]

]

-1

]

]

;

VOL

WAIT

303

VERIFY “HELLO” Searches for HELLO on tape, checks it
against memory.

VERIFY “HELLO”, 81 Searches for HELLO on disk, then checks
it against memory.

NOTE: If a graphic area is reallocated for use after a SAVE, VERIFY
and DVERIFY will report an error. Technically this is correct, BASIC
text in this case has been moved from its original (saved) location
to another address range. Hence, VERIFY, which performs byte-to-
byte comparisons, will fail, even though the program is valid.

—Define output level of sound
VOL volume level

This statement sets the volume for SOUND and PLAY statements.
VOLUME level can be set from Q 1o 15, where 15 is the maxirmum
volume, and Qis off, VOL affects all voices.

EXAMPLES:
VOL 0 Sets volume to its lowest level.

VOL 15 Sets volume for SOUND and PLAY statements to its highest
ouiput.

—Pause program execution until a data conditicon is satisfied
WAIT (Location), {mask-1) [mask-2))

The WAIT statement causes program execution to be suspended
until a given memory address recognizes a specified bit pattern or
value. In other words, WAIT can be used to halt the program until
some external event has occurred. This is done by monitoring the
status of bits in the Input/Output registers. The data items used with
the WAIT can be any values. For most programmers, this statement
should never be used. It causes the program to halt until a specific
memory location’s bits change in a specific way. This is used for
certain /O operations and almost nothing else. The WAIT statement
takes the value in the memory location and performs a logical AND
operation with the value in mask-1. If mask-2 is specified, the result
of the first operation is exclusively ORed with mask-2. In other words,
mask-1 "“filters out” any bits not to be tested. Where the bitis 0 in
mask-1, the corresponding bit in the result will always be 0. The
mask-2 value flips any bits, so that an off condition can be tested for
as welt as an on condition. Any bits being tested for a O should have a
1in the corresponding position in mask-2. If corresponding bits of
the {mask-1) and {mask-2) operands differ, the exclusive-OR opera-
tion gives a bit result of 1. I the corresponding bits get the same

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

WIDTH

WINDOW

result the bitis 0. It is possible to enter an infinite pause with the

WAIT statement, in which case the RUN/STOP and RESTORE keys
can be used 1o recover. WAIT may require a BANK command if the
memaory you wish to access is not in the currently selected BANK.

The first example betow WAITs until a key is pressed on the tape unit
to continue with the program. The second example will WAIT until a
sprite collides with the screen background.

EXAMPLES:

WAIT 1, 32, 32
WAIT 53273, 6,6
WAIT 35868, 144, 16

(144 and 16 are binary masks. 144 = 10010000 in binary and 16 =
10000 in binary.)

—Set the width of drawn lines
WIDTHn

This command sets the width of lines drawn using BASIC's graphic

commands te either single or double width. Giving n a value of 1

defines a single width ling; a value of 2 defines a double width line.
EXAMPLES:

WIDTH 1 Set single width for graphic commands
WIDTH 2 Set double width for drawn lines

—Defines a screen window

WINDOW top left col,top left row,bot right col, bot right
row[,clear]

This command defines a logical window within the 40 or 80 column
text screen. The coordinates must be in the range 0-39/79 for column
values and 0-24 for row values screen. The clear flag, if provided (1},
causes a screen-clear to be performed (but onty within the limits of
the newly described window).

EXAMPLES:

WINDOW 55,3520 Defines a window with top left corner
coordinate as 5,5 and bottom right corner
coordinate as 35,20.

WINDOW 10,2,33,24,1 Defines a window with upper left corner
coordinate (10,2} and lower right carner
coordinate (33,24). Also clears the portion of
the screen with the window as specified by
the 1.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

R

C CCCcCcoetccococ ottt

C

C £

J

1

T B I

1

i R

BN

B

)

]

)

_J

SECTION 18
BASIC Functions

305

BASIC 7.0 ENCYCLOPEDIA —Basic Functions

o3 0 3 333 3 3 330 3333230 3 33

]

]

]

)

N

1

i

]

]

_J

1

1

Basic Functions

ABS

ASC

ATN

307

The format of the function description is:

FUNCTION (argument)

where the argument can be a numeric value, variabte or string.
Each function description is followed by an EXAMPLE. The lines

appearing in bold face in the examples are the functions you type in.
The line without bold is the computer’s response.

—Return absolute value
ABS {X)

The absolute value function returns the positive value of the argu-
ment X.

EXAMPLE:
PRINT ABS (7*(:5))
35

—Return CBM ASCII code for character
ASC(XS)

This function returns the ASCII code of the first character of X$. You
no longer have to append CHR$(®) to a null string. ILLEGAL QUAN-
TITY ERROR is no longer issued.

EXAMPLE:
X$ = C128:PRINT ASC (X$)
67

~—Return angle whose tangent is X radians
ATN {X)

This function returns the angle whose tangent is X, measured in radi-
ans.

EXAMPLE:
PRINT ATN (3)
1.24904577

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

BUMP

CHRS

CcOS

308

—Return sprite collision information
BUMP (N)

To determine which sprites have collided since the last check, use
the BUMP function. BUMP(1) records which sprites have collided
with each other and BUMP{2) records which sprites have collided
with other objects on the screen. COLLISION need not be active to
use BUMP The bit positions (0-7} in the BUMP value correspond to
sprites 1 through 8 respectively, BUMP(n}is reset to zerc after each
call,

The value returned by BUMP is the result of two raised to the power
of the bit position. For exampte, if BUMP returned a value of 16,
sprite 4 was involved in a collision since 2 raised to the fourth power
equals 16. Here's how the sprite numbers and BUMP values
returned correspond:

BUMP Vaiue: 128 64 | 32 |16] 8| 4| 2|1
Sprite Number: el s al3|2]1]o0
EXAMPLES:
PRINT BUMP (1)
12 Indicates that sprite 2 and 3 have collided.
PRINT BUMP {2)
32 Indicates that sprite 5 has collided with an

obiect on the screen.
—Return ASCII character for specified CBM ASCIl code

CHRS$({X]}

This is the opposite of ASC and returns the string character whose
CBM ASCII code is X. Refer to Appendix E for a tabie of CHR$ codes.

EXAMPLES:

PRINT CHRS$ (65) Prints the A character.
A
PRINT CHRS$ (147) Clears the text screen.

—Return cosine for angle of X radians
COS{X)

This function returns the vatue of the cosine of X, where X is an angle
measured in radians.

EXAMPLE:

PRINT COS (x/3)
.500000001

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

A N R

(-

(-

C C CCcCc o oo b b

J

;f]

N

L —

]

)

1

]

.

1

]

]

]

]

J

|

1

]

DEC —Return decimal value of hexadecimal number string
DPEC (hexadecimal-string)

This function returns the decimal value of a character string repre-
senting a hexadecimal number in the range 0-$FFFF {0-65535
decimal).

EXAMPLE:

PRINT DEC (“D020"})
53280

—Return the string describing an error condition
ERR$ ERRS$(N)

This function returns a string describing an error condition. The
range for N lies between 1 and 41. Also see system variables EL and
ER and Appendix A for a list of BASIC error messages.

EXAMPLES:

PRINT ERR${20)
DIVISION BY ZERO

PRINT ERR$(38)
LINE NUMBER TOO LARGE

EXP —Return value of an approximation of e {2.7182813) raised to the X
power

EXPX)

This function returns a value of e (2.7182813) raised to the power of
X.

EXAMPLE:

PRINT EXP(1)
2.71828183

FNxx —Return value from user defined function
FNxx{x)

This function returns the value from the user-defined function xx
createdin a DEF FNxx statement.

309 BASIC 7.0 ENCYCLOPEDIA —Basic Functions

HEXS

INSTR

310

EXAMPLE:

10 DEF FNAA(X)=(X-32)*5/9
20 INPUT X
30 PRINT FNAA(X)
RUN
? 40 {7 is input prompt)
4.44444445
NOTE: If GRAPHIC is used in a program that defines a function, issue
the GRAPHIC command befare defining the function, or else the
function definition is destroyed.

—Return number of available bytes in memory
FRE (X)

where X is the bank number. X =0 BASIC program storage and X = 1
to check for available BASIC variable storage.

EXAMPLES:

PRINT FRE (0) Returns the number of free bytes for BASIC
48893 programs.

PRINT FRE

1) Returns the number of free bytes for BASIC
64256 variable storage.

—Return hexadecimal number string from decimat number
HEXS(X)

This function returns a four-character string containing the hexadeci-

mal representation of value X (0 { = X { = 65535). The decimal
counterpart of this function is DEC.

EXAMPLE:

PRINT HEX$(53280)
D020

—Return position of string 1 in string 2
INSTR (string 1, string 2 [,starting position])

The INSTR function searches for the first occurrence of string 2
within string 1, and returns the position within the string where the
match is found. The optional parameter for STARTING POSITION
establishes the position in string 1 where the search begins. The
STARTING POSITION must be in the range 1 through 255. If no
match is found or, if the STARTING POSITION is greater than the
length of string 1 or if string 1 is null, INSTR returns the value 0. If

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

L

|

|

I

A IS R S A

C

C O =

]

}

)

-

]

_

)

-]

1

string 2 is null, INSTR returns the value of the STARTING POSITION
or the value 1.

EXAMPLE:

PRINT INSTR (“COMMODORE 128”,%128")
11

INT —Returninteger form (iruncated) of a floating point value
INT(X)

This function returns the integer value of the expression. If the
expression is positive, the fractional part is left out. If the expression
is negative, any fraction causes the next lower integer 1o be
returned.

EXAMPLES:

PRINT INT(3.14)
3

PRINT INT(—3.14)
-4

JOY —Return position of joystick and the status of the fire button
JOY(N)
when N equals:

1 JOY returns position of joystick 1.
2 JOY returns position of joystick 2.

Any value of 128 or more means that the fire button is also pressed.
To find the JOY value, add the direction value of the joystick ptus 128,
if the fire button is pressed. The direction is indicated as follows:

1
8 2
7 0 3
6 4
5
EXAMPLES:
JOY (2} =135

Joystick 2 fires to the left.

IF (JOY (1) »127) = 128 THEN PRINT “FIRE".
Determines whether the fire bution is pressed.

3 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

LEFTS

LEN

LOG

MIDS

—Return the leftmost characters of string
LEFTS (string,integer)

This function returns a string comprised of the number of leftmost
characters of the string determined by the specified integer. The
integer argument must be in the range 010 255. If the integer is
greater than the length of the string, the entire string is returned. If
an integer value of zero is used, then a null string (of zero length) is
refurned.

EXAMPLE:

PRINT LEFTS (“COMMOQDORE",5)
COMMO

—Return the length of a string
LEN (string)

This function returns the number of characters in the string expres-
sion. Non-printed characters and blanks are included.

EXAMPLE:

PRINT LEN (“COMMODORE128")
12

—Return natural log of X
LOG({X)

This function returns the natural log of X. The natural log is log to the
base e (see EXP(X)). To convert to log base 10, divide by LOG(10).

EXAMPLE:

PRINT LOG (37/5)
200148

—Return a substring from a larger string
MID$ (string,starting position[,length])
This function returns a substring specitied by the LENGTH, starting

at the character specified by the starting position. The starting posi-

tion of the substring defines the first character where the substring
begins. The length of the substring is specified by the length argue-
ment. Both of the numeric arguments can have values ranging from

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

N N R R

(

(-

R I

C

(

[

-

(-

C

]

1

]

)

1

1

110 255. If the starting position value is greater than the length of the
string, or if the length vatue is zero, then MID$ returns a null string
value, If the length argument is left out, all characters to the right of
the starting position are returned. You can assign a MID$ to a value
with the equals sign.

EXAMPLE:

PRINT MID${(“COMMODORE 128",3,5)
MMODO

PEEK
—Return contents of a specified memory location

PEEK({X)

This function returns the contents of memory location X, where X is
located in the range O to 65535, returning a resutt between 0 and
255. This is the counterpart of the POKE statement. The data will be
returned from the bank selected by the most recent BANK com-
mand. See the BANK command.

EXAMPLE:

10 BANK 15:VIC = DEC(*D000”)
20 FORI| = 1 TO 47

30 PRINT PEEK(VIC + I}

40 NEXT

This example displays the contents of the registers of the VIC chip.

PEN
—Return X and Y coordinates of the light pen

PEN(n)

where n=0 PEN returns the X coordinate of light pen position.
n=1 PEN returnsthe Y coordinate of light pen position.
n=2 PEN returns the X coordinate of the 80 column display.
n=3 PEN returns the Y coordinate of the 80 column display.
n=4 PEN returns the (80-column) light pen trigger value.

Note that, like sprite coordinates, the PEN value is not scaled and
uses reat coordinates, not graphic bit map coordinates. The X posi-
tion is given as an even number, ranging from approximately 60 to
320, while the Y position can be any number from 50 to 250. These
are the visible screen coordinate ranges, where all other values are
not visible on the screen. A value of zero for either position means
the light pen is off screen and has not triggered an interrupt since

33 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

POINTER

POS

314

the last read. Note that COLLISION need not be active to use PEN. A
white background is usually required 10 stimutate the light pen. PEN
values vary from CRT to CRT.

Unlike the 40 column (VIC) screen, the 80 column (8563) coordinates
are character row and column positions and not pixel coordinates
like the VIC screen. Both the 40 and 80 column screen coordinate
values are approximate and vary, due to the nature of light pens. The
read values are not valid until PEN{(4} is true.

EXAMPLES:

10 PRINT PEN(O);PEN(1) Displays the X and Y coordinates of
the light pen {ior the 40 column
screen),

10 DO UNTIL PEN(4):LOOP Ensures the read values are valid (for
the 80 column screen).

20 X=PEN(2)

30 Y=PEN(3)

40 REM:REST OF PROGRAM

—AReturn the value of pi (3.14159265)
k)
EXAMPLE:
PRINT = This returns the result 3.14159265.

—Return the address of a variable name
POINTER [variable name)

EXAMPLE:
A=POINTER (2} This example returns the address of variable Z.
{Address returned is in BANK 1.}

—Return the current cursor column position within the current
screen window

POS(X)

The POS function indicates where the cursor is within the defined
screen window. X is a dummy argument, which must be specified,
but the value is ignored.

EXAMPLE:

PRINT POS(0)
10

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

L

{Z

.

.

C C L C C 0L CcCchikt oz

2

)

i

-

J

=

)

2

]

This displays the current cursor position within the defined text win-
dow, in this case 10.

POT —Returns the value of the game-paddle potentiometer
POT (n)
when:

n=1, PCT returns the position of paddle #1
n=2, POT returns the position of paddle #2
n =3, POT reiurns the position of paddle #3
n=4, POT returns the position of paddle #4

The values for POT range from 0 to 255. Any value of 256 or more
means that the fire button is also depressed.

EXAMPLE:

10 PRINT POT{(1)
20 IF POT(1) y 256 THEN PRINT “FIRE”

This example displays the value of the game paddie 1.

RCLR —Return color of color source
RCLR(N)

This function returns the color {1 through 16) assigned to the cotor
source N (0 N { 6), where the foliowing N values appty:

0 = 40-column background

1 = bit map foreground

multicolor 1

muliicolor 2

40-column border

40- ar 8Q-column character color
80-column background color

The counterpart to the RCLR function is the COLOR command.
EXAMPLE:

10 FOR1 = 0TO 6
20 PRINT “SOURCE";;*IS COLOR CODE”;RCLR(l)
30 NEXT

This example prints the color codes for all seven color sources.

DT hWN
1 | | T

315 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

RDOT

RGR

RIGHTS

—Return current position or color source of pixel cursor

RDOT (N)
where:

N = 0 returns the X coordinate of the pixel cursor

N = 1 returns the Y coordinate of the pixel cursor

N = 2 returns the color source of the pixel cursor

Thig function returns the location of the current position of the pixel
cursor (PC) or the current color source of the pixel cursor. The
returned coordinate value is affected by scaling, and will return the
scaled coordinate value.

EXAMPLES:

PRINT RDOT{(0} Returns X positicn of PC
PRINT RDOT{1) Returns Y position of PC
PRINT RDOT{2) Returns color source of PC

—Return current graphic mode
RGR(X)

This function returns the current graphic mode. X is a dummy argu-
ment, which must be specified. The counterpart of the RGR function
is the GRAPHIC command. The value returned by RGR(X) pertains to
the following modes:

VALUE GRAPHIC MODE

0 40 column (VIC) text

1 Standard bit map

2 Split screen bit map

3 Multicolor bit map

4 Split screen Multicolor bit map

5 80 caolumn (8563) text
EXAMPLE:
PRINT RGRI(0) Displays the current graphic mode;
1 in this case, standard bit map mode.

—Return sub-string from righimost end of string
RIGHTS ((string), (numeric))

This function returns a sub-string taken from the rightmost charac-
ters of the string argument. The length of the sub-string is defined by
the length argument which can be any integer in the range of 0 to
255, If the value of the numeric expression is zero, then a null string
is returned. If the value given in the length argument is greater than

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

-

NN U GRS O N A

L C COC°C e CCct

CoC

]

]

_)

)

1)

1

1

)

]

1y)

-

.}

RSPCOLOR

the length of the string, the entire string is returned. Also see the
LEFT$ and MID$ functions.

EXAMPLE:

PRINT RIGHT$(“BASEBALL",5)
EBALL

—Return a random number
RND (X)

This function returns a random number between 0 and 1. This is use-
ful in games, to simulate dice rolt and other elements of chance. It is
also used in some statistical applications.

If X = 0 RND returns a randem number based on the hardware
clack.

If X>1 RND generates a reproducible psuedo-random number
based on the seed value below.

X {0 produces a random number which is used as a base
called a seed.

To simulate the rolling of a die, use the formula INT(RND(1)*6 + 1).
First the random number from O to 1 is multiplied by 6, which
expands the range to 0-6 {actually, greater than zero and less than
six). Then 1 is added, making the range greater than 1 and less than
7. The INT function truncates all the decimal places, leaving the
result as a digit from 110 6.

EXAMPLES:
PRINT RND(0) Displays a random number
507824123 between 0 and 1.

PRINT INT(RND{1)*100 + 1) Displays a random number
89 between 1 and 100.

—Return sprite multicolor values
RSPCOLOR (register)
When:

X = 1 REPCOLOR returns the sprite multicolor 1.
X = 2 RSPCOLOR returns the sprite multicolor 2.

The returned color vatue is a vatue between 1 and 18. The counter-
part of the RSPCOLOR function is the SPRCOLOR statement. Alsc
see the SPRCOLOR statement.

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

RSPPOS

RSPRITE

EXAMPLE:

10 SPRITE 1,1,2,0,1,1,1

20 SPRCOLOR 5,7

30 PRINT“SPRITE MULTICOLOR 1 IS”;RSPCOLOR(1)
40 PRINT“SPRITE MULTICOLOR 2 I1S”;RSPCOLOR(2)
RUN

SPRITE MULTICOLOR 1 15 5
SPRITE MULTICOLOR 2 IS 7

In this exampte line 10 turns on sprite 1, colors it white, expandsit in
both the X and Y directions and displays it in multicolor mode. Line
20 selects sprite multicolors 1 and 2. Lines 30 and 40 print the RSP-
COLOR values for multicolor 1 and 2.

—Return the speed and position values of a sprite
RSPPOS (sprite number,positionispeed)

where sprite number identifies which sprite is being checked, and
position and speed specifies X and Y coordinates or the sprite’s
speed.

When position equals:

0 RSPPOS returns the current X position of the specitied sprite.
1 RSPPOS returns the current Y position of the specified sprite.

When speed equals:
2 RSPPOS returns the speed (0-15} of the specified sprite.

EXAMPLE:
10 SPRITE 1,1,2

20 MOVSPR 1,45#13

30 PRINT RSPPOS (1,0;RSPPOS (1,1;RSPPOS (1,2)

This example returns the current X and Y sprite coordinates and the
speed (13). The returned coordinate value is affected by scaling. If
scaling is enabled, the returned coordinate is proportional to the
specified scaled coordinates.

—Return sprite characteristics
RSPRITE (sprite number,characteristic)
RSPRITE returns sprite characteristics that were specified in the

SPRITE command. Sprite number specifies the sprite you are check-

BASIC 7.0 ENCYCLOPEDIA —Basic Functions

- C € C

(-

I B

C[:_E.EE[:I:

C C

RWINDOW

319

ing and the characteristic specifies the sprite’s display qualities as
follows:

Characteristic RSPRITE returns
these values:
0 Enabled(1) / disabled(0)
1 Sprite color (1-16)
2 Sprites are displayed in front

of (0) or behind (1) objects
on the screen

3 Expand in X direction yes=1,no=0

4 Expand in Y direction yes=1,no=0

5 Multicoior yes=1,no=0
EXAMPLE:

10FOR)I =0TOS This example prints all 5
20 PRINT RSPRITE (1,I) characteristics of sprite 1.
30 NEXT

-—Returns the size of the current window
RWINDOW (n)
When n equals;

0 RWINDOW returns a value one less than the number of lines in
the current window.

1 RWINDOW returns a value one less than ihe number of rows in
the current window.

2 BWINDOW returns either of the values 40 or 80, depending on
the current screen output format you are using.

The counterpart of the RWINDOW function is the WINDOW
command.

EXAMPLE:

10 WINDOW 1,1,10,10

20 PRINT RWINDOW(0);RWINDOW(1):RWINDOW(2)
RUN

9940

BASIC 7.0 ENCYCLOPEDIA-Basic Functions

SGN

SPC

—Return sign of argument X
SGN(X)
This function returns the sign {positive, negative ar zero) of X. The
resultis +1ifX>0,0ifX =0,and =1ifX {0
EXAMPLE:

PRINT SGN(4.5;SGN(0);SGN(—2.3)
10 ~1

—-Return sine of argument
SIN{X)

This is the trigonometric sine function. The result is the sine of X. Xis
measured in radians.

EXAMPLE:

PRINT SIN (x/3)
866025404

—Skip spaces on the screen
SPC (X)

This function is used in PRINT or PRINT# commands to control the
formatting of data, as either output to the screen or cutput to a logi-
cal file. The number of SPaCes specified by X determines the num-
ber of characters to fill with spaces across the screen or in a file. For
screen or tape files, the value of the argument is in the range O to
255 and for disk files the maximum is 254. For printer files, an auto-
matic carriage-return and line-feed will be performed by the printer if
a SPaCe is printed in the last character position of a line. No SPaCes
are printed on the following line.

EXAMPLE

PRINT “COMMODORE”;SPC(3);128”
COMMODORE 128

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

C C CCCCoCcLoCoCcfoCorooctoocrUooco

L L

N

2]

'

-

n

STRS

TAB

—Return square root of argument
SQR (X)

This function returns the value of the SQuare Root of X, where X is a
positive number or 0. The value of the argument must not be nega-
tive, or the BASIC error message 7ILLEGAL QUANTITY is displayed.

EXAMPLE:
PRINT SQR(25)
5

—Return string representation of number
STRS {X)

This function returns the STRing representation of the numeric value
of the argument X. When the STR$ value is converted to each varia-
ble represented in the argument, any number displayed is preceded
and followed by a space except for negative numbers which are pre-
ceded by a minus sign. The counterpart of the STR$ function is the
VAL function.

EXAMPLE

PRINT STR$(123.45)
123,45

PRINT STR${ - 89.03)
—89.03

PRINT STR$(1E20)
1E+20

—Moves cursor to tab position in present statement
TAB (X}

Thig function moves the cursor forward if possible to a relative posi-
tion on the text screen given by the argument X, starting with the left-
most position of the current line. The value of the argument can
range from 0 to 255. If the current print position is already beyond
position X, TAB places the cursor in the X position in the next line.
The TAB function can only be used with the PRINT statement, since
it has no effect if used with the PRINT# to a logical file.

EXAMPLE:

10 PRINT“COMMODORE"TAB(25)“128”
COMMODORE 128

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

TAN

USR

VAL

—Return tangent of arguement

TAN(X)

This function returns the tangent of X, where X is an angle in radians.
EXAMPLE:

PRINT TAN(.785398163)
1

—Call user-defined subprogram
USR(X)

When this function is used, the program jumps to a machine lan-
guage program whose starting point is contained in memory loca-
tions 4633(31219) and 4634($121A), (and 785(30311) and 786(30312)
for C64 mode). The parameter X is passed to the machine-language
program in the floating point accumulator. A value is returned to the
BASIC program through the calling variabte. You must redirect the
value into a variable in your program in order to receive the value
back from the floating point accumulator. An ILLEGAL QUANTITY
ERROR results if you don't specify this variable. This allows the user
to exchange a variable between machine code and BASIC.

EXAMPLE:

10 POKE 4633,0
20 POKE 4634,192
30 A = USR(0
40 PRINT A

Place starting location ($C000 = 48152:300 = 0:$C0 = 182) of
machine language routine in location 4633 and 4634, Line 30 stores
the returning value from the floating point accumulator.

—Return the numeric value of a number string
VAL(XS$)

This function converts the string X$ into a number which is the
inverse operation of STR$. The string is examined from the left-most
character to the right, for as many characters as are in recognizable
number format. If the Commaodore 128 finds illegal characters, only
the portion of the string up to that point is converted. If no numeric
characters are present, VAL returns a 0.

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

Y

(.

SR N B

(C

A

S T B

L

E_:':

)

1

.

-

i

1

-

2l

XOR

323

EXAMPLE:
10 AS = “120”

20 BS = “365”

30 PRINT VAL AS + VAL B$
RUN

485

—Return exclusive OR
XOR {(n1,n2)

This function provides the exclusive OR of the argument values n1
and n2.

X = XOR {n1,n2)
where n1, n2, are 2 unsigned values (0-65535).
EXAMPLE:

PRINT XOR(128,64)
192

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

T 330 3

)

—

]

)

SECTION 18
Yariables and
Onerators

325

VARIABLES
OPERATORS

BASIC 7.0 ENCYCL.OPEDIA—Variables and Operators

327
329

a3 2 3222333303303 33333]

Variables

The Commodore 128 uses three types of variables in BASIC. These
are: normal numeric, integer numeric and string (alphanumeric).

Normal NUMERIC VARIABLES, also called floating point variables,
can have any value from * *superscript** - 10 to **super-

script** + 10, with up to nine digits of accuracy. When a number
becomes larger than nine digits can show, as in + 10 or — 10, the
computer displays it in scientific notation form, with the number nor-
malized to one digit and eight decimal places, foliowed by the letter E
and the power of 10 by which the number is muitiplied. For example,
the number 12345678901 is displayed as 1.23456789E + 10.

INTEGER VARIABLES can be used when the number is from

+ 32767 to — 32768, and with no fractional portion. An integer varia-
bte is a number like 5, 10 or — 100. Integers take up less space than
floating point variables, particularly when used in an array.

STRING VARIABLES are those used for character data, which may
contain numbers, letters and any other characters the Commaodore
128 can display. An example of a string variable is “Commodore
128."

VARIABLE NAMES may consist of a single letter, a letter followed by
a number or two letters. Variable names may be longer than two
characters, but only the first two are significant. An integer is speci-
fied by using the percent sign (%) after the variable name. String
variables have a dollar sign ($) after their names.

EXAMPLES:

Numeric Variable Names: A, A5, BZ
Integer Variable Names: A%, A5%, BZ%
String Variable Names: A$, AS$, B2$

ARRAYS are lists of variables with the same name, using an extra
number {or numbers) to specify an element of the array. Arrays are
defined using the DIM statement and may be floating point, integer
or string variable arrays. The array variable name is followed by a set
of parentheses (} enclosing the number of the variable in the list.

EXAMPLE:
A(7), BZ%(11), A$(87)

Arrays can have more than one dimension. A two-dimensional array
may be viewed as having rows and columns, with the first number
identifying the row and the second number identifying the column
(as if specitying a certain grid on a map).

BASIC 7.0 ENCYCLOPEDIA—Variables and Operators

EXAMPLE:

A(7,2), BZ%(2,3,4), Z$(3,2)

RESERVED VARIABLE NAMES are names reserved for use by the
Commodore 128, and may not be used for another purpose. These
are the variables DS, DS$, ER, ERR$, EL, ST, Tl and TI$. KEYWORDS
such as TO and IF or any other names that contain KEYWORDS,
such as BRUN, NEW or LOAD cannot be used.

ST is a status variable for input and output {(except normal screen/
keyboard operations). The value of ST depends on the results of the
last 11O operation. In general, if the value of ST is 0, then the opera-
tion was successful.

Tl and TI$ are variables that relate to the real time clock built into the
Commodore 128. The system clock is updated every 1/60th of a sec-
ond. It starts at 0 when the Commodore 128 is turned on, and is
reset only by changing the vatue of TI$. The variable Tl gives the cur-
rent value of the clock in 1/60th of a second. TI§ is a string that reads
the value of the real time clock as a 24-hour clock. The first two char-
acters of TI$ contain the hour, the third and fourth characters are
minutes and the fifth and sixth characters are seconds. This variable
can be set to any value (so long as all characters are numbers) and
will be updated automatically as a 24-hour ctock.

EXAMPLE:
T$ = *“101530” Sets the clock to 10:15 and 30 seconds (AM).

The value of the clock is lost when the Commodore 128 is turned off,
It starts at zero when the Commodore 128 is turned on, and is reset
to zero when the value of the clock exceeds 235959 (23 hours, 59
minutes and 59 seconds).

The variable DS reads the disk drive command channet and returns
the current status of the drive. To get this information in words,
PRINT DS$. These status variables are used after a disk operation,
like DLOAD or DSAVE, to find out why the red error light on the disk
drive is blinking.

ER, EL and ERR$ are variables used in error trapping routines. They
are usually only useful within a program. ER returns the last error
encountered since the program was RUN. EL is the line where the
error occurred. ERRS$ is a function that allows the program to print
one of the BASIC error messages. PRINT ERR$(ER) prints out the
proper error message.

BASIC 7.0 ENCYCLOPEDIA—Variabies and Qperators

C C CCCCcrCtCrocCchi(fCUhobrob e ™

[

B R

1

]

Operators

The BASIC OPERATORS include ARITHMETIC, RELATIONAL and
LOGICAL OPERATORS. The ARITHMETIC operators include the fol-
lowing signs:

+ addition

— subtraction

* multiplication

{ division

1 raising to a power (exponentiation)

On a line containing more than one operator, there is a set order in
which operations always occur. if several operators are used
together, the computer assigns priorities as follows: First, exponen-
tiation, then multiplication and division, and last, addition and sub-
traction. If two operators have the same priority, then calculations
are performed in order from left to right. If these operations are to
occur in a different order, Commaodore 128 BASIC allows giving a
calculation a higher priority by placing parentheses around it. Opera-
tions enclosed in parentheses will be calculated before any other
operation. Make sure the equations have the same number of left
and right parentheses, or a SYNTAX ERROR message is posted
when the programiis run.

There are also operators for equalities and inequalities, called RELA-
TIONAL operators. Arithmetic operators always take priority over
relationat cperators.

= is equal to

{ is less than

) is greater than

{=o0or = is less than or equal to
y=or = is greater than or egual to
{yori{ is not equal to

Finally, there are three LOGICAL operators, with lower priority than
both arithmetic and relational operators:

AND
OR
NOT

These are most often used to join multiple formutasinIF ... THEN
statements. When they are used with arithmetic operators, they are
evaluated last (i.e., after + and —). If the relationship stated in the

329 BASIC 7.0 ENCYCLOPEDIA —Variables and Operators

330

expression is true, the result is assigned an integer value of — 1. [f
false, a value of 0 is assigned.

EXAMPLES:

IF A=B AND C=D THEN 100 Requires both A=B & C =
to be true.

IFA=B OR C=D THEN 100 Allows either A=Bor C =
to be true.

A=5:B=4:PRINT A=8B Displays a value of 0.

A=5:B=4:PRINT A)3 Displays a vaiue of —1.

PRINT 123 AND 15:PRINT 5 Displays 11 and 7.

OR7

BASIC 7.0 ENCYCLOPEDIA—Variables ang Operators

C - O CCLCCoCcroCc ook e b

.

L

i

)]

]

N

2l

N

]

]

i B T

]

]

SECTION 20

Reserved Words

and Symbols

33

RESERVED SYSTEM WORDS (KEYWORDS)
RESERVED SYSTEM SYMBOLS

BASIC 7.0 ENCYCLOPEDIA—Reserved Words and Symbols

333
334

J 3 31 1 32 30 302 323 33333 320

]

]_‘-‘".

]

B

N

a

]

]

]

Reserved System
Words (Keywords)

ment,
ABS
AND
APPEND
ASC

ATN
AUTO
BACKUP
BANK
BEGIN
BEND
BLOAD
BOOT
BOX
BSAVE
BUMP
CHAR
CHR$
CIRCLE
CLOSE
CLR
CMD
COLLECT
COLOR
CONCAT
CONT
COPY
CQOs
DATA
DCLEAR
DCLOSE
DEC
DEF FN
DELETE

DIM
DIRECTORY
DLOAD
DO
DOPEN
DRAW
DS
DSAVE
DS§
DVERIFY
EL

ELSE
END
ENVELOPE
ER

ERR$
EXIT

EXP
FAST
FETCH
FILTER
FN

FOR

FRE

GET
GETKEY
GET#
G064
GOSuUB
GOTO
GOTO
GRAPHIC
GSHAPE

HEADER
HELP
HEX$
IF
INPUT
INPUT#
INSTR
INT
JOY
KEY
LEFTS
LEN
LET
LIST
LOAD
LOCATE
LOG
LOOP
MID$
MONITOR
MOVSPR
NEW
NEXT
NOT
OFF
ON
OPEN
OR
PAINT
PEN
PLAY
POS
POT

PRINT

PRINT USING

PRINT#

PRINT# USING

PUDEF
QUIT
RCLR
RDOT
READ
RECORD
RENAME
RENUMBER
RESTORE
RESUME
RETURN
RGR
RIGHT$
RND
RSPCOLOR
RSPPOS
RSPRITE
RUN
RWINDOW
SAVE
SCALE
SCNCLR
SCRATCH
SGN

SIN

SLEEP
SLOW
SOUND
SPC

333 BASIC 7.0 ENCYCLOPEDIA— Reserved Words and Symbols

This section lists the words and symbols used to make up the BASIC
7.0 language. These words and symbols cannot be used within a
program as other than a component of the BASIC language. The only
exception is that they may be used within quotes in a PRINT state-

SPRCOLOR
SPRDEF
SPRITE
SPRSAV
SQR
ST
STASH
STEP
STOP
STR$
SWAP
SYS
TAB
TAN
TEMPO
THEN
T

TI$

TO
TRAP
TRON
TROFF
UNTIL
USR
VAL
VERIFY
VOL
WAIT
WHILE
WIDTH
WINDOW
XOR

Reserved System
Symbols

334

The foliowing characters are reserved system symbols.

—

Tt
1l

Symbol

Plus sign movement

Minus sign
movement

Asterisk
Slash

Up arrow
Blank space
Equal sign
Less than
Greater than
Comma

Period

Semicolon
Colon

Cuotation mark
Question mark
Left parenihesis
Right parenthesis
Percent

Number

Dollar sign

And sign

Pi

Use(s)

Arithmetic addition; string concatenation,
relative Pixel Cursor/sprite movement;
declare decimal number in machine
language monitor

Arithmetic subtraction; negative number;
unary minus, relative pixel cursor! sprite
movement

Arithmetic multiplication

Arithmetic division

Arithmetic exponentiation

Separate keywords and variable names
Value assignment; relationship testing
Relationship testing

Relationship testing

Format outpui in variable lists; command/
statement function parameters

Decimal point in floating point constants
Format output in variable lists

Separate multiple BASIC statements on a
program line

Enclose string constants

Abbreviation for the keyword PRINT
Expression evaluation and functions
Expression evaluation and functions
Declare a variable name as integer,
geclare binary number in machine
language moenitor

Precede the logical file number in input/
output statements

Declare a variable name as a string and
declares hexadecimal number in
machine language monitor

Declare octal number in machine
language monitor

Declare the numeric constant
3.141592654

BASIC 7.0 ENCYCLOPEDIA—Reserved Words and Symbols

. L C [»L L

[[

. L L

C . C [

L C [

]

I

B

I

2

APPENDICES

APPENDIX A — BASIC LANGUAGE ERROR MESSAGES

APPENDIX B — DOS ERROR MESSAGES

APPENDIX C — CONNECTORS/PORTS FOR PERIPHERAL
EQUIPMENT

APPENDIX D — SCREEN DISPLAY CODES

APPENDIX E — ASCII AND CHR$ CODES

APPENDIX F — SCREEN AND COLOR MEMORY MAPS

APPENDIX G — DERIVED MATHEMATICAL FUNCTIONS

APPENDIX H — MEMORY MAP

APPENDIX | — CONTROL AND ESCAPE CODES

APPENDIX J — MACHINE LANGUAGE MONITOR

APPENDIX K — BASIC 7.0 ABBREVIATIONS

APPENDIX L — DISK COMMAND SUMMARY

335 APPENDICES

0 T e T e T A (e N e N s Mes e e s s B

]

»

N

1

I

.

N

N

[0 D R R B

1

]

APPENDIX &

The following error messages are displayed by BASIC. Error mes-

BASIC LANGUAGE sages can also be displayed with the use of the ERR$() function. The

ERROR
MESSAGES

error numbers below refer only to the number assigned to the error
for use with the ERR$() function.

ERROR # ERROR NAME DESCRIPTION

1 TOO MANY FILES There is a limit of 10 files
OPEN at one time.

2 FILE OPEN An attempt was made to open
a file using the number of an
already open file.

3 FILE NOT OPEN The file number specified in an
[/O statement must be opened
before use.

4 FILE NOT FOUND Either no file with that name

exists (disk) or an end-of-tape
marker was read (tape).

5 DEVICE NOT PRESENT The required I/O device is not
available or buffers dealloca-
ted {cassette). Check to make
sure the device is connected
and turned on.

6 NOT INPUT FILE An attempt was made to GET
or INPUT data from a file that
was specified as output only.

7 NOT QUTPUT FILE An attempt was made to send
datato afile that was speci-
fied as input only.

8 MISSING FILE NAME File name missing in

command.
9 ILLEGAL DEVICE An attempt was made touse a
NUMBER device improperly (SAVE to

the screen, etc.).

337 APPENDIX A—Basic Language Error Messages

10

11

12

13

14

15

16

17

18

19

NEXT WITHOUT FOR

SYNTAX

RETURN WITHOUT
GOsuUB

OUT OF DATA

ILLEGAL QUANTITY

OVERFLOW

OUT OF MEMORY

UNDEF’'D STATEMENT

BAD SUBSCRIPT

REDIM’'D ARRAY

Either loops are nested incor-
rectly, or there is a variable
name in a NEXT statement
that doesn’t correspond with
onein FOR.

A statement not recognized by
BASIC. This could be because
of a missing or extra parenthe-
sis, misspelted key word, etc.

A RETURN statement was en-
countered when no GOSUB
statement was active.

A READ statement encoun-
tered without data teft
unREAD.

A number used as the argu-
ment of a function or state-
ment is outside the allowable
range.

The result of a computation is
larger than the largest number
altowed (1.701411834E + 38).

Either there is no more room
for program code andfor pro-
gram variables, or there are

too many nested DO, FOR or
GOSUB statements in effect.

A line number referenced
doesn't exist in the program.

The program tried to reference
an element of an array out of
the range specified by the DIM
staterment.

An array can onty be DIMen-
sioned once.

338 APPENDIX A—Basic Language Error Messages

C C o C L Cc oo &b W

L L L L B L

[

339

20
21

22

23

24

25

26

27

28

29

30

DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH

STRING TOO LONG

FILE DATA

FORMULATOO
COMPLEX

CAN'T CONTINUE

UNDEF’D FUNCTION

VERIFY

LOAD

BREAK

Division by zero is not allowed.

INPUT, GET, INPUT #, GET #
and GETKEY statements are
only allowed within a program.

This occurs when a numeric
value is assigned to a string
variable gr vice versa.

A string can contain up to 255
characters.

Bad data read from a tape or
disk file.

The computer was unable to
understand this expression.
Simplify the expression (break
into two parts or use fewer
parentheses).

The CONT command does not
work if the program was not
RUN, there was an error, or a
line has been edited.

A user-defined function was
referenced that was never
defined.

The program on tape or disk
does not match the program in
memaory.

There was a problem loading.
Try again.

The STOP command was
issued in a program or the
stop key was pressed to halt
program execution.

APPENDIX A—Basic Language Error Messages

31

32

33

34

35

36

37

38

CAN'T RESUME

LOOP NOT FOUND

LOOP WITHOUT DO

DIRECT MODE ONLY

NO GRAPHICS AREA

BAD DISK

BEND NOT FOUND

LINE NUMBER
TOO LARGE

A RESUME statement was
encountered without a TRAP
statement in effect.

The program has encountered
a DO statement and cannot
find the corresponding LOOP,

LOOP was encountered with-
out a DO staterment active.

This command is allowed only
in direct mode, not from a
program.

A command (DRAW, BOX,
etc.}to create graphics was
encountered before the
GRAPHIC command was
executed.

An attempt failed to HEADER
a diskette, because the quick
header method (no ID) was

attempted on an unformatted
diskette or the diskette is bad.

The program encountered an
“IF... THEN BEGIN" or “IF
...THEN. . ELSE BEGIN"
construct, and could not find a
BEND keyword to match the
BEGIN.

An error has occurred in
renumbering a BASIC pro-
gram. The given parameters
result in a line number >
63999 being generated; there-
fore, the renumbering was not
performed.

340 APPENDIX A—Basic lL.anguage Error Messages

[C

(o

[

L C C C L[

IR I R I P

Tt

]

]

)

]

]

)

_J

341

39 UNRESOLVED
REFERENCE

40 UNIMPLEMENTED
COMMAND

41 FILE READ

An error has cccurred in
renumbering a BASIC pro-
gram. A line number referred
to by a command (e.g., GOTO
999) does not exist. Therefore,
the renumbering was not
performed,

A command not supported by
BASIC 7.0 was encountered.

An error condition was
encountered while loading or
reading a program or fite from
the disk drive (e.g., opening
the disk drive door while a
program was loading).

APPENDIX A-—Basic Language Error Messages

\

O3 3 31 33 323333 333 3133) 20 3

)

APPENDIX B The following DOS error messages are returned through the DS and
DOS ERROR DS$ variables, The DS variable contains just the error number and
MESSAGES the DS$ variable contains the error number, the error message, and
any corresponding track and sector number. NOTE: Error message
numbers less than 20 should be ignored with the exception of 01,
which gives information about the number of fites scratched with the
SCRATCH command.

ERROR ERROR MESSAGE AND
NUMBER DESCRIPTION

20 READ ERROR (block header not found)
The disk controller is unable to locate the header of the
requested data block. Caused by an illegal sector num-
ber, or the header has been destroyed.

21 READ ERROR (no sync character)
The disk controller is unable to detect a sync mark on
the desired track. Caused by misalignment of the read/
write head, no diskette is present, or unformatted or
improperly seated diskette. Can also indicate a hard-
ware failure.

22 READ ERROR (data block not present}
The disk controller has been requested to read or verify
a data block that was not property written. This error
occurs in conjunction with the BLOCK commands and
can indicate an illegal track and/or sector request.

23 READ ERROR (checksum error in data block)
This error message indicates there is an error in one or
more of the data bytes. The data has been read into the
DOS memory, but the checksum over the data is in error.
This message may also indicate hardware grounding
problems.

24 READ ERROR (byte decoding error)
The data or header has been read into the DOS memory
but a hardware error has been created due to an invalid
bit pattern in the data byte. This message may also indi-
cate hardware grounding problems.

343 APPENDIX B—DOS Error Messages

344

25

26

27

28

29

30

31

32

33

WRITE ERROR (write-verify error)

This message is generated if the controller detects a
mismatch between the written data and the data in the
DOS memory.

WRITE PROTECT ON

This message is generated when the controller has been
requested to write a data block while the write protect
switch is depressed. This is caused by using a diskette
with a write protect tab over the notch or a notchless
diskette.

READ ERROR

This message is generated when a checksum error has
been detected in the header of the requested data
block. The block has not been read into DOS memory.

WRITE ERROR

This error message is generated when a data block is
too long and overwrites the sync mark of the next
header.

DISK ID MISMATCH

This message is generated when the controller has been
requested to access a diskette which has not been ini-
tialized or improperly formatted. The message can also
occur if a diskette has a bad header.

SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the
command channel. Typically, this is caused by an illegal
number of file names, or patterns are illegally used. For
example, two file names appear on the left side of the
COPY command.

SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The com-
mand must start in the first position.

SYNTAX ERROR (invalid command)
The command sent is longer than 58 characters. Use
abbreviated disk commands.

SYNTAX ERROR (invalid file name)
Pattern matching is invalidly used in the OPEN or SAVE
command. Spell out the file name.

APPENDIX B—DOS Error Messages

[P

C C O C C

CCCCCCCCCo

345

34

39

50

51

52

60

61

62

SYNTAX ERROR (no file given)
The file name was left out of the command or the DOS
does not recognize it as such. Typically, a colon (i} has
been left out of the command.

SYNTAX ERROR (invalid command)

This error may result if the command sent to the com-
mand channel (secondary address 15} is unrecognized
by the DOS,

RECORD NOT PRESENT

Result of disk reading past the last record through
INPUT# or GET# commands. This message will also
occur after positioning to a record beyond end-of-fileina
relative file. If the intent is to expand the file by adding
the new record (with a PRINT# commandj), the error
message may be ignored. INPUT # and GET # should
not be attempted after this error is detected without first
repositioning.

OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Informa-
tion is truncated. Since the carriage return which is sent
as a record terminator is counted in the record size, this
message will occur if the total characters in the record
(including the final carriage return) exceeds the defined
size of the record.

FILE TOO LARGE
Record position within a relative file indicates that disk
overflow will result.

WRITE FILE OPEN
This message is generated when a write file that has not
been closed is being opened for reading.

FILE NOT OPEN

This message is generated when a file is being
accessed that has not been opened in the DOS. Scme-
times, in this case, a message is not generated; the
request is simply ignored.

FILE NOT FOUND
The requested file does not exist on the indicated drive.

APPENDIX B—DOS Error Messages

346

63

64

65

66

67

70

71

72

FILE EXISTS
The file name of the file being created already exists on
the diskette.

FILE TYPE MISMATCH
The requested file access is not possible using files of
the type named. Reread the chapter covering that file

type.

NO BLOCK

Occurs in conjunction with Block Allocation. The sector
you tried to altocate is already allocated. The track and
sector numbers returned are the next higher track and
sector available. If the track number returned is zero {0),
all remaining higher sectors are full. If the diskette is not
full yet, try a lower track and sector.

ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or block
which does not exist in the format being used. This may
indicate a probiem reading the pointer to the next block.

ILLEGAL SYSTEMTORS
This special error message indicates an illegal system
track or sector.

NO CHANNEL {available)

The requested channel is not available, or all channels
are in use. A maximum of five buffers are available for
use. A sequenitial file requires two buffers; a relative file
requires three buffers; and the errorfcommand channel
requires one buffer. You may use any combination of
those as long as the combination does not exceed five
buffers.

DIRECTORY ERROR

The BAM (Block Availability Map) on the diskette does
not match the copy on disk memory. To correct, initialize
the disk drive.

DISK FULL

Either the blocks on the diskette are used or the direc-
tory is at its entry limit. DISK FULL is sent when two
biocks are still available on the diskette, in order to allow
the current file to be closed.

APPENDIX B—DOS Error Messages

C C CCc oo Ef‘

(-

C C CCc o b b

-

(-

)

)

]

)

73 DOS VERSION NUMBER (73, CBM DOS V30 1571,
00, 00}
DOS 1 and 2 are read compatible but not write compat-
ible. Disks may be interchangeably read with either
DOS, but a disk formatted on one version cannot be
written upon with the other version because the format
is different. This error is displayed whenever an attempt
is made 10 write upon a disk which has been formatted
in a non-compatibite format. This message will also
appear after power-up or reset and is not an error in
this case.

74 DRIVE NOT READY
An attempt has been made 10 access the disk drive
without a diskette inserted; or the drive lever or door is
open.

347 APPENDIX B—DOS Error Messages

o N e Dt N N s M N e I R e e N e s i B

)

——

)

]

-]

1

]

APPENDIX C
CONNECTORS!
PORTS FOR
PERIPHERAL
EQUIPMENT

349

COMMODORE CONNECTIONS FOR PERIPHERALS

1. Power Socket 7. Serial Port

2. Power Switch 8. Composite Video/Audio Port
3. Reset Button 9, Channel Selector

4. Controller Ports 10. RF Connector

5. Expansion Port 11. RGBI Connector

6. Cassette Port 12. User Port

APPENDIX C—Connectors/Ports for Peripheral Equipment

Side Panel
Connections

350

1. Power Socket—The free end of the cable from the power supply
is attached here.

2. Power Switch—Turns on power from the transformer.
3. Reset Button—Resets computer (warm start).

4. Controlter Ports—There are two Controller ports, numbered 1
and 2. Each Controller port can accept a joystick or game con-
troller paddle. A light pen can be plugged only into port 1, the
port closest to the front of the computer. Use the ports as
instructed with the software.

Control Port 1
Pin Type Note
1 1OYAD
JOYAL
Jovaz
JOYAZ o O (¢] (o)
POT AY 8 7 8 9
BUTTON A/LP
+5v MAX. 50mA {front view of port}
GND
POT AX

a0 O oA WA

Coantrol Port 2
Pin Type Note
JCYBO
JOYBI
J0YB2
J1OYB]
POT BY
BUTTON B
+5¥ MAX, S0mA
GND
POT BX

S N D A LY A

APPENDIX C-=Connectors/Ports for Peripheral Equipment

- C C

I .

C O C

C C © L C C

C

I N

2]

_)

)

1

)

]

]

)

2

J

7

)

)

Rear Connections

351

5. Expansion Port—This rectangular siot is a parallel port that
accepts program or game cartridges as well as special
interfaces.

Cartridge Exponsion Slot

Pin Type Pin Type
12 BA 1 GND
13 DMA 2 +5V
14 D7 3 +5V
15 D6 4 RS
18 D5 5 RIW
17 D4 & Dot Clack
18 D3 7 o
19 D2 8 GAME
20 o1 9 EXROM
21 Do L1y WO 2
22 GND 11 ROML
PFin Type Pin Type
N A9 A GND
P AB B ROMH
R AT C RESET
$ A D NI
T A5 E 502
u Ad F AlS5
W Al H Ald
w AZ J Al13
X Al K Al2
Y AQ L All
Z GND M AlG
Z2NV1GIBIATBI54132 11108 8 T & S 43 2

IYXWYUTSRPAFNMLEJHFEDC @ A
{view of port from the back of the C128)

APPENDIX C—Connectors/Ports for Peripheral Equipment

382

6. Cassette Port—A 1530 Datassette recorder can be attached

here to store programs and infermation.

Cassette
Pin Type
A1 GND
B-2 +5v
<-3 CASSETTE MOTOR
D-4 CASSETFE READ
E-5 CASSETTE WRITE
F-6 CASSETTE SEMSE

12 3 4 548

——

ABCDETF

7. Serial Port—A Commodore seriai printer or disk drive can be
attached directly to the Commodore 128 through this port.

Serial VO
Pin Type
1 SERIAL SRQIN
2 GND
3 SERIAL ATN INJOUT
4 SERIAL CLK INJOUT
5 SERIAL DATA INJOUT
6 RESET

APPENDIX C—Connectors/Ports for Periphera! Equipment

{view of port
while facing the
rear of the C128)

- C [

(. ¢ ©C C O C C C

-

C C

CCCC

N

]

-

]

)

1

)

)

J

)

)

)

—

-

J

—

8. Composite Video Connector—This DIN connector supplies
direct audio and composite video signals. These can be con-
nected to the Commaodore monitor or used with separate
components. This is the 40 column output connector.

(view of port while facing the rear of the C128)

Pin Type Note
1 LUMISYNC Luminance/SYNC output
2 GND
3 AUDIO OUT
4 VIDEO QUT Composite signal output
5 AUDIO IN
6 COLOROUT Chroma signal cutput
7 NC Mo connection
8 NC No connection

9. Channel Selector—Use this switch to select which TV channel
{L = channel 3, H = channel 4) the computer’s picture will be
displayed on when using a television instead of a monitor.

10. RF Connector—This connector supplies both picture and sound
to your television set. (A teievision can display only a 40 column
picture.)

353 APPENDIX C—Connectors/Ports for Peripheral Equipment

354

11. RGBI Connector—This 9-pin connector supplies direct audio and
an RGBI (Red!/Green/BluefIntensity) signai. This is the 80-column

output,

(rear view of port)

o)
3

Signal

Ground

Ground

Red

Green

Blue

Intensity
Monochrome
Horizontal Syng
Vertical Sync

W@~ bWl =

12. User Port—Various interface devices can be attached here,

including a Commodore modem.,

User IO

p]
3

Type

Note

GND
+5V
RESET
CNT)

SP1

CNT2

$P2

vc2

SER. ATN IN
9 VAC

9 VAC
GND

Ky = £ 0 0 N D kW —

MAX, 100 mA

MAX. 100 mA
MAX. 100 mA

Type

Note

GND
FLAG2
PBO
PBI
PB2
PB3
PB4
PB5
PBS
PB7
PAZ2
GND

zZgrAr-Tvmono»|F

12 3 456 7 8 9101112
e NS NN N N -
T W W W TR

ABGCDEFHJKLMN
{rear view of port)

APPENDIX C—Connectors/Ports for Peripheral Equipment

- C C

C C C & C o CoC.

. C C

-

C

J

-

-

)

-

]

)

)

)

_)

APPENDIX D
SCREEN DISPLAY
CODES

Screen Display
Codes
40 Columns

355

The foliowing chart lists all of the characters built into the Commo-
dore screen character sets. It shows which numbers should be
POKEd into the VIC chip (40 column) screen memory (location 1024
to 2023) to get a desired character on the 40-column screen.
{(Remember, 1o set color memory, use locations 55286 to 56295.)
Also shown is which character corresponds to a number PEEKed
from the screen.

Two character sets are available. Both are available simultaneously
in 80-column mode, but only one is available at a time in 40-column
maode. The sets are switched by holding down the SHIFT and €=
{Commodore) keys simultaneously. The entire screen of characters
changes to the selected character set.

From BASIC, PRINT CHR$(142) will switch to upper-case/graphics
mode and PRINT CHR$(14) will switch to upper/lower-case mode.

Any number on the chart may also be displayed in REVERSE. The
reverse character code may be obtained by adding 128 to the values
shown.

SET1 SET2 POKE | SEYt SET2 POKE SETt1 SET2 POKE
@ 0 N n 14 g 28
A a 1 o} 0 15] 29
B b 2 P p 16 1 30
C c a Q q 17 — N
b d 4 | R r 18 32
E g 5 s s 19 ! 33
F f 6 T t 20 * 34
G g 7| v u a | # 35
H h 8 v v 22 $ 36

[i 9 W w23 % a7
J j 10 | X X 24 & 38
K k1 Y y 25 * 39
L 1 12 | z 2 26 (40
M m 13 [27) 4

APPENDIX D—8creen Display Codes

1

50 T T e e M Mt N e M e A M Nt Ne N I I I

w

¥| @ = o |24 =~ Q = o O 9 W O M~ O O < o]
3182822838833 82 2222222838 838¢8¢%
L] g

: N S

O
[
&
(]
=
4

OEEHBOCHESQEEOLA0OWS AR

N

&

g

=

3

S

- g

3 reRIRRERrRRRR35983885828853 3388588 E

3

mGHIJKLMNOPQHSTUVWXYZ =1/ 2

0 H M
mDmamammzmmigmmmxm@mmmmmﬁumﬂ:mm
)
" Ry F)
muuuwwammmmwmawmwmwmmmmuwwwummm 8
: -
1) ABCDEF“ &
2]
. 8 g
m-+ _.....-01234567..89..:.(__>7.E@mB_HD=uQ w
g

356

)

)

)

1

D

]

]

)

]

]

N

.

APPENDIX E

ASCII AND CHRS

CODES

ASCIl and CHR$

Codes

357

This appendix shows you what characters will appear if you PRINT
CHR$(X), for all possible vatlues of X. It also shows the values
obtained by typing PRINT ASC (“x"), where x is any character that
can be displayed. This is useful in evaluating the character received
in a GET statement, converting upper to lower case and printing
character-based commands {like switch to upperflower case) that

could not be enclosed in quotes.
PRINTS CHRS | PRINTS CHRS PRINTS CHRS$ PRINTS CHRS
0 23 46 E 69
1 24 / 47 F 70
2 25 0 4 G 7
3 26 1 49 H 72
4 27 2 50 | 73
B s A = 3 51 J 74
6 29 4 52 K 75
7| B 30 5 53 L 76
oisaces [EEEEN (8 n 31 6 54 M 77
ouaces IR 32 7 55 N 78
10 ! a3 8 56 o 79
11 " 34 9 57 P B0
12 # 35 58 Q 1
13 $ 36 : 59 R 82
RGN 14 % | < 60 S 83
15 & 38 = 61 T B4
16 . 39 > 62 U 85
e 17 { 40 ? 63 v 06
18) 41 @ 64 W 87
= 19 . 42 A 65 X BB
B 20 + 3| B 66 Y 89
21 : 44 c 67 Z 90
22 - 45 D 68 [91

IAPPENDIX E~ASCIl and CHRS Codes

358

APPENDIX E—ASCII and CHR$ Codes

PRINTS CHMRS | PRINTS CHRS | PRAINTE CHAS | PRINTS CHRS

£ 92 | [115 | t4 s |] 8

] 93 | 1 118 (=T

1 9 | 4 117] 163

- s | X 118 O 1es
B 9 | O 1 [1 165
(o] 97 120 B s
M ea | LI 121 O ter
= 9 | (@ 122 W 6o
H 10 | HH 123 AT
= 101 | E] 124 (3 170
= 102 | (JI 125 B 1
O 103 126 (a2
1 104 | (N 127 | Lt Red 150 = s
N 105 128 | Dk Gray1s1| DU 17
N 106 | Orange 129 | Gray 152 - 175
V] 107 130 | Lt. Green153 (B 17
[108 131 | Lt.Blue 154| 5 177
N 109 132 | Lt.Gray 155 | B 178
B omo| n 1| g sl Hl 17
0 3 14| G 57| [1e0
O 112 5 135 | A ss| D) e
113 7 1| SRR 1ss| [B e
O 14| 137 60| [183

C C

.[:

—

(

C C C C

(R N

(. C O @O C

—

L

_J

)

]

]

N

)

)

-

]

359

PRINTS CHRS | PRINTS CHRS | PRINTS CHR$ | PRINTS CHRS

™ 184 | (O 1 |[™ 18] M 190
= e (m) wr [B e | M e

CODES 192-222 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 128

NOTE: The 80 colurmn (RGBI) cutput has three colors which are different than the 40
column (composite video) color output. This means that the character string codes
that represent color codes for these three colors are used difierently depending on
which video cutput is used. The following character siring codes represent these
colors in each video cutput.

CHR$ 40 Column {(VIC Composits) 80 Column (8563 RGBI)
129 Orange Dark Purple
149 Brown Dark Yellow
151 Dark Gray Dark Cyan

APPENDIX E—ASCIl and CHRS Codes

9303033333333 030

I

)

)

_1

J

1

)

1

]

)

]

]

.,

3

APPENDIXF
SCREEN AND

COLOR MEMORY

MAPS

Screen And Color

Memory Maps—
€128 Mode,

40 Column

And C64 Mode

361

The following maps display the memory locations used in 40-cotumn
mode (C128 and C64) for identifying the characters on the screen as
well as their color. Each map is separately controlled and consists of

1,000 positions.

The character displayed on the maps can be controlled directly with

the PCKE command.

VIC CHIP {40 COLUMN) SCREEN MEMORY MAP

COLUMN
0 10 20 30

ki
1083

b

2023

20

u

The Screen Map is POKEd with a Screen Display Code value (see

Appendix D). For example:
POKE 1024, 13

will display the letter M in the upper-left corner of the screen.

APPENDIX F—Screen and Color Memory Maps

VIC CHIP (40 COLUMN) COLOR MEMORY MAP

COLUMN
0 10 1| k] k]

39335

55205 —e- ;
55336
55326
55416
55496
55496
55536
55576
55616
55656 ;
55696 . | L 1o
55736
55776
55816
55856
55896
55936 !
55976
6016
56056
56006 i 20
56136 :

56176
56216
56296 I k]

noy

+
56295

The color RAM appears in this range in RAM BANKS @ and 1. If the
color map is POKEd with a color value; this changes the character
color, For example:

It the color map is POKEd with a color value; this changes the char-
acter color. For example:

POKE 55296, 1

will change the letter M inserted above from light green to white.

Color Codes—40 Columns

0 Black 8 Orange

1 White 9 Brown

2 Red 10 Light Red

3 Cyan 11 Dark Gray

4 Furpte 12 Medium Gray
5 Green 13 Light Green
6 Blue 14 Light Blue

7 Yellow 15 Light Gray

Border Control Memory 53280
Background Control Memory 53281

362 APPENDIX F—Screen and Color Memory Maps

-

L

[:I:ECCCLC

{

C L C

C CC

C

)

]

1l

J

B

1

i

1

J

]

1

_l

2]

)

]

]

)

APPENDIX G
DERIVED

TRIGONOMETRIC

FUNCTIONS

363

FUNCTION BASIC EQUIVALENT
SECANT SEC{X)=1/COS(X)
COSECANT CSC{X)=1/SIN(X)
COTANGENT COT{X)= I/TAN(X)
INVERSE SINE ARCSIN{X)= ATN(X/SQR{—X*X+ 1)

INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBQLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC CQSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT
INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

ARCCOS(X)=— ATN(X/SQR
(—X"X +10) +7/2
ARCSECIX)=ATNIX/SQR{X*X— 1)
ARCCSCIX)=ATN{X/SQR(X* X—1)
+{SGN{X)—1*7/2
ARCOT(X)=ATN(X)+7/2
SINH{X)= (EXP{X)— EXP(— X})f2
COSH{X)= (EXP{X)+EXP(— X))2
TANH{X)= EXP(— X} (EXP(x}+EXP
(= Xn*2+1
SECH(X)=2/(EXP(X)+ EXP(— X))
CSCH{X)= 2/(EXP{X)— EXP{—X)}
COTH{X)=EXP(— X)/{(EXP{X)
—EXP(—X})*2+1
ARCSINH{X)=LOG(X+SQRX*X+ 1))
ARCCOSH{X)}=LOG(X+SQR{X*X—1))
ARCTANH{X)=LOG{(1+ X)(1 — X}}2
ARCSECH[X)=LOG(({SQR
(= X*XA 141X
ARCCSCH{X)=LOG{(SGN{X}* SQR
XX+
ARCCOTH{X)=LOG(X+ 1}(x— 1))/2

APPENDIX G--Derived Trigonometric Functions

e T Tt e T N T Mo S N A R N M e St B N

)

)

]

]

)

N

]

1

")

J

APPENDIX H

MEMORY MAP

System Memory

The Commodore 128 memory map is shown below.

Map
COMMODORE 128 MODE
MEMORY MAP
c128 c128
RAM ROM
FFFF
FFFA | WMIRST IRQ
FEDG | CP/M RAM Code FF4D - = - Kernal Jump Table & - - - - -
¥rnl RAM Code Hardware Yectors
FFOS oerY FFO5 -—- 1lgiamal I:tgr:jum
spatch Code
o~ . LSS
Configuration Registar Sl
LA
FFOO FFO0 |» # 2 7 v 7 7 7 7 7 === MMU Configuration
Registers
FOB) b= m = mmm e m e - - - - ROM Raserved for
Forelgn Lang. Versions
BASIC TEXT AREA
(Basic text begin:
al $1500 il bit-miap
unallpcated)
FABD === == mmm === - - - - Editor Tatdes
E000 VY ry i Karnal ROM Code
I ey
Iy
DO |/~ s r s s s s s ===) Spate
COO0 - === m e - - - - - Editor ROM Code - - == - =
B F-----—----- |- = - - Monitar ROM Coda - = - - =
ool Eem s m—msmmmmm e e
4000 000 - DasicROMCoda_ _ _ __ _
365 APPENDIX H—Memory Map

o *\HiGH
_ /RO

COMMODORE 128 MODE
MEMORY MAP
ci128 c128
4000 RAM 4000 ROM
WL BIT-MAP
Scresn
il BT T
1 Calor {¥m #2)
1600
1400 Reserved for
1 Applications
1
Reserved for
Applications
1400
ﬁaseirve:ii for
cations
1ago — 2
Basic
Absolute
1200 Variables
Basic
DOS/VSP
1108 Variables
CP/M Resel
1100 Code
Function
ol
1000 ;‘;‘ie'
rile
OF00 Detinition
0E00 Area
R5-232
Qutpuy
0000 Butler
RS-232
Inpul
0c00 BuHsr
oace |- Lg_lsb Goo1 Page)_ _
o800 azseiie Bulfar
Monitor & Kernal
Absoluie
0A00 Variablas
Bagic
0400 Run-Timg
0800 Slack
¥IC
Text
0400 _{ #1)
0360 | - Basic RAM Code
g | - - e Tavks __
02FC
u2az |- - Kernal RaM Code
Basic & Monlior
500 Input Builer
0149 L - s_yile_m_slask. -
o110 | - Basic0OS Using_
0160 F BUFFER
0090 Kermal 7.F

0002
L]

COMMODORE 64 MODE
MEMORY MAP
C64
Cartridges £64
FFFF
KERHAL
BAME GARD and
EDITOR
ECOD EDOD
170, Char AQM 170 and Chars
ur RAM ROM or RAM
hlilui} 0oog
RAM {4K) RAM [4K)
Co0g coon
Apglication AOM BASIC ROM
BOOD Card—HI —— or AAM (8K}
A000 pPe—— A000
calion
Cardml0 RAM
goo0 ol =
366 APPENDIX H—Mamory Map

COMMODORE 64 MODE
MEMORY MAP
C64
Cartridaes C64
4000 pmmmmmmmmmmmm—— =
BASIC PROGRAM SPACE
QB0 [=== mmmmmmmmmmemem e e mmmae o _———-
YIC (40 Cotumn) TEXT
SCAEEN
B = — - mmmmmm e e = o -———
1 B T T ———
Q0 - ———— - mmm e m o m o - ----
SYSTEM STACK
) e L EEEE LR R LR R -
1

C CCCC

r C .

N S

]

)

-]

-

:'J

]

]

1

I

]

APPENDIX |
CONTROL AND
ESCAPE CODES

Control Codes

367

The foliowing are the control codes used by the Commodore 128.
The first column, Print Codes, are used in PRINT statements. The
second column is the key codes. Key codes are the sequence of
keys pressed o perform specific controls, Hold down the control key
{or the key specified on the left in the key code column) and strike
the key specified to the right in the key code column,

Print Codes Key Codes Effective
in
Key Mode:

{CHR$) Sequence Function Cs4 Ci128
CHR$(2) CTRLB Underline {80) *
CHRE(5) CTRL2orCTRLE Set character color to

white * *
CHRE?) CTRLG Praduce bell tone *
CHR$(8) CTRLH Disable character set

change *
CHR$(9) CTRLI Enable character set

change *

Maove cursor 1o next

set tab position >
CHRE(10) CTRLJ Line feed *
CHR${(11) CTRLK Enable character set

change *
CHR$(12y CTRLL Disable character .

mode change *
CHR$(13} CTRLM Send a carriage return

and line feed 1o the

computer and enter a

line of BASIC " *
CHR${14) CTRLN Set character set to

upper/lowercase *
CHR$(15) CTRLO Turn flash on {(80)
CHR$(17) CRSRDBOWN/CTRLQ Move the cursor down

one row * *
CHR$(18) CTRL9orCTRLR Cause characiers to

be printed in reverse

field * *
CHR$(1¢) HOME Move the cursor to the

home position (top left)

of the display (the cur-

rent window)
NQTE: {40) . . . 40 column screen only
(805 . .. 80 column screen only

APPENDIX l--Contrcl and Escape Cades

.

Effective
in
Key Mode:

CHR$ Sequence Function Ce4 C128

CHR$(20) DELorCTRLT Delete last character
typed and move all
characters to the right
of the deleted charac-
ter one space 1o the
left

CHR%(24) CTRL X, CTRLTAB

. or G TAB Tab set/clear
-y CHR$(27) ESCorCTRL[Send an ESC

character

CHR$(28) CTRL3orCTRLE Set character color to
red (40) and (80)

CHRE(28) CRSRor CTRL] Maove cursor cne
column to the right

CHR$(30) CTRL6&or CTRL 4 Set character color to
green {40) and (80}

CHR${31) CTRL70rCTRL = Set character color to
blue (40) and (80)

CHR$(34) = Print a double quote on
screen and place edi-
tor in quote mode

CHR$(129) €= 1 Set character color to
orange {40); dark pur-
ple (80)

CHR$(130) Underline of f {80)

CHR${131) Run a program. This
CHR$ code does not
work in PRINT CHR$
(131), but works from
keyboard buffer

CHR$(133) F1 Reserved CHR$ code
for F1 key

CHR$(134) F3 Reserved CHR$ code
for F3 key

CHR$(135) F5 Reserved CHR$ code
for F5 key

CHR%${(136) F7 Reserved CHRS code
for F7 key

CHR$(137) F2 Reserved CHR$ code
for F2 key

CHR$(138) F4 Reserved CHRS code
for F4 key

CHR$(139) F6 Reserved CHR$ code
for F& key

CHR$(140) F8 Reserved CHR$ code
for F&8 key

368 APPENDIX |—=Conirol and Escape Codes

C &

C

CCCCCECETCCC

. C

g

)

)

]

1

]

b

"]

)

.

N

]

Effective
in
Key Mode:
CHR$ Sequence Function C64 (128
CHR$(141) SHIFTRETURN,CTRL Senda carriage return
ENTER, &ENTERor & and line feed without
RETURN entering a BASICline * *
CHR#$(142) Set the character set
to uppercaseigraphic * *
CHR$(143) Turn flash of f (80) *
CHR$(144) CTRL1 Set character color to
black (40) and (80} * *
CHR$(145) CRSRUP Move cursor or print-
ing positionup cne row * *
CHR%{146) CTRLO Terminate reverse field
display * *
CHR$(147) CLEAR HOME Clear the window
screen and move the
curser to the top left
position * *
CHR$(148) INST Move character from
cursar position end of
line right one column * *
CHR$(149) €2 Set character color to
brown (40}, dark yellow
(80) * *
CHR$(150) €3 Set character color to
light red (40) and (80y * *
CHR$(151) €=4 Set character color to
dark grey (40); dark
cyan (80) * *
CHR$(152) €5 Set character color to
medium grey (40) and
(80) * *
CHR$(153) €6 Set character color to
light green {40) and
(80} * ko
CHR$(154) €7 Set character color to
light blue {40) and (80} * *
CHR$(155) €=8 Set character color to
light grey (40) and (80} * *
CHR$(156) CTRLS Set character color to
purple {(40) and {80) * *
CHR$(157) CRSRLEFT Move cursor left by
one column * *
CHR$(158) CTRLS Set character color io
yellow {(40) and (80)
CHR$(159) orCIRL4 Set character color to

cyan (40); light cyan
{80)

369 APPENDIX I—Control and Escape Codes

Escape Codes

370

Following are key sequences for the ESCape functions available on

the Commodore 128. ESCape sequences are entered by pressing
and releasing the “ESC" key, followed by pressing the key listed

below.
ESCAPE FUNCTION
Cancel quote mode

Erase to end of current line
Erase to start of current line
Clear to end of screen

Move to start of current tine
Move to end of current line

Enable auto-insert mode
Disable auto-insert mode

Delete current line
Insert line

Set default tab stop (8 spaces)
Clear all tab stops

Enable scrolling
Disable scrolling

Scroll up
Scroll down

Enable bell (by control-G)
Disable bell

Set cursor 1o non-flashing mode
Set cursor to flashing mode

Set botiom of screen window at curser position
Set top of screen window at cursor position

Swap 40/80 column display output device

The following ESCape sequences are valid on an 80-column screen

ESCAPE KEY

ESCC

ESCQ
ESCP
ESC @

ESCJ
ESCK

ESC A
ESCO

ESCD
ESCI

ESCY
ESCZ

ESCL
ESCM

ESCV
ESCW

ESCG
ESCH

ESCE
ESCF

ESCB
ESCT

ESCX

only. (See Section 8 for information on using an 80-column screen.)

Change to underlined cursor
Change to block cursor

Set screen to reverse video
Return screen to normal (non reverse video) state

APPENDIX I—Control and Escape Codes

ESCU
ESCS

ESCR
ESCN

S G i e o

C CC C -0 CC e

-

N

]

)

-1

30 N

71

)

_]

1

1

)

APPENDIX J
MACHINE
LANGUAGE
MONITOR

Iintroduction

KEYWORD
ASSEMBLE

COMPARE

DISASSEMBLE
FiLL
GG

HUNT

JUMP
LOAD
MEMORY

REGISTERS
SAVE

TRANSFER

VERIFY

EXIT

{period)
{greater than)
{semicalon)
{at sign)

Commodore 128 has a built-in machine language monitor program
which lets the user write and examine machine language programs
easily. Commedore 128 MONITOR includes a machine language
maonitor, a mini-assembler and a disassembiler. The built-in monitor
works only in C128 mode; either 40 column or 80 column.

Machine language programs written using Commodore 128 MONI-
TOR can run by themselves or be used as very fast subroutines for
BASIC programs since the Commaodore 128 MONITOR has the abil-
ity to coexist peacefully with BASIC.,

Care must be taken to position the assembly language programs in

memaory so the BASIC program does not overwrite them.

To enter the monitor from BASIC, type:

MONITOR
Summary of Commodore 128 Monitor Commands
FUNCTION FORMAT
Assembles a line of 8502 code A {start_address} (opcode} [oparand)]
Compares two sections of memory andreports C {start_address} {end_address) {new_start_ad-
differences dress)
Disassembles a line or lines of 8502 code D [{start_address) {end_address]|
Fills a range of memory with the specified byte F {stari_address) {end_address) (byte}
Starts execution at the speciiied address G [address]
H ¢stari_address) {end_address) {byte1}
{{byte_n)..]
Hunts through memaory within a specifiedrange H {start_address) {end_address) '{ascii_string}
for all occurrences of a set of bytes
Jumgps to the subroutine J [address]
Loads a file from tape or disk L “{tilename} " [{device_#} [,{load_address)])
Displays the hexadecimal values of memary M [{stari_address) [end_address]|
locations
Displays the 8502 registers R
Saves to tape or disk 5 *(filename)" {device_#) (start_address)
\ {last_address + 1)
Transfers code from one section of memory 1o T {start_address) {end_address) {new_start.ad-
another dress)
Compares memory with tape or disk y “¢{filename) " [.(device_#) [.{load_address)]}
Exits Commodore 128 MONITOR X
Assembles a line of 8502 code .
Modifies memory >
Modifies BS02 register displays ;
Displays disk statug, sends disk command, dis- @
plays directory
disk status @[device_#]
disk command @[device_#] {command_string>]
disk catalog @[device_#] ${[{drive)]{file_spec)]]

NOTES: ¢) enclose required parameters.
[1enclose optional parameters.

NOTE: See important 5-digit Address note on the next page.
371 APPENDIX J—Machine Language Monitor

NOTE: 5-Digit Addresses

The Commodore 128 displays 5-digit hexadecimal addresses within
the machine language monitor. Normally, a hexadecimal number is
only four digits, representing the allowable address range. The extra
left-most (high order) digit specifies the BANK configuration (at the
time the given command is executed) according to the following
memory configuration table:

0—RAM 6 only 8—EXT ROM, RAM 0, /0

1—RAM 1 only 9—~EXT ROM, RAM i, /0

2—RAM 2 only A—EXT ROM, RAM 2, O

3—RAM 3 only B—EXT ROM, RAM 3, G

4—INT ROM, RAM 0,)0 C—KERNAL + INT {lo}, RAM 0, IfO
5—INT ROM, RAM 1, 10 D—KERNAL + EXT (le), RAM 1, /0
&—INT ROM, RAM 2, 10 E--KERNAL + BASIC, RAM 0, CHARROM
7—INT ROM, RAM 3, 1/O F—KERNAL + BASIC, RAM 0, IO

Summary of Monitor Field Descriptors

The following designators precede monitor data fields (e.g., memory
dumps). When encountered as a command, these designators
instruct the monitor to alter memory or register contents using the
given data.

. {period) precedes lines of disassembled code.
Y {right.angle} precedes lines of a memory dump.
; {semicolon) precedes line of a register dump.

The following designators precede number fields (e.9., address) and
specify the radix (number base) of the value. Entered as commands,
these designators instruct the monitor simply to display the given
value in each of the four radices.

{null) {default) precedes hexadecimal values.
$ (dollar) precedes hexadecimal (base-16) values.
+ {plus) precedes decimal {base-10) values.
& (ampersand) precedes octal {base-8) valtues.
% {percent) precedes binary (base-2) values.
The fallowing characters are used by the monitor as field delimiters
or line terminators (unless encountered within an ASCII string).

{space) delimiter—separates two fields.
{comma} delimiter—separates two fields.
{colon} terminator—Ilogical end of line.
{question} terminator—Ilogical end of line.

L

APPENDIX J—Machine Language Monitor

C U«

C

[‘Z

C C C C L0 e &Lt C

-

1

N B

1

}

Commodore 128
Monitor
Command
Descriptions

373

Number field {e.g. addresses, device numbers, and data bytes) may

be specified as a based number. This affects the operand field of the
ASSEMBLE command. Also note the addition of the directory syntax
to the disk command.

As a further aid to programmers, the Kernal error message facility
has been automatically enabled while in the Monitor. This means the
Kernal will display ‘I/O ERROR #' and the error code, shouid there be
any failed 1/0 attempt from the MONITOR. The message facility is
turned off when exiting the MONITOR.,

COMMAND: A
PURPOSE: Enter aline of assembly code.
SYNTAX: A (address) {opcode mnemonic) {operand}

{address) A number indicating the location
in memory to place the opcode.
(See 5-digit address note on pre-
vious page.)

{opcode

mnemonic) A standard MOS technology
assembly language mnemonic,
e.g., LDA, STX, RCR.

{operand) The operand, when required, can
be any of the legal addressing
modes.

A RETURN is used to indicate the end of the assembly line. If there
are any errors on the line, a question mark is displayed to indicate an
error, and the cursor moves to the next line. The screen editor can
be used tc correct the error{s)on that line.

EXAMPLE
A01200 LDX #$00
A01202

NOTE: A period {) is equal to the ASSEMBLE command.

EXAMPLE:
02000 LDA #$23

APPENDIX J—Machine Language Monlitor

COMMAND: C
PURPOSE: Compare two areas of memory.
SYNTAX: C (address 1) {address 2) {address 3)

{address 1) A number indicating the start
address of the area of memory 1o
compare against.

{address 2) A number indicating the end
address of the area of memory to
compare against.

{address 3) A number indicating the start
address of the other area of mem-
ory to compare with, Addresses
that do not agree are printed on
the screen.

COMMAND: D

PURPOSE: Disassemble machine code into assembly language
mnemonics and operands.

SYNTAX: D [{address)][{address2}]

{address} A number setting the address to
start the disassembly.

{address 2> An optional ending address of
code to be disassembled.

The format of the disassembly differs slightty from the input format of
an assembly The difference is that the first character of a disassem-
bly is a period rather than an A (for readability), and the hexadecimal
of the code is listed as well.

A disassembly listing can be modified using the screen editor. Make
any changes to the mnemonic or operand on the screen, then hit the
carriage return. This enters the line and calls the assembler for fur-
ther modifications.

A disassembly can be paged. Typing a D (RETURN) causes the next
page of disassembly to be displayed.

EXAMPLE:

D 3000 3003
.03000 A200 LDA #300
03002 FF 777
03003 DO 2B BNE $3030

APPENDIX J=Machine Language Monitor

R Y DU A

(.

C

(NN U A N S SN R

C

1

e

—

-

-

]

300

]

'
-

COMMAND: F
PURPOSE: Fili a range of locations with a specified byte.
SYNTAX; F <{address 1) (address 2) (byte)

{address 1) The first location to fill with the
(byte).

{address 2y The last location to fill with the
{byte).

(bytevalue) A 1-or 2-digit hexadecimal num-
ber to be written.

This command is useful for initializing data structures or any other
RAM area.

EXAMPLE;
F 0400 0518 EA

Fill memory iocations from $0400 to $0518 with $EA (a
NOP instruction).

COMMAND: G

PURPOSE: Begin execution of a program at a specified address.
SYNTAX: G [(address)]

{address} An address where execution is to
starl. When address is left out,
execution begins at the current
PC. (The current PC can be
viewed using the R command.)

The GO command restores all registers (displayable by using the R
command) and begins execution at the specified starting address.
Caution is recommended in using the GO command. To return to
Commodare 128 MONITOR mode after executing a machine lan-
guage program, use the BRK instruction at the end of the program.

EXAMPLE:
G 140C
Execution begins at location $140C.

375 APPENDIX J—Machine Language Monitor

376

COMMAND: H

PURPOSE: Hunt through memory within a specified range for all
occurrences of a set of bytes.

SYNTAX: H (address 1) {address 2) {data)

{address 1) Beginning address of hunt
procedure.

{address 2y Ending address of hunt
procedure.

{data) Data set to search for data may
be hexadecimal or an ASCII
string.

EXAMPLE:
H AQD0 A101 A9 FF 4C

Search for data $A9, $FF, $4C,
from AQQD to A101,

H 2000 9800 ‘CASH'’

Search for the alpha string “CASH".

COMMAND: J
PURPOSE: Jump to a machine language subroutine
SYNTAX: J {address)

The JUMP command directs program control 1o the machine lan-
guage subroutine tocated at the specified address. The JUMP com-
mand does not save the return address as does the 8502 instruction
JSR (Jump to subroutine). The JMP 8502 instruction is comparable to
the J monitor instruction. In other words, the JUMP command is a
one-way instruction, where the application gains control of the com-
puter. Only after it stops does the machine language monitor regain
control.

EXAMPLE:

J 2000
Jump to the subroutine starting at $2000.

COMMAND: L
PURPOSE: Load a file from cassette or disk.
SYNTAX: L (“file name" [, (device) [,alt load address]}

{“filename™) Any legal Commodore 128 file
name.

{device) A number indicating the device to
load from. 1 is cassetie. 8 is disk
(or9, A, etc).

APPENDIX J—Machine Language Monitor

C °C © & .

{-

L C C C C ¢

0

N

7

B

N

o

1

——

|

]

))

1

8]

[alt load address] Option to load a file to a speci-
fied address.

The LOAD command causes a file to be loaded into memory. The
starting address is contained in the first two bytes of the disk file (a.
program file). In other words, the LOAD command always Ioar;is afile
into the same place it was saved from. This is very important in
machine language work, since few programs are completely relocat-
able, The file is loaded into memory until the end of file (EOF) is

found.
EXAMPLE:
L “PROGRAM"”.8 Loads the file named PROGRAM from the
disk.
COMMAND: M

PURPQOSE: To display memory as a hexadecimal and ASCII dump
within the specified address range.
SYNTAX: M [{address 1)][{address)}

{address 1) First address of memory dump.
QOptional. If omitted, one pageis
disptayed. The first byte is the
bank number to be displayed, the
next four bytes are the first
address 1o be displayed.

{address 2) Last address of memory dump.
Optional. If omitted, one page is
digplayed. The first byte is the
bank number to be displayed, the
next four bytes are the ending
address to be displayed.

Memory is displayed in the following format;

»1A048 41 E7 00 AA AA 00 98 56 45 :ALL*..VE

Memary content may be edited using the screen editor. Move the
cursor to the data to be modified, type the desired correction and hit
{RETURN). if there is a bad RAM location or an attempt to modify
ROM has occurred, an error flag (?) is disptayed. An ASCII dump of
the data is disptayed in REVERSE (to contrast with other data dis-
played on the screen) to the right of the hex data. When a character
is not printable, it is displayed as a reverse period (m). As with the dis-
assembly command, paging down is accomplished by typing M and
{RETURN}.

EXAMPLE:

M 21C00 21C10

»21C00 41 E7 00 AA AA 00 98 5645 :Al.* . VE

APPENDIX J—Machine Language Monitor

378

»21C08 42 4302 AZ AD 11 94 57 44 :BC.*.WD
»21C1045E7 Q0 DF FEO7 06 46 47 :E! .* . EF

Note: The above display is produced by the 40-column editor.

COMMAND: R

PURPOSE: Show important 8502 registers. The program status
regisier, the program counter, the accumulator, the
X and Y index reqgisters and the stack pointer are

displayed.
SYNTAX: R
EXAMPLE:

R
PC SR AC XR YR 5P
; 01002 01 02 03 04 F6

NOTE: ; (semicolon) can be used to modify register displays in

the same fashion as) can be used to modify memory registers.

COMMAND: 8

PURPOSE: Save the contents of memory onto tape or disk.

SYNTAX: S (“filename") (device) {address 1},
{address 2)

{file name”) Any legal Commaodore 128 file
name. To save the data the file
name must be enclosed in deuble
quotes. Single quates cannot be
used.

{device) A number indicating on which
device the file is to be placed.
Cassette is 01; disk is 08, 09, etc.

{address 1) Starting address of memaory to be
saved.

{address 2y Ending address of memory to be
saved + 1. All data up 1o, but not
including the byte of data at this
address, is saved.

The file created by this command is a program file. The first two
bytes contain the starting address {address 1) of the data. The file
may be recalled, using the L command.

APPENDIX J—Machine Language Monitor

—

r

L T

-

/U IS W

-

T

]

~)

A

—~

_}

-l

-y

I N

]

378

EXAMPLE:
S “GAME",8,0400,0BFF
Saves memory from $0400 to $0BFF onto disk.

COMMAND: T
PURPQSE: Transfer segments of memory from one memory area
to another.

SYNTAX: T <{address 1) (address 2} {address 3)

{(address 1) Starting address of data to be
moved.

{address 2y Ending address of datato be
moved.

{address 3) Starting address of new location
where data will be moved.

Data can be moved from tow memaory to high memaory and vice
versa, Additional memory segments of any length can be moved
forward or backward. An automatic “'compare™ is periormed as
each byte is transferred, and any differences are listed by address.

EXAMPLE:
T 1400 1600 1401

Shifts data from $1400 up to and including $1600 one byte
higher in memaory.

COMMAND: V
PURPOSE: Verify a file on cassette or disk with the memory con-
~ tents.

SYNTAX: V ("file name")[,(device)][att start address]
{“file name™) Any tegat Commodore 128 file

name.

{device) A number indicating which device
the fite is on; cassette is 01, disk is
08, 09, etc.

[alt start Option to start verification

address) at this address.

The verify command compares a file to memory contents, The
Commodore 128 responds with VERIFYING. If an error is found the
word ERROR is added:; if the file is successiully verified the cursor
reappears.

EXAMPLE:
vV "WORKLOAD", 08

APPENDIX J—Machine Language Monitor

COMMAND: X

PURPQOSE: Exit to BASIC.
SYNTAX: X
COMMAND: ¥ {greater than)
PURPOSE: Can be used to set one to eight memory locations
atatime.
SYNTAX: ¥ {address) {databyte) 1 {(databyle2...8}
{address) First memory address to set.

{databyte 1) Datatobeput at address.
{databyte2...8)
Data to be placed in the suc-
cessive memory locations
following the first address
{(optional) with a space pre-
ceding each data byte.

COMMAND: @ (at sign}

PURPOSE: Can be used to display the disk status.
SYNTAX: @ [{unit#}], {(disk cmd string}
{unit #) Device unit number
(optional).

{disk cmd string) String command to disk.

NOTE: @ alone gives the status of the disk drive.

EXAMPLES:
@ checks disk status
00, 0K, 00, 00
@,l initializes drive 8

@3 Checks the directory on Unit 8

@,30:F* Listall files on Unit 8, drive 0 beginning with the
letter “F”.

380 APPENDIX J—Machine Language Monitor

CU L C e .

I N EE I

L. C C C C ¢

l:

]

1

?

)

1

1

3

!;.._

-

::gfc"? ': K Note: The abbreviations below operate in uppercase/graphics mode.
ABBREV'IATI ONS Press the letter key(s) indicated, then hold down the SHIFT key
and press the letter key following the word SHIFT.
KEYWORD ABBREVIATION
ABS ... A SHIFTB
APPEND. ASHIFTP
ASC ... ASHIFTS
ATN . ASHIFTT
AUTO ..o ASHIFTU
BACKUP. BASHIFTC
BANK. B SHIFT A
BEGIN BSHIFTE
BEND. BE SHIFTN
BLOAD B SHIFT L
BOOT......... B SHIFTO
BOX .. none
BSAVE B SHIFTS
BUMP. B SHIFTU
CATALOG.................. ... CSHIFTA
CHAR.......... CH SHIFT A
CHRS C SHIFTH
CIRCLE.................... ... C SHIFTI
CLOSE CL SHIFTO
CLR C SHIFTL
CMD............. CSHIFTM
COLLECT COLL SHIFTE
COLLISION o ... COL SHIFTL
COLOR. COL SHIFTO
CONCAT. i C SHIFTO
CONT .. e none
COPY . . CO SHIFTP
COS .. e none
DATA . .. D SHIFTA
DEC ... e none
DCLEAR. DCL SHIFTE
DCLOSE. . .. e D SHIFTC
DEFFN. e none
DELETE. . ..o e DE SHIFT L
DIM v e e D SHIFTI
DIRECTORYo DI SHIFTR
DLOAD. .. s DSHIFTL
DO . e none
DOPEN. . oo et eeeeans D SHIFTO
381 APPENDIX K—BASIC 7.0 Abbreviations

382

KEYWORD ABBREVIATION
DRAW e D SHIFTR
DSAVE D SHIFT S
DVERIFY e D SHIFTV
EL. .t e none
END ... none
ENVELOPE. E SHIFTN
ER. ... e none
ERRS E SHIFTR
EXIT . o e EX SHIFTI
EXP. . E SHIFT X
FAST . . e none
FETCH o, F SHIFTE
FILTER e i FSHIFTI
FOR i F SHIFTO
FRE F SHIFTR
FNXX .o none
GET G SHIFTE
GETKEY................... GETK SHIFTE
GET# none
GOSUB GO SHIFTS
GOB4 none
GOTO. GSHIFTO
GRAPHIC..................... G SHIFTR
GSHAPE. G SHIFTS
HEADER HE SHIFT A
HELP.......... HEX$.......... H SHIFTE
IF...GOTO., none
IF...THEN.. . ELSE. none
INPUT. none
INPUTH# .. TSHIFTN
INSTR. IN SHIFTS
INT . none
JOY . o JSHIFTO
KEY ... KSHIFTE
LEFTS. LE SHIFTF
LEN. ... none
LET. L SHIFTE
LIST ... e L SHIFTI
LOAD LSHIFTO
LOCATE LOSHIFTC
LOG ..., none
LOOP LO SHIFTO

APPENDIX K—BASIC 7.0 Abbreviations

C C L CC o o b

C - CC C =

C C

(.

)

1)

-

-~

' —J

j |J

N

-

]

1

383

KEYWORD ABBREVIATION
MIDS ... MSHIFTI
MONITOR MO SHIFTN
MOVSPR M SHIFT O
NEW. none
NEXT ... o NSHIFTE
ON...GOSUB.......... ON...GOSHIFTS
ON...GOTO. ON...GSHIFTO
QPEN. Q8HIFTP
PAINT P SHIFT A
PEEK PE SHIFTE
= PSHIFTE
Pl none
PLAY PSHIFTL
POKE. PO SHIFTK
POS .. . none
POT .. PSHIFTO
PRINT. o . ?
PRINT#. PSHIFTR
PRINTUSING................ PUS SHIFTI
PUDEF PSHIFTU
RCLR RSHIFTC
RDOF R SHIFTD
READ. RE SHIFT A
RECORD R SHIFTE
REM none
RENAME RE SHIFTN
RENUMBER. REN SHIFT U
RESTORE.................... RE SHIFTS
RESUME RES SHIFT U
RETURN. RE SHIFTT
BGR.... RSHIFTG
RIGHTS RSHIFTI
RND ... R SHIFTN
RREG R SHIFTR
RSPCOLOR BSP SHIFTC
RSPPOS o R SHIFTS
RSPR ... none
RSPRITE RSP SHIFTR
BUN....... o R SHIFTU
BRWINDOW R SHIFTW

APPENDIX K—BASIC 7.0 Abbreviations

384

KEYWORD ABBREVIATION
SAVE. . SSHIFTA
SCALE SC SHIFT A
SCNCLR. S SHIFTC
SCRATCH.................... SC SHIFTR
SGN ... SSHIFTG
SIN. .. S SHIFTI
SLEEP S SHIFTL
SLOW none
SOUND. SSHIFTO
SPC{. ... none
SPRCOLOR SPR SHIFTC
SPRDEF.................... SPR SHIFTD
SPRITE........ ... SSHIFTP
SPRSAV SPR SHIFTS
SOR ... S SHIFTQ
SSHAPE S SHIFTS
STASH SSHIFTT
STatus. none
STEP. .. STSHIFTE
STOP. STSHIFTO
STRE. STSHIFTR
SWAP SSHIFTW
SYS. none
TAB(. ... TSHIFT A
TAN. . . none
TEMPO.......... TSHIFTE
Tl none
TS . none

TO. . e none
TRAP . .. T SHIFTR
TROFF. TRO SHIFTF
TRON TR SHIFTO
UNTIL., U SHIFT N
USR U SHIFTS
VAL, . none
VERIFY V SHIFTE
VOL. ... VSHIFTO
WAIT ... W SHIFT A
WHILE. W SHIFTH
WIDTH. WI SHIFT D
WINDOW. W SHIFTI
XOR ... XSHIFTO

APPENDIX K—BASIC 7.0 Abbraviations

L C L C

s

{Z

-

U D N

o O S S S

L

""“" APPENDIX L This appendix lists the commands used for disk operation in C128
- DISK COMMAND and C64 modes on the Commodore 128. For detailed information on
SUMMARY any of these commands, see Chapter V, BASIC 7.0 Encyclopedia.
{""“f Your disk drive manual also has information on disk commands.
- Ay
The new BASIC 7.0 commands can be used only in C128 mode. All
I BASIC 2.0 commands can be used in both C128 and C64 modes.
Command Use Basic20 Basic7.0
- APPEND Append data to file -
L BLOAD Load a binary file starting at -
the specified memory
p— location
b BOOT Load and execute a bootable -
program
— BSAVE Save a binary file from the -
ro specified memory location
- CATALOG Display directory contents of »
disk on screen*
] CLOSE Close logical disk file »
b CMD Redirect screen outputto a -
peripheral device
r— COLLECT Free inaccessible disk -
v space*
CONCAT Concatenate two data files* o
I COPY Copy files between devices* -
P DCLEAR Clear all open channels on -
- disk drives
DCLOSE Close logical disk fite -
= DIRECTORY Display directory of contents P
- of disk on screen*
DLOAD Load a BASIC program from »
digk
_> DOPEN Open a disk file for a read »
and/or write operation
— DSAVE ga\l.;e a BASIC program to »
I isl
B DVERIFY Verify program in memory -
against program on disk
[GET # Receive input from open disk -
co file
HEADER Format a disk* -
- LOAD Load a fite from disk v
fo OPEN Open a file for input or output v
PRINT# Output a data 1o file »
r--; *Although there is no single equivalent command for this function in BASIC 2.0, therg is an
e equivalent mulli-command instruction. See your disk drive manual for these BASIC 2.0
conventions.
—
{
385 APPENDIX L—Disk Command Summary

)

386

Command Use

RECORD Position relative file pointers*

RENAME Change name of a file on
disk*

RUN filename Execute BASIC program from
disk

SAVE Store program in memory to
disk

VERIFY Verify program in memaory

against program on disk

* Although there is no single equivalent command in BASIC 2.0, there is an equivalent multi-

Basic 7.0
o
”

[

command instruction. See your disk drive manual for these BASIC 2.0 conventions.

APPENIHX L—Disk Command Summary

S i s

Poall |

L C - C C ¢ (

.

L

Y i

S B

1

]

1

)

GLOSSARY

387

GLOSSARY

This glossary provides brief definitions of frequently used computing
terms.

Acoustic Coupler or Acoustic Modem: A device that converts
digital signals to audible tones for transmission over telephone
lines. Speed is limited to about 1,200 baud, or bits per second
(bps). Compare direct-connect modem,

Address: The label or number identifying the register or memory
location where a unit of information is stored.

Alphanumeric: Letters, numbers and special symbols found on the
keyboard, excluding graphic characters.

ALU: Arithmetic Logic Unit. The part of a Central Processing Unit
(CPU) where binary data is acted upon.

Animation: The use of computer instructions to simulate motion of
an object on the screen through gradual, progressive
movements.

Array: A data-storage structure in which a series of related con-
stants or variables are stored in consecutive memory locations.
Each constant or variable contained in an array is referred to as
an element. An element is accessed using a subscript. See
Subscript.

ASCII: Acronym for American Standard Code for Information Inter-
change. A seven-bit code used to represent alphanumeric
characters. It is useful for such things as sending information
from a keyboard to the computer, and from one computer to
another, See Character String Code.

Assembler: A program that translates assembty-language instruc-
tions into machine-language instructions.

GLOSSARY

Kliti]

Assembly Language: A machine-oriented language in which mne-
monics are used to represent each machine-language instruc-
tion. Each CPU has its own specific assembly language. See
CPU and machine language.

Assignment Statement: A BASIC statement that sets a variable,
constant or array element to a specific numeric or string value.

Asynchronous Transmission: A scheme in which data characters
are sent at random time intervals. Limits phone-iing transmis-
sion to about 2,400 baud (bps). See Synchronous Transmission.

Attack: The rate at which the volume of a musical note rises from
zero to peak volume.

Background Color: The color of the portion of the screen that the
characters are placed upon.

BASIC: Acronym for Beginner’s Alt-purpose Symbolic Instruction
Code.

Baud: Serial-data transmission speed. Originally a telegraph term,
300 baud is approximately equal to a transmission speed of 30
bytes or characters per second.

Binary: A base-2 number system. All numbers are represented as a
sequence of zeros and ones.

Bit: The abbreviation for Binary diglT. A bit is the smallest unitin a
computer, Each binary digit can have one of two values, zero or
one. A bit is referred to as enabled or “on” if it equals one. A bit
is disabled or “off" if it equals zero.

Bit Control: A means of transmitting serial data in which each bit
has a significant meaning and a single character is surrounded
with start and stop bits.

Bit Map Mode: An advanced graphic mode in the Commodore 128
in which you can control every dot on the screen.

Border Color: The color of the edges around the screen.

Branch: To jump to a section of a program and execute it. GOTO and
GOSUB are examples of BASIC branch instructions.

GLOSSARY

L -

(-

L.

ISR AN SO H

[

C O O

388

Bubble Memory: A relatively new type of computer memory, it uses
tiny magnetic “pockets” or "bhubbles” to store data.

Burst Mode: A special high speed mode of communication
between a disk drive and a computer, in which information is
transmitted at many times normal speed.

Bus: Paraliel lines used to transfer signals between devices. Com-
puters are often described by their bus structure {i.e., S-100-bus
computers, etc.).

Bus Network: A system in which all stations or computer devices
communicate by using a common distribution channel or bus.

Byte: A group of eight bits that make up the smallest unit of address-
able storage in a computer. Each memory location in the Com-
modore 128 contains one byte of information. One byle is the
unit of storage needed to represent one character in memoery.
See Bit.

Carrier Frequency: A constant signal transmitted between commu-
nicating devices that is modulated to encode binary
information.

Character: Any symbol on the computer keyboard that is printed on
the screen. Characters include numbers, letters, punctuation
and graphic symbols.

Character Memory: The area in Commodore 128’s memory which
stores the encoded character patterns that are displayed on
the screen.

Character Set: A group of related characters, The Commodore 128
character sets consist of: upper-case letters, lower-case letters
and graphic characters.

Character String Code: The numeric value assigned to represent a
Commodore 128 character in the computer’s memory.

Chip: A miniature electronic circuit that performs a computer opera-
tion such as graphics, sound and inputfoutput.

Clock: The timing circuit for a microprocessor.

GLOSSARY

390

Clocking: A technique used to synchronize a sending and a receiv-
ing data-communications device that is modulated to encode
binary infarmation.

Coaxial Cable: A transmission mediumn, usually employed in local
networks.

Collision Detection: Determination of occurrence of collision
between two or more sprites, or between sprites and data.

Color Memory: The area i