
■

COMMODORE C

0

n

PERSONAL COMPUTER

System Guide

r

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

INTRODUCING THE

COMMODORE 128

s

4

1

5

7

0

6

3

%

IK

AN EXTRA PAIR OF

HANDS FOR THE

BUSY EXECUTIVE

GRAPHICS ARE

EASY ON YOUR

COMMODORE 128

A POWERFUL

LEARNING TOOL AT

HOME OR IN THE

CLASSROOM

-

n

SHIP TO SHORE

_ TELECOMMUNI

CATING MADE

EASYWITHYOUR

— COMMODORE

COMPUTER AND

MODEM

n

PRODUCTION

PROBLEM SOLVING

ON YOUR

COMMODORE 128

LJ

n

THE COMMODORE

128 AND STUDENT

HEADING FOR

CLASS

THE BUDGET

FINALLY

BALANCED-

THANKS TO

COMMODORE 128

C128

SYSTEM GUIDE

USER'S MANUAL STATEMENT

WARNING:

This equipment has been certified to comply with the limits for a Class B computing device,

pursuant to subpart J of Part 15 of the Federal Communications Commission's rules, which

are designed to provide reasonable protection against radio and television interference in a

residential installation. If not installed properly, in strict accordance with the manufac

turer's instructions, it may cause such interference. If you suspect interference, you can

test this equipment by turning it off and on. If this equipment does cause interference,

correct it by doing any of the following:

• Reorient the receiving antenna or AC plug.

• Change the relative positions of the computer and the

receiver.

• Plug the computer into a different outlet so the computer and

receiver are on different circuits.

CAUTION: Only peripherals with shield-grounded cables (com

puter input-output devices, terminals, printers, etc.), certified to

comply with Class B limits, can be attached to this computer.

Operation with non-certified peripherals is likely to result in

communications interference.

Your house AC wall receptacle must be a three-pronged type

(AC ground). If not, contact an electrician to install the proper

receptacle. If a multi-connector box is used to connect the com

puter and peripherals to AC, the ground must be common to all

units.

If necessary, consult your Commodore dealer or an experienced radio-television techni

cian for additional suggestions. You may find the following FCC booklet helpful: "How to

Identify and Resolve Radio-TV Interference Problems." The booklet is available from the

U.S. Government Printing Office, Washington, D.C. 20402, stock no. 004-000-00345-4.

Third Printing, November 1986

Copyright © 1985 by Commodore Electronics Limited

All rights reserved

This manual contains copyrighted and proprietary information. No part of this publication

may be reproduced, stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise, without the prior

written permission of Commodore Electronics Limited.

Commodore BASIC 7.0

Copyright © 1985 by Commodore Electronics Limited

All rights reserved

Copyright © 1977 by Microsoft Corp.

All rights reserved

CP/M® Plus Version 3.0

Copyright © 1982 by Digital Research Inc.

All rights reserved

CP/M is a registered trademark of Digital Research Inc.

n TABLE OF

CONTENTS

n

Chapter I—Introduction

Section 1—How to Use this Guide 3

Section 2—Overview of the Commodore 128

Personal Computer 7

Chapter II—Using C128 Mode

Section 3—Getting Started in BASIC 17

Section 4—BASIC Programming 49

Section 5—Advanced BASIC 7.0 Commands 73

Section 6—Color, Animation and Sprite Graphics

Statements Unique to the C128 93

Section 7—Sound and Music in C128 Mode 127

Section 8—Using 80 Columns 159

Chapter III—Using C64 Mode

Section 9—Using the Keyboard in C64 Mode 169

Section 10—Storing and Reusing Your Programs in

C64Mode 175

Chapter IV—Using CP/M Mode

Section 11—Introduction to CP/M 3.0 183

Section 12—Files, Disks and Disk Drives in CP/M 3.0 191

Section 13—Using the Console and Printer in CP/M 3.0 201

Section 14—Summary of Major CP/M 3.0 Commands 207

Section 15—Commodore Enhancements to CP/M 3.0 217

Chapter V—Basic 7.0 Encyclopedia

Section 16—Introduction 227

Section 17—BASIC Commands and Statements 233

Section 18—BASIC Functions 305

Section 19—Variables and Operators 325

Section 20—Reserved Words and Symbols 331

Appendices

A. BASIC Language Error Messages

B. DOS Error Messages

C. Connectors/Ports for Peripheral Equipment

D. Screen Display Codes

E. ASCII and CHR$ Codes

F. Screen and Color Memory Maps

G. Derived Trigonometric Functions

H. Memory Map

1. Control and Escape Codes

J. Machine Language Monitor

K. BASIC 7.0 Abbreviations

L Disk Command Summary

Glossary

Index

337

343

349

355

357

361

363

365

367

371

381

385

387

401

U

u

j I

U

Li

u

1 I
u

u

H

t \

n

n

n

n

INTRODUCTION

CHAPTER

LJ.

U

U

U

U

LJ

LJ

U

U

u

LJ

U

U

U

U

u

u

u

H

n

INTRODUCTION—How to Use this Guide

u

u

u

u

is

u

u

LJ

u

u

u

u

u

u

U

n

n How to Use this

Guide

f \

This Commodore 128 System Guide is designed to help you make

full use of the advanced capabilities of the Commodore 128 com

puter. Here's how to use this Guide:

Before you read any further in this System Guide, make sure

you have read the other book packed in the computer carton,

Introducing The Commodore 128 Personal Computer,

which contains important information on getting started with

the Commodore 128.

If you are primarily interested in using the BASIC language to

create and run your own programs, you should first read Sec

tion 2 of this chapter. This section summarizes the three operat

ing modes of the Commodore 128. Then read Chapter II, USING

C128 MODE. This chapter introduces you to the BASIC pro

gramming language as used in both C128 and C64 modes;

describes the Commodore 128 keyboard; defines some

advanced commands you can use in both C128 and C64

modes; shows how to use a number of powerful new BASIC

commands (including color, graphic and sound commands) that

are unique to C128 mode; and describes how to use the 80-

column capabilities available in C128 mode.

If you want to use BASIC in C64 mode, read Chapter III, USING

C64 MODE. You can use all the Commodore 64 BASIC 2.0 com

mands in C64 mode. Note, however, that the Commodore 128

BASIC 7.0 language provides many more BASIC commands

than BASIC 2.0, and the C128 BASIC commands are more pow

erful and easier to use than equivalent BASIC 2.0 commands.

Remember, you can use C64 mode to run any of the thousands

of C64 software packages currently available.

If you want to use CP/M on the Commodore 128, read Chapter

IV, USING CP/M MODE. This chapter tells you how to start up

and use CP/M on the Commodore 128. In CP/M mode you can

choose from thousands of software packages. You can also

create your own CP/M programs.

If you want details on the BASIC 7.0 commands, read Chapter V,

BASIC 7.0 ENCYCLOPEDIA. This chapter gives format and

usage details on all BASIC 7.0 commands, statements and

functions.

If, after reading Chapters I through V, you are looking for addi

tional technical information about a particular Commodore 128

INTRODUCTION—How to Use this Guide

LJ

topic, first check the Appendices to this System Guide. These j I

appendices contain a wide range of information, such as a "—

complete list of BASIC and DOS error messages and a sum

mary of disk commands. A Glossary following the Appendices | j

provides definitions of computing terms. ^—'

For complete technical details about any feature of the Commodore j ;

128, consult the Commodore 128 Programmer's Reference Guide. *-—i

u

LJ

LJ

LJ

LJ

LJ

LJ

LJ

INTRODUCTION—How to Use this Guide

n

i i

n

SECTION 2

Overview of the

Commodore ©128

Personal

Computer

OVERVIEW OF THE COMMODORE C128 PERSONAL

COMPUTER

C128 Mode

C64 Mode

CP/M Mode

TURNING ON YOUR COMMODORE C128

USING SOFTWARE

SWITCHING BETWEEN MODES

9

10

10

11

11

12

13

INTRODUCTION—Overview of the Commodore C128 Personal Computer

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

n

n

Overviewofthe

Commodore C128

Personal

Computer

The Commodore 128 incorporates many powerful new features,

including:

■ A greatly enhanced BASIC language—Commodore BASIC

7.0—that provides extensive new commands and

capabilities

■ 128K of RAM, which can be expanded to 256 or 640K with

optional RAM expansion modules

■ 40- and 80-column video output

■ Operative with new 1571 fast disk drive

■ 2 mHz operation

■ CP/M 3.0 operation

■ A professional-type keyboard including a full numeric keypad

■ A built-in machine language monitor

■ Compatibility with Commodore 64 hardware and software

;' a^AW £$5ftjfe/ MUU^I ixi

9 INTRODUCTION—Overview of the Commodore C128 Personal Computer

The Commodore 128 Personal Computer is actually three computers

in one, offering three primary operating modes:

■ C128 Mode

■ C64 Mode

■ CP/M Mode

Here's a summary of what each mode offers:

C128 Mode

In C128 mode, the Commodore 128 Personal Computer provides

access to 128K of RAM and a powerful extended BASIC language

known as BASIC 7.0. BASIC 7.0—which offers over 140 commands,

statements and functions—has been created by Commodore to

provide better and easier ways to perform many sophisticated pro

gramming tasks, including those involving graphics, animation,

sound and music. C128 mode also provides both 40- and 80-column

output capabilities and full use of the 92-key keyboard. The keyboard

includes a numeric keypad in addition to Escape, Tab, ALPHA LOCK

and Help keys. A built-in machine language monitor allows you to

create and debug your own machine language programs. You can

use these programs in conjunction with a BASIC program. In C128

mode you can use a number of new peripheral devices from Com

modore, including a new fast-serial disk drive, a mouse, and a 40/80-

column composite video/RGBI monitor. And you can use all standard

Commodore serial peripherals.

C64 Mode

In C64 mode, the Commodore 128

operates exactly like a Commodore

64 computer. The Commodore 128

retains all the capabilities of the com

mercially successful C64, thus allow

ing you to take full advantage of the

wide range of available C64 software.

You also have compatibility with C64

peripherals, including standard cas

sette, joystick, user port and serial devices, as well as C64 compos

ite video monitor and TV outputs.

u

u

JJ

u

u

u

LJ

10 INTRODUCTION—Overview of the Commodore C128 Personal Computer

Turning On Your

Commodore 128

C64 mode provides the BASIC 2.0 language, 40-column output and

access to 64K of RAM. The main keyboard layout, except for the

placement of the function keys, is the same as that of a Commodore

64 computer. All the C64 graphics, color and sound capabilities are

retained, used exactly as on a Commodore 64.

CP/M Mode *

In CP/M mode, an onboard Z80 microprocessor gives you access to

the capabilities of Digital Research's CP/M Version 3.0, plus a num

ber of new capabilities added by Commodore. The Commodore

128's CP/M 3.0 package (also known as CP/M Plus) provides 128K of

RAM, 40- and 80-column output, access to the full keyboard, includ

ing the numeric keypad and special keys, and access to the new

Commodore 1571 fast serial disk drive and the standard peripherals.

With some exceptions, you will be able to choose from thousands of

popular software programs—already available, and already proven.

(Programs created for a specific computer may not run on the Com

modore 128. Also, CP/M 3.0 programs on the Commodore 128 may

run somewhat slower than CP/M systems on high-priced machines.)

Chapters II, III and IV, which include Sections 3 through 15, tell you

how to access and use the capabilities of the three powerful and

versatile operating modes of the Commodore 128 Personal

Computer.

Before you turn on your Commodore 128, there are a few things to

check to make sure that you get started properly. One thing you

should do before powering up the computer is to make sure the

40/80 key on the top row of the keyboard is set to match your monitor.

For example, if you have a 40-column monitor, the 40/80 key should

be in the up position. If you have an 80-column monitor the 40/80

key should be depressed.

11 INTRODUCTION—Overview of the Commodore C128 Personal Computer

Using Software

If you are using the Commodore 1902 dual monitor in 40-column

format, the 40/80 key should be up and the slide switch on the front

of the monitor should be in the middle position. In 80-column format

using the 1902 dual monitor, the 40/80 key should be depressed and

the switch on the front of the monitor should be in the extreme right

position.

Regardless of which screen format you are using, check to see that

both the CAPS LOCK and SHIFT LOCK keys are in the up position. If

they're not, you may get no picture at all because the monitor switch

may be set for the opposite screen, or the screen may display unfa

miliar symbols. (See Section 5 for a description of all the special keys

used in C128 mode.)

If you are using a MAGIC VOICE speech module, insert the module in

the expansion port and, while holding down the Commodore key,

turn on the power switch. Never plug in any cartridge with the

power turned on.

If you experience difficulty getting a cartridge to power-up in C64

mode, plug in the cartridge with the power off; then hold down the

Commodore key and turn on the computer.

If you have the external CP/M 2.2 cartridge marketed for the Com

modore 64, do not plug it into the Commodore 128. The Commodore

128 has a Z80 microprocessor already on-board for CP/M 3.0. If you

do plug in the CP/M 2.2 cartridge, it can cause unpredictable results.

If you are using software involving a light pen, plug the light pen into

Controller Port 1, located on the right side of the C128 near the power

switch.

LJ

Lf

U

Lf

U

LJ

U

12 INTRODUCTION—Overview of the Commodore C128 Personal Computer

Switching

Between Modes

TO

The following chart tells how to switch to one mode from another.

FROM

C128

40 COL

C128

80 COL

C64

CP/M

40 COL

CP/M

80 COL

OFF

1. Check that

40/80 key is

UP.

2. Turn computer

ON.

1. Press 40/80
key DOWN.

2. Turn computer

ON.

1. Hold c* key

DOWN.

2. Turn computer

ON.

OR

1. Insert C64

cartridge.

2. Turn computer

ON.

1. Turn diskdrive

ON.

2. Insert CP/M

system disk in

drive

3. Check that

40/80 key is

UP.

4. Turn computer

ON.

1. Turn disk drive

ON.

2. Insert CP/M

system disk in

drive.

3. Press 40/80

key DOWN.

4. Turn computer

ON.

C128

40 COL

1. Press ESC key;

release.

2. Press X key.

OR

1. Press 40/80

key DOWN.

2. Press RESET
button.

1. Type GO 64;
press RETURN.

2. The computer

responds:

ARE YOU SURE?
Type Y; press

RETURN.

1. Turn disk drive
ON.

2. Insert CP/M
system disk in

drive.

3. Check that
40/80 key is

UP.

4. Type: BOOT

5. Press RETURN

1. Turn disk drive
ON.

2. Insert CP/M
system disk in

drive.

3. Press 40/80
key DOWN.

4. Type: BOOT

5. Press RETURN

C128

80 COL

1. Press ESC key;

release.

2. Press X key.

OR

1. Check that

40/80 key is

UP.

2. Press RESET

button.

1. Type GO 64;

press RETURN.

2. The computer

responds:

ARE YOU SURE?

TypeY; press

RETURN.

1. Turn disk drive

ON.

2. Insert CP/M

system disk in

drive.

3. Check that

40/80 key is

UP.

4. Type: BOOT

5. Press RETURN

1. Turn disk drive

ON.

2. Insert CP/M

system disk in

drive.

3. Check that
40/80 key is

DOWN.

4. Type: BOOT

5. Press RETURN

C64

1. Check that
40/80 key is

UP.

2. Turn computer

OFF, then ON.

1. Press 40/80
key DOWN.

2. Turn computer

OFF, then ON.

1. Check that
40/80 key is

UP.

2. Turn disk drive

ON.

3. Insert CP/M
system disk in
ririvpUl IVC.

4. Turn computer

OFF, then ON.

1. Press 40/80

Key. DOWN.

2, Turn disk drive
ON.

3. Insert CP/M

system disk In
drive.

4. Turn computer

OFF, then ON.

CP/M

40 COL

1. Check that

40/80 key is UP.

2. Remove CP/M

system disk from

drive, if

necessary.

3. Turn computer

OFF, then ON.

1. Press 40/80 key

DOWN.

2. Remove CP/M

system disk from

drive, if

necessary.

3. Turn computer

OFF, then ON.

1. Turn computer

OFF.

2. Check that 40/

80 key is UP.

3. Hold DOWN o

key while turning

computer ON.

OR

1. Turn computer

OFF.

2. Insert C64

cartridge.

3. Turn power ON.

1. Insert disk with

CP/M utilities in
: drive.

2. At screen

prompt, A> type:
DEVICECONOUT: = 40C0L

3. Press RETURN.

CP/M

80 COL

1. Check that

40/80 key is UP.

2. ftemoveCP/M
system disk from

drive, If
necessary.

3. Turn computer

OFF, then ON.

1. Check that
40/80 key Is

DOWN.

2. Remove CP/M
• system disk from

, drive, if

necessary.

3. Turn computer
OFF, then ON. .

1. Turn computer

OFF. : ;

2. Check that 40/
80 key is UP.

3. Hold DOWN c*

key while turning
computer ON.

OR

, 1. Turn computer
OFFurr.

2. Insert C64

cartridge. :-

3. Turn power ON.

1. Insert disk with
CP/M utilitiesin

drive.

2, At screen
prompt, A>, type:
DEVICECON0UT: = 4OCOL

3. Press RETURN.

NOTE: If you are using a Commodore 1902 dual monitor, remember

to move the video switch on the monitor from COMPOSITE or

SEPARATED to RGBI when switching from 40-column to 80-column

display; reverse this step when switching from 80 to 40 columns. Also,

when changing from CP/M mode to another mode, make sure to

remove the CP/M operating system diskette from the 1571 disk drive, or

else upon reset or power-up, the C128 will BOOT CP/M again.

u

u

u

u

LJ

U

U

U

u

u

u

u

14 INTRODUCTION—Overview of the Commodore C128 Personal Computer

n

n

n

n

USING C128 MODE

CHAPTER

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

H

n

n

n

h

H

n

n

n

n

n

SECTION 3

Getting Started

in Basic

BASIC PROGRAMMING LANGUAGE 19

Direct Mode 19
Program Mode 19

USING THE KEYBOARD 20

Keyboard Character Sets 21
Using the Command Keys 21

Function Keys 27
Displaying Graphic Characters 27

Rules for Typing BASIC Language Programs 27

GETTING STARTED—The PRINT COMMAND 28

Printing Numbers 28
Using the Question Mark to Abbreviate the PRINT

Command 29

Printing Text 29
Printing in Different Colors 30
Using the Cursor Keys Inside Quotes with the PRINT

Command 31

BEGINNING TO PROGRAM 31

What a Program Is 31

Line Numbers 31
Viewing your Program—The LIST Command 32

A Simple Loop—The GOTO Statement 33

Clearing the Computer's Memory—The NEW Command 34

Using Color in a Program 34

EDITING YOUR PROGRAM 35

Erasing a Line from a Program 35

Duplicating a Line 35

Replacing a Line 35

Changing a Line 35

MATHEMATICAL OPERATIONS 36

Addition and Subtraction 36

Multiplication and Division 36

Exponentiation 37

Order of Operations 37

Using Parentheses to Define the Order of Operations 38

CONSTANTS, VARIABLES AND STRINGS 38

Constants 38

Variables 39

Strings 40

17 USING C128 MODE—Getting Started in BASIC

SAMPLE PROGRAM 41

STORING AND REUSING YOUR PROGRAMS 41

Formatting a Disk—The HEADER Command 42

SAVEing on Disk 44

SAVEing on Cassette 44

LOADing from Disk 45

LOADing from Cassette 45

Other Disk-Related Commands 46

18 USING C128 MODE—Getting Started in BASIC

u

H

n

n

n

BASIC

Programming

Language

The BASIC programming language is a special language that lets you

communicate with your Commodore 128. Using BASIC is one means

by which you instruct your computer what to do.

BASIC has its own vocabulary (made up of commands, statements

and functions) and its own rules of structure (called syntax). You

can use the BASIC vocabulary and syntax to create a set of instruc

tions called a program, which your computer can then perform or

"run."

Using BASIC, you can communicate with your Commodore 128 in

two ways: within a program, or directly (outside a program).

Direct Mode

Your Commodore 128 is ready to accept BASIC commands in direct

mode as soon as you turn on the computer. In the direct mode, you

type commands on the keyboard and enter them into the computer

by pressing the RETURN key. The computer executes all direct

mode commands immediately after you press the RETURN key.

Most BASIC commands in your Commodore 128 can be used in

direct mode as well as in a program.

Program Mode

In program mode you enter a set of instructions that perform a spe

cific task. Each instruction is contained in a sequential program line.

A statement in a program may be as long as 160 characters; this is

equivalent to four full screen lines in 40-column format, and two full

screen lines in 80-column format.

Once you have typed a program, you can use it immediately by typ

ing the RUN command and pressing the RETURN key. You can also

store the program on disk or tape by using the DSAVE (or SAVE) com

mand. Then you can recall it from the disk or tape by using the

DLOAD (or LOAD) command. This command copies the program

from the disk or tape and places that program in the Commodore

128's memory. You can then use or "execute" the program again by

entering the RUN command. All these commands are explained later

in this section. Most of the time you will be using your computer with

programs, including programs you yourself write, and commercially

available software packages. The only time you operate in direct

mode is when you are manipulating or editing your programs with

19 USING C128 MODE—Getting Started in BASIC

commands such as LIST, LOAD, SAVE and RUN. As a rule, the differ

ence between direct mode and operation within a program is that

direct mode commands have no line numbers.

Using the

Keyboard

Shown below is the keyboard of the Commodore 128 Personal

Computer.

Using BASIC is essentially the same in both C64 and C128 modes.

Most of the keys, and many of the commands you will learn, can be

used to program BASIC in either mode. The keys that are shaded in

the figure above can be used in C64 mode. In C128 mode you can

use all of the keys on the keyboard.

20 USING C128 MODE—Getting Started in BASIC

r \

H

n

n

n

n

n

Keyboard Character Sets

The Commodore 128 keyboard offers two different sets of

characters:

■ Upper-case letters and graphic characters

■ Upper- and lower case letters

In 80-column format, both character sets are available simultane

ously. This gives you a total of 512 different characters that you can

display on the screen. In 40 column format you can use only one

character set at a time.

When you turn on the Commodore 128 in 40-column format, the key

board is normally using the upper-case/graphic character set. This

means that everything you type is in capital letters. To switch back

and forth between the two character sets, press the SHIFT key and

the Cf key (the COMMODORE key) at the same time. To practice

using the two character sets turn on your computer and press sev

eral letters or graphic characters. Then press the SHIFT key and the

Cf (Commodore) key. Notice how the screen changes to upper- and

lower-case characters. Press SHIFT and Cf again to return to the

upper-case and graphic character set.

Using the Command Keys

COMMAND keys are keys that send messages to the computer.

Some command keys (such as RETURN) are used by themselves.

Other command keys (such as SHIFT, CTRL, Cf and RESTORE) are

used with other keys. The use of each of the command keys is

explained below.

(\

Return When you press the RETURN key, what you

have typed is sent to the Commodore 128 com

puter's memory. Pressing the RETURN key also

moves the cursor (the small flashing rectangle

that marks where the next character you type

will appear) to the beginning of the next line.

At times you may misspell a command or type in

something the computer does not understand.

Then, when you press the RETURN key, you

21 USING C128 MODE—Getting Started in BASIC

probably will get a message like SYNTAX

ERROR on the screen. This is called an "Error

Message." Appendix A lists the error messages

and tells how to correct the errors.

NOTE: In the examples given in this book, the

following symbol indicates that you must press

the RETURN key:

Shift There are two SHI FT keys on the bottom row of

the keyboard. One key is on the left and the

other is on the right, just as on a standard type

writer keyboard.

The SHIFT key can be used in three ways:

1. With the upper/lower-case character set,

the SHIFT key is used like the shift key on a

regular typewriter. When the SHIFT key is

held down, it lets you print capital letters or

the top characters on double-character

keys.

2. The SH I FT key can be used with some of \ I

the other command keys to perform special *—
functions.

3. When the keyboard is set for the upper- I I
case/graphic character set, you can use the

SHIFT key to print the graphic symbols or k ■

characters that appear on the front face of i I
certain keys. See the paragraphs entitled

"Displaying Graphic Characters" at the end ^ ,

of this section for more details. i I

Shift Lock When you press this key down, it locks into Vj
place. Then, whatever you type will either be a

capital letter, or the top character of a double-

character key. To release the lock, press down I /

on the SHIFT LOCK key again. ^

22 USING C128 MODE—Getting Started in BASIC

H

f \

Moving the In C128 mode, you can move the cursor by

Cursor using either the four arrow keys located just

above the top right of the main keyboard, or the

two keys labeled CRSR, at the right of the bot

tom row of the main keyboard.

Using the Four Arrow Cursor Keys

In C128 mode, the cursor can be moved in any

direction simply by using the arrow key in the

top row that points in the direction you want to

move the cursor. (These keys cannot be used in

C64 mode).

n

n

n

H

R

n

Using the CRSR keys

In both C128 and C64 mode, you can use the

two keys on the right side of the bottom row of

the main keyboard to move the cursor:

• Pressing the CRSR key alone moves the cur

sor down. *

•Pressing the CRSR and SHIFT keys together

moves the cursor up.

• Pressing the CRSR key alone moves the cur

sor right- ^

• Pressing the CRSR and SHIFT keys together

moves the cursor left.

You don't have to keep tapping a cursor key to

move more than one space. Just hold the key

down and the cursor continues to move until it

reaches the position you want.

Notice that when the cursor reaches the right

side of the screen, it "wraps", or starts again at

the beginning of the next row. When moving left,

the cursor will move along the line until it

reaches the edge of the screen, then it will jump

up to the end of the preceding line.

n
23 USING C128 MODE—Getting Started in BASIC

u

You should try to become very familiar with the

cursor keys, because moving the cursor makes l j
your programming much easier. With a little

practice you will find that you can move the cur

sor almost without thinking about it. j_j

Inst/Del This is a dual purpose key. INST stands for \ \

INSerT, and DEL for DELete. ^—J

Inserting Characters J j

You must use the SHIFT key with the INST/DEL

key when you want to insert characters in a line. | i

Suppose you left some characters out of a line, [—>

like this:

WHILE U WERE OUT j_J

To insert the missing characters, first use the

cursor keys to move the cursor back to the [|

error, like this: <—I

WHILEHWERE OUT

Then, while you hold down the SHIFT key, press i—'
the INST/DEL key until you have enough space

to add the missing characters: i i

WHILE ■ U WERE OUT

Notice that INST doesn't move the cursor; it just j i

adds space between the cursor and the charac- I—J
ter to its right. To make the correction, simply

type in the missing "Y" and "O", like this: k .

WHILE YOU WERE OUT

Deleting Characters I—I

When you press the DEL key, the cursor moves

one space to the left and erases the character j^J

that is there. This means that when you want to

delete something, you move the cursor just to

the right of the character you want to DELete. I j

Suppose you have made a mistake in typing, like

this:
i)

PRINT "ERROER" l-j

u
24 USING C128 MODE—Getting Started in BASIC

LJ

n

n

n

r .1

H

Control

Run/Stop

You wanted to type the word ERROR, not

ERROER. To delete the incorrect E that pre

cedes the final R, position the cursor in the

space where the final R is located. When you

press the DEL key, the character to the right of

the cursor (the R) automatically nnoves over one

space to the left. You now have the correct

wording like this:

PRINT "ERROR"

Using INSerT and DELete Together

You can use the INSerT and DELete functions

together to fix incorrect characters. First, move

the cursor to the incorrect characters and press

the INST/DEL key by itself to delete the charac

ters. Next, press the SHIFT key and the INST/

DEL key together to add any necessary space.

Then type in the corrections. You can also type

directly on top of undesired characters, then use

INST to add any needed space.

The Control key is used with other keys to do

special tasks called control functions. To per

form a control function, hold down the Control

key while you press some other key. Control

functions are often used in prepackaged soft

ware such as a word processing system.

One control function that is used often is setting

the character and cursor color. To select a color,

hold down the CTRL key while you press a num

ber key (1 through 8), on the top row of the key

board. There are eight more colors available to

you; these can be selected with the C* key, as

explained later.

This is a dual function key. Under certain condi

tions you can use the RUN function of this key

by pressing the SHIFT and RUN/STOP together.

It is also possible to use the STOP function of

this key to halt a program or a printout by press

ing this key while the program is running. How-

25 USING C128 MODE-Getting Started in BASIC

ever, in most prepackaged programs, the STOP

function of the RUN/STOP key is intentionally

disabled (made unusable). This is done to pre

vent the user from trying to stop a program that

is running before it reaches its normal end point.

If the user were able to stop the program, valu

able data could be lost.

Restore The RESTORE key is used with the RUN/STOP

key to return the computer to its standard condi

tion. To do this, hold down the RUN/STOP key

and press RESTORE.

Most prepackaged programs disable the

RESTORE key for the same reason they disable

the STOP function of the RUN/STOP key: to pre

vent losing valuable data.

CLR/Home CLR stands for CLeaR. HOME refers to the

upper-left corner of the screen, which is called

the HOME position. If you press this key by itself

the cursor returns to the HOME position. When

you use the SHIFT key with the CLR/HOME key,

the screen CLeaRs and the cursor returns to the

HOME position.

Commodore Key The Cs key (known as the COMMODORE key)

(C*) has a number of functions, including the follow

ing ones:

1. The Cs key lets you switch back and forth

between the upper/lower-case character

set (which displays the letters and charac

ters on the top of the keys), and the upper

case/graphic display character set (which

displays capital letters and the graphics

symbols on the front face of the keys). To

switch modes, press the CK key and the

SHIFT key at the same time.

2. The Cs key also lets you use a second set of

eight colors for the cursor. To get these col

ors, you hold down the Cs key while you

press a number key (1 through 8) in the top

row.

Li

Li

U

U

U

U

LI

LI

LJ

26 USING C128 MODE—Getting Started in BASIC

u

I \

3. If you hold down the O key while turning on

the computer, you can immediately access

C64 mode.

I \

I S

Function Keys

The four keys located above the numeric keypad (marked F1, F3, F5

and F7 on the top and F2, F4, F6 and F8 on the front) are called func

tion keys. In C128 and C64 modes, you can program the function

keys. (See the KEY command descriptions in Section 5 of Chapter II

and in Chapter V, BASIC 7.0 ENCYCLOPEDIA). These keys are also

often used by prepackaged software to allow you to perform a task

with a single keystroke.

n

n

Displaying Graphic Characters

To display the graphic symbol on the right front face of a key, hold

down the SHIFT key while you press the key that has the graphic

character you want to print. You can display the right side graphic

characters only when the keyboard is in the upper-case/graphics

character set (the normal character set usually available at power-

up).

To display the graphic character on the left front face of a key, hold

down the C* key while you press the key that has the graphic charac

ter you want. You can display the left graphic character while the

keyboard is in either character set.

Rules for Typing BASIC Language Programs

You can type and use BASIC language programs even without know

ing BASIC. You must type carefully, however, because a typing error

may cause the computer to reject your information. The following

guidelines will help minimize errors when typing or copying a pro

gram listing.

1. Spacing between words is not critical; e.g., typing

FORT = 1TO10 is the same as typing FOR T = 1 TO 10. However,

a BASIC keyword itself must not be broken up by spaces. (See

the BASIC 7.0 Encyclopedia in Chapter V for a list of BASIC key

words).

2. Any characters can be typed inside quotation marks. Some char

acters have special functions when placed inside quotation

marks. These functions are explained later in this Guide.

n
27 USING C128 MODE—Getting Started in BASIC

Getting Started—

The PRINT

Command

3. Be careful with punctuation marks. Commas, colons and semi

colons also have special properties, explained later in this

section.

4. Always press the RETURN key (indicated in this Guide by

hLiUI Use) after completing a numbered line.

5. Never type more than 160 characters in a program line. Remem

ber, this is the same as four full screen lines in 40-column format,

or two full screen lines in 80-column format. See Section 8 for

more details on 40- and 80-column formats.

6. Distinguish clearly between the letter I and the numeral 1 and

between the letter 0 and the numeral 0.

7. The computer ignores anything following the letters REM on a

program line. REM stands for REMark. You can use the REM

statement to put comments in your program that tell anyone list

ing the program what is happening at a specific point.

Follow these guidelines when you type the examples and programs

shown in this section.

The PRINT command tells the computer to display information on the

screen. You can print both numbers and text (letters), but there are

special rules for each case, described in the following paragraphs.

Printing Numbers

To print numbers, use the PRINT command followed by the num

bers) you want to print. Try typing this on your Commodore 128:

PRINT 5

Then press the RETURN key Notice the number 5 is now displayed

on the screen.

Now type this and press RETURN:

PRINT 5,6

In this PRINT command, the comma tells the Commodore 128 that

you want to print more than one number. When the computer finds

commas in a string of numbers in a PRINT statement, each number

that follows a comma is printed starting in either the 11 th, 21 st or

31 st column on the screen, depending on the length of each number.

If the previous number has more than 7 digits, the following number

is moved to the next starting position, 10 columns to the right. The

C128 always leaves at least 3 spaces between numbers which are

LJ

U

LJ

LJ

LJ

U

LJ

LJ

28 USING C128 MODE—Getting Started in BASIC

u

n

f I

H

n

n

n

n

n

n

n

n

; 1

H

separated by a comma. If you don't want all the extra spaces, use a

semicolon (;) in your PRINT statement instead of a comma. The semi

colon tells the computer not to add any spaces between strings and

numeric variables and numeric constants. Numbers and numeric

variables are printed with either a leading space or a minus sign, and

a trailing space. Omitting a semicolon, a comma, or any separators

acts the same as a semi-colon. Type these examples and see what

happens:

I filial I OyO I ■ L I O Kff^~-

PRINT 100;200;300;400;500 RF'HFHM

Using the Question Mark to Abbreviate the PRINT

Command

You can use a question mark (?) as an abbreviation for the PRINT

command. Many of the examples in this section use the ? symbol in

place of the word PRINT In fact, most of the BASIC commands can

be abbreviated. However, when you LIST a program, the keyword

appears in the long version. The abbreviations for BASIC commands

can be found in Appendix K of this Guide.

Printing Text

Now that you know how to print numbers, it's time to learn how to

print text. It's actually very simple. Any words or characters you want

to display are typed on the screen, with a quote symbol at each end

of the string of characters. String is the BASIC name for any set of

characters surrounded by quotes. The quote character is obtained

by pressing SHIFT and the numeral 2 key on the top row of the key

board (not the 2 in the numeric keypad). Try these examples:

? "COMMODORE 128"

? "4*5"

Notice that when you press RETURN, the computer displays the

characters within the quotes on the screen. Also note that the sec

ond example did not calculate 4*5 since it was treated as a string

and not a mathematical calculation. If you want to calculate the

result 4*5, use the following command:

?4*5i

You can PRINT any string you want by using the PRINT command

and surrounding the printed characters with quotes. You can com

bine text and calculations in a single PRINT command like this:

?"4*5 = "4*5!

29 USING C128 MODE—Getting Started in BASIC

! \

See how the computer PRINTS the characters in quotes, makes the

calculation and PRINTS the result. It doesn't matter whether the text

or calculation comes first. In fact, you can use both several times in

one PRINT command. Type the following statement:

? 4*(2 + 3)" is the same as "4*5 RETURN

Notice that even spaces inside the quotation marks are printed on

the screen. Type:

? " OVER HERE"

Printing in Different Colors

The Commodore 128 is capable of displaying 16 different colors on |_J
the screen. You can change colors easily. All you do is hold down the

CTRL key and press a numbered key between 1 and 8 on the top row

of the main keyboard. Notice that the cursor changes color accord- j |
ing to the numbered key you pressed. All the succeeding characters

are displayed in the color you selected. Hold down the Commodore .

key and press a numbered key between 1 and 8, and eight additional ; j
colors are displayed on the screen.

Table 3-1 lists the colors available on in C128 mode, for both 40- and | j
80-column screen formats.

u

30

Color Code

1

2

3

4

5

6

7

8

Color Code

1

2

3

4

5

6

7

8

Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Color Numbers

Color

Black

White

Dark Red

Light Cyan

Light Purple

Dark Green

Dark Blue

Light Yellow

Color Numbers

Color Code

9

10

11

12

13

14

15

16

in 40-Column

Color

Orange

Brown

Light Red

Dark Gray

Medium Gray

Light Green

Light Blue

Light Gray

Format

Color Code Color

9

10

11

12

13

14

15

16

in 8Q-Co!umn

Dark Purple

Dark Yellow

Light Red

Dark Cyan

Medium Gray

Light Green

Light Blue

Light Gray

Format

LJ

LJ

|

LJ

U

\
i

u

u

n

I 1

n

n

n

n

n

n

n

n

H

Beginning to

Program

Using the Cursor Keys Inside Quotes with the PRINT

Command

When you type the cursor keys inside quotation marks, graphic char

acters are shown on the screen to represent the keys. These charac

ters will NOT be printed on the screen when you press RETURN. Try

typing a question mark (?), open quotes (SHIFTed 2 key); then press

either of the down cursor keys 10 times, enter the words "DOWN

HERE", and close the quotes. The line should look like this:

QQQQQQQQQQUUiWN HERE"

Now press RETURN. The Commodore 128 prints 10 blank lines, and

on the eleventh line, it prints "DOWN HERE". As this example

shows, you can tell the computer to print anywhere on your screen

by using the cursor control keys inside quotation marks.

So far most of the commands we have discussed have been per

formed in DIRECT mode. That is, the command was executed as

soon as the RETURN key was pressed. However, most BASIC com

mands and functions can also be used in programs.

What a Program Is

A program is just a set of numbered BASIC instructions that tells your

computer what you want it to do. These numbered instructions are

referred to as statements or lines-

Line Numbers

The lines of a program are numbered so that the computer knows in

what order you want them executed or RUN. The computer executes

the program lines in numerical order, unless the program instructs

otherwise. You can use any whole number from 0 to 63999 for a line

number. Never use a comma in a line number.

Many of the commands you have learned to use in DIRECT mode

can be easily made into program statements. For example, type this:

10 ? "COMMODORE 128"

31 USING C128 MODE—Getting Started in BASIC

Notice the computer did not display COMMODORE 128 when you

pressed RETURN, as it would do if you were using the PRINT com

mand in DIRECT mode. This is because the number, 10, that comes

before the PRI NT symbol (?) tells the computer that you are entering i ,

a BASIC program. The computer just stores the numbered statement I S
and waits for the next input from you.

Now type RUN and press RETURN. The computer prints the words I i
COMMODORE 128. This is not the same as using the PRINT com

mand in DIRECT mode. What has happened here is that YOU HAVE s >

JUST WRITTEN AND RUN YOUR FIRST BASIC PROGRAM as small LJ
as it may seem. The program is still in the computer's memory, so

you can run it as many times as you want. , j

Viewing Your Program—The LIST Command ,

Your one-line program is still in the C128 memory. Now clear the '—'
screen by pressing the SHIFT and CLR/HOME keys together. The

screen is empty. At this point you may want to see the program list- j I

ing to be sure it is still in memory. The BASIC language is equipped —'
with a command that lets you do just this—the LIST command.

i j
Type LIST and press RETURN. The C128 responds with: i—)

10 PRINT "COMMODORE 128" (

READY *—*

Anytime you want to see all the lines in your program, type LIST This ,

is especially helpful if you make changes, because you can check to | |
be sure the new lines have been registered in the computer's mem

ory In response to the command, the computer displays the

changed version of the line, lines, or program. Here are the rules for ' |
using the LIST command. (Insert the line number you wish to see in

place of the N.) . .

—To see line N only, type LIST N and press RETURN. t—'

—To see from line N to the end of the program, type LIST N- and

press RETURN. LJ

—To see the lines from the beginning of the program to line N,

type LIST-N and press RETURN. \^J

—To see from line N1 to line N2 inclusive, type LIST N1-N2 and

press RETURN.

32 USING C128 MODE—Getting Started in BASIC

\

n

n

H

n

n

n

n

n

A Simple Loop—The GOTO Statement

The line numbers in a program have another purpose besides put

ting your commands in the proper order for the computer. They

serve as a reference for the computer in case you want to execute

the command in that line repetitively in your program. You use the

GOTO command to tell the computer to go to a line and execute the

command(s) in it. Now type:

20 GOTO 10

When you press RETURN after typing line 20, you add it to your pro

gram in the computer's memory.

Notice that we numbered the first line 10 and the second line 20. It is

very helpful to number program lines in increments of 10 (that is, 10,

20, 30,40, etc.) in case you want to go back and add lines in

between later on. You can number such added lines by fives (15, 25

...) ones (1,2...)—in fact, by any whole number—to keep the lines

in the proper order. (See the RENUMBER and AUTO commands in

the BASIC Encyclopedia.)

Type RUN and press RETURN, and watch the words COMMODORE

128 move down your screen. To stop the message from printing on

the screen, press the RUN/STOP key on the left side of your

keyboard.

The two lines that you have typed make up a simple program that

repeats itself endlessly, because the second line keeps referring the

computer back to the first line. The program will continue indefinitely

unless you stop it or turn off the computer.

Now type LIST! i- The screen should say:

10 PRINT "COMMODORE 128"

20 GOTO 10

READY.

Your program is still in memory. You can RUN it again if you want to.

This is an important difference between PROGRAM mode and

DIRECT mode. Once a command is executed in DIRECT mode, it is

no longer in the computer's memory. Notice that even though you

used the ? symbol for the PRINT statement, your computer has con

verted it into the full command. This happens when you LIST any

command you have abbreviated in a program.

n

33 USING C128 MODE—Getting Started in BASIC

Clearing the Computer's Memory—The NEW Command

Anytime you want to start all over again or erase a BASIC program in

the computer's memory, just type NEW and press RETURN. This

command clears out the computer's BASIC memory, the area where

programs are stored.

M
Using Color in a Program '—

To select color within a program, you must include the color selec

tion information within a PRINT statement. For example, clear your ' I

computer's memory by typing NEW and pressing RETURN, then

type the following, being sure to leave space between each letter: , .

10 PRINT "SPECTRUM" RETURN *—'

Now type line 10 again but this time hold down the CTRL key and ,

press the 1 key directly after entering the first set of quote marks. |
Release the CTRL key and type the "S". Now hold down the CTRL

again and press the 2 key. Release the CTRL key and type the "P". { ,

Next hold down the CTRL again and press the 3 key. Continue this | |
process until you have typed all the letters in the word SPECTRUM

and selected a color between each letter. Press the SHIFT and the 2

keys to type a set of closing quotation marks and press the RETURN | j
key. Now type RUN and press the RETURN key. The computer dis

plays the word SPECTRUM with each letter in a different color. Now

type LIST and press the RETURN key Notice the graphic characters | [
that appear in the PRINT statement in line 10. These characters tell

the computer what color you want for each printed letter. Note that

these graphic characters do not appear when the Commodore 128 j [
PRINTS the word SPECTRUM in different colors.

The color selection characters, known as control characters, in the) j
PRINT statement in line 10 tell the Commodore 128 to change col

ors. The computer then prints the characters that follow in the new

color until another color selection character is encountered. While j j
characters enclosed in quotation marks are usually PRINTed exactly

as they appear, control characters are only displayed within a pro-

gram LISTing. \ |

u

u

U
34 USING C128 MODE—Getting Started in BASIC

U

n

Editing Your

Program

n

n

n

n

n

n

n

n

n

n

n

The following paragraphs will help you to type in your programs and

make corrections and additions to them.

Erasing a Line from a Program

Use the LIST command to display the program you typed previously.

Now type 10 and press RETURN. You just erased line 10 from the

program. LIST your program and see for yourself. If the old line 10 is

still on the screen, move the cursor up so that it is blinking anywhere

on that line. Now, if you press RETURN, line 10 is back in the comput

er's memory.

Duplicating a Line

Hold down the SHIFT key and press the CLR/HOME key on the upper

right side of your keyboard. This will clear your screen. Now LIST

your program. Move the cursor up again so that it is blinking on the

"0" in the line numbered 10. Now type a 5 and press RETURN. You

have just duplicated (i.e., copied) line 10. The duplicate line is num

bered 15. Type LIST and press RETURN to see the program with the

duplicated lines.

Replacing a Line

You can replace a whole line by typing in the old line number fol

lowed by the text of the new line, then pressing RETURN. The old

version of the line will be erased from memory and replaced by the

new line as soon as you press RETURN.

Changing a Line

Suppose you want to add something in the middle of a line. Simply

move the cursor to the character or space that immediately follows

the spot where you want to insert the new material. Then hold down

the SHIFT key and the INST/DEL key together until there is enough

space to insert your new characters.

Try this example. Clear the computer's memory by typing NEW and

pressing RETURN. Then type:

10 ? "MY 128 IS GREAT"

35 USING C128 MODE—Getting Started in BASIC

Mathematical

Operations

Let's say that you want to add the word COMMODORE in front of the

number 128. Just move the cursor so that it is blinking on the " 1" in

128. Hold down the SHIFT and INST/DEL keys until you have enough

room to type in COMMODORE (don't forget to leave enough room for

a space after the E). Then type in the word COMMODORE.

If you want to delete something in a line (including extra blank

spaces), move the cursor to the character following the material you

want to remove. Then hold down the INST/DEL key by itself. The cur

sor will move to the left, and characters or spaces will be deleted as

long as you hold down the INST/DEL key.

You can use the PRINT command to perform calculations like addi

tion, subtraction, multiplication, division and exponentiation. You

type the calculation after the PRINT command.

Addition and Subtraction

Try typing these examples:

PRINT 6 + 4!

PRINT 50-20!

PRINT 10 + 15-5

PRINT 75-100

PRINT 30 + 40,55-25

PRINT30 + 40;55-25

Notice that the fourth calculation (75-100) resulted in a negative

number. Also notice that you can tell the computer to make more

than one calculation with a single PRINT command. You can use

either a comma or a semicolon in your command, depending on

whether or not you want spaces separating your results.

Multiplication and Division

Find the asterisk key (*) on the right side of your keyboard. This is the

symbol that the Commodore 128 uses for multiplication. The slash (/)

key, located next to the right SHIFT key, is used for division.

u

u

u

LI

U

U

U

U

U

U

u

LJ

U

36 USING C128 MODE—Getting Started in BASIC

LJ

U

j I

I 1
Try these examples:

PRINT 5*3

PRINT 100/2

n
Exponentiation

Exponentiation means to raise a number to a power. The up arrow

key (t), located next to the asterisk on your keyboard, is used for

exponentiation. If you want to raise a number to a power, use the

PRINT command, followed by the number, the up arrow and the

power, in that order. For example, to find out what 3 squared is, type:

PRINT 3T2!

n

n

n

n

n

n

Order of Operations

You have seen how you can combine addition and subtraction in the

same PRINT command. If you combine multiplication or division with

addition or subtraction operations, you may not get the result you

expect. For example, type:

PRINT 4 + 6/2!

If you assumed you were dividing 10 by 2, you were probably sur

prised when the computer responded with the answer 7. The reason

you got this answer is that multiplication and division operations are

performed by the computer before addition or subtraction. Multipli

cation and division are said to take precedence over addition and

subtraction. It doesn't matter in what order you type the operation. In

computing, the order in which mathematical operations are per

formed is known as the order of operations.

Exponentiation, or raising a number to a power, takes precedence

over the other four mathematical operations. For example, if you

type:

PRINT 1fi/At9=rTTTn^

the Commodore 128 responds with a 1 because it squares the 4

before it divides 16.

37 USING C128 MODE—Getting Started in BASIC

Constants,

Variables and

Strings

Using Parentheses to Define the Order of Operations

You can tell the Commodore 128 which mathematical operation you

want performed first by enclosing that operation in parentheses in

the PRINT command. For instance, in the first example above, if you

want to tell the computer to add before dividing, type:

PRINT (4 + 6)/2 RETURN

This gives you the desired answer, 5.

If you want the computer to divide before squaring in the second

example, type:

PRINT (16/4)12 HI lllHN

Now you have the expected answer, 16.

If you don't use parentheses, the computer performs the calcula

tions according to the above rules. When all operations in a calcula

tion have equal precedence, they are performed from left to right.

For example, type:

PRINT 4*5/10*6!

Since the operations in this example are performed in order from left

to right, the result is 12 (4*5 = 20 ... 20/10 = 2 ... 2*6 = 12). If you

want to divide 4*5 by 10*6 you type:

print(4*5)/(io*6) m ninn

The answer is now .333333333.

Constants

Constants are numeric values that are permanent: that is, they do

not change in value over the course of an equation or program. For

example, the number 3 is a constant, as is any number. This state

ment illustrates how your computer uses constants:

10 PRINT 3

No matter how many times you execute this line, the answer will

always be 3.

U

LJ

L)

u

\)
(>

u

u

u

u

u

u

u

U

U

U

I I

38 USING C128 MODE—Getting Started in BASIC

u

n

n

n

n

n

n

n

n

"/ \

n

Variables

Variables are values that can change over the course of an equation

or program statement. There is a part of the computer's BASIC mem

ory that is reserved for the characters (numbers, letters and sym

bols) you use in your program. Think of this memory as a number of

storage compartments in the computer that store information about

your program; this part of the computer's memory is referred to as

variable storage. Type in this program:

10X = 5

20 ?X

Now RUN the program and see how the computer prints a 5 on your

screen. You told the computer in line 10 that the letter X will repre

sent the number 5 for the remainder of the program. The letter X is

called a variable, because the value of X varies depending on the

value to the right of the equals sign. We call this an assignment state

ment because now there is a storage compartment labeled X in the

computer's memory, and the number 5 has been assigned to it. The

= sign tells the computer that whatever comes to the right of it will

be assigned to a storage compartment (a memory location) labeled

with the letter X to the left of the equals sign.

The variable name on the left side of the = sign can be either one or

two letters, or one letter and one number (the letter MUST come

first). The names can be longer, but the computer only looks at the

first two characters. This means the names PA and PART would refer

to the same storage compartment. Also, the words used for BASIC

commands (LOAD, RUN, LIST, etc.) or functions (INT, ABS, SQR, etc.)

cannot be used as names in your programs. Refer to the BASIC

Encyclopedia in Chapter 5 if you have any questions about whether a

variable name is a BASIC keyword. Notice that the = in assignment

statements is not the same as the mathematical symbol meaning

"equals", but rather means allocate a variable (storage compart

ment) and assign a value to it.

In the sample program you just typed, the value of the variable X

remains at 5 throughout. You can put calculations to the right of the

= sign to assign the result to a variable. You can mix text with con

stants in a PRINT statement to identify them. Type NEW and press

RETURN to clear the Commodore 128's memory; then try this

program:

10 A = 3*100

30 B = 3*200

30 ?"A IS EQUAL TO "A

40 ?"B IS EQUAL TO "B

39 USING C128 MODE—Getting Started in BASIC

u

Now there are two variables, labeled A and B, in the computer's i /

memory, containing the numbers 300 and 600 respectively. If, later in •—>

the program, you want to change the value of a variable, just put

another assignment statement in the program. Add these lines to the | i

program above and RUN it again. <—>

50 A = 900*30/10

60B = 95 + 32 + 128 M
70 GOTO 30

You'll have to press the STOP key to halt the program. i >

Now LIST the program and trace the steps taken by the computer.

First, it assigns the value to the right of the = sign in line 10 to the j)

letter A. It does the same thing in line 20 for the letter B. Next, it Lj
prints the messages in lines 30 and 40 that give you the values of A

and B. Finally, it assigns new values to A and B in lines 50 and 60. j i

The old values are replaced and cannot be recovered unless the <—>

computer executes lines 10 and 20 again. When the computer is

sent to line 30 to begin printing the values of A and B again, it prints j i

the new values calculated in lines 50 and 60. Lines 50 and 60 reas- ■<—I
sign the same values to A and B and line 70 sends the computer

back to line 30. This is called an endless loop, because lines 30 ,)

through 70 are executed over and over again until you press the -j—I
RUN/STOP key to halt the program. Other methods of looping are

discussed later in this and the following two sections. j \

Strings < >

A string is a character or group of characters enclosed in quotes.

These characters are stored in the computer's memory as a variable

in much the same way numeric variables are stored. You can also) I
use variable names to represent strings, just as you use them to rep

resent numbers. When you put the dollar sign ($) after the string vari

able name, it tells the computer that the name is for a string variable, j I

and not a numeric variable.

Type NEW and press RETURN to clear your computer's memory, j j

then type in the program below:

10 A$ = "COMMODORE"

20X = 128

30 B$ = " COMPUTER"

40Y = 1

50 ? "THE "A$;X;B$" IS NUMBER "Y

40 USING C128 MODE—Getting Started in BASIC

Li

u

n

n

n

n

n

n

n

/ i

n

Sample Program

Storing and

Reusing Your

Programs

See how you can print numeric and string variables in the same

statement? Try experimenting with variables in your own short

programs.

You can print the value of a variable in DIRECT mode, after the pro

gram has been RUN. Type ?A$;B$;X;Y after running the program

above and see that those four variable values are still in the comput

er's memory.

If you want to clear this area of BASIC memory but still leave your

program intact, use the CLR command. Just type CLR <RETURN)

and all constants, variables and strings are erased. But when you

type LIST, you can see the program is still in memory. The NEW com

mand discussed earlier erases both the program and the variables.

Here is a sample program incorporating many of the techniques and

commands discussed in this section.

This program calculates the average of three numbers (X, Y and Z)

and prints their values and their averages on the screen. You can

edit the program and change the assignments in lines 10 through 30

to change the values of the variables. Line 40 adds the variables and

divides by 3 to get the average. Note the use of parentheses to tell

the computer to add the numbers before it divides.

TIP: Whenever you are using more than one set of parentheses

in a statement, it's a good idea to count the number of left

parentheses and right parentheses to make sure they are

equal.

10X = 46

20Y = 72

30Z = 114

40A = (X + Y + Z)/3

60 ?"THE AVERAGE OF"X;Y;"AND "Z;"IS"A;

90 END

Once you have created your program, you will probably want to store

it permanently so you will be able to recall and use it at some later

time. To do this, you'll need either a Commodore disk drive or the

Commodore 1530 Datassette.

41 USING C128 MODE—Getting Started in BASIC

You will learn several commands that let you communicate between

your computer and your disk drive or Datassette. These commands

are constructed with the use of a command word followed by several

parameters. Parameters are numbers, letters, words or symbols in a .

command that supply specific information to the computer, such as 1 I
a filename, or a numeric variable that specifies a device number.

Each command may have several parameters. For example, the ((

parameters of the disk format command include a name for the disk LJ
and an identifying number or code, plus several other parameters.

Parameters are used in almost every BASIC command; some are

variables which change and others are constants. These are the J^J
parameters that supply disk information to the C128 and disk drive:

Disk Handling Parameters M

disk name— arbitrary 16 character identifying name

you supply. j I

file name— arbitrary 16 character identifying name {—'
you supply.

i.d.— arbitrary two-character identifier you j I
supply l—'

drive number— must use 0 for a single disk drive, 0 or 1

in a dual drive. j j

device number— a preassigned number for a peripheral 4—'
device. For example, the device num

ber for a Commodore disk drive is | j

usually 8. !—}

Formatting a Disk—The HEADER Command —

To store programs on a new (or blank) disk, you must first prepare the

disk to receive data. This is called "formatting" the disk. NOTE: j j
Make sure you turn on the disk drive before inserting any disk.

The formatting process divides the disk into sections called tracks j j
and sectors. A table of contents, called a directory, is created. Each

time you store a program on disk, the name you assign to that pro-

gram will be added to the directory.] j

The Commodore 128 has two kinds of formatting commands. One

can be used only in C128 mode, and one can be used in both C64) (
and C128 mode. The following paragraphs describe C128 mode

format commands here. See Chapter III on C64 mode for more infor

mation about C64 programming and disk handling. j [

42 USING C128 MODE—Getting Started in BASIC

u

u

I i

n

n

n

n

n

n

The command that formats a diskette is called the HEADER com

mand. It has a long form and a short form. To format a blank (new)

disk, you MUST use the long form as follows:

HEADER "diskname", li.d.[,Ddrive number] [,[ON]U device number]

After the word HEADER, you type a name of your choice for the disk,

within quotes. You can choose any name with up to 16 characters.

You should choose disk names that help you identify what will be

stored on the disk.

Follow the diskname with a comma and the letter "I". Now a two

character i.d., followed by a comma. Your disk i.d. does not have to

be numbers; you can also choose letters. You may want to develop a

consecutive coding system for your disks, such as A1, A2, B1, B2.

If you have one single disk drive, just press RETURN at this point

since the Commodore 128 automatically assumes the drive number

is 0 and the device number is 8. You can specify these parameters if

you have more than one drive or a dual drive.

The next parameter in the command selects the drive number. Press

the "D" key and if you have a single disk drive, press the zero key

followed by a comma. Dual drives are labeled 0 and 1. The device

number parameter starts with the letter U so press the "U" key fol

lowed by the preassigned device number for a Commodore disk

drive which is 8.

Here is an example of the long form of the HEADER command:

HEADER"RECS",IA1,D0,U8 RETURN

This command formats the diskette, calling the directory RECS, the

i.d. number A1, on drive 0, unit 8.

The default values for disk drive (0) and device number (8) will be

used if none are supplied. This is an acceptable long form of the

HEADER command:

HEADER "MYDISK", 123

The HEADER command can also be used to erase all data from a

used disk, so the disk can be reused as if it were a brand new disk.

Be careful that you don't erase a disk that contains data you may

want someday.

43 USING C128 MODE—Getting Started in BASIC

u

The quick form of the HEADER command can be used if the disk . >

was previously formatted with the long form of the HEADER I !
command.

The quick form clears the directory, gives it a new name, but keeps ' 1
the same i.d. as was previously used. Here is what the quick

HEADER might look like: { j

HEADER "NEWPROGS"

SAVEing on Disk ^

In C128 mode, you can store your program on disk by using either of , .

the following commands: LJ

DSAVE"PROGRAM NAME" HUDHN

SAVE"PROGRAM NAME",8 niTimN | I

Either command can be used. Remember that the character

sequence "DSAVE" can be displayed on the screen by pressing the , ,

function key labeled F5, or you can type the sequence yourself. The I I
program name can be any name you choose, up to 16 characters

long. Be sure to enclose the program name in quotes. You cannot , ,

put two programs with the same name on the same disk. If you do, I I
the second program will not be accepted; the disk will retain the first

one. In the second example, the 8 indicates that you are saving your v ,

program on device number 8. You do not need the 8 with DSAVE, I I
because the computer automatically assumes you are using device

number 8. . .

SAVEing on Cassette . ,

If you are using a Datassette to store your program, insert a blank

tape in the recorder, rewind the tape if necessary, and type:

SAVE "PROGRAM NAME" HHMHN U

You must type the word SAVE, followed by the program name. The

program name can be any name you choose up to 16 characters. J j

NOTE: The screen will go blank while the program is being

SAVEd, but returns to normal when the process is completed.) i

Unlike disk, you can save two programs to tape under the same

name. However when you load it back into the computer, the first j I

program sequentially on the tape will be loaded, so avoid giving pro- '—*

grams the same name.

u
44 USING C128 MODE—Getting Started in BASIC

u

n

n

n

n

n

n

n

n

Once a program has been SAVEd, you can LOAD it back into the

computer's memory and RUN it anytime you wish.

LOADing from Disk

Loading a program simply copies the contents of the program from

the disk into the computer's memory. If a BASIC program was

already in memory before you issued the LOAD command, it is

erased.

To load your BASIC program from a disk, use either of the following

commands in C128 mode:

DLOAD"PROGRAM NAME"i

LOAD"PROGRAM NAME",8

Remember, in C128 mode you can use the F2 function key (which

you activate by pressing SHIFT and F1) to display the sequence

DLOAD", or you can type the letters yourself. In the second exam

ple, the 8 indicates to the computer that you are loading from device

number 8. Again, like DSAVE, DLOAD assumes the disk-drive device

number is 8. Be careful to type the program name exactly as you

typed it when SAVEing the program, or the computer will respond

"FILE NOT FOUND."

Once the program is loaded, type RUN to execute. The Commodore

128 has a special form of the RUN command used to LOAD and

RUN the program in C128 mode with one command. Type RUN, fol

lowed by the name of the program (also known as the filename) in

quotes:

RUN"MYPROG"

LOADing from Cassette

To LOAD your program from cassette tape, type:

LOAD "PROGRAM NAME" IILIUIIN

If you do not know the name of the program, you can type:

LOAD IFtfciXU Hiht==

and the next program on the tape will be found. While the Datassette

is searching for the program the screen is blank. When the program

is found, the screen displays:

FOUND PROGRAM NAME

45 USING C128 MODE—Getting Started in BASIC

To actually load the program, you then press the Commodore key.

You can use the counter on the Datassette to identify the starting

position of the programs. Then, when you want to retrieve a pro

gram, simply wind the tape forward from 000 to the program's start

location, and type:

In this case you don't have to specify the PROGRAM NAME; your

program will load automatically because it is the next program on

the tape.

Other Disk-Related Commands

Verifying a To verify that a program has been correctly

Program saved, use the following command in C128

mode:

DVERIFY"PROGRAM NAME"

If the program in the computer is identical to the

one on the disk, the screen display will respond

with the letters "OK."

The VERIFY command also works for tape pro

grams. You type:

VERIFY"PROGRAM NAME" nmmM

You do not enter the comma and a device

number.

Displaying Your In C128 mode, you can see a list or directory of

Disk Directory the programs on your disk by using the following

command:

DIRECTORY

This lists the contents of the directory. The easy

way is to press the F3 function key. When you

press F3, the C128 displays the word "DIREC

TORY" and performs the command.

u

u

u

u

u

LJ

U

u

u

u

u

u

LJ

u

46 USING C128 MODE—Getting Started In BASIC

H

n

n

n

n

n

n

n

n

n

For further information on SAVEing and LOAD-

ing your programs, or other disk related informa

tion, refer to your Datassette or disk drive man

ual. Also consult the LOAD and SAVE command

descriptions in the Chapter V, BASIC 7.0

Encyclopedia.

**

You now know something about the BASIC language and some ele

mentary programming concepts. The next section builds on these

concepts, introducing additional commands, functions and tech

niques that you can use to program in BASIC.

47 USING C128 MODE—Getting Started in BASIC

u

u

u

u

u

LJ

U

U

LJ

U

U

U

u

u

u

u

u

Q

SECTION 4

Basic

Programming

n

n

n

n

n

n

n

n

n

COMPUTER DECISIONS—The IF-THEN Statement 51

Using the Colon 52

LOOPS—The FOR-NEXT Command 53
Empty Loops—Inserting Delays in a Program 54

The STEP Command 54

INPUTTING DATA 55
The INPUT Command 55

Assigning a Value to a Variable 55
Prompt Messages 56

The GET Command 57

Sample Program 58
The READ-DATA Command 59

The RESTORE Command 60
Using Arrays 61

Subscripted Variables 61
Dimensioning Arrays 62

Sample Program 63

PROGRAMMING SUBROUTINES 64

The GOSUB-RETURN Command 64

The ON GOTO/GOSUB Command 65

USING MEMORY LOCATION 65

Using PEEK and POKE for RAM Access 65

Using PEEK 66

Using POKE 66

BASIC FUNCTIONS 67

What Is a Function? 67

The INTEGER Function (INT) 67

Generating Random Numbers—The RND Function 68

The ASC and CHR$ Commands 69

Converting Strings and Numbers 69

The VAL Function 70

The STR$ Function 70

The Square Root Function (SQR) 70

The Absolute Value Function (ABS) 70

THE STOP AND CONT (CONTINUE) COMMANDS 70

49 USING C128 MODE—Advanced BASIC Programming

u

u

u

u

u

u

u

u

u

u

u

u

u

Q

n

n

n

n

n

n

n

n

n

n

Computer

Decisions—

The IF-THEN

Statement

n

This section describes how to use a number of powerful BASIC com

mands, functions and programming techniques that can be used in

both C128 and C64 modes.

These commands and functions allow you to program repeated

actions through looping and nesting techniques; handle tables of

values; branch or jump to another section of a program, and return

from that section; assign varying values to a quantity—and more.

Examples and sample programs show just how these BASIC con

cepts work and interact.

Now that you know how to change the values of variables, the next

step is to have the computer make decisions based on these

updated values. You do this with the IF-THEN statement. You tell the

computer to execute a command only IF a condition is true (e.g., IF

X = 5). The command you want the computer to execute when the

condition is true comes after the word THEN in the statement. Clear

your computer's memory by typing NEW and pressing RETURN,

then type this program:

10 J = 0

20 ? J,"COMMODORE 128"

30 J = J + 1

40 IF J<>5 THEN 20

60 END

You no longer have to press the STOP key to break out of a looping

program. The IF-THEN statement tells the computer to keep printing

"COMMODORE 128" and incrementing (increasing) J until J = 5 is

true. When an IF condition is false, the computer jumps to the next

line of the program, no matter what comes after the word THEN.

Notice the END command in line 60. It is good practice to put an

END statement as the last line of your program. It tells the computer

where to stop executing statements.

51 USING C128 MODE—Advanced BASIC Programming

u

Below is a list of comparison symbols that may be used in the IF j ?

statement and their meanings: '—'

SYMBOL MEANING

EQUALS LJ
> GREATER THAN

< LESSTHAN < \

<> NOT EQUAL TO i-1
> = GREATER THAN OR EQUAL TO

< = LESS THAN OR EQUAL TO i j

You should be aware that these comparisions work in expected

mathematical ways with numbers. There are different ways to deter-

mine if one string is greater than, less than, or equal to another. You j^J
can learn about these "string handling" functions by referring to

Chapter V, BASIC 7.0 Encyclopedia.

Section 5 describes some powerful extensions of the IF-THEN con

cept, consisting of BASIC 7.0 commands like BEGIN, BEND, and

ELSE. [J

Using the Colon | j

A very useful tool in programming is the colon (:). You can use the

colon to separate two (or more) BASIC commands on the same line. j i

Statements after a colon on a line will be executed in order, from left

to right. In one program line you can put as many statements as you i i

can fit into 160 characters, including the line number. This is equiva- '—'
lent to four full screen lines in 40-column format, and two full lines in

80-column format. This provides an excellent opportunity to take \ i

advantage of the THEN part of the IF-THEN statment. You can tell LJ
the computer to execute several commands when your IF condition

is true. Clear the computer's memory, type in the following program i i

and RUN it. I—'

1ON=0

15N = N + 1 LJ
20 IF N<5 THEN PRINT N;"LESS THAN 5":GOTO 15

30 ? N; "GREATER THAN OR EQUAL TO 5"

40 END)_J

LJ

LJ
52 USING C128 MODE—Advanced BASIC Programming __

u

n

H

n

H

G

n

H

H

n

n

n

n

LJ

n

Loops—The

FOR-NEXT

Command

Now change line 10 to read N = 20, and RUN the program again.

Notice you can tell the computer to execute more than one state

ment when N is less than 5. You can put any statement(s) you want

after the THEN command. Remember that the GOT015 will not be

reached until N<5 is true. Any command that should be followed

whether or not the specified condition is met should appear on a

separate line.

In the first RUN of the program used in the previous example, we

made the computer print the variable N five times by telling it to

increase or "increment" the variable N by units of one, until the

value of N equalled five; then we ended the program. There is a sim

pler way to do this in BASIC. We can use a FOR-NEXT loop, like this:

10FORN = 1 TO 5

20 ?N; "IS LESS THAN OR EQUAL TO 5"

30 NEXT N

40 END

Type and RUN this program and compare the result with the result of

the IF-THEN program—they are similar. In fact, the steps taken by

the computer are almost identical for the two programs. The FOR-

NEXT loop is a very powerful programming tool. You can specify the

number of times the computer should repeat an action. Let's trace

the computer's steps for the program above.

First, the computer assigns a value of 1 to the variable N. The 5 in

the FOR statement in line 10 tells the computer to execute all state

ments between the FOR statement and the NEXT statement, until N

is equal to 5. In this case there is just one statement—the PRINT

statement.

This is how the computer interprets the inner workings of a FOR...

NEXT loop—it operates in much the same way as the IF... THEN

example on the previous page. First, the C128 assigns a value of 1 to

the variable N. It then executes all instructions between the FOR and

NEXT keywords. When the NEXT statement is encountered, it tells

the computer to increment the counter variable N (in this case by 1),

compare N to 5 and continue with another cycle through the FOR

... NEXT loop if N = 5 is false. The increment defaults to 1 if no other

increment is specified in the FOR statement. After five passes

through the loop, and once N = 5 is true, the computer processes

the statement which immediately follows the NEXT statement and

resumes with the rest of the program. Since the computer does not

compare the value of N to the start value of the loop variable until

the NEXT statement is encountered, every loop is executed at least

once.

53
USING C128 MODE—Advanced BASIC Programming

u

Empty Loops—Inserting Delays in a Program i >

Before you proceed any further, it will be helpful to understand about

loops and some ways they are used to get the computer to do what

you want. You can use a loop to slow down the computer (by now j j
you have witnessed the speed with which the computer executes

commands). See if you can predict what this program will do before

you run it. j j

10 A$ = "COMMODORE C128"

20 FOR J = 1 TO 20 < }

30 PRINT ^J

40FORK = 1 TO 1500

50 NEXT K i »

60 PRINT A$ LJ
70 NEXT J

80 END , |

Did you get what you expected? The loop contained in lines 40 and

50 tells the computer to count to 1500 before executing the remain

der of the program. This is known as a delay loop and is often useful. I I

Because it is inside the main loop of the program, it is called a UJ
nested loop. Nested loops can be very useful when you want the

computer to perform a number of tasks in a given order, and repeat I]

the entire sequence of commands a certain number of times.

Section 5 describes an advanced way to insert delays through use I I

of the new BASIC 7.0 command, SLEEP.

u
The STEP Command

You can tell the computer to increment your counter by units (e.g. 10,] |
0.5 or any other number). You do this by using a STEP command with

the FOR statement. For example, if you want the computer to count

by tens to 100, type: j [

10 FOR X = 0 TO 100 STEP 10

20?X j |

30 NEXT LJ

Notice that you do not need the X in the NEXT statement if you are

only executing one loop at a time—NEXT refers to the most recent * |
FOR statement. Also, note that you do not have to increase (or

"increment") your counter—you can decrease (or "decrement") it

as well. For example, change line 10 in the program above to read: j |

10 FOR X = 100 TO 0 STEP-10

54 USING C128 MODE—Advanced BASIC Programming

U

u

n

n

n

n

n

H

n

n

n

n

H

n

n

Inputting Data

55

The computer will count backward from 100 to 0, in units of 10.

If you don't use a STEP command with a FOR statement, the com

puter will automatically increment the counter by units of 1.

The parts of the FOR-NEXT command in line 10 are:

FOR — word used to indicate beginning of loop

X — counter variable; any number variable can be used

1 — starting value; may be any number, positive or nega

tive

TO — connects starting value to ending value

100 — ending value; may be any number, positive or negative

STEP — indicates an increment other than 1 will be used

- 10 — increment; can be any number positive or negative

The INPUT Command

Assigning a Clear the computer's memory by typing NEW

Value to a and pressing RETURN, and then type and RUN

Variable this program.

10K = 10

20 FOR 1 = 1 TO K

30 ? "COMMODORE"

40 NEXT

In this program you can change the value of K in

line 10 to make the computer execute the loop

as many times as you want it to. You have to do

this when you are typing the program, before it

is RUN. What if you wanted to be able to tell the

computer how many times to execute the loop

at the time the program is RUN?

In other words, you want to be able to change

the value of the variable K each time you run the

program, without having to change the program

itself. We call this the ability to interact with the

computer. You can have the computer ask you

how many times you want it to execute the loop.

To do this, use the INPUT command. For exam

ple, replace line 10 in the program with:

10 INPUT K

USING C128 MODE—Advanced BASIC Programming

Prompt

Messages

Now when you RUN the progrann, the computer

responds with a ? to let you know it is waiting for

you to enter what you want the value of K to be.

Type 15 and press RETURN. The computer will

execute the loop 15 times.

You can also make the computer print a mes

sage in an INPUT statement to tell you what

variable it's waiting for. Replace line 10 with:

10 INPUTPLEASE ENTER A VALUE FOR

K";K

Remember to enclose the message to be

printed in quotes. This message is called a

prompt. Also, notice that you must use a semi

colon between the ending quote marks of the

prompt and the K. You may put any message

you want in the prompt, but the INPUT state

ment must fit within 160 characters, just as any

BASIC command must.

The INPUT statement can also be used with

string variables. The same rules that apply for

numeric variables apply for strings. Don't forget

to use the $ to identify all your string variables.

Clear your computer's memory by typing

NEW and pressing RETURN. Then type in this

program.

10 INPUT"WHAT IS YOUR NAME";N$

20 ? "HELLO ",N$

Now RUN the program. When the computer

prompts "WHAT IS YOUR NAME?", type your

name. Don't forget to press RETURN after you

type your name.

Once the value of a variable (numeric or string)

has been inserted into a program through the

use of INPUT, you can refer to it by its variable

name any time in the program. Type ?N$

(RETURN)—your computer remembers your

name.

u

LJ

U

U

U

U

U

u

LJ

56 USING C128 MODE—Advanced BASIC Programming

u

u

LJ

U

LJ

U

LJ

U

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
57

The GET Command

There are other BASIC commands you can use in your program to

interact with the computer. One is the GET command which is simi

lar to INPUT To see how the GET command works, clear the comput

er's memory and type this program.

10 GET A$

20 IF A$ = "" THEN GOTO 10

30?A$

40 END

When you type RUN and press RETURN, nothing seems to happen.

The reason is that the computer is waiting for you to press a key. The

GET command, in effect, tells the computer to check the keyboard

and find out what character or key is being pressed. The computer is

satisfied with a null character (that is, no character). This is the rea

son for line 20. This line tells the computer that if it gets a null charac

ter, indicated by the two double quotes with no space between them,

it should go back to line 10 and try to GET another character. This

loop continues until you press a key The computer then assigns the

character on that key to A$.

The GET command is very important because you can use it, in

effect, to program a key on your keyboard. The example below prints

a message on the screen when Q is pressed. Type the program and

RUN it. Then press Q and see what happens.

10 ?"PRESS Q TO VIEW MESSAGE"

20 GET A$

30 IF A$ = "" THEN GOTO 20

40 IF A$ = "Q" THEN GOTO 60

50 GOTO 20

60 FOR 1 = 1 TO 25

70 ? "NOW I CAN USE THE GET STATEMENT"

80 NEXT

90 END

Notice that if you try to press any key other than the Q, the computer

will not display the message, but will go back to line 20 to GET

another character.

Section 5 describes how to use the DO/LOOP and GETKEY state

ments, which are new and more powerful BASIC 7.0 commands that

can be used to perform a similar task.

USING C128 MODE—Advanced BASIC Programming

Sample Program

Now that you know how to use the FOR-NEXT loop and the INPUT

command, clear the computer's memory by typing NEW

ULTUHNl, then type the following program:

10T = 0

20 INPUT'HOW MANY NUMBERS";N (j

30FORJ = 1TON LJ
40 INPUT'PLEASE ENTER A NUMBER ";X

50T = T + X i)

60 NEXT ^J
70A = T/N

80 PRINT i |

90 ? "YOU HAVE";N"NUMBERS TOTALING";T LJ
100? "AVERAGE = ";A

110 END [i

This program lets you tell the computer how many numbers you want

to average. You can change the numbers every time you run the

program without having to change the program itself. |_J

Let's see what the program does, line by line:

Line 10 assigns a value of 0 to T (which will be the running total •—

of the numbers).

Line 20 lets you determine how many numbers to average, j j
stored in variable N.

Line 30 tells the computer to execute a loop N times. , i

Line 40 lets you type in the actual numbers to be averaged.

Line 50 adds each number to the running total. 1 i

Line 60 tells the computer to go back to line 30, increment the

counter (J) and start the loop again.

Line 70 divides the total by the amount of numbers you typed I—I
(N) after the loop has been executed N times.

Line 80 prints a blank line on the screen. j j

Line 90 prints the message that gives you the amount of num

bers and their total, i |

Line 100 prints the average of the numbers.

Line 110 tells the computer that your program is finished. , j

u
58 USING C128 MODE—Advanced BASIC Programming

n

n

n

I \

n

n

n

n

n

n

n

n

n

n

n

n
59

The READ-DATA Command

There is another powerful way to tell the computer what numbers or

characters to use in your program. You can use the READ statement

in your program to tell the computer to get a number or character(s)

from the DATA statement. For example, if you want the computer to

find the average of five numbers, you can use the READ and DATA

statements this way:

10T = 0

20 FOR J = 1TO5

30 READ X

40T = T + X

50 NEXT

60A = T/5

70? "AVERAGE =";A

80 END

90 DATA 5,12,1,34,18

When you run the program, the computer will print AVERAGE = 14.

The program uses the variable T to keep a running total, and calcu

lates the average in the same way as the INPUT average program.

The READ-DATA average program, however, finds the numbers to

average on a DATA line. Notice line 30, READ X. The READ com

mand tells the computer there must be a DATA statement in the pro

gram. It finds the DATA line, and uses the first number as the current

value for the variable X. The next time through the loop the second

number in the DATA statement will be used as the value for X, and

soon.

You can put any number you want in a DATA statement, but you can

not put calculations in a DATA statement. The DATA statement can

be anywhere you want in the program—even after the END state

ment. This is because the computer never really executes the DATA

statement; it just refers to it. Be sure to separate your data items

with commas, but be sure not to put a comma between the word

DATA and the first number in the list.

If you have more than one DATA statement in your program, the com

puter will refer to the one that is closest after the READ statement

being executed at the time. The computer uses a pointer to remind

itself which piece of data it read last. After the computer reads the

first number in the DATA statement, the pointer points to the second

number. When the computer comes to the READ statement again, it

assigns the second number to the variable name in the READ

statement.

USING C128 MODE—Advanced BASIC Programming

You can use as many READ and DATA statements as you need in a

program, but make sure there is enough data in the DATA statements

for the computer to read. Remove one of the numbers from the DATA

statement in the last program and run it again. The computer » (

responds with ?OUT OF DATA ERROR IN 30. What happened is that LJ
when the computer executed the loop for the fifth time, there was no

data for it to read. That is what the error message is telling you. Put- , »

ting too much into the DATA statement doesn't create a problem I I
because the computer never realizes the extra data exists.

u
The RESTORE Command

You can use the RESTORE command in a program to reset the data j I

pointer to the first piece of data if you need to. Replace the END

statement (line 80) in the program above with:

80 RESTORE LJ
and add:

85 GOTO 10 LJ
Now RUN the program. The program will run continuously using the

same DATA statement. NOTE: If the computer gives you an OUT OF I I

DATA ERROR message, it is because you forgot to replace the num

ber that you removed previously from the DATA statement, so the

data is all used before the READ statement has been executed the j I

specified number of times.

You can use DATA statements to assign values to string variables. I I

The same rules apply as for numeric data. Clear the computer's

memory and type the following program:

10 FOR J = 1TO3 LJ
20 READ A$

30?A$ j ,

40 NEXT LJ
50 END

60 DATA COMMODORE,128,COMPUTER .

If the READ statement calls for a string variable, you can place let

ters or numbers in the DATA statement. Notice however, that since j j

the computer is READing a string, numbers will be stored as a string '—'
of characters, not as a value which can be manipulated. Numbers

stored as strings can be printed, but not used in calculations. Also, | j

you cannot place letters in a DATA statement if the READ statement '—>

calls for a number variable.

LJ
60 USING C128 MODE—Advanced BASIC Programming

o

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
61

Using Arrays

You have seen how to use READ-DATA to provide many values for a

variable. But what if you want the computer to remember all the data

in the DATA statement instead of replacing the value of a variable

with the new data? What if you want to be able to recall the third

number, or the second string of characters?

Each time you assign a new value to a variable, the computer erases

the old value in the variable's box in memory and stores the new

value in its place. You can tell the computer to reserve a row of

boxes in memory and store every value that you assign to that varia

ble in your program. This row of boxes is called an array.

Subscripted If the array contains all of the values assigned to

Variables the variable X in the READ-DATA example, it is

called the X array. The first value assigned to X

in the program is named X(1), the second value

is X(2), and so on. These are called subscripted

variables. The numbers in the parentheses are

called subscripts. You can use a variable or a

calculation as a subscript. The following is

another version of the averaging program,

this time using subscripted variables.

5 DIM X(5)

10T = 0

15:

20FORJ = 1TO5

30 READ X(J)

40T = T + X(J)

50 NEXT

55:

60A = T/5

70? "AVERAGE =";A

80 END

85:

90 DATA 5,12,1,34,18

Notice there are not many changes. Line 5 is the

only new statement. It tells the computer to set

aside five storage compartments (25 bytes) in

memory for the X array Line 30 has been

changed so that each time the computer exe

cutes the loop, it assigns a value from the DATA

statement to the position in the X array that cor

responds to the loop counter (J). Line 40 calcu-

USING C128 MODE—Advanced BASIC Programming

u

lates the total, just as it did before, but you must i j

use a subscripted variable to do it. '—J

After you run the program, if you want to recall

the third number, type ?X(3)<RETURN). The [J
computer remembers every number in the array

X. You can create string arrays to store the char

acters in string variables the same way. Try I I
updating the COMMODORE 128 COMPUTER

READ-DATA program so the computer will

remember the elements in the A$ array. j j

5 DIM A$(3)

10FORJ = 1TO3 / {

20 READ A$(J) LJ
30 ? A$(J)

40 NEXT i s

50 END LJ
60 DATA COMMODORE,C128,COMPUTER

TIP: You do not need the DIM statement in your I]
program unless the array you use has more than

10 elements. See DIMENSIONING ARRAYS.

Dimensioning Arrays can be used with nested loops, so the

Arrays computer can handle data in a more advanced

way. What if you had a large chart with 10 rows j j
and 5 numbers in each row. Suppose you

wanted to find the average of the five numbers

in each row. You could create 10 arrays and j j
have the computer calculate the average of the

five numbers in each one. This is not necessary,

because you can put all the numbers in a two- jj
dimensional array. This array would have the

same dimensions as the chart of numbers you

want to work with—10 rows by 5 columns. The jj
DIM statement for this array (we will call it array

X) should be:

10 DIM X(10,5) LJ
This tells the computer to reserve space in its

memory for a two-dimensional array named X. | I

The computer reserves enough space for 50

numbers. You do not have to fill an array with as

many numbers as you DIMensioned it for, but j I

the computer will still reserve enough space for i '
all of the positions in the array.

62 USING C128 MODE—Advanced BASIC Programming

u

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Sample

Program

Now it becomes very easy to refer to any num

ber in the chart by its column and row position.

Refer to the chart below. Find the third element

in the tenth row (1500). You would refer to this

number as X(10,3) in your program. The pro

gram at the bottom of this page reads the num

bers from the chart into a two-dimensional array

(X) and calculates the average of the numbers in

each row.

Row

1

2

3

4

5

6

7

8

9

10

1

1

2

5

10

20

30

40

50

100

500

2

3

4

10

20

40

60

80

100

200

1000

Column

3

5

6

15

30

60

90

120

150

300

1500

4

7

8

20

40

80

120

160

200

400

2000

5

9

10

25

50

100

150

200

250

500

2500

63

Programming

Subroutines
The GOSUB-RETURN Command

Until now, the only method you have had to tell the computer to jump

to another part of your program is to use the GOTO command. What

if you want the computer to jump to another part of the program,

execute the statements in that section, then return to the point it left

off and continue executing the program?

The part of program that the computer jumps to and executes is

called a subroutine. Clear your computer's memory and enter the

program below.

10 A$ = "SUBROUTINE":B$ = "PROGRAM"

20 FOR J = 1TO5

30 INPUT "ENTER A NUMBER";X

40 GOSUB 100

50 PRINT B$:PRINT

60 NEXT

70 END

100 PRINT A$:PRINT

110Z = XT2:PRINTZ

120 RETURN

This program will square the numbers you type and print the result.

The other print messages tell you when the computer is executing

the subroutine or the main program. Line 40 tells the computer to

jump to line 100, execute it and the statements following it until it

sees a RETURN command. The RETURN statement tells the com

puter to go back in the program to the statement following the

GOSUB command and continue executing. The subroutine can be

anywhere in the program—including after the END statement. Also,

remember that the GOSUB and RETURN commands must always

be used together in a program (like FOR-NEXT and IF-THEN), other

wise the computer will give an error message.

64 USING C128 MODE—Advanced BASIC Programming

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

u

a

n

n

H

n

n

H

n

H

n

Using Memory

Locations

n

H

The ON GOTO/GOSUB Command

There is another way to make the computer jump to another section

of your program (called branching). Using the ON statement, you can

have the computer decide what part of the program to branch to

based on a calculation or keyboard input. The ON statement is used

with either the GOTO or GOSUB-RETURN commands, depending on

what you need the program to do. A variable or calculation should be

after the ON command. After the GOTO or GOSUB command, there

should be a list of line numbers. Type the program below to see how

the ON command works.

10 ? "ENTER A NUMBER BETWEEN ONE AND FIVE"

20 INPUT X

30 ON X GOSUB 100,200,300,400,500

40 END

100 ? "YOUR NUMBER WAS ONE":RETURN

200 ? "YOUR NUMBER WAS TWO":RETURN

300 ? "YOUR NUMBER WAS THREE":RETURN

400 ? "YOUR NUMBER WAS FOUR":RETURN

500 ? "YOUR NUMBER WAS FIVE":RETURN

When the value of X is 1, the computer branches to the first line num

ber in the list (100). When X is 2, the computer branches to the sec

ond number in the list (200), and so on.

Using PEEK and POKE for RAM/ROM Access

Each area of the computer's memory has a special function. For

instance, there is a very large area to store your programs and the

variables associated with them. This part of memory, called RAM, is

cleared when you use the NEW command. Other areas are not as

large, but they have very specialized functions. For instance, there is

an area of memory locations that controls the music features of the

computer.

There are two BASIC commands—PEEK and POKE—that you can

use to access and manipulate the computer's memory. Use of PEEK

and POKE commands can be a powerful programming device

because the contents of the computer's memory locations deter

mine exactly what the computer should be doing at a specific time.

65 USING C128 MODE—Advanced BASIC Programming

Using PEEK

Using POKE

PEEK can be used to make the computer tell

you what value is being stored in a memory

location (a memory location can store any value

between 0 and 255). You can PEEK the value of

any memory location (RAM or ROM) in DIRECT

or PROGRAM mode. Type:

P = PEEK(2594)j

The computer assigns the value in memory

location 2594 to the variable P when you press

RETURN after the first line. Then it prints the

value when you press RETURN after entering

the ? P command. Memory location 2594 deter

mines whether or not keys like the spacebar and

CRSR repeat when you hold them down. A128

in location 2594 tells the computer to repeat

these keys when you hold them down. Hold

down the spacebar and watch the cursor move

across the screen.

To change the value stored in a RAM location,

use the POKE command. Type:

POKE 2594,96 RETURN

The computer stores the value after the comma

(96) in the memory location before the comma

(2594). A 96 in memory location 2594 tells the

computer not to repeat keys like the spacebar

and CRSR keys when you hold them down. Now

hold down the spacebar and watch the cursor.

The cursor moves one position to the right, but it

does not repeat. To return your computer to its

normal state, type:

POKE 2594,128 Hf- I"HH

You cannot alter the value of all the memory

locations in the computer—the values in ROM

can be read, but not changed.

NOTE: These examples assume you are in

bank0. See the description of the BANK

command in Chapter V, BASIC 7.0 Encyclo

pedia for details on banks. Refer to the

Commodore 128 Programmer's Reference

u

u

u

u

u

u

u

66 USING C128 MODE—Advanced BASIC Programming

u

LJ

U

LJ

LI

LJ

U

u

u

n

n

n

n

n

n

n

n

Basic Functions

Guide for a complete memory map of the

computer, which shows you the contents of

all memory locations.

What Is a Function?

A function is a predefined operation of the BASIC language that gen

erally provides you with a single value. When the function provides

the value, it is said to "return" the value. For instance, the SQR

(square root) function is a mathematical function that returns the

root value of a specific number before it is raised to the second

power—i.e., the value returned when multiplied by itself (squared) is

equal to the argument used in the function.

There are two kinds of functions:

Numeric—returns a result which is a single number. Numeric

functions range from calculating mathematical values to speci

fying the numeric value of a memory location.

String—returns a result which is a character.

Following are descriptions of some of the more commonly used

functions. For a complete list of BASIC 7.0 functions see Chapter V,

BASIC 7.0 Encyclopedia.

The INTEGER Function (INT)

What if you want to round off a number to the nearest integer? You'll

need to use INT, the integer function. The INT function takes away

everything after the decimal point (for positive numbers only). Try

typing these examples:

? INT(4.25)

? INT(4.75)

? INT(SQR(50))

If you want to round off to the nearest whole number, then the sec

ond example should return a value of 5. In fact, you should round up

any number with a decimal of 0.5 and above. To do this, you have to

add 0.5 to the number before using the INT function. In this way,

numbers with decimal portions of 0.5 and above will be increased by

1 before being rounded down by the INT function. Try this:

?INT(4.75 + 0.5)|

67 USING C128 MODE—Advanced BASIC Programming

u

The computer added 0.5 to 4.75 before it executed the INT function, i »

so that it rounded 5.25 down to 5 for the result. If you want to round «—1
off the result of a calculation, do this:

? INT((100/6) + 0.5) HI IIIHN [_J

You can substitute any calculation for the division shown in the inner

parentheses. i ~i

What if you want to round off numbers to the nearest 0.01? Instead of

adding 0.5 to your number, add 0.005, then multiply by 100. Let's say i ~i

you want to round 2.876 to the nearest 0.01. Using this method, you I—I
start with:

? (2.876 + 0.005)*100 RETURN I I I

Now use the I NT function to get rid of everything after the decimal

point (which moves two places to the right when you multiply by , -.

100). You are left with: LJ

? INT((2.876 + 0.005)*100) MMIIMM

which gives you a value of 288. All that's left to do is divide by 100 to I I
get the value of 2.88, which is the answer you want. Using this tech

nique, you can round off calculations like the following to the nearest ,—,

0.01: U

? INT((2.876 + 1.29 + 16.1-9.534) + 0.005)*100/100 HblUHN

u
Generating Random Numbers—The RND Function

The RND functions tells the computer to generate a random number. I I
This can be useful in simulating games of chance, and in creating

interesting graphic or music programs. All random (RND) numbers , -.-

are nine digits, in decimal form, between the values 0.000000001 I I
and 0.999999999. Typ-

Multiplying the randomly generated number by six makes the range

of generated numbers increase to greater than 0 and less than 6. In «- >

order to include 6 among the numbers generated, we add one to the I I
result of RND(0)*6. This makes the range 1 <X<7. If we use the INT

function to eliminate the decimal places, the command will generate , -j

whole numbers from 1 to 6. This process can be used to simulate the I I
rolling of a die. Try this program:

10 R= INT(RND<1)*6 + 1) j 1
20 ?R L-l
30 GOTO 10

Li
68 USING C128 MODE—Advanced BASIC Programming _

u

I \

Each number generated represents one toss of a die. To simulate a

pair of dice, use two commands of this nature. Each number is gen

erated separately, and the sum of the two numbers represents the

total of the dice.

The ASC and CHR$ Functions

Every character that the Commodore 128 can display (including

graphic characters) has a number assigned to it. This number is

called a character string code (CHR$) and there are 256 of them in

the Commodore 128. There are two functions associated with this

concept that are very useful. The first is the ASC function. Type:

The computer responds with 81. 81 is the character string code for

the Q key. Substitute any character for Q in the command above to

find out the Commodore ASCII code number for any character.

The second function is the CHR$ function. Type:

The computer responds with Q. In effect, the CHR$ function is the

opposite of the ASC function. They both refer to the table of charac

ter string codes in the computer's memory. CHR$ values can be

used to program function keys. See Section 5 for more information

about this use of CHR$. See Appendix E of this Guide for a full listing

of ASC and CHR$ codes.

Converting Strings and Numbers

Sometimes you may need to perform calculations on numeric char

acters that are stored as string variables in your program. Other

times, you may want to perform string operations on numbers. There

are two BASIC functions you can use to convert your variables from

numeric to string type and vice versa.

69 USING C128 MODE—Advanced BASIC Programming

The STOP and

CONT (Continue)

Commands

The VAL The VAL function returns a numeric value for a

Function string argument. Clear the computer's memory

and type this program:

10A$ = "64"

20A = VAL(A$)

30 ? "THE VALUE OF";A$;"IS";A

40 END

The STR$ The STR$ function returns the string representa-

Function tion of a numeric value. Clear the computer's

memory and type this program.

10A = 65

20A$ = STR$(A)

30 ? A" IS THE VALUE OF";A$

The Square Root Function (SQR)

The square root function is SQR. For example, to find the square root

of 50, type:

You can find the square root of any positive number in this way.

The Absolute Value Function (ABS)

The absolute value function (ABS) is very useful in dealing with nega

tive numbers. You can use this function to get the positive value of

any number—positive or negative. Try these examples:

? ABS(5)" IS EQUAL TO "ABS(- 5) j

u

You can make the computer stop a program, and resume running it

when you are ready. The-STOP command must be included in the

program. You can put a STOP statement anywhere you want to in a

program. When the computer "breaks" from the program (that is,

stops running the program), you can use DIRECT mode commands

to find out exactly what is going on in the program. For example, you

can find the value of a loop counter or other variable. This is a power

ful device when you are "debugging" or fixing your program. Clear

the computer's memory and type the program below.

U

s I
\ i

u

u

u

u

u

LJ

U

LI

70 USING C128 MODE—Advanced BASIC Programming

i 1

I 1

10X = INT(SQR(630))

20Y = (.025*80)T2

30Z=INT(X*Y)

40 STOP

45 ? "RESUME PROGRAMMING"

50A = (X* Y) + Z

80 END

Now RUN the program. The computer responds with "BREAK IN

40". At this point, the computer has calculated the values of X, Y and

Z. If you want to be able to figure out what the rest of the program is

supposed to do, tell the computer to PRINT X;Y;Z. Often when you

are debugging a large program (or a complex small one), you'll want

to know the value of a variable at a certain point in the program.

Once you have all the information you need, you can type CONT (for

CONTinue) and press RETURN assuming you have not edited any

thing on the screen. The computer then CONTinues with the pro

gram, starting with the statement after the STOP command.

•••••a**

n

n

n

n

n

This section and the preceding one have been designed to familiar

ize you with the BASIC programming language and some of its capa

bilities. The remaining four sections of this chapter describe com

mands that are unique to Commodore 128 mode. Many Commodore

128 mode commands provide capabilities that are not available in

C64 mode. Other Commodore 128 mode commands let you do the

same thing as certain C64 commands, but more easily. Remember

that more information on every command and programming tech

nique in this book can be found in the Commodore 128 Program

mer's Reference Guide. The syntax for all Commodore 7.0 com

mands is given in Chapter V, BASIC 7.0 Encyclopedia.

71 USING C128 MODE—Advanced BASIC Programming

u

u

u

u

u

u

u

u

u

u

u

LJ

u

LJ

U

u

LJ

SECTION 5

Advanced BASIC

7.0 Commands

r \

! \

n

n

n

n

n

n

INTRODUCTION 75

ADVANCED LOOPING 75
TheDO/LOOP Statement 75

Until 75

While 76
Exit 76

The ELSE Clause with IF-THEN 77

The BEGIN/BEND Sequence with IF-THEN 77

The SLEEP Command 78

FORMATTING OUTPUT 78
The PRINT USING Command 78
The PUDEF Command 79

SAMPLE PROGRAM 79

INPUTTING DATA WITH THE GETKEY COMMAND 80

PROGRAMMING AIDS 81
Entering Programs 81
AUTO 81

RENUMBER 81
DELETE 82

Identifying Problems in Your Programs 83
HELP 83
Error Trapping—The TRAP Command 83
Program Tracing—The TRON and TROFF Commands 85

WINDOWING 86
Using the WINDOW Command to Create a Window 86

Using the ESC key to Create a Window 87

2 MHZ OPERATION 89
The FAST and SLOW Commands 89

KEYS UNIQUE TO C128 MODE 89
Function Keys 89
Redefining Function Keys 90
Other Keys Used in C128 Mode Only 90
HELP 90
NO SCROLL 91
CAPS LOCK 91
40/80 DISPLAY 91
ALT 91

TAB 92
LINE FEED 92

n

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

73 C128 Mode

u

LJ

U

U

LJ

LJ

U

U

U

U

U

U

U

U

U

U

U

U

n

Introduction

J I

I \
Advanced

Looping

n

n

n

n

n

n

n

This section introduces you to some powerful BASIC connmands and

statements that you probably haven't seen before, even if you are an

experienced BASIC programmer. If you're familiar with programming

in BASIC, you've probably encountered many situations in which you

could have used these commands and statements. This section

explains the concepts behind each command and gives examples of

how to use each command in a program. (A complete list and an

explanation of these commands and statements may be found in

Chapter V, BASIC 7.0 Encyclopedia.) This section also describes how

to use the special keys that are available to you in C128 mode.

The DOfLOOP Statement

The DO/LOOP statement provides more sophisticated ways to cre

ate a loop than do the GOTO, GOSUB or FOR/NEXT statements. The

DO/LOOP statement combination brings to the BASIC language a

very powerful and versatile technique normally available only in

structured programming languages. We'll discuss just a few possible

uses of DO/LOOP in this explanation.

If you want to create an infinite loop, you start with a DO statement,

then enter the line or lines that specify the action you want the com

puter to perform. Then end with a LOOP statement, like this:

100 DO

110 PRINT "REPETITION"

120 LOOP

Press the RUN/STOP key to stop the program.

The directions following the DO statement are carried out until the

program reaches the LOOP statement (line 120); control is then

transferred back to the DO statement (line 100). Thus, whatever

statements are in between DO and LOOP are performed indefinitely.

Until Another useful technique is to combine the DO/

LOOP with the UNTIL statement. The UNTIL

statement sets up a condition that directs the

loop. The loop will run continually unless the

condition for UNTIL happens.

100 DO:

110 : INPUT "DO YOU LIKE YOUR COMPUTER";A$

120 LOOP UNTIL A$ = "YES"

130 PRINT "THANK YOU"

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

75 C128 Mode

The DO/LOOP statement is often used to repeat

an entire routine indefinitely in the body of a

program, as in the following:

u

io

20

30

40

55

;56

60

70

80

PRINT

DO
•

•

•

•

*

*

•

LOOP

END

"THE PROGRAM RUNS UNTIL YOU TYPE 'QUIT'"

INPUT"DEGREES FAHRENHEIT";F

C={5/9)*(F-32)

PRINT F;"DEGREES

PRINT"EQUALS ";C

INPUT "AGAIN OR

UNTIL A$="QUIT"

FAHRENHEIT";

;" DEGREES CELSIUS"

QUIT";A$

Another use of DO/LOOP is as a counter, where

the UNTIL statement is used to specify a certain

number of repetitions.

10

20

30

40

50

60

• SO
80

N=2*2

PRINT

bo
*

*

•

fcOOP

&ND

"TWO DOUBLED EQUALS"

X-X+l

N=N*2

PRINT"DOUBLED";X+1;

UNTIL X=25

;N

"TIMES...";N

Notice that if you leave the counter statement

out (the UNTIL X = 25 part in line 70), the num

ber is doubled indefinitely until an OVERFLOW

error occurs.

\ I

U

76

While The WHILE statement works in a similar way to

UNTIL, but the loop is repeated only while the

condition is in effect, such as in this reworking

of this brief program:

m do

20 : INPUT"DO YOU LIKE YOUR COMPUTER";A$
3© LOOP WHILE A$O"YES"

W PRINT "THANK YOU"
50 END

Exlt An EXIT statement can be placed within the
body of a DO/LOOR When the EXIT statement is
encountered, the program jumps to the next

statement following the LOOP statement.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

LJ

) \

The ELSE Clause with IF-THEN

The ELSE clause provides a way to tell the computer how to respond

if the condition of the IF-THEN statement is false. Rather than contin

uing to the next program line, the computer will execute the com

mand or branch to the program line mentioned in the ELSE clause.

For example, if you wanted the computer to print the square of a

number, you could use the ELSE clause like this:

10

20

30

40

50

60

70

80

DO

:

:

;

-♦

LOOP

END

INPUT

IF N

PRINT

INPUT

"ENTER A NUMBER TO BE SQUARED";N

< 100 THEN PRINT N*N:ELSE 60

"PRESS

A$.
PRINT^NUMBER-

UNTIL A$="Q"

'Q' TO QUIT";

MUST.BE; < 1,00" j "' :. , ;;

Notice that you must use a colon between the IF-THEN statement

and the ELSE clause.

n

n

n

H

n

n

n

n

The BEGIN/BEND Sequence with IF-THEN

BASIC 7.0 allows you to take the IF-THEN condition one step further.

The BEGIN/BEND sequence permits you to include a number of pro

gram lines to be executed if the IF condition is true, rather than one

simple action or GOTO. The command is constructed like this:

IF condition THEN BEGIN:

(program lines):

BEND:ELSE

Be sure to place a colon between BEGIN and any instructions to be

executed and again between the last command in the sequence and

the word BEND. BEGIN/BEND can be used without an ELSE clause,

or can be used following the ELSE clause when only a single com

mand follows THEN. Try this program:

10

20

30

40

50

60

70

80

90

100

110

DO

■;A

INPUT "ENTER A NUMBER";A

IF A < 100 THEN BEGIN

PRINT"YOUR NUMBER WAS

SLEEP 2:REM DELAY

FOR X=l TO A

PRINT"THIS IS A BEGIN/BEND EXAMPLE"

NEXT X

PRINT"THAT'S ENOUGH"

BEND :ELSE PRINT"TOO MANY"

INPUT"DO YOU WANT^TO QUIT (Y/N) " ; A$ ••

120 LOOP UNTIL A$=

130 END

II y II

USING C128 MODE—-Some BASIC Commands and Keyboard Operations Unique to

77 C128 Mode

Formatting

Output

This program asks for a number from the user. IF the number is less

than 100, the statements between the keywords BEGIN and BEND

are performed, along with any statements on the same line as BEND

(except for ELSE). The message "YOUR NUMBER WAS N" appears

on the screen. Line 50 is a delay loop used to keep the message on

the screen long enough so it can be read easily. Then a FOR/NEXT

loop is used to display a message for the number of times specified

by the user. If the number is greater than 100, the THEN condition is

skipped, and the ELSE condition (printing "TOO MANY") is carried

out. The ELSE keyword must be on the same line as BEND.

The SLEEP Command

Note the use of the SLEEP command in line 50 of the program just

discussed. SLEEP provides an easier, more accurate way of insert

ing and timing a delay in program operation. The format for the

SLEEP command is

SLEEP n

where n indicates the number of seconds, in the range 1 to 65535,

that you want the program to delay. In the command shown in line

50, the 2 specifies a delay of two seconds.

The PRINT USING Command

Suppose you were writing a sales program that calculated a dollar

amount. Total sales divided by number of salespeople equals aver

age sales. But performing this calculation might result in dollar

amounts with four or five decimal places! You can format the results

the computer prints so that only two decimal places are displayed.

The command which performs this function is PRINT USING.

PRINT USING lets you create a format for your output, using spaces,

commas, decimal points and dollar signs. Hash marks (the # sign)

are used to represent spaces or characters in the displayed result.

For example:

PRINT USING "#$#####.##";A

tells the computer that when A is printed, it should be in the form

given, with up to five places to the left of the decimal point, and two

places to the right. The hash mark in front of the dollar sign indicates

that the $ should float; that is, it should always be placed next to the

left-most number in the format.

u

u

u

U

u

u

U

u

u

u

LJ

u

u

u

78

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

n

n

n

Sample Program

) \

n

If you want a comma to appear before the last three dollar places, as

in $1,000.00, include the comma in the PRINT USING statement.

Remember you can format output with spaces, commas, decimal

points, and dollar signs. There are several other special characters

for PRINT USING, see the BASIC Encyclopedia for more information.

The PUDEF Command

If you want formatted output representing something other than dol

lars and cents, use the PUDEF (Print Using DEFine) command. You

can replace any of four format characters with any character on the

keyboard.

The PUDEF command has four positions, but you do not have to

redefine all four. The command looks like this:

PUDEF"

12 3 4

Here:

• position 1 is the filler character. A blank will appear if you do

not redefine this position.

• position 2 is the comma character. Default is the comma.

• position 3 is the decimal point.

• position 4 is the dollar sign.

If you wrote a program that converted dollar amounts to English

pounds, you could format the output with these commands:

10 PUDEF " £"

20 PRINT USING "#$####.##";X

This program calculates interest and loan payments, using some of

the commands and statements you just learned. It sets a minimum

value for the loan using the ELSE clause with an IF-THEN statement,

and sets up a dollar and cents format with PRINT USING.

10 INPUT "LOAN AMOUNT IN DOLLARS";A

20 IF A<100 THEN 70: ELSE P=.15

30 I=A*P

40 PRINT"TOTAL PAYMENT EQUALS";

50 PRINT USING "#$#####.##";A+I

60 GO TO 80

70 PRINT"LOANS OF UNDER $100 NOT AVAILABLE"

80 END

79

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

Inputting Data

with the GETKEY

Command

80

You have learned to use INPUT and GET commands to enter DATA

during a program. Another way for you to enter data while a program

is being RUN is with the GETKEY statement. The GETKEY statement

accepts only one key at a time. GETKEY is usually followed by a

string variable (A$, for example). Any key that is pressed is assigned

to that string variable. GETKEY is useful because it allows you to

enter data one character at a time without having to press the

RETURN key after each character. The GETKEY statement may only

be used in a program.

Here is an example of using GETKEY in a program:

1000 PRINT "PLEASE CHOOSE A, B, C, D, E, OR F"

1010 GETKEY A$

1020 PRINT A$;" WAS THE KEY YOU PRESSED."

The computer waits until a single key is pressed; when the key is

pressed, the character is assigned to variable A$, and printed out in

line 1020. The following program features GETKEY in more complex

and useful fashions: for answering a multiple-choice question and

also asking if the question should be repeated. If the answer given is

incorrect, the user has the option to try again by pressing the "Y"

key (line 90). The key pressed for the multiple choice answer is

assigned to variable A$ while the 'TRY AGAIN" answer is assigned

to B$, through the GETKEY statements in lines 60 and 90. IF/THEN

statements are used for loops in the program to get the proper com

puter reaction to the different keyboard inputs.

10 PRINT "WHO WROTE THE RAVEN'?"

20 PRINT "A. EDGAR ELLEN POE"

30 PRINT "B. EDGAR ALLAN POE"

40 PRINT "C. IGOR ALLEN POE"

50 PRINT "D. ROB RAVEN"

60 GETKEY A$

70IFA$ = "B"THEN150

80 PRINT "WRONG. TRY AGAIN? (Y OR N)"

90 GETKEY B$

100 IF B$ = "Y" THEN PRINT "A,B,C, OR D?":GOTO 60

110IFB$ = "N"THEN 140

120 PRINT "TYPE EITHER Y OR N-TRY AGAIN"

130 GOTO 90

140 PRINT "THE CORRECT ANSWER IS B."

145 GOTO 160

150 PRINT "CORRECT!"

160 END

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

u

u

u

LJ

U

U

LJ

LJ

LJ

n

n

Programming

Aids

n

n

n

H

n

n

GETKEY is very similar to GET, except GETKEY will automatically

wait for a key to be pressed.

In earlier sections, you learned how to make changes in your pro

grams, and correct typing mistakes with INST/DEL. BASIC also pro

vides other commands and functions which help you locate actual

progam errors, and commands which you can use to make program

ming sessions flow more smoothly.

Entering Programs

Auto

Renumber

C128 BASIC provides an auto-numbering pro

cess. You determine the increment for the line

numbers. Let's say you want to number your

program in the usual manner, by tens. Before

you begin to program, while in DIRECT mode,

type:

The computer will automatically number your

program by tens. When you press the RETURN

key, the next line number appears, and the cur

sor is in the correct place for you to type the

next statement. You can choose to have the

computer number the commands with any

increment; you might choose 5 or even 50. Just

place the number after the word AUTO and

press RETURN. To turn off the auto-numbering

feature, type AUTO with no increment, and

press RETURN.

If you write a program and later add statements

to it, sometimes the line numbering can be awk

ward. Using the RENUMBER command you can

change the line numbers to an even increment

for part or all of your program. The RENUMBER

command has several optional parameters, as

listed below in brackets:

RENUMBER [new starting line[,

incremented starting line]]]

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unio.

81 C128Mode

u

The new starting line is what the first program i /

line will be numbered after the RENUMBER <—'

command is used. If you don't specify, the

default is 10. The increment is the spacing \ \

between line numbers, and it also defaults to 10. ;—'

The old starting line number is the line number

where renumbering is to begin. This feature } \

allows you to renumber a portion of your pro- w>

gram, rather than all of it. It defaults to the first

line of the program. For example, ^ ;

RENUMBER 40,,80

tells the computer to renumber the program \ i

starting at line 80, in increments of 10. Line 80 ^—'
becomes line 40.

Notice that this command, like AUTO, can only <—»

be executed in DIRECT mode.

LJ
Delete You know to delete program lines by typing the

line number and pressing the RETURN key. This

can be tedious if you want to erase an entire J [
portion of your program. The DELETE command

can save you time because you can specify a

range of program lines to erase all at once. For I |
example,

DELETE 10-50 (j

will erase lines 10, 50, and any in between. The

use of DELETE is similar to that of LIST, in that

you can specify a range of lines up to a given I j
line, or following it, or a single line only, as in

these examples:

DELETE—120 LJ
erases all lines up to and including 120

DELETE 120-] (

erases line 120 and any line after it t >

DELETE 120

erases line 120 only . ,

LJ

LJ
USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

82 C128 Mode

n

Identifying Problems in Your Programs

When a program doesn't work the way you expected, an error mes

sage usually occurs. Sometimes the messages are vague, however,

and you still don't understand the problem. The Commodore 128

computer has several ways of helping you locate the problem.

Help

n

n

n

n

n

n

Error

Trapping—The

TRAP Command

The Commodore 128 provides a HELP com

mand that specifies the line in which a problem

has occurred. To actuate the HELP command,

just press the special HELP key on the row of

keys located above the main keyboard.

Type the following statement. It contains an

intentional error, so type it just as is:

10 ?3;4:5;6

When you RUN this one-line program, the com

puter prints 3 and 4 as expected, but then

responds "SYNTAX ERROR IN 10". Let's sup

pose you can't see the error (a colon instead of

a semicolon between 4 and 5). You press the

HELP key. (You can also type HELP and press

RETURN.) The computer displays the line again,

but the 5;6 is highlighted to show the error is in

that line.

Usually, if an error occurs in a program, the pro

gram "crashes" (stops running). At that point,

you can press the HELP key to track down the

error. However, you can use the BASIC 7.0

TRAP command to include an error-trapping

capability within your program. The TRAP com

mand advises you to locate and correct an error,

then resumes program operation. Usually, the

error-trapping function is set in the first line of a

program:

5 TRAP 100

tells the computer that if an error occurs to go to

a certain line (in this case, line 100). Line 100

appears at the end of the program, and sets up

83

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

a contingency. Neither line is executed UNLESS

there is an error. When an error occurs, the line

with the TRAP statement is enacted, and control

is directed to another part of the program. You

can use these statements to catch anticipated

errors in entering data, resume execution, or

return to text mode from a graphics mode, to

name just a few options. If you run the DO/LOOP

example (which doubled numbers) without an

UNTIL statement, you can get an OVERFLOW

error and the program crashes. You can prevent

that from happening by adding two lines, one at

the beginning of the program and one at the

end. For this example, you might add these two

lines:

5 TRAP 100

100 IF N)1 THEN END

Even though N has been much greater than one

for the entire program, the statement isn't con

sidered until there is an error. When the number

"overflows" (is greater than the computer can

accept), the TRAP statement goes into effect.

Since N is greater than one, the program is

directed to END (rather than crashing.)

Here is an example in which trapping is used to

prevent a zero from being input for division:

u

u

u

u

LJ

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

84 C128 Mode

LJ

LJ

LJ

LJ

LJ

U

Notice the RESUME in line 1100. This tells the

computer to return to the line mentioned (in this

case, 120) and continue. Depending on the error

that was trapped, resuming execution may or

may not be possible.

For additional information on error trapping, see

the error functions ERRS, EL and ER, described

in Chapter V, BASIC 7.0 Encyclopedia.

n

n

n

n

n

n

n

Program

Tracing—The

TRON and

TROFF

Commands

n

When a problem in a program occurs, or you do

not get the results you expect, it can be useful to

methodically work through the program and do

exactly what the computer would do. This pro

cess is called tracing. Draw variable boxes and

update the values according to the program

statements. Perform calculations and print

results following each instruction.

Tracing may show you, for example, that you

have used a GOTO with an incorrect line num

ber, or calculated a result but never stored it in a

variable. Many program errors can be located

by pretending to be the computer, and following

only one instruction at a time. Your C128 can

perform a type of trace using the special com

mands TRON and TROFF (short for TRace ON

and TRace OFF). When the program is run, with

TRACE ON the computer prints the line num

bers in the order they are executed, as well as

any results. In this way, you may be able to see

why your program is not giving the results you

expected.

Type any short program we have used so far, or

use one of your own design. To activate trace

mode, type TRON in DIRECT mode. When you

run the program, notice how line numbers

appear in brackets before any results are dis

played. Try to follow the line numbers and see

how many steps the computer needed to arrive

at a certain point. TRON will be more interesting

if you pick a program with many branches, such

as GOTO, GOSUB and IF-THEN-line number.

Type TROFF to turn trace mode off before con

tinuing.

n
85

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

Windowing

You don't have to trace an entire program. You

can place TRON within a program as a line prior

to the program section causing problems. Put

the word TROFF as a program line after the trou

blesome section. When you run the program,

only the lines between TRON and TROFF will be

bracketed in the results.

Windows are a specific area of the screen that you define as your

workspace. Everything you type (lines you type, listings of programs,

etc.) after setting a window appears within the window's boundaries,

not affecting the screen outside the window area. The Commodore

128 provides two methods of creating windows: the WINDOW com

mand and ESCAPE key functions.

Using the WINDOW Command to Create a Window

The Commodore 128 BASIC 7.0 language features a command that

allows you to create and manipulate windows: the WINDOW com

mand. The command format is:

WINDOW top-left column, top-left row, bottom-right column,

bottom-right row [,clear option]

The first two numbers after WINDOW specify the column and row

number of where you want the top left corner of the window to be;

the next two numbers are the coordinates for the bottom right cor

ner. Remember that the screen format (40 or 80 columns) dictates

the acceptable range of these coordinates. You can also include a

clear option with this command. If you add 1 to the end of the com

mand, the window screen area is cleared, as in this example:

WINDOW 10,10, 20, 20,1

Here's a sample program that creates four windows on the screen, in

either 40- or 80-column format.

86

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

U

U

u

u

u

u

LJ

U

LJ

U

LJ

LJ

10 PRINT"|3" :REM CLEAR THE SCREEN
20 A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

30 B$=A$+A$+A$

40 FOR I=1TO 25 :PRINT B$:NEXT :REM FILL SCREEN WITH CHARACTERS

50 WINDOW 1 ,1 ,8 ,20 :REM DEFINE WINDOW 1

60 PRINT"£R»

63 REM THE PREVIOUS LINE FILLS WINDOW 1 WITH RED

65 REM HOLD DOWN <CONTROL> THEN PRESS THE 3 KEY (RED) TO GET THE "£" CHARACTER

67 REM HOLD DOWN <CONTROL> THEN PRESS THE 9 KEY (RVS ON) TO GET THE "R" CHAR

80 WINDOW 15,15,39,20,1 :REM DEFINE 2ND WINDOW

90 PRINT "£."; B$;A$:REM FILL WINDOW WITH CHARACTERS

95 REM HOLD DOWN <CONTROL> THEN PRESS THE 6 KEY (GREEN) TO GET THE "2" CHARACTER

100 WINDOW 30,1,39,22,1 :REM DEFINE 3RD WINDOW -

110 PRINT"!": LIST :REM SELECT YELLOW AND LIST IN WINDOW

115 REM HOLD DOWN <CONTROL> THEN PRESS THE 8 KEY (YELLOW) TO GET THE "2" CHAR

120 WINDOW 5,5,33,18,1 :REM DEFINE 4TH WINDOW ON TOP OF THE OTHER THREE

130 PRINT'pa":PRINTA$:LIST: REM CHANGE COLOR - PRINT A$ AND LIST IN WINDOW

140 REM HOLD DOWN <COMMODORE> THEN PRESS THE 1 KEY (ORANGE) TO GET THE V CHAR
150 REM IN 80 COLUMN MODE THE "a" CHAR DISPLAYS PURPLE

160 REM ALL COLOR CHANGE CHARACTERS ARE ONLY DISPLAYED WITHIN QUOTES

n

; \

Using the ESC Key to Create a Window

To set a window with the ESC (Escape) Key, follow these steps:

1. Move the cursor to the screen position you want as the top

left corner of the window.

2. Press the ESC key and release it, and then press T.

3. Move the cursor to the position you want to be the bottom

right corner of the window.

4. Press ESC and release, then B. Your window is now set.

You can manipulate the window and the text inside using the ESC

key. Screen editing functions, such as inserting and deleting text,

scrolling, and changing the size of the window, can be performed by

pressing ESC followed by another key. To use a specific function,

press ESC and release it. Then press any of the following keys listed

for the desired function:

87

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

@ Erase everything from cursor to end of screen window

A Automatic insert mode

B Set the bottom right corner of the screen window (at the

current cursor location) , ,

C Cancel insert mode i f

D Delete current line

E Set cursor to non-flashing mode ,

F Set cursor to flashing mode i I
G Enable bell (by Control-G)

H Disable bell >

I Insert a line i !
J Move to the beginning of the current line

K Move to the end of the current line t .

L Turn on scrolling \ I

M Turn off scrolling

N Return to normal (non-reverse video) screen display ,

(80-column only) I j
O Cancel quote mode

P Erase everything from the beginning of line to the cursor

Q Erase everything from the cursor to the end of the line] |
R Reverse video screen display (80-column only)

S Change to block cursor (■) (80-column only)

T Set the top left corner of the screen window (at the current J [
cursor location)

U Change to underline cursor (_) (80-column only)

V Scroll screen up one line j |
W Scroll screen down one line

X Toggle between 40 and 80 columns

Y Restore default TAB stops j j
Z Clear all TAB stops

Experiment with the ESCape key functions. You will probably find J j
certain functions more useful than others. Note that you can use the

usual INST/DEL key to perform text editing inside a window as well.

When a window is set up, all screen output is confined to the "box"

you have defined. If you want to clear the window area, press SHIFT

and CLEAR/HOME together. To cancel the window, press the CLEAR/ [_(
HOME key twice. The window is then erased, and the cursor is posi

tioned in the top left corner of the screen. Windows are particularly

useful in writing, listing and running programs because they allow | j
you to work in one area of the screen while the rest of the screen

stays as is.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

88 C128 Mode

n

n

n

n

n

n

n

n

2 MHz

Operation

Keys Unique To

C128 Mode

The FAST and SLOW Commands

The 2 MHz operating mode allows you to run non-graphic programs

in 80-column format at twice the normal speed. You can switch nor

mal and fast operation by using the FAST and SLOW commands.

The FAST command places the Commodore in 2 MHz mode. The

format of this command is:

FAST

The SLOW command returns the Commodore 128 to 1 MHz mode.

The default speed for the Commodore 128 microprocessor (8502) is

1 MHz. The format of this command is:

SLOW

Function Keys

The four keys on the Commodore 128 keyboard on the right side

above the numeric keypad are special function keys that let you save

time by performing repetitive tasks with the stroke of just one key.

The first key reads F1/F2, the second F3/F4, the third F5/F6, and the

last F7/F8. You can use functions keys 1,3,5,7 by pressing the key

by itself. To use function keys 2,4,6 and 8, press SHIFT along with

the function key.

Here are the standard functions for each key:

F1

GRAPHIC

F5

DSAVE"

F2

DLOAD"

F6

RUN

F3

DIRECTORY

F7

LIST

F4

SCNCLR

F8

MONITOR

Here's what each function involves:

KEY 1 enters one of the GRAPHICS modes when you supply

the number of the graphics area and press RETURN.

The GRAPHICS command is necessary for giving graph

ics commands such as CIRCLE or PAINT. For more on

GRAPHICS, see Section 6.

KEY 2 prints DLOAD " on the screen. All you do is enter the

program name and end quotes and hit RETURN to load

a program from disk, instead of typing out DLOAD your

self.

KEY 3 lists a DIRECTORY of files on the disk in the disk drive.

KEY 4 clears the screen using the SCNCLR command.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

C128 Mode

KEY 5 prints DSAVE " on the screen. All you do is enter the

program name, and press RETURN to save the current

program on disk.

KEY 6 RUNs the current program. j ^

KEY 7 displays a LISTing of the current program. uj

KEY 8 lets you enter the Machine Language Monitor. See

Appendix J for a description of the Monitor. ^ ;

u

Redefining Function Keys s »

You can redefine or program any of these keys to perform a function l
that suits your needs. Redefining is easy, using the KEY command.

You can redefine the keys from BASIC programs, or change them at j j

any time in direct mode. A situation where you might want to rede

fine a function key is when you use a command frequently, and want

to save time instead of repeatedly typing in the command. The new I {

definitions are erased when you turn off your computer. You can

redefine as many keys as you want and as many times as you want.

If you want to reprogram the F7 function key to return you to text '—

mode from high-resolution or multicolor-graphic modes, for example,

you would use the key command in this fashion: i j

KEY 7,"GRAPHIC 0" + CHR$(13)

CHR$(13) is the ASCII code character for RETURN. So when you j|

press the F7 key after redefining the key, what happens is the com- '—

mand "GRAPHIC 0" is automatically typed out and entered into the

computer with RETURN. Entire commands or series of commands j [

may be assigned to a key.

Other Keys Used in C128 Mode Only —

Help As noted previously, when you make an error in I |
a program, your computer displays an error

message to tell you what you did wrong. These

error messages are further explained in Appen- \ j
dix A of this manual. You can get more assis

tance with errors by using the HELP key. After

an error message, press the HELP key to locate LJ
the exact point where the error occurred. When

U

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

90 C128 Mode

u

/ J

n

H

n

n

n

H

n

n

n

you press HELR the line with the error is high

lighted on the screen in reverse video (in 40

column), or underlined (in 80 column output).

For example:

7SYNTAX ERROR IN LINE 10 Your computer

displays this.

HELP You press HELR

10 PRONT "COMMODORE COMPUTERS"

The line with the mistake is highlighted in

reverse if in 40-column output, or underlined

in 80-column output.

No Scroll Press this key down to stop the text from scroll

ing when the cursor reaches the bottom of the

screen. This turns off scrolling until you press

the NO SCROLL key again.

Caps Lock When the keyboard is in upper/lower case

mode, this key lets you type in all capital letters

without using the SHIFT key. The CAPS LOCK

key locks when you press it, and must be

pressed again to be released. CAPS LOCK only

affects the lettered keys.

40/80 Display The 40/80 key selects the main (default) screen

format: either 40 or 80 column. The selected

screen displays all messages and output at

power-up, or when RESET, reset or RUN/STOP/

RESTORE are used. This key may be used to set

the display format only before turning on or

resetting the computer. You cannot change

modes with this key after the computer is

turned on. Section 8 provides an explanation of

40/80 column modes.

Alt The ALT key allows programs to assign a special

meaning to a given key or set of keys.

Unless a specific application program redefines

it, holding down the ALT key and any other key

has no additional effect.

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to
91 C128Mode

Tab This key works like the TAB key on a typewriter.

It may be used to move the cursor to the next

tab position. Tabs are set every 8th column

starting from column 1.

Line Feed Pressing this key advances the cursor to the

next line, similar to a cursor down key.

This section covers only some of the concepts, keys and commands

that make the Commodore 128 a special machine. You can find

further explanations of the BASIC language in the BASIC 7.0

Encyclopedia in Chapter V

u

LJ

U

u

LJ

U

LJ

U

USING C128 MODE—Some BASIC Commands and Keyboard Operations Unique to

92 C128 Mode

n

n

n

n

n

n

n

n

n

n

n

n

n

SECTION 6

Color, Animation

and Sprite

Graphics

Statements

Unique to the

C128

GRAPHICS OVERVIEW 95

Graphics Features 95

Command Summary 96

GRAPHICS PROGRAMMING ON THE COMMODORE 128 97

Choosing Colors 97

Types of Screen Display 98

Selecting the Graphic Mode 99

Displaying Graphics on the Screen 101

Drawing a Circle—The CIRCLE Command 101

Drawing a Box—The BOX Command 102

Drawing Lines, Points and Other Shapes—The DRAW

Command 102

PAINTing Outlined Areas—The PAINT Command 103

Displaying Characters on a Bit-Mapped Screen—

The CHAR Command 104

Changing the Size of Graphic Images—The SCALE

Command 104

Creating a Graphics Sample Program 106

SPRITES: PROGRAMMABLE, MOVABLE OBJECT BLOCKS 109
Sprite Creation 109

Sprite Definition Mode—The SPRDEF Command 109

Sprite Creation Procedure in SPRite DEFinition Mode 110

Using Sprite Statements in a Program 112

Drawing the Sprite Image 113

Storing the Sprite Data with SSHAPE 114

Saving the Picture Data in a Sprite 115

Turning on Sprites 115

Moving Sprites with MOVSPR 116

Creating a Sprite Program 118

Adjoining Sprites 119

Storing Sprite Data in Binary Files 123

BSAVE 125

BLOAD 126

n
93 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

u

u

u

u

U

U

LJ

U

U

u

u

u

u

u

u

LJ.

Graphics

Overview

n

J)

; i

95

In C128 mode, the Commodore 128 BASIC 7.0 language provides

many new and powerful commands and statements that make

graphics programming much easier. Each of the two screen formats

available in C128 mode (40 columns and 80 columns) is controlled by

a separate microprocessor chip. The 40-column chip is called the

Video Interface Controller, or VIC for short. The 80-column chip is

referred to as the 8563. The VIC chip provides 16 colors and controls

all the highly detailed graphics called bit-mapped graphics. The 80-

column chip, which also offers 16 colors, displays characters and

character graphics. The new BASIC graphics commands are not

supported in 80 column output, though you can program the 80

column chip to support a bit map display with your own machine

language programs. Thus, all detailed BASIC graphic programs in

C128 mode must be done in 40-column format.

Graphics Features

As part of its impressive C128 mode graphics capabilities, the Com

modore 128 provides:

• 13 specialized graphics commands

• 16 colors

• Six different display modes

• Eight programmable movable objects called SPRITES

• Combined graphics/text displays

All these features are integrated to provide a versatile, easy-to-use

graphics system.

USING C128 MODE—Color, Animation and Sprite Graphics Statements

Command Summary

Here is a brief explanation of each graphics command:

BOX — Draws rectangles on the bit-map screen

CHAR — Displays characters on the bit-map screen

CIRCLE — Draws circles, ellipses and other geometric

shapes

COLOR — Selects colors for screen border, foreground,

background and characters

DRAW — Displays lines and points on the bit-map screen

GRAPHIC — Selects a screen display (text, bit map or split-

screen bit map)

GSHAPE — Retrieves the text-string variable stored by

SSHAPE

MOVSPR — Positions or moves sprites on screen

PAINT — Fills area on the bit-map screen with color

SCALE — Sets the relative size of the images on the bit-map

screen

SPRDEF — Enters sprite definition mode to edit sprites

SPRITE — Enables, colors, sets sprite screen priorities, and

expands a sprite

SPRSAV — Stores a text string variable into a sprite storage

area and vice versa

SSHAPE — Stores the image of a portion of the bit-map

screen into a text-string variable

Most of these commands are described in the examples in this sec

tion. See Chapter V, BASIC 7.0 Encyclopedia, for detailed format and

information on all graphics commands and functions, including those

not discussed in this section.

96 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

u

u

Li

u

LJ

LJ

U

LJ

LJ

LJ

LJ

U

LJ

LJ

LJ

LJ-

O

Graphics

Programming on

the C128

n

n

n

n

n

n

n

n

n

n

n

The following section describes a step-by-step graphics program

ming example. As you learn each graphics command, add it to a

program you will build as you read this section. When you are fin

ished, you will have a complete graphics program.

Choosing Colors

The first step in graphics programming is to choose colors for the

screen background, foreground and border. To select colors, type:

COLOR source, color

where source is the section of the screen you are coloring (back

ground, foreground, border, etc.), and color is the color code for the

source. See Figure 6-1 for source numbers, Figure 6-2 for 40-

column-format color numbers, and Figure 6-3 for 80-column-format

color numbers.

Number Source

0

1

2

3

4

5

6

Color Code

1

2

3

4

5

6

7

8

40-column background color (VIC)

Foreground for the graphics screen (VIC)

Foreground color 1 for the multicolor screen (VIC)

Foreground color 2 for the multicolor screen (VIC)

40-column (VIC) border (whether in text or graphics

mode)

Character color for 40- or 80-column text screen

80-column background color (8563)

Figure 6-1. Source Numbers

Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Color Code

9

10

11

12

13

14

15

16

Color

Orange

Brown

Light Red

Dark Gray

Medium Gray

Light Green

Light Blue

Light Gray

Figure 6-2. Color Numbers in 40-Column Output

97 USING C128 MODE—Color, Animation and Sprite Graphics Statements

Types of Screen

Display

Color Code

1

2

3

4

5

6

7

8

Color

Black

White

Dark Red

Light Cyan

Light Purple

Dark Green

Dark Blue

Light Yellow

Color Code

9

10

11

12

13

14

15

16

Color

Dark Purple

Dark Yellow

Light Red

Dark Cyan

Medium Gray

Light Green

Light Blue

Light Gray

Figure 6-3. Color Numbers in 80-Column Output

Your C128 has several different ways of displaying information on the

screen; the parameter "source" in the COLOR command pertains to

different modes of screen display. The types of video display fall into

four categories.

The first one is text display, which displays only characters, such as

letters, numbers, special symbols and the graphics characters on

the front faces of most C128 keys. The C128 can display text in both

40-column and 80-column screen formats.

The second and third categories of display modes are used for highly

detailed graphics, such as pictures and intricate drawings. This type

of display mode includes standard bit-map mode and multicolor bit

map mode. Bit-map modes allow you to control each and every indi

vidual screen dot or pixel (picture element). This allows consid

erable detail in drawing pictures and other computer art. These

graphic displays are only available in 40-column format. The

80-column display is dedicated to text display.

The difference between text and bit-map modes lies in the way in

which each screen addresses and stores information. The text

screen can only manipulate entire characters, each of which covers

an area of 8 by 8 pixels on your screen. The more powerful bit-map

mode exercises control over each and every pixel on your screen.

The fourth type of screen display, split screen, is a mixture of the first

two types. The split-scren display outputs part of the screen as text

and part in bit-map mode (either standard or multicolor). The C128 is

LJ

LJ

U

U

U

U

U

LJ

LJ

U

LJ

U

U

98 USING C128 MODE—Color, Animation and Sprite Graphics Statements

Li

I 1

capable of this because it uses two separate parts of the computer's

memory to store the two screens: one part of the text, and the other

for the graphics screen.

Type the following short program:

10 COLOR 0,1: REM TEXT BACKGROUND COLOR = BLACK

20 COLOR 1,3: REM FOREGROUND COLOR FOR BIT MAP

SCREEN = RED

30 COLOR 4,1: REM BORDER COLOR = BLACK

This example colors the background black, the foreground red and

the border black.

n

n

n

H

n

n

n

n

n

n

Selecting the Graphic Mcde

The next graphics programming step is to select the appropriate

graphic mode. This is done using the GRAPHIC command, whose

format is as follows:

GRAPHIC Mode [,c][,s] or GRAPHIC CLR

where mode is a digit between 0 and 5, c is either a 0 or 1 and s is a

value between 0 and 25. Figure 6-4 shows the values corresponding

to the graphic modes.

Mode

0

1

2

3

4

5

Description

40-column standard text

Standard bit map

Standard bit map (split screen)

Multicolor bit map

Multicolor bit map (split screen)

80-column text

Figure 6-4. Graphic Modes

The parameter c stands for CLEAR. Figure 6-5 explains the values

associated with CLEAR.

C Value Description

0 Do not clear the graphics screen

1 Clear the graphics screen

Figure 6-5. CLEAR Parameters

H
99 USING C128 MODE—Color, Animation and Sprite Graphics Statements

When you first run your program, you will want to clear the graphics

screen for the first time, so set c equal to 1 in the GRAPHIC com

mand. If you run it a second time, you may want to leave your picture

on the screen, instead of drawing it all over again. In this case, set c

equal to 0.

The s parameter specified where the start of the text screen in split-

screen mode is to begin at the line after the specified line number. If

you omit the s parameter and select a split-screen graphic mode (2

or 4), the text screen portion is displayed in rows 20 through 25; the

rest of the screen is bit mapped. The s parameter allows you to

change the starting line of the text screen to any line on the screen,

ranging from 1 through 25. A zero as the s parameter indicates the i j

screen is not split, and is all text. '—'

The final GRAPHIC command parameter is CLR. When you first i i

issue a bit-map graphic command, the Commodore 128 allocates a '—I
9K area for your bit-mapped screen information. 8K is reserved for

the data for your bit map and the additional 1K is dedicated for the i i

color data (video matrix). Since 9K is a substantial block of memory, I—I
you may want to use it again for another purpose later on in your

program. This is the purpose of CLR. It reorganizes the Commodore j i

128 memory and gives you back the 9K of memory that was dedi- i—I
cated to the bit-map screen, so you can use it for other purposes.

The format for CLR is as follows: '—J

GRAPHIC CLR

When using this format, omit all other GRAPHIC command I—I
parameters.

Add the following command to your program. It places the C128 in I—I
standard bit-map mode and allocates an 8K bit-map screen (and 1K

of color data) for you to create graphics. , i

40 GRAPHIC 1,1

The second 1 in this command clears the bit-map screen. If you do j .

not want to clear the screen, change the second 1 to 0 (or omit it I—I
completely).

NOTE: If you are in bit-map mode and are unable to return to —I
the text screen, press the RUN/STOP and RESTORE keys at the

same time, or press the ESC key followed by X, to return to the ,

u

100 USING C128 MODE—Color, Animation and Sprite Graphics Statements

n

n

n

n

n

n

n

H

n

n

n

n

n

n

n

n

H

80-column screen. Even though you can only display graphics

with the VIC (40-column) chip, you can still write graphics pro

grams in 80-column format. If you have the Commodore 1902

dual monitor and you want to view your graphics program while

it is running, you must select the 40-column output by switching

the slide switch on the monitor to 40-column output.

Displaying Graphics on the Screen

So far, you have selected a graphics mode and the colors you want.

Now you can start displaying graphics on the screen. Start with a

circle.

Drawing a To draw a circle, use the CIRCLE statement as

Circle—The follows:

CIRCLE 60 CIRCLE 1,150,100,40,40
Command

This displays a circle in the center of the screen. The CIRCLE state

ment has nine parameters you can select to achieve various types of

circles and geometric shapes. For example, by changing the num

bers in the CIRCLE statement in line 60 you can obtain different size

circles or variations in the shape (e.g., an oval). The CIRCLE state

ment adds power and versatility in programming Commodore 128

graphics in BASIC. The meaning of the numbers in the CIRCLE state

ment is explained under the CIRCLE listing in Chapter V, BASIC 7.0

Encyclopedia.

On your Commodore 128 screen, the point where X = 0 and Y = 0

is at the top left corner of the screen, and is referred to as the HOME

position. In standard geometry, however, the point where X and Y

both equal 0 is the bottom left corner of a graph. Figure 6-6 shows

the arrangement of the X (horizontal) and Y (verticle) screen coordi

nates and the four points at the corners of the C128 screen.

0,0

Y Coordinate

X Coordinate

0,199

319,0

319,199

101

Figure 6-6. Arrangement of X and Y Coordinates

USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

Drawing a Box— Now try a box. To draw a box, type: .

Jomm^nd * BOX1,20,100,80,160,90,1 U

This draws a solid box to the left of the circle. To find out what the I I
numbers in the box statennent mean, consult Chapter V, BASIC 7.0

Encyclopedia. The BOX statement has seven parameters you can { ,

select and modify to produce different types of boxes. Change the I I
foreground color and draw the outline of a box to the right of the CIR

CLE with these statements:

90 COLOR1,9:REM CHANGE FOREGROUND COLOR —

100 BOX1,220,100,280,160,90,0

Experiment with the BOX statement to produce different variations I I
of rectangles and boxes.

Drawing Lines, You now know how to select graphic modes and j |
Points and colors and how to display circles and boxes on

Other Shapes— the screen. Another graphics statement, DRAW,

The lets you draw lines on the screen just as you j |
DRAW Command would with a pencil and a piece of paper. The

following statement draws a line below the

boxes and circle. j |

120 DRAW 1,20,180 TO 280,180

Here's what the numbers mean: I—J

• 1 is the color source (in this case the foreground)

• 20 is the starting X (horizontal) coordinate | |
• 180 is the starting Y (verticle) coordinate

• 280 is the ending horizontal coordinate

• 180 is the ending verticle screen coordinate. j |

To erase a drawn line, change the source (1) in the DRAW statement

to 0. The line is drawn with the background color which erases the j j
line. Try using different coordinates and other sources to become

accustomed to the DRAW statement.

The DRAW statement can take another form that allows you to

DRAW a line, change direction and then DRAW another line, so the

lines are continuous. For example, try this statement: |_|

130 DRAW 1,10,20 TO 300,20 TO 150,80 TO 10,20

This statement DRAWs a triangle on the top of the scren. The four [_J
pairs of numbers represent the X and Y coordinates for the three

points of the triangles. Notice the first and last coordinates are the

102 USING C128 MODE—Color, Animation and Sprite Graphics Statements

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

same, since you must finish drawing the triangle on the same point

you started. This form of draw statement gives you the power to

DRAW almost any geometric shape, such as trapezoids, parallelo

grams and polygons.

The DRAW statement also has a third form.

You can DRAW one point at a time by specifying the starting X and Y

values as follows:

150 DRAW 1,150,175

This statement DRAWs a dot below the CIRCLE.

As you can see, the DRAW statement has versatile features which

give you the capability to create shapes, lines points and a virtually

unlimited number of computer drawings on your screen.

PAINTing

Outlined

Areas—The

PAINT Command

103

The DRAW statement allows you to outline

areas on the screen. What if you want to fill

areas within your drawn lines? That's where the

PAINT statement comes in. The PAINT state

ment does exactly what the name implies—it

fills in, or PAINTs, outlined areas with color. Just

as a painter covers a canvas with paint, the

PAINT statement covers the areas of the screen

with any of the 16 colors. For example, type:

160 PAINT 1,150,97

Line 160 PAINTS the circle you have drawn in line 60. The PAINT

statement fills a defined area until a specified boundary is detected

according to which source is indicated. When the Commodore 128

finishes PAINTing, it leaves the pixel cursor at the point where PAINT

ing began (in this case, at point 150,97).

Here are two more PAINT statements:

180 PAINT 1,50,25

200 PAINT 1,225,125

Line 180 PAINTS the triangle and line 200 PAINTS the empty box.

♦IMPORTANT PAINTING TIP: If you choose a starting point in

your PAINT statement which is already colored from the same

source, the Commodore 128 will not PAINT that area. You must

choose a starting point which is entirely inside the boundary of

the shape you want to PAINT. The starting point cannot be on

USING C128 MODE—Color, Animation and Sprite Graphics Statements

the boundary line of a pixel that is colored from the same

source. The source numbers of the screen coordinate and the

coordinate specified in the PAINT command must be different.

Displaying Characters on a Bit Mapped Screen—The CHAR

Command

So far, the example program has operated in standard bit map mode.

Bit map mode uses a completely different area of memory to store

the screen data than text mode (the mode in which you enter pro

grams and text). If you enter bit map mode, and try to type charac

ters onto the screen, nothing happens. This is because the charac

ters you are typing are being displayed on the text screen and you

are looking at the bit map screen. Sometimes it is necessary to dis

play characters on the bit map screen, when you are creating and

plotting charts and graphs. The CHAR command is designed espe

cially for this purpose. To display standard characters on a bit map

screen, use the CHAR statement as follows:

220 CHAR 1,11,24,"GRAPHICS EXAMPLE"

This displays the text "GRAPHICS EXAMPLE" starting at line 25,

column 12. The CHAR command can also be used in text mode,

however, it is primarily designed for the bit map screen.

Changing the Size of Graphic Images—

The SCALE Command

The Commodore 128 has another graphics statement which offers

additional power to your graphics system. The SCALE statement

offers the ability to scale up (enlarge) or scale down (reduce) the size

of graphic images on your screen. The SCALE statement also

accomplishes another task, which can be explained as follows.

In standard bit-map mode, the 40-column screen has 320 horizontal

coordinates and 200 vertical coordinates. In multicolor bit map

104 USING C128 MODE—Color, Animation and Sprite Graphics Statements

! I

n

n

n

n

n

n

n

n

n

n

n

n

n

n

mode, the 40-column screen has only half the horizontal resolution

of standard bit map mode, that is, 160 by 200. This reduction in reso

lution is compensated for by the additional capability of using one

additional color for a total of three colors, within an 8 by 8 character

matrix. Standard bit map mode can only display two colors within an

8 by 8 character matrix.

The SCALE command allows you to size your graphic images on a

scale of 0-32767 in both the X and Y directions, instead of only the

320 by 200 default scale.

To SCALE your screen, type:

SCALE 1, x, y

and the screen coordinates range from 0 to 32767 whether you are

in standard or multicolor high-res mode. The default for SCALing is

1023 by 1023 if X and Y are not specified in the SCALE command.

To turn off SCALEing, type:

SCALE 0

and the coordinates return to their normal values.

105 USING C128 MODE—Color, Animation and Sprite Graphics Statements

Creating a Sample Graphics Program

So far, you have learned several graphics statements. Now tie the

program together and see how the statements work at the same

time. Here's how the program looks now. The color statements in

lines 70,110,140,170,190 and 210 are added to display each object
in a different color.

10

20

30

40

60

.7.0
80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

COLOR

COLOR

COLOR

0,1 :

1,3 :

4,1 :

GRAPHICAL-

CIRCLE

COLOR

BOX,2 0

COLOR

,150

1,6 :

,100,"

1,9 :

REM SELECT BKGRND COLOR

REM SELECT FORGRND COLOR

REM SELECT BORDER COLOR

REM SELECT STND HI RES

,130,40,40:REM CIRCLE

REM CHANGE F.QRGRND COLOR

80,160,90,1:REM BOX

REM CHANGE FORGRND COLOR

BOX,220,10 0,280,160,90,0:REM BOX

COLOR

DRAW

DRAW

COLOR

DRAW

PAINT

COLOR

PAINT

COLOR

PAINT

COLOR

CHAR,

FORI=

1,8

1,20,

1,10,

1,15

1,150

:REM CHANGE FORGRND COLOR

180 TO 280,180:REM DRAW LINE

20 TO 300,20 TO150,80 TO 10f 20: REM DRAW TRIANGLE

:REM CHANGE FORGRND COLOR

,175:REM DRAW 1 POINT

l,150,97:REM PAINT CIRCLE

1,5 .

1,50

1,7

:REM CHANGE FORGRND COLOR

,25:REM PAINT TRIANGLE

:REM CHANGE FORGRND COLOR

1,225,125:REM PAINT BOX

1,11
11,24

:REM CHANGE FORGRND COLOR

/"GRAPHICS EXAMPLE":REM DISPLAY TEXT

lTO5dO0:NEXT: GRAPHIC 0,1:COLOR 1,2

Here's what the program does:

• Lines 10 through 30 select a COLOR for the background, fore

ground and border, respectively.

• Line 40 chooses a graphic mode.

• Line 60 displays a CIRCLE.

• Line 80 DRAWs a colored-in BOX.

• Line 100 DRAWs the outline of a box.

• Line 120 DRAWs a straight line at the bottom of the screen.

• Line 130 DRAWs a triangle.

• Line 150 DRAWs a single point below the CIRCLE.

• Line 160 PAINTs the circle.

• Line 180 PAINTs the triangle.

• Line 200 PAINTs the empty box.

u

u

u

u

u

u

LJ

U

u

u

u

u

LJ

U

106 USING C128 MODE—Color, Animation and Sprite Graphics Statements

I 1

I \

• Line 220 prints the CHARacters "GRAPHICS EXAMPLE" at

the bottom of the screen.

• Line 230 delays the program so you can watch the graphics

on the screen, switches back to text mode and colors the

characters black.

If you want the graphics to remain on the screen, omit the GRAPHIC

statement in line 230.

Here are some additional example programs using the graphics

statements you just learned.

r—i

(I

H

H

n

10 COLOR 0,1

20 COLOR 1,8

30 COLOR 4,1

40 GRAJPHICl,!
50 FORI=80TO240 STEP10

60 CIRCLEl,I,100,75,75

70 NEXT

80 COLOR 1,5

90 PORIs=80TO250 STEP10

100 CIRCLE1,I,100,50,50

110 NEXT

120 COLOR 1,7

130 PORI=50TO280 STEP10

140 CIRCLE1,I,100,25,25

150 NEXT

160 FORI=lTO7500:NEXT;GRAPHIC0,1jGOLORl,2

n

n

t \

10

20

30

40

50

60

70

80

90

100

110

120

130

140

GRAPHIC

COLOR0,

COLOR4,

1,1
1

1

FORI=lTO50

Z=INT{(

COLOR1,

X=INT({

Y=INT((

U=INT((

V=INT(

DRAW,X

NEXT

SCNCLR

GOTO40

(RND(l)

Z

(RND(l)

(RND(l)

(RND(l)

)*16)+1)* 1

)*30)+l)*10

)*20)+l)*10

)*30)+l)*10

((RND(l))*20)+l)*10

,Y TO U ,v - ■■•' -^

107

n

USING C128 MODE—Color, Animation and Sprite Graphics Statements

10

20

30

40

50

60

70

80

90

100

110

120

130
140
150

COLOR4 ,7:COLOR0,7:COLOR1,1

GRAPHIC1,1

#ORI=
DRAW 1

NEXT

FORt=

DRAW 1

NEXT

FORI=

DRAW

NEXT

FORI=

DRAW

NEXT

PORI=

400TO1 STEP -5

,150,100 TO 1,1

1TO400 STEP 5

,150,100 TO 1,1

4dT0 320 STEP 5
1,150,100 TO 1,320

320TO30STEP -5

1,150,100 TO 320,1

lTO7500:NEXT:GRAPHIC0,1:COLOR1,1

u

Li

t i

Type the examples into your computer. RUN and SAVE them for

future reference. One of the best ways to learn programming is to

study program examples and see how the statements perform their

functions. You'll soon be able to use graphics statements to create

impressive graphics with your Commodore 128.

If you need more information on any BASIC statement or command,

consult the Chapter V, BASIC 7.0 Encyclopedia.

You now have a set of graphic commands that allow you to create an

almost unlimited number of graphics displays. But Commodore 128

graphics abilities do not end here. The Commodore 128 has another

set of statements, known as SPRITE graphics, which make the crea

tion and control of graphic images fast, easy and sophisticated.

These high-level statements allow you to create sprites—moveable

graphic objects. The C128 has its own built-in SPRite DEFinition abil

ity. These statements represent the new technology for creating and

controlling sprites. Read the next section and take your first step in

learning computer animation.

u

u

LJ

LI

U

U

U

i >

108 USING C128 MODE—Color, Animation and Sprite Graphics Statements

LI

n

I \

n

n

n

n

Sprites:

Programmable,

Movable Object

Blocks

You already have learned about some of the Commodore 128's

exceptional graphics capabilities. You've learned how to use the first

set of high level graphics statements to draw circles, boxes, lines and

dots. You have also learned how to color the screen, switch graphic

modes, paint objects on the screen and scale them. Now it's time to

take the next step in graphics programming—sprite animation.

If you have worked with the Commodore 64, you already know some

thing about sprites. For those of you who are not familiar with the

subject, a sprite is a movable object that you can form into any

shape or image. You can color sprites in 16 colors. Sprites can even

be multicolor. The best part is that you can move them on the

screen. Sprites open the door to computer animation.

Sprite Creation

The first step in programming sprites is designing the way the sprite

looks. For example, suppose you want to design a rocket ship or a

racing car sprite. Before you can color or move the sprite, you must

first design the image. In C128 mode, you can create sprites in these

three ways:

1. Using SPRite DEFinition mode (SPRDEF)

2. Using the new SPRITE statements within a program

3. Using the same method as the Commodore 64.

Sprite Definition Mode—The SPRDEF Command

The Commodore 128 has a built-in SPRite DEFinition mode which

enables you to create sprites on your Commodore 128. You may be

familiar with the Commodore 64 method of creating sprites, in which

you are required to either have an additional sprite editor, or design a

sprite on a piece of graph paper and then READ in the coded sprite

DATA and POKE it into an available sprite block. With the new Com

modore 128 sprite definition command SPRDEF, you can construct

and edit your own sprites in a special sprite work area.

To enter SPRDEF mode, type:

SPRDEF

and press RETURN. The Commodore 128 displays a sprite grid on

the screen. In addition, the computer displays the prompt:

SPRITE NUMBER?

Enter a number between 1 and 8. The computer fills the grid and

displays the corresponding sprite in the upper right corner of the

screen. From now on, we will refer to the sprite grid as the work area.

109 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

The work area has the dimensions of 24 characters wide by 21 char
acters tall. Each character position within the work area corres- I
ponds to 1 pixel within the sprite, since a sprite is 24 pixels wide by

21 pixels tall. While within the work area in SPRDEF mode, you have >

several editing commands available to you. Here's a summary of the < I
commands on the following page:

Sprite Definition Mode Command Summary M

CLR key—Erases the entire work area

M key—Turns on/off multicolor sprite -« »

CTRL 1-8—Selects sprite foreground color 1-8 LJ
C' 1-8—Selects sprite foreground color 9-16
1 key—Sets the pixel at the current cursor location to the < >
background color uJ
2 key—Sets the pixel at the current cursor location to the
foreground color , .

3 key—Sets the pixel at the current cursor location to I I
multicolor!

4 key—Sets the pixel at the current cursor location to (.
multicolor2 LJ

A key—Turns on/off automatic cursor movement

CRSR keys—Moves the cursor (+) within the work area ^ .

RETURN—moves cursor to the start of the next line LJ

HOME key—Moves cursor to the top left corner of work area.
X key—Expands sprite horizontally t ,

Y key—Expands sprite vertically I I
Shift RETURN—Saves sprite from work area and returns to

SPRITE NUMBER prompt v »

C key—copies one sprite to another i I
STOP key—Turns off displayed sprite and returns to

SPRITE NUMBER prompt without changing the sprite s ,

RETURN key—(at SPRITE NUMBER prompt) Exits LJ
SPRDEF mode

Sprite Creation Procedure in SPRite DEFinition Mode J_J

Here's the general procedure to create a sprite in SPRite DEFinition

mode: v I

1. Clear the work area by pressing the shift and CLR/HOME keys at

the same time.

2. If you want a multicolor sprite, press the M key and an additional K j
cursor appears next to the original one. Two cursors appear

since multicolor mode actually turns on two pixels for every one

in standard sprite mode. This is why multicolor mode is only half j j
the horizontal resolution of standard high-res mode.

110 USING C128 MODE—Color, Animation and Sprite Graphics Statements

n

n

n

5.

6.

7.

Select a color for your sprite. For colors between 1 and 8, hold

down the CONTROL key and press a key between 1 and 8. To

select color codes between 9 and 16, hold down the Commo

dore (Cs) key and press a key between 1 and 8.

Now you are ready to start creating the shape of your sprite. The

numbered keys 1 through 4 fill in the sprite and give it shape. For

a single color sprite, use the 2 key to fill a character position

within the work area. Press the 1 key to erase what you have

drawn with the 2 key. If you want to fill one character position at a

time, press the A key. Now you have to move the cursor manually

with the cursor keys. If you want the cursor to move automati

cally to the right while you hold it down, do not press the A key

since it is already set to automatic cursor movement. As you fill

in a character position within the work area, you can see the

corresponding pixel in the displayed sprite turn on. Sprite editing

occurs as soon as you edit the work area.

In multicolor mode, the 3 key fills two character positions in the

work area with the multicolor 1 color, the 4 key fills two character

positions with the multicolor 2.

You can turn off (color the pixel in the background color) filled

areas within the work area with the 1 key. In multicolor mode, the

1 key turns off two character positions at a time.

While constructing your sprite, you can move freely in the work

area without turning on or off any pixels using the RETURN,

HOME and cursor keys.

At any time, you may expand your sprite in both the vertical and

horizontal directions. To expand vertically, press the Y key. To

expand horizontally, press the X key. To return to the normal size

sprite display, press the X or Y key again.

When a key turns on AND off of the same control, it is referred to

as toggling, so the X and Y keys toggle the vertical and horizontal

expansion of the sprite.

When you are finished creating your sprite and are happy with

the way it looks, save it by holding down the SHIFT key and

pressing the RETURN key. The Commodore 128 SAVEs the sprite

data in the appropriate sprite storage area. The displayed sprite

in the upper right corner of the screen is turned off and control is

returned to the SPRITE NUMBER prompt. If you want to create

another sprite enter another sprite number and edit the new

sprite just as you did with the first one. If you want to display the

original sprite in the work area again, enter the original sprite

111 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

number. If you want to exit SPRITE DEFinition mode, simply . i

press RETURN at the SPRITE NUMBER prompt. lJ
8. You can copy one sprite into another with the "C" key.

9. If you do not want to SAVE your sprite, press the STOP key The i)

Commodore 128 turns off the displayed sprite and returns to the uj
SPRITE NUMBER prompt.

10. To EXIT SPRite DEFinition mode, press the RETURN key while < >

the SPRITE NUMBER prompt is displayed on the screen when no i I
sprite number follows it. You can exit under either of the follow

ing conditions: { >

Immediately after you SAVE your sprite (shift RETURN),

Immediately after you press the STOP key

Once you have created a sprite and have exited SPRite DEFinition l_J
mode, your sprite data is stored in the appropriate sprite storage

area in the Commodore 128's memory. Since you are now back in the . }

control of the BASIC language, you have to turn on your sprite in I I
order to see it on the screen. To turn it on again, use the SPRITE

command. For example, you created sprite 1 in SPRDEF mode. To { ,

turn it on in BASIC, color it blue and expand it in both the X and Y I I
directions enter this command:

SPRITE 1,1,7,0,1,1,0 [_j

Now use the MOVSPR command to move it at a 90-degree angle at a

speed of 5, as follows: , »

MOVSPR 1, 90 # 5 *—

The SPRITE and MOVSPR commands are discussed in greater detail , ,

in the next section. I I

Now you know all about SPRDEF mode. First, create the sprite, save . .

the sprite data and exit from SPRDEF mode to BASIC. Next turn on I I
your sprite with the SPRITE command. Move it with the MOVSPR

command. When you're finished programming, SAVE your sprite , .

data in a binary file with the BSAVE command. i I

See Storing Sprite Data in Binary Files later in this section for ^ ,

more information on the BSAVE and BLOAD commands. « I

112 USING C128 MODE—Color, Animation and Sprite Graphics Statements

n

n

n

n

n

n

n

n

n

n

H

n

Using Sprite Statements in a Program

This method uses built-in statements so you don't have to use any

aids outside your program to design your sprite, as the other two

methods require. This method uses some of the graphics statements

you learned in the previous section. Here's the general procedure.

The details will be added as you progress.

1. Draw a picture with the graphics statements you learned in

the last section, such as DRAW, CIRCLE, BOX and PAINT.

Make the dimensions of the picture 24 pixels wide by 21 pix

els tall in standard bit map mode or 12 pixels wide by 21 tall in

multicolor bit map mode.

2. Use the SSHAPE statement to store the picture data into a

string variable.

3. Transfer the picture data from the string variable into a sprite

with the SPRSAV statement.

4. Turn on the sprite, color it, select either standard or multi

color mode and expand it, all with the SPRITE statement.

5. Move the sprite with the MOVSPR statement.

Drawing the Sprite Image

Here are the actual statements that perform the sprite operations.

When you are finished with this section, you will have written your

first sprite program. You'll be able to RUN the program as much as

you like, and SAVE it for future reference.

The first step is to draw a picture (24 by 21 pixels) on the screen

using DRAW, CIRCLE, BOX or PAINT. This example is performed in

standard bit map mode, using a black background. Here's the state

ments that set the graphic mode and color the screen background

black.

5 COLOR 0,1 :REM COLOR BACKGROUND BLACK

10 GRAPHIC 1,1 :REM SET STND BIT MAP MODE

The following statements DRAW a picture of a racing car in the

upper-left corner of the screen. You already learned these state

ments in the last section.

113 USING C128 MODE—Color, Animation and Sprite Graphics Statements

5

10

15

20

22

24

26

28

30

32

35

37

40

42

44

COLOR 0,1

GRAPHIC 1,1

BOX 1,2,2,45,45

DRAW 1,17,10 TO 28,10

DRAW 1,11,10 TO 15,10

DRAW 1,30,10 TO 34,10

DRAW 1,11,20 TO 15,20

DRAW 1,30,20 TO 34,20

DRAW 1,26,28 TO 19,28

BOX 1,20,14,26,18,90,1

BOX 1,150,35,195,40,90

BOX 1,150,135,195,140,

BOX 1,150,215,195,220,

BOX 1,50,180,300,194

CHAR 1,18,23,"FINISH"

TO

TO

TO

TO

TO

rl
90

90

26

15

34

15

34

,30

,18

,18

,28

,28

TO 19,

TO 11,

TO 30,

TO 11,

TO 30,

:REM STREET

,1:
rl:

REM

REM

STREET

STRT

30

18

18

28

28

TO

TO

TO

TO

TO

17,

11,
30,

11,
30,

10

10

10

20

20

:REM CAR BODY

: REM UP LEFT WHEEL

:REM RGHT WHEEL

:REM LOW LFT WHEEL

:REM LO RGHT WHEEL

RUN the program. You have just drawn a white racing car, enclosed

in a box, in the upper-left corner of the screen. You have also drawn

a raceway with a finish line at the bottom of the screen. At this point,

the racing car is still only a stationary picture. The car isn't a sprite

yet, but you have just completed the first step in sprite

programming—creating the image.

Storing the Sprite Data with SSHAPE

The next step is to save the picture into a text string. Here's the

SSHAPE statement that does it:

45 SSHAPE A$,11,10,34,30:REM SAVE THE PICTURE IN A

STRING

The SSHAPE command stores the screen image (bit pattern) into a

string variable for later processing, according to the specified

screen coordinates.

The numbers 11,10, 34, 30 are the coordinates of the picture. You

must position the coordinates in the correct place or the SSHAPE

statement can't store your picture data correctly into the string varia

ble A$. If you position the SSHAPE statement on an empty screen

location, the data string is empty. When you later transfer it into a

sprite, you'll realize there is no data present. Make sure you position

the SSHAPE statement directly on the correct coordinate. Also, be

sure to create the picture with the dimensions 24 pixels wide by 21

pixels tall, the size of a single sprite.

The SSHAPE statement transfers the picture of the racing car into a

data string that the computer interprets as picture data. The data

u

1 I

LJ

(l

U

LJ

114 USING C128 MODE—Color, Animation and Sprite Graphics Statements

n

n

n

n

n

n

n

n

n

n

n

string, A$, stores a string of zeroes and ones in the computer's mem

ory that make up the picture on the screen. As in all computer graph

ics, the computer has a way it can represent visual graphics with bits

in its memory. Each dot on the screen, called a pixel, has a bit in the

computer's memory that controls it. In standard bit-map mode, if the

bit in memory is equal to a 1 (on), then the pixel on the screen is

turned on. if the controlling bit in memory is equal to a 0 (off), then

the pixel is turned off.

Saving the Picture Data in a Sprite

Your picture is now stored in a string. The next step is to transfer the

picture data from the data string (A$) into the sprite data area so you

can turn it on and animate it. The statement that does this is SPRSAV.

Here are the statements:

50 SPRSAV A$,1:REM STORE DATA STRING IN SPRITE 1

55 SPRSAV A$,2:REM STORE DATA STRING IN SPRITE 2

Your picture data is transferred into sprite 1 and 2. Both sprites have

the same data, so they look exactly the same. You can't see the

sprites yet, because you have to turn them on.

TUrning on Sprites

The SPRITE statement turns on a specific sprite (numbered 1

through 8), colors it, specifies its screen priority, expands the sprite's

size and determines the type of sprite display. The screen priority

refers to whether the sprite passes in front of or behind the objects

on the screen. Sprites can be expanded to twice their original size in

either the horizontal or vertical directions. The type of sprite display

determines whether the sprite is a standard bit map sprite, or a mul

ticolor bit mapped sprite. Here are the two statements that turn on

sprites 1 and 2.

60 SPRITE 1,1,7,0,0,0,0:REM TURN ON SPR 1

65 SPRITE 2,1,3,0,0,0,0:REM TURN ON SPR 2

Here's what each of the numbers in the SPRITE statements mean;

SPRITE #,O,C,P,X,Y,M

—Sprite number (1 through 8)

O—TumOn(O=1)orOff(O = 0)

C —Color (1 through 16)

p _ Priority— If P = 0, sprite is in front of objects on the screen

If p = 1, sprite is in back of objects on the screen

115 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

X —If X= 1, expands sprite in horizontal (X) direction , ,

If X = 0, sprite is normal horizontal size ! !
Y — If Y = 1, expand sprite in vertical (Y) direction

If Y = 0, sprite is normal vertical size ,

M— If M = 1, sprite is multicolor I)
If M = 0, sprite is standard

As you can see, the SPRITE statement is powerful, giving you control \ \

over many sprite qualities. l—'

Moving Sprites with MOVSPR Li

Now that your sprite is on the screen, all you have to do is move it.

The MOVSPR statement controls the motion of a sprite and allows j |

you to animate it on the screen. The MOVSPR statement can be used (—}
in two ways. First, the MOVSPR statement can place a sprite at an

absolute location on the screen, using vertical and horizontal coordi- | j

nates. Add the following statements to your program: (—'

70 MOVSPR 1,240,70:REM POSITION SPRITE 1-X= 240, Y = 70

80 MOVSPR 2,120,70:REM POSITION SPRITE 2—X= 120, Y = 70 j_]

Line 70 positions sprite 1 at sprite coordinate 240,70. Line 80 places

sprite 2 at sprite coordinate 120,70. You can also use the MOVSPR) i

statement to move sprites relative to their original positions. For (—'
example, place sprites 1 and 2 at the coordinates as in lines 70 and

80. You want to move them from their original locations to another t i

location on the screen. Use the following statements to move sprites l—»

along a specific route on the screen:

80 MOVSPR,1,180 # 6:REM MOVE SPRITE 1 FROM THE TOP M
TO THE BOTTOM

87 MOVSPR 2,180 # 7:REM MOVE SPRITE 2 FROM THE TOP

TO THE BOTTOM |_|

The first number in this statement is the sprite number. The second

number is the direction expressed as the number of degrees to move i i

in the clockwise direction, relative to the original position of the I—I
sprite. The pound sign (#) signifies that the sprite is moved at the

specified angle and speed relative to a starting position, instead of ^ »

an absolute location, as in lines 70 and 80. The final number speci- <—I
f ies the speed in which the sprite moves along its route on the

screen, which ranges from 0 through 15. , ,

The MOVSPR command has two alternative forms. See Chapter V,

BASIC 7.0 Encyclopedia for these notations. , i

116 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

u

/ 1

n

n

n

n

n

n

n

n

n

n

n

Sprites use an entirely different coordinate plane than bit-map coor

dinates. The bit-map coordinates range from points 0,0 (the top left

corner) to 319,199 (bottom right corner). The visible sprite coordi

nates start at point 24,50 and end at point 344,250. The rest of the

sprite coordinates are off the screen and are not visible, but the

sprite still moves according to them. The off-screen locations allow

sprites to move smoothly onto and off of the screen. Figure 6-7 illus

trates the sprite coordinate plane and the visible sprite positions.

0 (WO) 24 (S18)

29 (*1D) 1

50 ($32) 1

208 <SD0)-|

250 ($FA)-

VISIBLE VIEWING AREA

NTSC*

40 COLUMNS

25 ROWS

8 ($08)

I- -50 ($32)

-- 229 ($ES)

— - 250 ($FA)

I

488 ($1E8) 24 ($18)

I

I I
I I

I I
320 ($140) 344 ($158)

Figure 6-7. Visible Sprite Coordinates

Now RUN the entire program with all the steps included. You have

just written your first sprite program. You have created a raceway

with two racing cars. Try adding more cars and more objects on the

screen. Experiment by drawing other sprites and include them in the

raceway. You are now well on the way in sprite programming. Use

your imagination and think of other scenes and objects you can

animate. Soon you will be able to create all kinds of animated com

puter "movies."

To stop the sprites, press RUN/STOP and RESTORE at the same

time.

117 USING C128 MODE—-Color, Animation and Sprite Graphics Statements

Creating a Sprite Program

You now have a working sprite program example. Here's the com

plete program listing:

u

5 COLOR 0,1

10 GRAPHIC 1,1

15 BOX 1,2,2,45,45

20 DRAW 1,17,10 TO 28,10 TO 26,30 TO 19,30 TO 17,10

22 DRAW 1,11,10 TO 15,10 TO 15,18 TO 11,18 TO 11,10:

:REM CAR BODY

REM UP LEFT WHEEL

24 DRAW 1,30,10 TO 34,10 TO 34,18 TO 30,18 TO 30,10:REM RGHT WHEEL

26 DRAW 1,11,20 TO 15,20 TO 15,28 TO 11,28 TO ll,20:REM LOW LFT WHEEL

28 DRAW: 1> 30,, 20 TO 34,20 TO 34,28 TO 30,28 TO 30,20:REM LO RGHT WHEEL

30 DRAW 1*26,28 TO 19,28

32 BOX 1,20,14,26,18,90,1

35 BOX 1,150,35,195,40,90,1:REM STREET

37 BOX I,150,135,195,140,90,1:REM STREET

40 BOX 1,150,215,195,220,90,1:REM STRT
42 BOX 1,50,180,300,194

44 CHAR 1,18,23,"FINISH"

45 SSHAPE A$,ll,10,34,30:REM SAVE SPR IN A$

50 SPRSAV A$,1:REM SPR0 DATA

55 SPRSAV A$,2:REM SPRl DATA

60 SPRITE l,l,7,0,0,0,0:REM SPRl ATTRIB

65 SPRITE 2,l,3,0,0,0,0:REM SPR2 ATTRIB

70 MOVSPR 1;240,0:REM MOVE SP1 TO ABSOLUTE COORD. 240,0

80 MwSiPR: 2>#20,0:REM MOVE SP2 TO ABSOLUTE COORD. 120,0
85 MOVSPR 1,180 # 6:REM MOVE SPl 180 DEGREES RELATIVE TO 240,0

90 MOVSPR 2,180 # 7:REM MOVE SP2 180 DEGREES RELATIVE TO 120,0

95 SLEEP 15 :REM DELAY

99 GRAPHIC 0,1:REM RETURN TO TEXT MODE

LJ

LJ

U

U
Here's what the program does:

• Line 5 COLORS the screen black.

• Line 10 sets standard high-resolution GRAPHIC mode.

• Line 15 DRAWs a box in the top-left corner of the screen.

• Lines 20 through 32 DRAW the racing car.

• Lines 35 through 44 DRAW the racing lanes and a finish line.

• Line 45 transfers the picture data from the racing car into a

string variable.

• Lines 50 and 55 transfer the contents of the string variable

into sprites 1 and 2.

• Lines 60 and 65 turn on sprites 1 and 2.

• Lines 70 and 80 position the sprites at the top of the screen.

• Lines 85 and 90 animate the sprites as through two cars are

racing each other across the finish line.

LJ

118 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

n

n

n

i t

n

n

In this section, you have learned how to create sprites, using the

built-in C128 graphics statements such as DRAW and BOX. You

learned how to control the sprites, using the Commodore 128 sprite

statements. The Commodore 128 has two other ways of creating

sprites. The first is with the built-in SPRite DEFinition ability, as

described in the following paragraphs. The other method of creating

sprites is the same as that used for the Commodore 64; see the C64

Programmer's Reference Guide for details on this sprite-creation

technique.

Adjoining Sprites

You have learned how to create, color, turn on and animate a sprite.

An occasion may arise when you want to create a picture that is too

detailed or too large to fit into a single sprite. In this case, you can

join two or more sprites so the picture is larger and more detailed

than with a single sprite. By joining sprites, each one can move inde

pendently of one another. This gives you much more control over

animation than a single sprite.

This section includes an example using two adjoining sprites. Here's

the general procedure (algorithm) for writing a program with two or

more adjoining sprites.

1. Draw a picture on the screen with Commodore 128 graphics state

ments, such as DRAW, BOX and PAINT, just as you did in the race

way program in the last section. This time, make the picture twice

as large as a single sprite with the dimensions 48 pixels wide by 21

pixels tall.

2. Use two SSHAPE statements to store the sprites into two sepa

rate data strings. Position the first SSHAPE statement coordinates

over the 24 by 21 pixel area of the first half of the picture you drew.

Then position the second SSHAPE statement coordinates over

the second 24 by 21 pixel area. Make sure you store each half of

the picture data in a different string. For example, the first

SSHAPE statement stores the first half of the picture into A$, and

the second SSHAPE statement stores the second half of the pic

ture in B$.

3. Transfer the picture data from each data string into a separate

sprite with the SPRSAV statement.

4. Turn on each sprite with the SPRITE statement.

5. Position the sprites so the beginning of one sprite starts at the

pixel next to where the first sprite ends. This is the step that actu-

119 USING C128 MODE—Color, Animation and Sprite Graphics Statements

LJ

ally joins the sprites. For example, draw a picture 48 by 21 pixels. i j

Position the first sprite (1, for example) at location 10,10 with this <—i
statement:

100 MOVSPR 1,10,10 LJ

where the first number is the sprite number, the second number is

the horizontal (X) coordinate and the third number is the vertical j »

(Y) coordinate. Position the second sprite 24 pixels to the right of <—>

sprite 1 with this statement:

200 MOVSPR 2,34,10 [J

At this point, the two sprites are displayed directly next to each

other. The/look exactly like the picture you drew in the beginning ^ (

of the program, using the DRAW, BOX and PAINT statements. <—/

6. Now you can move the sprites any way you like, again using the

MOVSPR statement. You can move them together along the same t i

path or in different directions. As you learned in the last section, I—I
the MOVSPR statement allows you to move sprites to a specific

location on the screen, or to a location relative to the sprite's origi- i >

nal position. I—!

The following program is an example of adjoining sprites, the pro- ^ \

gram creates an outer space environment, it draws stars, a planet i—I
and a spacecraft similar to Apollo. The spacecraft is drawn, then

stored into two data strings, A$ and B$. The front of the spaceship, , »

the capsule, is stored in sprite 1. The back half of the spaceship, the I I
retro rocket, is stored in sprite 2. The spacecraft flies slowly across

the screen twice. Since it is traveling so slowly and is very far from , ,

Earth, it needs to be launched earthward with the retro rockets. I I
After the second trip across the screen, the retro rockets fire and

propel the capsule safely toward Earth. .

Here's the program listing:

u

u

u

LJ

120 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

5 COLOR 4,1:COLOR 0,1 .-COLOR 1,2:REM SELECT BLACK BORDER & BKGRND, WHITE FRGRD
10 GRAPHIC 1,1:REM SET HI RES MODE

17 FOR I=lTO40

18 X=INT(RND(l)*320)+l:REM DRAW STARS

19 Y=INT(RND(l)*200)+l:REM DRAW STARS

21 DRAW 1,X,Y:NEXT :REM DRAW STARS

22 BOX 0,0,5,70,40,,l:REM CLEAR BOX

23 BOX 1,1,5,70,40:REM BOX-IN SPACESHIP

24 COLOR 1,8:CIRCLE 1,190,90,35,25:PAINT 1,190,95:REM DRAW & PAINT PLANET
25 CIRCLE l,190,90,65,10:CIRCLE 1,190,93,65,10:CIRCLE 1,190,95,65,10:COLOR 0,1
26 DRAW 1,10,17 TO 16,17 TO 32,10 TO 33,20 TO 32,30 TO 16,23 TO 10,23 TO 10,17
28 DRAW 1,19,24 TO 20,21 TO 27,25 TO 26,28:REM BOTTOM WINDOW

35 DRAW 1,20,19 TO 20,17 TO 29,13 TO 30,18 TO 28,23 TO 20,19:REM TOP WINDOW
38 PAINT 1,13,20:REM PAINT SPACESHIP

40 DRAW 1,34,10 TO 36,20 TO 34,30 TO 45,30 TO 46,20 TO 45,10 TO 34,10:REM SPl
42 DRAW 1,45,10 TO 51,12 TO 57,10 TO 57,17 TO 51,15 TO 46,17:REM ENG1
43 DRAW 1,46,22 TO 51,24 TO 57,22 TO 57,29 TO 51,27 TO 45,29:REM ENG2

44 PAINT l,40,15:PAINT 1,47,12:PAINT 1,47,26:DRAW 0,45,30 TO 46,20 TO 45,10
45 DRAW 0,34,14 TO 44,14 :DRAW 0,34,21 TO 44,21:DRAW 0,34,28 TO 44,28
47 SSHAPE A$,10,10,33,30:REM SAVE SPRITE IN A$

48 SSHAPE B$,34,10,57,30:REM SAVE SPRITE IN B$
50 SPRSAV A$,1:REM SPRl DATA

55 SPRSAV B$,2:REM SPR2 DATA

60 SPRITE l,l,3,0,0,0,0:REM SET SPRl ATTRIBUTES

65 SPRITE 2,1,7,0,0,0,0:REM SET SPR2 ATTRIBUTES

82 MOVSPR 1,150 ,150:REM ORIGINAL POSITION OF SPRl

83 MOVSPR 2,172 ,150:REM ORIGINAL POSITION OF SPR2

85 MOVSPR 1,270 # 5 :REM MOVE SPRl ACROSS SCREEN

87 MOVSPR 2,270 # 5 :REM MOVE SPR2 ACROSS SCREEN

90 FOR I=1TO 5950:NEXT:REM DELAY

92 MOVSPR 1,150,150:REM POSITION SPRl FOR RETRO ROCKET LAUNCH

93 MOVSPR 2,174,150:REM POSITION SPR2 FOR RETRO ROCKET LAUNCH
95 MOVSPR 1,270 # 10 :REM SPLIT ROCKET

96 MOVSPR 2,125 # 5 :REM SPLIT ROCKET

97 FOR I=1TO 1200:NEXT:REM DELAY

98 SPRITE 2,0:REM TURN OFF RETRO ROCKET (SPR2)

99 FOR 1=1TO 20500:NEXT:REM DELAY

100 GRAPHIC 0,1:REM RETURN TO TEXT MODE

Here's an explanation of the program:

• Line 5 COLORs the background black and the foreground
white.

• Line 10 selects standard high-resolution mode and clears the

high-res screen.

• Lines 17 through 21 DRAW the stars.

• Line 23 BOXes in a display area for the picture of the space

craft in the top-left corner of the screen.

• Line 24 DRAWs and PAINTs the planet.

• Line 25 DRAWs the CIRCLES around the planet.

• Line 26 DRAWs the outline of the capsule portion of the

spacecraft.

121 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

Line 28 DRAWs the bottom window of the space capsule. j)

Line 35 DRAWs the top window of the space capsule.

Line 38 PAINTs the space capsule white.

Line 40 DRAWs the outline of the retro rocket portion of the j I

spacecraft. —'
Line 42 and 43 DRAW the retro rocket engines on the back of

the spacecraft.) I

Line 44 PAINTs the retro rocket engines and DRAWs an out- LvJ
line of the back of the retro rocket in the background color.

Line 45 DRAWs lines on the retro rocket portion of the space- \ \

craft in the background color. (At this point, you have dis- *—'
played only pictures on the screen. You have not used any

sprite statements, so your rocketship is not yet a sprite.) \ I

Line 47 positions the SSHAPE coordinates above the first half '—'
(24 by 21 pixels), of the capsule of the spacecraft and stores it

in a data string, A$.) |

Line 48 positions the SSHAPE coordinates above the second '—'
half (24 by 21 pixels) of the spacecraft and stores it in a data

string, B$. j j

Line 50 transfers the data from A$ into sprite 1. '—'
Line 55 transfer the data from B$ into sprite 2.

Line 60 turns on sprite 1 and colors it red. j I

Line 65 turns on sprite 2 and colors it blue. '—'
Line 82 positions sprite 1 at coordinate 150,150.

Line 83 positions sprite 2, 24 pixels to the right of the starting j j

coordinate of sprite 1. '—'
Lines 82 and 83 actually join the two sprites.

Lines 85 and 87 moves the joined sprites across the screen. j i

Line 90 delays the program. This time, delay is necessary for '—'
the sprites to complete three trips across the screen. If you

leave out the delay, the sprites do not have enough time to j i

move across the screen. '—'
» Lines 92 and 93 position the sprites in the center of the

screen, and prepare the spacecraft to fire the retro rockets. j j

Line 95 propels sprite 1, the space capsule, forward. The —'
number 10 in line 95 specifies the speed in which the sprite

moves. The speed ranges from 0, which is stop, to 15, which \ I

is lightning fast. *—'
Line 96 moves the expired retro rocket portion of the space

craft backwards and off the screen. \ t

Line 97 is another time delay so the retro rocket, sprite 2, has '—
time to move off the screen.

Line 98 turns off sprite 2, once it is off the screen. j f

t (

122 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

n

n

n

(>
t \

n

n

• Line 99 is another delay so the capsule can continue to move

across the screen.

• Line 100 returns you to text mode.

Working with adjoining sprites can be more interesting than working

with a single sprite. The main points to remember are: (1) Make sure

you position the SSHAPE coordinates at the correct locations on the

screen, so you save the picture data properly; and (2) be certain to

position the sprite coordinates in the correct location when you are

joining them with the MOVESPR statement. In this example, you posi

tioned sprite 2 at a location 24 pixels to the right of sprite 1.

Once you master the technique of adjoining two sprites, try more

than two. The more sprites you join, the better the detail and anima

tion will be in your programs.

The C128 has two additional SPRITE commands, SPRCOLOR and

COLLISION, which are not covered in this chapter. To learn about

these commands, refer to Chapter V, the BASIC 7.0 Encyclopedia.

Storing Sprite Data in Binary Files

The Commodore 128 has two new commands, BLOAD and BSAVE,

which make handling sprite data neat and easy. The "B" in BLOAD

and BSAVE stand for BINARY. The BSAVE and BLOAD commands

save and load binary files to and from disk. A binary file consists of

either a portion of a machine language program, or a collection of

data within a specified address range. You may be familiar with the

SAVE Command within the built-in machine language monitor. When

you use this SAVE command, the resulting file on disk is considered

a binary file. A binary file is easier to work with than an object code

file since you can load a binary file without any further preparation.

An object code file must be loaded with a loader, as in the Commo

dore 64 Assembler Development System; then the SYSTEM com

mand (SYS) must be used to execute it.

You're probably wondering what this has to do with sprites. Here's

the connection. The Commodore 128 has a dedicated portion of

memory ranging from decimal address 3584 ($0E00) through 4095

($0FFF), where sprite data is stored. This portion of memory takes

up 512 bytes. As you know, a sprite is 24 pixels wide by 21 pixels tall.

Each pixel requires one bit of memory. If the bit in a sprite is off

(equal to 0), the corresponding pixel on the screen is considered off

and it takes on the color of the background. If a pixel within a sprite is

123 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

on (equal to 1), the corresponding pixel on the screen is turned on in t ,

the foreground color. The combination of zeroes and ones produces I (
the image you see on the screen.

Since a sprite is 24 by 21 pixels and each pixel requires one bit of I i
storage in memory, one sprite uses up 63 bytes of memory. See Fig

ure 6-8 to understand the storage requirements for a sprite's data. , ,

12345678 12345678 12345678

2 U
3

I :::::::: :::::::: :::::::: u
6

I :::::::: :::::::: :::::::: u
9

10 , ,
11 LJ
12

13 , ,
14 LJ
15

16 , ,
17 LJ
18

19 , .
20 LJ
21

Each Row = 24 bits = 3 bytes j I

Figure 6-8. Sprite Data Requirements

u
A sprite requires 63 bytes of data. Each sprite block is actually made

up of 64 bytes; the extra byte is not used. Since the Commodore 128 , »

has eight sprites and each one consists of a 64-byte sprite block, the LJ
computer needs 512 (8 x 64) bytes to represent the data of all eight

sprite images.

u

LJ
124 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

n

The entire area where all eight sprite blocks reside starts at memory

location 3584 ($0E00) and ends at location 4095 ($0FFF). Figure 6-9

lists the memory address ranges where each individual sprite stores
its data.

I \

1 \

! \

j [

H

r-—>

I A

; \

$0FFF (4095 Decimal)

]—Sprite 8

$0FC0

]—Sprite 7

$0F80

]—Sprite 6

$0F40

1—Sprite 5

$0F00

]—Sprite 4

$0EC0

]—Sprite 3

$0E80

]—Sprite 2

$0E40

]—Sprite 1

$0E00 (3584 Decimal)

Figure 6-9. Memory Address Ranges for Sprite Storage

BSAVE Once you exit from the SPRDEF mode, you can

save our sprite data in binary sprite files. This

way, you can load any collection of sprites back

into the Commodore 128 neatly and easily. Use

this command to save your sprite data into a

binary file:

BSAVE "filename", BO, P3584 TO P4096

The binary filename is a name you give to the file. The "BO" specifies

that you are saving the sprite data from bank 0. The parameters

"P3584 TO P4096" signify you are saving the address range 3584

($0E00) through 4095 ($0FFF), which is the range where all the sprite

data is stored.

You do not have to define all of the sprites when you BSAVE them.

The sprites you do define are BSAVEd from the correct sprite block.

The undefined sprites are also BSAVEd in the binary file from the

appropriate sprite block, but they do not matter to the computer. It is

125 USING C128 MODE—Color, Animation and Sprite Graphics Statements

u

easier to BSAVE the entire 512 bytes of all eight sprites, regardless if . .

all the sprites are used, rather than BSAVE each sprite block individ- LJ
ually.

u
BLOAD Later on, when you want to use the sprites

again, just BLOAD the entire 512 bytes for all of

the sprites into the range starting at 3584 t (
($0E00) and ending at 4095 ($0FFF). Here's the ^
command to accomplish this:

BLOAD "filename"!, BO, P3584] LJ

Use the same filename you entered when you BSAVEd your original

sprite data. The "BO" stands for the bank number 0 and the P3584 I J

specifies the starting location where the binary sprite data file is

loaded. The last two parameters are optional.

) J
NOTE: When you BLOAD sprite data into the sprite storage area, all s—

the data that was previously there is overwritten with the

binary sprite data file. If you used SPRite DEFinition mode to) I

create sprites, BSAVE them before you BLOAD new data, or {—
your original data will be lost.

u**********

\ [
In this section you have seen how much the new Commodore 7.0 v—'

BASIC commands can simplify the usually complex process of cre

ating and animating graphic images. The next section describes) i

some other new BASIC 7.0 commands that do the same for music '—'
and sound.

U

u

u

u

u

s /

126 USING C128 MODE—Color, Animation and Sprite Graphics Statements

U

n

n

n

n

n

INTRODUCTION 129

THE SOUND STATEMENT 130

Writing a SOUND Program 132

Random Sounds 136

ADVANCED SOUND AND MUSIC IN C128 MODE 138

A Brief Background: The Characteristics of Sound 138

Making Music on the Commodore 128 140

The ENVELOPE Statement 140

The TEMPO Statement 143

The PLAY Statement 143

The SID Filter 147

The FILTER Statement 150

Tying your Music Program Together 151

Advanced Filtering 152

CODING A SONG FROM SHEET MUSIC 154

127 USING C128 MODE—Sound and Music in C128 Mode

u

LJ

U

u

u

u

u

LJ

U

u

u

u

u

LJ

U:

u

Introduction

H

n

n

n

) t

i i

The Commodore 128 has one of the most sophisticated built-in

sound synthesizers available in a microcomputer. The synthesizer,

called the Sound Interface Device (SID), is a chip dedicated solely to

generating sound and music. The SID chip is capable of producing

three independent voices (sounds) simultaneously. Each of the

voices can be played in one of four types of sounds, called wave

forms. The SID chip also has programmable Attack, Decay, Sustain

and Release (ADSR) parameters. These parameters define the qual

ity of a sound. In addition, the synthesizer has a filter you can use to

choose certain sounds, eliminate others, or modify the characteris

tics of a sound or sounds. In this section you will learn how to control

these parameters to produce almost any kind of sound.

To make it easy for you to select and manipulate the many capabili

ties of the SID chip, Commodore has developed new and powerful

BASIC music statements.

Here are the new sound and music statements available on the

Commodore 128:

SOUND

ENVELOPE

VOL

TEMPO

PLAY

FILTER

This section explains these sound statements, one at a time, in the

process of constructing a sample musical program. When you are

finished with this section, you will know the ingredients that go into a

musical program. You'll be able to expand on the example and write

programs that play intricate musical compositions. Eventually, you'll

be able to program your own musical scores, make your own sound

effects and play works of the great classical masters such as

Beethoven and contemporary artists like the Beatles. You can even

add computer-generated music to your graphics programs to create

your own "videos."

129 USING C128 MODE—Sound and Music in C128 Mode

TheSOUND

Statement

The SOUND statement is designed primarily for quick and easy

sound effects in your programs. You will learn a more intricate way of

playing complete musical arrangements with the other sound state

ments later in this section.

The format for the SOUND statement is as follows:

SOUND VC, FREQ, DUR[, DIR[, MIN[, SV[, WF[, PW]]]]]

Here's what the parameters mean:

VC —SelectVoiCe1,2or3

FREQ—Set the FREQuency level of sound (0-65535)

DUR —Set DURation of the sound (in 60ths of a second)

(0-32767)

DIR —Set the DIRection in which the sound is incremented/

decremented

0 = Increment the frequency upward

1 = Decrement the frequency downward

2 = Oscillate the frequency up and down

MIN —Select the MINimum frequency (0-65535) if the

sweep (DIR) is specified

SV —Choose the Step Value for the sweep (0-32767)

WF —Select the Wave Form (0-3)

0 = Triangle

1 = Sawtooth

2 = Variable Pulse

3 = White Noise

PW —Set the Pulse Width, the width of the variable pulse

waveform

Note that the DIR, MIN, SV, WF and PW parameters are optional.

u

u

LJ

LJ

u

u

u

LJ

LJ

LJ

U

U

LJ

130 USING C128 MODE—Sound and Music in C128 Mode

U

The first parameter (VC) in the SOUND statement selects which

voice will be played. The second parameter (FREQ) determines the

frequency of the sound, which ranges from 0 through 65535. The

third setting (DUR) specifies the amount of time the sound is played.

The duration is measured in 60ths of a second. If you want to play a

sound for one second, set the duration to 60, since 60 times 1/60

equals 1. To play the sound for two seconds, specify the duration to

be 120. To play the sound 10 seconds, make the duration 600, and so

on.

n

n

The fourth parameter (DIR) selects the direction in which the fre

quency of the sound is incremented or decremented. This is referred

to as the sweep. The fifth setting (MIN) sets the minimum frequency

where the sweep begins. The sixth setting (SV) is the step value of

the sweep. It is similar to the step value in a FOR... NEXT loop. If

the DIR, MIN and SV values are specified in the SOUND command,

the sound is played first at the original level specified by the FREQ

parameter. Then the synthesizer sweeps through and plays each

level of the entire range of frequency values starting at the MIN fre

quency. The sweep is incremented or decremented by the step value

(SV) according to the direction specified by the DIR parameter and

the frequency is played at the new level.

The seventh parameter (WF) in the SOUND command selects the

waveform for the sound. (Waveforms are explained in detail in the

paragraph titled, Advanced Sound and Music in C128 Mode.)

n
The final setting (PW) in the SOUND command determines the width

of the pulse width waveform if it is selected as the waveform param

eter. (See the Advanced Sound discussion for an illustration of the

pulse width waveform.)

/ \

131 USING C128 MODE—Sound and Music in C128 Mode

Writing a SOUND Program

Now it's time to write your first SOUND program. Here's an example

of the SOUND statement:

10 VOL 5

20 SOUND 1, 4096, 60

RUN this program. The Commodore 128 plays a short, high-pitched

beep. You must set the volume before you can play the sound state- \ >

ment, so line 10 sets the VOLume of the sound chip. Line 20 plays ^
voice 1 at a frequency of 4096 for a duration of 1 second (60 times 1/

60). Change the frequency with this statement: \ \

30 SOUND 1, 8192, 60 ^

u
Notice line 30 plays a higher tone than line 20. This shows the direct

relationship between the frequency setting and the actual frequency i i

of the sound. As you increase the frequency setting, the Commodore I—'
128 increases the pitch of the tone. Now try this statement:

40 SOUND 1, 0, 60 [J

This shows that a FREQ value of 0 plays the lowest frequency (which I—I
is so low it is inaudable). A FREQ value of 65535 plays the highest

possible frequency. * j

Now try placing the sound statement within a FOR ... NEXT loop.) j
This allows you to play the complete range of frequencies within the

loop. Add these statements to your program:

50 FOR I = 1 TO 65535 STEP 100 LJ
60 SOUND 1,1,1

70 NEXT | |

u

LJ

132 USING C128 MODE—Sound and Music in C128 Mode

U

n

n

This program segment plays the variable pulse waveform in the

range of frequencies from 1 through 65535, in increments of 100,

from lowest frequency to highest. If you don't specify the waveform,

the computer selects the default value of waveform 2, the variable

pulse waveform.

Now change the waveform with the following program line (60) and

try the program again:

60 SOUND 1,1,1, 0, 0, 0, 0, 0

H

n

Now the program plays voice 1, using the triangle waveform, for the

range of frequencies between 1 and 65535 in increments of 100.

This sounds like a typical sound effect in popular arcade games. Try

waveform 1, the sawtooth waveform, and see how it sounds with

this line:

60 SOUND 1,1,1,0,0,0,1,0

The sawtooth waveform sounds similar to the triangle waveform

though it has less buzz. Finally, try the white noise waveform (3).

Substitute line 60 for this line:

60 SOUND 1,1,1,0,0,0, 3,0

n

n

Now the program loop plays the white noise generator for the entire

range of frequencies. At first, there is a low-pitched rumbling sound.

As the frequency increases in the loop, the pitch increases and

sounds like a rocket taking off.

133 USING C128 MODE—-Sound and Music in C128 Mode

Notice that so far, we have not specified all of the parameters in the

SOUND statement. Take line 60, for example:

60 SOUND 1,1,1,0,0,0,3,0

The three zeros following 1,1,1 pertain to the sweep parameters

within the SOUND statement. Since none of the parameters is speci

fied, the SOUND does not sweep. Add this line to your program:

100 SOUND 1,49152,240,1,0,100,1,0

Voice

Frequency.

Duration

Sweep Direction

Minimum Sweep Frequency.

Step Value for Sweep

Waveform

Pulse Width for Variable Width

Waveform

Line 100 starts the sweep frequency at 49152 and decrements the

sweep by 100 in the downward direction, until it reaches the mini

mum sweep frequency at 0. Voice 1, using the sawtooth waveform

(#1), plays each SOUND for four seconds (240 * 1/60 sec). Line 100

sounds like a bomb dropping, as in many "shoot 'em up" arcade

games.

Now try changing some of the parameters in line 100. For instance,

change the direction of the sweep to 2 (oscillate); change the mini

mum frequency of the sweep to 32768; and increase the step value

to 3000. Your new SOUND command looks like this:

110 SOUND 1, 49152, 240, 2, 32768, 3000,1

Line 110 makes a siren sound as though the police were right on

your tail. For a more pleasant sound, try this:

110 SOUND 1, 65535, 250, 0, 32768, 3000, 2, 2600

This should remind you of a popular space-age TV show, when the

space crew unleashed their futuristic weapons on the unsuspecting

aliens.

Until now, you have been programming in only one voice. You can

produce interesting sound effects with the SOUND statement using

u

u

u

u

u

u

u

LJ

U

U

U

LJ

u

u

u

134 USING C128 MODE—Sound and Music In C128 Mode

u

up to three voices. Experiment and create a program which utilizes

all three voices.

Here's a sample program that will help you understand how to pro

gram the Commodore 128 synthesizer chip. The program, when run,

asks for each parameter, and then plays the sound. Here's the pro

gram listing. Type it into your computer and RUN it.

/ \

10 PRINT:PRINT:PRINT:PRINT"Q SOUND PLAYER":PRINT:PRINT:PRINT
20 PRINT" INPUT SOUND PARAMETERS TO PLAY":PRINT:PRINT

30 INPUT "VOICE (1-3)";V

40 INPUT "FREQUENCY (0-65535)" ;F

.50 INPUjr "DURATION (0-32767)" ;D:PRINT

6 0 I?NPyT"WANT TO SPECIFY OPTIONAL PARAMETERS Y/N" ; B$: PRINT

70 IF fr$="N" THEN 130

80 INPUT "SWEEP DIRECTION 0=UP,l=DOWN,2=OSCILL";DIR

90 INPUT "MINIMUM SWEEP FREQUENCY (0-65535)";M

100 INPUT "SWEEP STEP VALUE (0-32767)";S

110 INPUT "WAVEFORM (0=TRI,1=SAW,2=VAR PUL, 3=NOISE";W

120 IF W=2 THEN INPUT "PULSE WIDTH (0-4095)";P

13,0 SOUND V, F, D, DIR, M, S, W, P

il40 INPIJT"DO YOU WANT TO HEAR THE SOUND AGAIN Y/N";A$

iISO IF A$="Y"THEN 130

160 GOTO10

Here's a quick explanation of the program. Lines 10 and 20 PRINT

the introductory messages on the screen. Lines 30 through 50

INPUT the voice, frequency and duration parameters. Line 60 asks if

you want to enter the optional SOUND parameters, such as the

sweep settings and waveform. If you don't want to specify these

parameters, press the "N" key and the program jumps to line 130

and plays the sound. If you do want to specify the optional SOUND

settings, press the "Y" key and the program continues with line 80.

Lines 80 through 110 specify the sweep direction, minimum sweep

frequency, sweep step value and waveform. Line 120 INPUTS the

pulse width of the variable pulse waveform only if waveform 2 (varia

ble pulse) is selected. Finally, line 130 plays the SOUND according to

the parameters that you specified earlier in the program.

Line 140 asks if you want to hear the SOUND again. If you do, press

the "Y" key; otherwise, press the "N" key. Line 150 checks to see if

you pressed the "Y" key. If you did, program control is returned to

line 130 and the program plays the SOUND again. If you do not press

135 USING C128 MODE—Sound and Music in C128 Mode

the "Y" key, the program continues with line 160, which returns pro

gram control to line 10 and the program repeats. To stop the Sound

Player program, press the RUN/STOP and RESTORE keys at the

same time.

Random Sounds

The following program generates random sounds using the RND

function. Each SOUND parameter is calculated randomly. Type the

program into your computer, SAVE it and RUN it. This program illus

trates how many thousands of sounds you can produce by specify-

ing various combinations of the SOUND parameters. Here's the

listing:

| (

FREQ DIR MIN SV WF PWPRINT"VC

PRINT"

V=INT(RND(1)*3)+1:REM VOICE

10

20

30

40

50

60

70

80

90 W=INT(RND(1)*4) :REM WAVEFORM

100 P=INT(RND(l)*409 5) :REM PULSE W

PRINTV; F;DIR;M; S; W; P:PRINT:PRINT

SOUND V, F, Dr DIR, M, S, W, P •

SLEEP 4

SOUND V, 0, 0, DIR, 0, 0, W, P

GOTO10

F=INT(RND(1)*65535)

D=INT(RND(1)*32767)

DIR=INT(RND(1)*3)

M=INT(RND(1)*65535)

S=lNT(RND(l)*3276 7)

:REM FREQ

:REM DURATION

REM STEP DIR

:REM MIN FREQ

:REM STEP VAL

110

120

130

140

150

Lines 10 and 20 PRINT parameter column headings and the under

line. Lines 30 through 100 calculate each SOUND parameter within

its specific range. For example, line 30 calculates the voice number

as follows:

30 V = INT(RND(1)*3) + 1

The notation RND (1) specif ies the seed value of the random num

ber. The seed is the base number generated by the computer. The 1

tells the computer to generate a new seed each time the command

is encountered. Since the Commodore 128 has three voices, the

notation * 3 tells the computer to generate a random number within

the range 0 through 3. Notice, however, there is no voice 0, so the

u

u

LJ

LJ

LJ

136 USING C128 MODE—Sound and Music in C128 Mode

n

(s

H

n

n

n

n

+ 1 in line 30 tells the computer to generate a random number in the

range between 1 and 3. The procedure for generating a random

number in a specific range is to multiply the given random number

times the maximum value of the parameter (in this case, 3). If the

minimum value of the parameter is greater than zero, add to the ran

dom number a value that will specify the minimum value of the range

of numbers you want to generate (in this case, 1). For instance, line

40 generates a random number in the range between 0 and 65535.

Since the minimum value is zero in this case, you do not need to add

a value to the generated random number.

Line 110 PRINTS the values of the parameters. Line 120 plays the

SOUND specified by the random numbers generated in lines 30

through 100. Line 130 delays the program for 4 seconds while the

sound is playing. Line 140 turns off the SOUND after the 4 second

delay. All sounds generated by this program play for the same

amount of time, since they are all turned off after 4 seconds with line

140. Finally, line 150 returns control to line 10, and the process is

repeated until you press the RUN/STOP and RESTORE keys at the

same time.

So far you have experimented with sample programs using only the

SOUND statement. Although you can use the SOUND statement to

play musical scores, it is best suited for quick and easy sound

effects. The Commodore 128 has other statements designed specifi

cally for song playing. The following paragraphs describe the

advanced sound and music statements that enable you to play com

plex musical scores and arrangements with your Commodore 128

synthesizer.

n

/ i

137 USING C128 MODE—Sound and Music in C128 Mode

Advanced Sound

and Music in

C128 Mode A Brief Background: The Characteristics of Sound

Every sound you hear is actually a sound wave traveling through the

air. Like any wave, a sound (sine) wave can be represented graphi

cally and mathematically (see Figure 7-1).

Figure 7-1. Sine Wave

The sound wave moves (oscillates) at a particular rate (frequency)

which determines the overall pitch (the highness or lowness of the

sound).

The sound is also made up of harmonics, which are accompanying

multiples of the overall frequency of the sound or note. The combina

tion of these harmonic sound waves give the note its qualities, called

timbre. Figure 7-2 shows the relationship of basic sound frequencies

and harmonics.

.RESULTANT WAVE

- FUNDAMENTAL (1ST HARMONIC)

138

2ND HARMONIC 3RD HARMONIC

Figure 7-2. Frequency and Harmonics

The timbre of a musical tone, (i.e., the way a tone sounds,) is deter

mined by the tone's waveform. The Commodore 128 can generate

four types of waveforms: triangle, sawtooth, variable pulse and

noise. See Figure 7-3 for a graphic representation of these four

waveforms.

USING C128 MODE—Sound and Music in C128 Mode

u

L<

U

U

U

LJ

U

U

u

u

u

u

U

LJ

M

u

u

n

H

n

n

n

n

H

n

n

n

TRIANGLE

SAWTOOTH

VARIABLE

PULSE

NOISE

-PULSE WIDTH—

Figure 7-3. Sound Waveforms Types

139 USING C128 MODE—Sound and Music in C128 Mode

u
Making Music on the Commodore 128

u
The ENVELOPE The volume of a sound changes throughout the

Statement duration of the note, from when you first hear it |_J
until it is no longer audible. These volume quali

ties are referred to as Attack, Decay Sustain

and Release (ADSR). Attack is the rate at which j |
a musical note reaches its peak volume. Decay

is the rate at which a musical note decreases

from its peak volume to its midranged (sustain) _J

level. Sustain is the level at which a musical

note is played at its midranged volume. Release

is the rate at which a musical note decreases M
from its sustain level to zero volume. The ENVE

LOPE generator controls the ADSR parameters

of sound. See Figure 7-4 for a graphical repre- M
sentation of ADSR. The Commodore 128 can

change each ADSR parameter to 16 different

rates. This gives you absolute flexibility over the j |
ENVELOPE generator and the resulting proper

ties of the volume when the sound is originated.

L)

LJSUSTAIN LEVEL --V—-,—-\ . <—'

/ ! ! !\

u
Figure 7-4. ADSR Phases

One of the most powerful Commodore 128

sound statements—the one that controls the

ADSR and waveform—is the ENVELOPE state- I I

ment. The ENVELOPE statement sets the differ- UJ
ent controls in the synthesizer chip which

makes each sound unique. The ENVELOPE J (

gives you the power to manipulate the SI D syn

thesizer. With ENVELOPE, you can select partic

ular ADSR settings and choose a waveform for j j

your own music and sound effects. The format —

for the ENVELOPE statement is as follows:

ENVELOPE e[,a[,d[,s[,r[,wf[,Pw]]]]]] LJ

u
140 USING C128 MODE—Sound and Music in C128 Mode

LJ

n

n

n

! \

n

H

n

i

H

H

n

n

n

Here's what the letters mean:

e — envelope number (0-9)

a — attack rate (0-15)

d —decay rate (0-15)

s — sustain level (0-15)

r — release rate (0-15)

wf — waveform—0 = triangle

1 = sawtooth

2 = pulse (square)

3 = noise

4 = ring modulation

pw —pulse width (0-4095)

Here are the definitions of the parameters not

previously defined:

Envelope -The properties of a musical

note specified by the wave

form and the attack, decay,

sustain and release settings

of the note. For example, the

envelope for a guitar note

has a different ADSR and

waveform than a flute.

Waveform -The type of sound wave

created by the combination

of accompanying musical

harmonics of a tone. The

accompanying harmonic

sound waves are multiples

of, and are based on the

overall frequency of the

tone. The qualities of the

tone generated by each

waveform are recognizably

different from one another

and are represented graphi

cally in Figure 7-3.

Pulse Width-The length of time between

notes, generated by the

pulse waveform.

Now you can realize the power of the ENVE

LOPE statement. It controls most of the musical

qualities of the notes being played by the sound

141 USING C128 MODE—Sound and Music in C128 Mode

synthesizer. The Commodore 128 has 10 prede

fined envelopes for 10 different musical instru

ments. In using the predefined envelopes you

do not have to specify the ADSR parameters,

waveform and pulse width settings—this is

already done for you. All you have to do is spec

ify the envelope number. The rest of the parame

ters are chosen automatically by the Commo

dore 128. Here are the preselected envelopes

for different types of musical instruments:

Envelope

Number

0

1

2

3

4

5

6

7

8

9

Instrument

Piano

Accordion

Calliope

Drum

Flute

Guitar

Harpsichord

Organ

Trumpet

Xylophone

Attack

0

12

0

0

9

0

0

0

8

0

Decay

9

0

0

5

4

9

9

9

9

9

Sustain

0

12

25

5

4

2

0

9

4

0

Release

0

0

0

0

0

1

0

0

1

0

Wave

form

2

1

0

3

0

1

2

2

2

0

Width

1536

512

2048

512

Figure 7-5. Default Parameters for ENVELOPE Statement

Now that you have a little background on the

ENVELOPE statement, begin another example

by entering this statement into your Commodore

128.

10 ENVELOPE 0, 5, 9, 2, 2, 2,1700

This ENVELOPE statement redefines the default

piano envelope (0) to the following: Attack = 5,
Decay = 9, Sustain = 2, Release = 2, wave

form remains the same (2) and the pulse width

of the variable pulse waveform is now 1700. The

piano envelope will not take on these properties

until it is selected by a PLAY statement, which
you will learn later in this section.

u

u

u

u

^ >

u

u

u

u

LJ

u

u

u

LJ

U

u

u
142 USING C128 MODE—Sound and Music In C128 Mode

n

n

n

i s

n

n

n

H

n

n

n

The next step in programming music is setting

the volume of the sound chip as follows:

20 VOL 8

The VOL statement sets the volume of the sound

chip between 0 and 15, where 15 is the maxi

mum and 0 is off (no volume).

The TEMPO The next step in Commodore 128 music pro-

Statement gramming is controlling the tempo, or speed of

your tune. The TEMPO statement does this for

you. Here's the format:

TEMPO n

where n is a digit between 1 and 255 (and 255

is the fastest tempo). If you do not specify the

TEMPO statement in your program, the Com

modore 128 automatically sets the tempo to 8.

Add this statement to your musical example

program:

30 TEMPO 10

The PLAY Now it's time to learn how to play the notes in

Statement your song. You already know how the PRINT

statement works. You play the notes in your tune

the same way as PRINTing a text string to the

screen, except you use the PLAY statement in

place of PRINT. PRINT outputs text, PLAY out

puts musical notes.

Here's the general format for the play statement:

PLAV'string of synthesizer control

characters and musical notes"

The total number of characters (including musi

cal notes and synthesizer control characters)

that can be put into a PLAY command is 255.

However, since this exceeds the maximum

number of characters (160) allowed for a single

program line in BASIC 7.0, you have to concate

nate (that is, add together) at least two strings to

reach this length. You can avoid the need to

concatenate strings by making sure your PLAY

commands do not exceed 160 characters, i.e.,

143 USING C128 MODE—Sound and Music in C128 Mode

u

one program line in length. (This is equivalent to ,

four screen lines in 40-column mode, and two 1 I
screen lines in 80-column mode.) By doing this,

you will produce PLAY command strings that , ,

are easier to understand and use. I I

To play musical notes, enclose the letter of the ,

note you want to play within quotes. For exam- , [
pie, here's how to play the musical scale:

40 PLAY "CDEFGAB" \ /

This plays the notes C, D, E, F, G, A and B in the

piano envelope, which is envelope 0. After each] }

time you RUN this example program you are \ 1
creating, hold down the RUN/STOP key and

press the RESTORE key to reset the synthesizer

chip. t_J

u

You have the option of specifying the duration of

the note by preceding it in quotes with one of

the following letters:

W-Whole note

H -Half note

Q-Quarter note

I -Eighth note i j

S -Sixteenth note *—'

The default setting, if the duration is not speci- i i

f ied, is for Whole (W) notes. !—'

You can PLAY a rest by including the following in \ i

the PLAY string: LJ

R-Rest

You can instruct the computer to wait until all '—'
voices currently playing reach the end of a mea

sure by including the following in quotes: j /

M-Wait for end of measure

The Commodore 128 also has synthesizer con- \ j

trol characters you can enclose within quotes in '—>
a PLAY string. This gives you absolute control

over each note and allows you to change syn- j |

thesizer controls within a string of notes. Follow <—'

144 USING C128 MODE—Sound and Music in C128 Mode

n

n

H

n

n

n

n

n

H

n

h

n

the control character with a number in the allow

able range for that character. The control char

acters and the range of numbers for each are

shown in Figure 7-6. The "n" following the con

trol character refers to the number you select

from the specified range.

Control

Character

Vn

On

Tn

Un

Xn

Description

Voice

Octave

Envelope

Volume

Filter

Figure 7-6. Sound

Range

1-3

0-6

0-9

0-15

O = off,

1 =on

I Synthesizer

Control Characters

Default

Setting

1

4

0

9

0

Although the SID chip can process these con

trol characters in any order, for the best results,

place the control characters in your string in the

order that they appear in Figure 7-6.

You don't absolutely have to specify any of the

control characters, but you should to maximize

the power from your synthesizer. The Commo

dore 128 automatically sets the synthesizer

controls to the default settings in Figure 7-6. If

you don't assign special control characters, the

SID chip can PLAY only one envelope, one voice

and one octave without any FILTERing. Specify

the control characters to exercise the most con

trol over the notes within your PLAY string.

If you specify an ENVELOPE statement and

select your own settings instead of using the

default parameters from Figure 7-5, the enve

lope control character number in your PLAY

string must match the envelope number in your

ENVELOPE statement in order to assume the

parameters you assigned. You don't have to

specify the ENVELOPE statement at all if you

just want to PLAY the default envelope settings

from Figure 7-6. In this case, simply select an

envelope number with the (T) control character

in the PLAY statement.

145 USING C128 MODE—Sound and Music in C128 Mode

u

Here's an example of the PLAY statement using i i

the SI D chip control characters within a string. L—1
Add this line to your program and notice the

difference between this statement and the > \

PLAY statement in line 40. Lj

50 PLAY "V2 05 T7 U5 X0 C D E F G A B"

This statement PLAYS the same notes as in line

40, but voice 2 is selected, the notes are played

one octave higher (5) than line 40, the volume j j
setting is turned down to 5 and the FILTER is

specified as off. For now, leave the filter off.

When you learn about FILTERing in the next jj
section, you can come back and turn the filter

on to see how it affects the notes being played.

Notice line 50 selects a new instrument, the I J

organ envelope, with theT7 control character.

Now your program PLAYS two different instru

ments in two of the independent voices. Add I j
this statement to PLAY the third voice:

60 PLAY "V3 06 T6 U7 XO C D E F G A B" , (

Here's how line 60 controls the synthesizer. The

V3 selects the third voice, 06 places voice 3 one

octave higher (6) than voice two, T6 selects the If

harpsichord envelope, U7 sets the volume to 7

and XO leaves the filter off for all three voices.

Now your program PLAYS all three voices, each I j

one octave higher than the other, in three sepa- —

rate instruments, piano, organ and harpsichord.

So far, your PLAY statements only played whole —'
notes. Add notes of different duration by placing

duration control characters in your PLAY string j j

as follows: l—'

70 PLAY "V2 06 TO U7 XO H C D Q E F I G)

ASB" LJ

Line 70 PLAYs voice 2 in octave 6 at volume

level 7 with the redefined piano envelope (0) on j I

and filter turned off. This statement PLAYs the '—'
notes C and D as half notes, E and F as quarter

notes, G and A as eighth notes and B as a six- j j

teenth note. Notice the difference between the ^

146 USING C128 MODE—Sound and Music in C128 Mode

u

u

H

n

n

n

H

H

n

n

n

n

piano envelope in line 40 and the redefined

piano envelope in line 70. Line 40 actually

sounds more like a piano than line 70.

You can PLAY sharp, flat and dotted notes by

preceding the notes within quotes with the fol

lowing characters:

#-Sharp

$—Flat

. - Dotted

A dotted note plays one-and-a-half times longer

than a note that is not dotted.

Now try adding sharp, flat and dotted notes with

this statement:

80 PLAY "V1 04 T4 U8 XO .H C D Q # E F I

$ G A .S # B"

Line 80 PLAYS voice 1 in octave 4 at volume

level 8 with the flute envelope turned on and the

filter turned off. It also PLAYS C and D as dotted

half notes, E and F as sharp quarter notes, G

and A as flat eighth notes and B as a sharp dot

ted sixteenth note. You can add rests (R) at any

place within your PLAY string. The spaces in the

new PLAY statement examples are not neces

sary. They are used only for readability.

Up until now your statement examples have left

the filter off within the sound synthesizer and

have not realized the true power behind it. Now

that you have digested most of the sound and

music statements and the SID control charac

ters, move on to the next section to learn how to

enhance your musical quality with the FILTER

statement.

The SID Filter Once you have selected the ENVELOPE, ADSR,

VOLume and TEMPO, use the FILTER to perfect

your synthesized sounds. In your program, the

FILTER statement will precede the PLAY state

ment. First you should become comfortable

with generating the sound and worry about FIL-

TERing last. Since the SID chip has only one

147 USING C128 MODE—Sound and Music in C128 Mode

u

filter, it applies to all three voices. Your comput- I I

erized tunes will play without FILTERing, but to

take full advantage of your music synthesizer,

use the FILTER statement to increase the sharp- 1 I

ness and quality of the sound. !—1

In the first paragraph of this section, The Char- j j

acteristics of Sound, we defined a sound as a i—'
wave traveling (oscillating) through the air at a

particular rate. The rate at which a sound wave \ j

oscillates is called the wave's frequency. Recall *—'
that a sound wave is made up of an overall fre

quency and accompanying harmonics, which j j

are multiples of the overall frequency. See Fig- '—'
ure 7-2. The accompanying harmonics give the

sound its timbre, the qualities of the sound i |

which are determined by the waveform. The '—'
filter within the SID chip gives you the ability to

accent and eliminate the harmonics of a wave- j i

form and change its timbre. '—'

The SID chip filters sounds in three ways: low- j j

pass, band-pass and high-pass filtering. These '—•
filtering methods are additive, meaning you can

use more than one filter at a time. This is dis- i }

cussed in the next section. Low-pass filters out '—'
frequencies above a certain level you specify,

called the cutoff frequency. The cutoff fre- i j

quency is the dividing line that marks the bound- '—'
ary of which frequency level will be played and

which will not. In low-pass filtering, the SID chip \ j

plays all frequencies below the cutoff frequency '—'
and filters out the frequencies above it. As the

name implies, the low frequencies are allowed i |

to pass through the filter and the high ones are '—l
not. The low-pass filter produces full, solid

sounds. See Figure 7-7. \ j

u

148 USING C128 MODE—Sound and Music in C128 Mode

n

H

n

n

n

h

n

n

n

n

n

n

n

n

Q
LU

CO

2
Z

o

CUTOFF

|

FREQUENCY

Figure 7-7. Low-pass Filter

Conversely, the high-pass filter allows all the

frequencies above the cutoff frequency to pass

through the chip. All the ones below it are fil

tered out. See Figure 7-8. The pass filter pro

duces tinny, hollow sounds.

o

FREQUENCY

Figure 7-8. High-pass Filter

The band-pass filter allows a range of frequen

cies partially above and below the cutoff fre

quency to pass through the SID chip. All other

frequencies above and below the band sur

rounding the cutoff frequency are filtered out.

See Figure 7-9.

FREQUENCY

Figure 7-9. Band-pass Filter

149 USING C128 MODE—Sound and Music in C128 Mode

u
The FILTER The FILTER statement specifies the cutoff fre-

Statement quency, the type of filter being used and the [J
resonance. The resonance is the peaking effect

of the sound wave frequency as it approaches

the cutoff frequency. The resonance determines |

the sharpness and clearness of a sound: the ' '
higher the resonance, the sharper the sound.

This is the format of the FILTER statement:

FILTER cf, Ip, bp, hp, res (,

Here's what the parameters mean:

cf -Cutoff frequency (0-2047) ,■ »

Ip -Low-pass filter 0 = off, 1 = on I I
bp -Band-pass filter 0 = off, 1 = on

hp -High-pass filter 0 = off, 1 = on , ,

res -Resonance (0-15) I I

You can specify the cutoff frequency to be any j |
value between 0 and 2047. Turn on the low-pass

filter by specifying a 1 as the second parameter

in the FILTER statement. Turn on the band-pass I |
filter by specifying a 1 as the third parameter

and enable the high-pass filter with a 1 in the

fourth parameter position. Turn off any of the) |
three filters by placing a 0 in the respective posi

tion of the filter you want to disable. You can (,

enable or disable one, two or all three of the j_J
filters at the same time.

Now that you have some background on the j |
FILTER statement, add this line to your sound

program, but do not RUN the program yet.

45 FILTER 1200,1, 0, 0,10 LJ
Line 45 sets the cutoff frequency at 1200, turns

on the low-pass filter, disables the high-pass and [j
band-pass filters and assigns a 10 as the reso

nance level. Now go back and turn the filter on

in your PLAY statements by changing all the X0 I |
filter control characters to X1. Reset the sound

chip by pressing the RUN/STOP and RESTORE

keys and RUN your sound program again. j j
Notice the differences between the way the

u
150 USING C128 MODE—Sound and Music in C128 Mode

u

n

n

n

n

n

n

n

n

H

n

n

n

n

H

n

notes sound and how they sounded without the

filter. Change line 45 to:

45 FILTER 1200, 0,1, 0,10

The new line 45 turns off the low-pass filter and

enables the band-pass filter. Press RUN/STOP

and RESTORE and RUN your sound program

again. Notice the difference between the low-

pass and band-pass filters. Change line 45 again

to:

45 FILTER 1200, 0, 0,1,10

Reset the sound chip and RUN your example

program again. Notice the difference between

the high-pass filter and the low-pass and band

pass filters. Experiment with different cutoff

frequencies, resonance levels and filters to per

fect the music and sound in your own programs.

lying Your Music Program Together

Your first musical program is complete. Now you can program your

favorite songs. Let's tie all the components together. Here's the pro

gram listing. Don't be alarmed, this is the same program you built in

this section except the print statements are added so you know

which program lines are being played.

10 ENVELOPE 0,5,9,;2',2,2r17QGf'
15 VOL 8 -• " ' '
20 TEMPO 10 ". -jr.* * -*-
25 PRINTLINE 30" .""•
30 PLAY "C D E F G;,A B M" '-'
35 FILTER 1200,0>0^1,10

\40 PRINTLINE 45^;|:^ILfE

G, A. a

\40 PRINTLINE ;|
^45* iPLAY1?V2> 05 T7 -.0^ XO" tf¥Kp^ A BM
50 PRINT"SAME AS .BINE 45 - FILTER ON" >
55 PLAY^V^ 05 T7 U5 Xl C D E F G A B M

60 PRINTLINE 65 t FILTER OFF"

65 PI£Y_W3 06 -O7'T6 X0 C

:;70 PRIWT^SAME AS^lrlNE" 65!^^
75 PLAY "V3 06 U7 T6 XI C D E F G A B ft"
80 PRINT"LLNE 85 - FILTER OFF"

85 PLAY "V2 06 TO U7 X0 H CD Q EF I GA S B M

90 PRIN.T"SAME AS>L:INE 85 -.METER.ON" 'I;;, ^
95 PIAY^^-2 q6.!T,p>;tf7""-ki H, CPsQ EF I GA**S/B M;
100 PRINT'1 IilNE' 105 - FILTER OFF" ' /
105 PLAY "VI 04 T4 U8 X0 'H ,C D Q # EF I

110 PRINT"SAME AS LINE 105 - FILTER ON"

115 PLAY ."VI 04 T4U8. Xl H ~.jG D Q # EFl-T

$ GA

$ GA

S \. M"

M "

151 USING C128 MODE—Sound and Music in C128 Mode

u

Line 10, the ENVELOPE statement, specifies the envelope for piano , >

(0), which sets the attack to 5, decay to 9, sustain to 2 and release to I J
0. It also selects the variable pulse waveform with a pulse width of

1700. Line 15 sets the VOLume to 8. Line 20 chooses the TEMPO to , ,

be 10. LJ

Line 35 FILTERS the notes that are played in lines 30 through 115. It , »

sets the FILTER cutoff frequency to 1200. In addition, line 35 turns I I
off the low-pass and band-pass filters with the two zeros following

the cutoff frequency (1200). The high-pass filter is turned on with the , ,

1 following the two zeros. The resonance is set to 10 by the last I i
parameter in the FILTER statement.

Line 30 PLAYS the notes C, D, E, F, G, A, B in that order. Line 45 U
PLAYS the same notes as line 30, but it specifies the SID control

characters U5 as volume level 5, V2 as voice 2 and 05 as octave 5. , (

Remember, the SID control characters allow you to change the syn- I I
thesizer controls within a string and exercise the most control over

the synthesizer. Line 65 specifies the control characters U7 for vol- > .

ume level 7, V3 for voice 06 for octave 6 and X0 to turn off the filter. I !
Line 65 PLAYS the same notes as lines 30 and 45, but in a different

volume, voice and octave. (>

Line 85 has the same volume and octave as line 65, and it specifies

half notes for the notes C and D, quarter notes for the notes E and F, , ,

eighth notes for notes G and A and a sixteenth note for the B note. I I
Line 105 sets the volume at 8, voice 1, octave 4 and turns off the

filter. It also specifies the C note as a clotted half note, E as a sharp , j

quarter note, G and A as flat eighth notes and B as a clotted sharp I I
sixteenth note.

u
Advanced Filtering

Each of the previous FILTERing examples used only one filter at a II

time. You can combine the SID chip's three filters with each other to '—'
achieve different filtering effects. For example, you can enable the

low-pass and high-pass filters at the same time to form a notch j j

reject filter. A notch reject filter allows the frequencies below and '—'
above the cutoff to pass through the SID chip, while the frequencies

close to the cutoff frequency are filtered. See Figure 7-10 for a j j

graphic representation of a notch reject filter. '—'

u

152 USING C128 MODE—Sound and Music in C128 Mode

u

LJ

n

n

n

n

m
! i

n

n

n

n

n

n

n

n

n

n

n

n

n

CUTOFF

FREQUENCY

Figure 7-10. Notch Reject Filter

You can also add either the low-pass or high-pass filter to the band

pass filter to obtain interesting effects. By mixing the band-pass filter

with the low-pass filter, you can select the band of frequencies

beneath the cutoff frequency and below. The rest are filtered out.

By mixing the band-pass and the high-pass filters, you can select the

band of frequencies above the cutoff frequency and higher. All the

frequencies below the cutoff are filtered out.

Experiment with the different combinations of filters to see all the

different types of accents you can place on your musical notes and

sound effects. The filters are designed to perfect the sounds created

by the other components of the SID chip. Once you have created the

musical notes or sound effects with the SID chip, go back and add

the FILTERing to your programs to make them as crisp and clean as

possible.

Now you have all the information you need to write your own musical

programs in Commodore 128 BASIC. Experiment with the different

waveforms, ADSR settings, TEMPOS and FILTERing. Look in a book

of sheet music and enter the notes from a musical scale in sequence

within a play string. Accent the notes in the string with the SID con

trol characters. You can combine your Commodore 128 music syn

thesizer with C128 mode graphics to make your own videos or "mov

ies," complete with sound tracks.

153 USING C128 MODE—Sound and Music in C128 Mode

Coding A Song

from Sheet Musio

154

This section provides a sample piece of sheet music and illustrates

how to decode notes from a musical staff and translate them into a

form the Commodore 128 can understand. This exercise is substan

tially faster and easier if you know how to read music. However, you

don't have to be a musician to be able to play the tune on your Com

modore 128. For those of you who cannot read music, Figure 7-11

shows how a typical musical staff is arranged and how the notes on

the staff are related to the keys on a piano.

i ! i i i ! • i ! i I t i i i i ! i s j ! i

i I S i I 1 i I I i 1 MM I, | ! \ \ I
J f r=■=3=

^

; MjJJ^ffS

Middle

C

Figure 7-11. Musical Staff

Figure 7-12 is an excerpt from a composition titled Invention 13

(Inventio 13 in Italian), by Johann Sebastian Bach. Although this com

position was written a few hundred years ago, it can be played and

enjoyed on the most modern of computer synthesizers, such as the

SID chip in the Commodore 128. Here are the opening measures of

Invention 13.

©COPYRIGHT

SHEET MUSIC COURTESY

OF C.F.PETERS, CORP.,

NEW YORK Inventio 13

Figure 7-12. Part of Bach's Invention 13

USING C128 MODE—Sound and Music In C128 Mode

o

u

o

G

u

u

LJ

LJ

U

u

u

u

u

0

u

u

G

G

t i

(1

n

n

The best way to start coding a song into your Commodore 128 is by

breaking the notes down into an intermediate code. Write down the

upper staff notes on a piece of paper. Now write down the notes for

the lower staff. Precede the note values with a duration code. For

instance, precede an eighth note with an 8, precede a sixteenth note

with a 16, and so on. Next, separate the notes so the notes on the

upper staff for one measure are proportional in time with the notes

for one measure on the lower staff.

If the musical composition had a third staff, you would separate it so

the duration is proportional to the two other upper staffs. Once the

notes for all the staffs are separated into equal durations, a separate

dedicated voice would play each note for a particular staff. For

example, voice 1 would play the upper staff, voice 2 will play the 2d

staff and voice 3 would play the lowest staff if it existed.

Let's say the upper staff begins with a string of four eighth notes. In

addition, say the lower staff begins with a string of eight sixteenth

notes. Since an eighth note is proportional in time to two sixteenth

notes, separate the notes as shown in Figure 7-13.

V1 = 8A 8B 8C 8D

V2= 16D16E 16F16G 16A16B 16C16D

Figure 7-13. Synchronizing Notes for Two Voices

Since the synchronization and timing in a musical composition is

critical, you must make sure the notes in the upper staff for voice 1,

for example, are in time agreement with the notes in the lower staff

for voice 2. The first note in the upper staff in Figure 7-13 is an A

eighth note. The first two notes for voice 2 are D and E sixteenth

notes. In this case, you must enter the voice 1 eighth note in the

PLAY string first, then follow the voice 2 sixteenth notes immediately

after it. To continue the example, the second note in Figure 7-13 for

voice 1 (the upper staff) is a B eighth note. The B eighth note is equal

in time to the two sixteenth notes, F and G, which appear in the bot

tom staff for voice 2. In order to coordinate the timing, enter the B

eighth note in the string for voice 2 and follow it with the two six

teenth notes, F and G, for voice 2.

155 USING C128 MODE—Sound and Music in C128 Mode

As a rule, always start with the note with the longer duration. For

example, if a bar starts with a series of two sixteenth notes on the

lower staff for voice 2 and the upper staff starts with an eighth note

for voice 1, enter the eighth note in the string first since it must play

for the duration while the two sixteenth notes are being fetched by

the Commodore 128. You must give the computer time to play the

longer note first, and then PLAY the notes of shorter duration, or else

the composition will not be synchronized.

Here's the program that plays Invention 13. Enter it into your C128,

SAVE it for future use, and then RUN it.

10 REM INVENTION 13 BY BACH

20 TEMPO 6

30 PLAYHV104T7U8XO":REM VOICE 1=ORGAN

40 PLAYftV2O4T0U8X0":REM VOICE 2=PIANO

50 REM FIRST MEASURE

60 AS="V2O1IAV1O3IEV2O2QAV1O3SAO4CO3BEV2O2I#GV1O3SBO4DV1O4ICV2O2SAEM"
70 B$=nVlO4IEV2O2SAO3CVlO3l#GV2O2SBEVlO4lEV2O2SBO3DH
80 REM SECOND MEASURE

90 C$=IIV2O3ICV1O3SAEV2O2IAV1O3SAO4CV2O2I#GV1O3SBEV2O2IEV1O3SBO4DM
100 D$=nVlO4lCV2O2SAEVlO3IAV2O2SAO3CVlO4QRV2O2SBEBO3D"
110 REM REM THIRD MEASURE

120 E$="V2O3ICV1O4SREV2O2IAV1O4SCEV2O3ICV1O3SAO4CV2O2IAV1O2SEG<I
130 F$=flVlO3lFV2O3SDO2AVlO3IAV2O2SFAVlO4lDV2O2SDFVlO4lFV2OlSAO2C"
140 REM FOURTH MEASURE

150 G$="V2O1IBV1O4SFDV2O2IDV1O3SBO4DV2O2IGV1O3SGBV2O2IBV1O3SDF"
160 H$=ffVl03lEV202SGEVl03lGV202SEGVl04lCV202SCEVl04lEV20lSGBn
170 REM FIFTH MEASURE

180 I$=flV2OlIAV104SECV202ICVlO3SAO4CVlO3lFV2O2SDFVlO4IDV2OlSBO2Dlf
190 J$="V2O1IGV1O3SDBV2O1IBV1O3SGBV1O3IEV2O2SCEV1O4ICV2O1SAO2CM
200 REM SIXTH MEASURE

210 K$ = "V2O1IFV1O4SCO3AV2O1IDV1O3SFAV1O3IDV2O1SGO2GV1O3IBV2O2SFG11
220 M$="V2O1IAV1O4SCO3AV2O2I#FV1O4SCEV2O1IBV1O4SDO3BV2O2I#GV1O4SDF11
230 REM SEVENTH MEASURE

240 N$=IIV202ICV104SECV202IAV104SEGV202IDV104SFEV202I$BV104SDCH
250 0$=IIV202l#GV103SB04CV202lFVl04SDEV202iDVl04SFDV201IBVl04S#GD"
260 REM EIGHTH MEASURE

270 P$="V2O2I#GV1O4SBDV2O2IAV1O4SCAV2O2IPV1O4SFDV2O2IEV1O3SBO4D"

280 Q$=flV202lFV103S#GBV202l#DVl04SC03AV202lEV103SEAV202lEVl03SB#G"
290 REM NINTH MEASURE

300 R$="V2O1HAV1O3SAECEO2QA"

310 PLAY A$:PLAY B$:PLAY C$:PLAY D$:PLAY E$

320 PLAY F$:PLAY G$:PLAY H$:PLAY 1$:PLAY J$

330 PLAY K$:PLAY M$:PLAY N$:PLAY O$:PLAY P$
340 PLAY Q$:PLAY R$

156 USING C128 MODE—Using 80 Columns

(\

(I

t \

I \

I \

You can use the techniques described in this section to code your

favorite sheet music and play it on your Commodore 128.

•a**

You now have been introduced to most of the powerful new com

mands of the BASIC 7.0 language that you can use in C128 mode. In

the following section you will learn to use both 40- and 80-column

screen displays with the Commodore 128.

\ I

157 USING C128 MODE—Using 80 Columns

u

Li

U

u

u

u

u

u

u

u

u

u

u

u

u

n

SECTION 8

Using 80 Columns

n

n

n

H

n

n

INTRODUCTION

THE 40/80 KEY

VIDEO PORTS AND MONITORS

Connecting a Monitor

Types of Monitors

Composite Monitors

RGBI Monitors

Dual Monitors

USING PREPACKAGED 80-COLUMN SOFTWARE

CREATING 80-COLUMN PROGRAMS

USING 40 AND 80 COLUMNS TOGETHER

161

161

162

162

162

162

163

163

163

163

164

159 USING C128 MODE—Using 80 Columns

u

u

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

f i

n

n

Introduction

n

n

n

n

The 40/80 Key

n

/ \

n

In C128 and CP/M modes, you can choose between a 40- and 80-

column screen display. You can even use both in a single program.

Each screen size has special uses. The 40-column screen is the

same size screen the Commodore 64 uses. With the 40-column

screen you can use the Commodore 128's full graphics capabilities.

You can draw circles, graphs, sprite characters, boxes and other

shapes in high-resolution or multicolor graphic modes. You can also

use sprites.

If you are using an 80-column display, you get twice the number of

characters per screen line. In 80-column mode, you can use the

standard graphic characters and colors available through the

keyboard.

You can also write programs using two monitors to take advantage

of both screen display formats with each monitor screen performing

different aspects of the program. For example, text output could be

displayed on the 80-column monitor while graphics output could be

seen on the 40-column monitor.

You can use the 40/80 key to set the screen width as either 40 or 80

columns. Pressing this key will only have an effect when one of the

following actions is taken:

1. Power is turned ON.

2. The RESET button is pressed.

3. The RUN/STOP and RESTORE keys are pressed simultane

ously.

The 40/80 key acts like a SHIFT/LOCK key: it locks when you press it,

and does not release until you press it again. If this key is up (not

pressed) when one of the three conditions above occurs, the screen

is set to 40 columns. If before power-up you press the key down,

causing it to lock, and one of the three conditions listed above then

occurs, the screen is set to 80 columns. Once the computer is run

ning in one screen format (40 or 80 columns), you cannot switch to

the other format using the 40/80 key. In this case you must press and

release the ESC key and then press the X key.

161 USING C128 MODE—Using 80 Columns

u

Video Ports and

Monitors

Connecting a Monitor

Make sure that you connect your monitor properly to the ports on the

back of your computer. There are two openings: one is labeled

VIDEO and one is labeled RGBI.

u

VIDEO is the connecting port for 40-column composite video moni

tors while RGBI is used for 80-column monitors. Dual monitors like

the Commodore 1902, which can display either 40-column compos

ite or 80 column RGBI screens, are connected to both ports.

Types of Monitors

Composite Composite monitors are designed to display 40-

Monitors column output on their screens. Examples of

composite monitors are the Commodore 1701

and 1702 monitors. These monitors can be used

for all 40-column programs and programming in

all three modes. However, they cannot be used

for 80-column work.

u

u

u

u

u

u

u

u

u

u

162 USING C128 MODE—Using 80 Columns

) I

I \

I \

Using

Prepackaged 80-

Column Software

Creating 80-

Column Programs

i I

RGBI Monitors

Dual Monitors

RGBI monitors are specially designed to display

80-column output. Although RGBI stands for

Red Green Blue Intensity, RGBI monitors can be

either color or monochrome (single color). The

most popular monochrome monitors use green

or amber displays. An RGBI monitor connected

to the RGBI port can handle 80-column output in

both C128 and CP/M modes.

Dual monitors like the Commodore 1902 can

provide either a composite video (40-column) or

RGBI (80-column) display. A dual monitor con

nects to both video ports. A switch on the moni

tor lets you select either screen output. The 40/

80 key on your computer determines the type of

screen display upon power-up. Make sure the

40/80 key setting corresponds to the 40/80

column slide switch setting on the front control

panel of the monitor. NOTE: You can still switch

back and forth between 40 and 80 column out

put by pressing and releasing the ESC key and

then pressing the X key, regardless of which

position the 40/80 key is in.

Most CP/M programs utilize an 80-column screen, as do many of the

other buisness application packages you can use in C128 mode.

Since the width of a normal printed page is 80 columns, an 80-

column wordprocessor can display information on the screen

exactly as that information will appear on paper. Spreadsheet pro

grams often specify an 80-column format, in order to provide enough

space for the necessary columns and categories of information.

Many database packages and telecommunications programs also

require or can use an 80-column screen.

In addition to running prepackaged software, the 80-column screen

width can be useful in designing your own programs. You've proba

bly noticed what happens when you type a line that is wider than 40

columns on a 40-column screen. The lines "wrap around"—that is,

they continue onto the next screen line. This may cause confusion in

reading the line, and can even lead to programming errors. An

80-column screen helps eliminate these problems. In general,

an 80-column screen allows for a clearer screen and better

organization.

163 USING C128 MODE—Using 80 Columns

Using 40 and 80

Columns Together

The main advantage of 40-column composite video output is the

availability of bit mapped graphics, while 80 columns gives you out

put for word processing and other business applications. If you have

two monitors, you can write programs that are "shared", using the

text features 80 columns affords you and the graphics of 40

columns. A special command, (GRAPHIC 1,1) can be used within a

program to transfer the execution of graphics commands to the 40-

column display. If you have a dual monitor (one that can display both

40- and 80-column formats) you can place GRAPHIC 1,1 statements

in your program so that graphics will be output in 40-column screen

format. In order to view the graphic output, however, you will need to

change the video switch on the monitor to 40 columns. If you write a

program like this, it might be a good idea to include on-screen direc

tions to the user to change the video switch.

For example, you might write a program which asked the user to

input data, then created a bar graph based on the user's input. The

message "CHANGE TO 40 COLUMN TO VIEW GRAPH" would tell

the user to switch modes and see the results.

As noted previously, you can switch between the 80- and 40-column

formats after power up, with the ESCape/X sequence.

u

u

u

u

LJ

U

LJ

U

U

LJ

164 USING C128 MODE—Using 80 Columns

/ \

The following example shows how dual screens can be used within a

program:

j i

I s

10 IF RGR(0)= 0 THEN 80:REM CHECK FOR 40 COLUMN TEXT MODE-IF TRUE GO TO LINE 80

20 GRAPHIC 5,1 :REM THIS STATEMENT SWITCHES TO 80 COLUMN TEXT MODE \//.-.

30 PRINT f'QSTART IN 40 COLUMN OUTPUT".:PRINT . | ; i/SRv ^?
40 PRINT"SLIDE THE SWITCH ON:THE FRONT OF THE 1902 DUAL MONITOR TO; THE MIDDLE"/

50 PRINT:PRINT"PRESS RETURN WHEN READY"

60 GRAPHIC 0,l:REM SWITCH TO 40 COLUMN TEXT MODE . ,

70 PRINT:PRINT"PRESS RETURN WHEN READY":GETKEY A$:IF A$<> CHR$(13)THEN 70

80 COLOR 1,5:: COLOR 4,1-.COLOR 0,lzREM COLOR THE SCREEN
90 GRAPHIC 2,1 :CHAR 1,8,18,"BIT MAP/TEXT SPLIT SCREEN":REM SELECT SPLIT SCREEN

100 FOR 1=70 TO 220 STEP 20 :CIRCLE 1,I,50,30,30:NEXT

110 PRINT" SWITCH TO 80 COLUMN OUTPUT"

120 PRINT" SLIDE THE MONITOR SWITCH ON THE FRONT TO THE EXTREME RIGHT11

130 PRINT1! PRESS THE RETURN KEY WHEN READY" : GETKEY A$:IF A$<> CHR$(13)THEti 130

140 GRAPHIC 5,1 :REM THIS STATEMENT SWITCHES TO 80 COLUMN TEXT MODE

■150 FOR J=lTO 10 . \ ; '.-... /
l;60 PRINT,;! "NOW YOU ARE IN 80 COLUMN TEXT OUTPUT" •'•.,/ - ^-..;... .

170 NEXT -PJRINT : ".
180 PRINT"NOW SWITCH BACK TO 40 COLUMN OUTPUT":PRINT

190 PRINT"SLIDE THE SWITCH ON THE FRONT OF THE MONITOR TO THE MIDDLE" :PRI*NT

200 PRINT"PRESS THE RETURN KEY WHEN READY":GETKEY A$:IF A$<> CHR$(13)THEN 200

210 GRAPHIC 0,l:REM THIS STATEMENT SWITCHES TO 40 COLUMN TEXT MODE

220 FOR J=1TO 70

230 PRINT "NOW YOU ARE IN 40 COLUMN TEXT MODE"

240 NEXT

I \
Each screen display format offers certain advantages; yet the two

types of displays can be combined in a program to complement

each other. Using a 40-column screen, you get the full power of

advanced BASIC graphics. The 80-column display gives you more

space for your own programs. In addition, it lets you run the wide

variety of software designed to run on an 80-column screen.

•••••a**

The sections of this chapter have introduced you to the many fea

tures and capabilities provided by the Commodore 128 in C128

mode. The following chapter tells you how to use the Commodore

128 in C64 mode.

165 USING C128 MODE—Using 80 Columns

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

n

USING C64 MODE

n

n

n

CHAPTER

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
w

n

SECTION S

Using the

Keyboard In C64

Mode

n

n

n

USING BASIC 2.0

KEYBOARD CHARACTER SETS

USING THE TYPEWRITER-STYLE KEYS

USING THE COMMAND KEYS

MOVING THE CURSOR IN C64 MODE

PROGRAMMING FUNCTION KEYS IN C64 MODE

171

171

171

171

171

172

169 USING C64 MODE—-Using the Keyboard in C64 Mode

u

LJ

U

U

U

U

U

u

u

u

u

u

u

u

u

u

u

u

I I

USING BASIC 2.0

Keyboard

Character Sets

J \

n

n

n

n

n

Using The

typewriter-Style

Keys

Using The

Command Keys

Moving The

Cursor In C64

Mode

n

The entire BASIC 2.0 language built into the Commodore 64 com

puter has been incorporated into the BASIC 7.0 language of the

Commodore 128. You can use the BASIC 2.0 commands in both

C128 and C64 modes. Refer to Sections 3 and 4 in Chapter II for a

description of these commands.

In the keyboard illustration in Section 3, the shaded keys are the

ones that can be used in C64 mode. The keyboard in C64 mode has

the same two character sets as in C128 mode:

—Upper-case/graphic character set

—Upper/lower-case character set

When you enter C64 mode, the keyboard is in the upper-case/

graphic character set, so that everything you type is in capital let

ters. In C64 mode you can only use one character set at a time. To

switch back and forth between character sets, press the SHIFT key

and the & key (the COMMODORE key) at the same time.

As in C128 mode, you can use the typewriter-style keys in C64 mode

to type both upper-case letters (capitals) and lower-case letters

(small letters). You can also type the numerals shown on the top row

of the main keyboard. In addition, you can type the graphics symbols

on the fronts of the keys.

Most COMMAND keys (i.e., the keys that send messages to the com

puter, like RETURN, SHIFT, CTRL, etc.) work the same in C64 mode

as they do in C128 mode.

The only difference is that in C64 mode, you can only move the cur

sor by using the two CRSR keys at the bottom-right corner of the

main keyboard. (In C128 mode, you can also use the four arrow keys

located just above the top right side of the main keyboard.)

In C64 mode, you use two CRSR keys on the main keyboard and the

SHIFT key to move the cursor, as described in Section 3.

171 USING C64 MODE—Using the Keyboard in C64 Mode

Programming

Function Keys In

C64 Mode

The four keys to the right side of the keyboard, just above the

numeric keypad, are called function keys. The keys are marked F1,

F3, F5 and F7 on the tops and F2, F4, F6 and F8 on the fronts. These

keys can be programmed—that is, they can be instructed to per

form a specific task or function. For this reason, these keys are

often called programmable function keys.

You must hold down the SHIFT key to perform the functions associ

ated with the markings on the front of the keys—that is, F2, F4, F6

and F8. Therefore, these keys are sometimes called the SHIFTed

programmable function keys.

The function keys in C64 mode do not have a printed character

assigned to them. They do, however, have CHR$ codes assigned. In

fact, each of them has two CHR$ codes—one for when you press

the key by itself, and one for when you press the key while holding

down the SHIFT key. To get the even-numbered function keys, hold

down the SHIFT key while pressing the function key. For example, to

get F2, hold down SHIFT and press F1.

The CHR$ codes for the F1-F8 keys range from 133 to 140. However,

the codes are not assigned to the keys in numerical order. The keys

and their corresponding CHR$ codes are as follows:

F1 CHR$(133)

F2 CHR$(137)

F3 CHR$(134)

F4 CHR$(138)

F5 CHR$(135)

F6 CHR$(139)

F7 CHR$(136)

F8 CHR$(140)

You can use the function keys in your program in several ways. To do

this, you'll need to use the GET statement. (See Section 4 for a

description of the GET statement.) As an example, the program

below prepares the F1 key to print a message on the screen.

10 ? "PRESS F1 TO CONTINUE"

20 GET AS

30 IF A$< >CHR$(133) THEN 20

40 ? "YOU HAVE PRESSED F1"

LJ

U

LJ

U

U

u

u

u

u

u

u

172 USING C64 MODE—Using the Keyboard in C64 Mode

) \

I \

n

n

n

n

Lines 20 and 30 do most of the work in this program. Line 20 makes

the computer wait until a key is pressed before executing any more

of the program. Note that when the command immediately after

THEN is a GOTO, only the line number is necessary. Also note that a

GOTO command can GOTO the same line it is on. Line 30 tells the

computer to go back and wait for another key to be pressed unless

the F1 key has been pressed.

173 USING C64 MODE—Using the Keyboard in C64 Mode

LJ

U

LJ

U

U

U

U

u

u

u

u

u

u

u

u

u

u

u

SECTION 10

Storing And

Reusing Your

Programs In C64

Mode

n

n

n

n

FORMATTING A DISK IN C64 MODE

THE SAVE COMMAND

SAVEing on Disk

SAVEing on Cassette

THE LOAD AND RUN COMMANDS

LOADing and RUNning from Disk

LOADing and RUNning from Cassette

OTHER DISK-RELATED COMMANDS
Verifying a Program

Displaying Your Disk Directory

Initializing a Disk Drive

177

177

177

178

178

178

178

179

179

179

179

175 USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

u

u

u

u

u

u

LJ

u

u

LJ

U

LJ

U

U

U

U

Formatting a Disk

in C64 Mode

n

n

n

The SAVE

Command

n

n

n

Once you have edited a program, you will probably want to store it

permanently so that you will be able to recall and use it at some later

time. To do this you'll need either a Commodore disk drive or the

Commodore Datassette.

To store programs on a new (or blank) disk, you must first prepare the

disk to receive data. This is called formatting the disk. Make sure that

you turn on the disk drive before inserting any disk.

To format a blank disk in C64 mode, you type this command:

OPEN 15,8,15: PRINT# 15,"N0:NAME,ID" RETURN

In place of NAME, type a disk name of your choice; you can use up

to 16 characters to identify the disk. In place of ID, type a two-

character code of your choice (such as W2 or 10).

The cursor disappears during the formatting process. When the cur

sor blinks again, type the following command:

CLOSE 15

NOTE: Once a disk is formatted in C64 or C128 mode, that disk can

be used in either mode.

You can use the SAVE command to store your program on disk

or tape.

SAVEing on Disk

If you have a Commodore disk drive, you can store your program on

disk by typing:

SAVE "PROGRAM NAME",8 nriUHH

The 8 indicates to the computer that you are using a disk drive to

store your program.

The same rules apply for the PROGRAM NAME whether you are

using disk or tape. The PROGRAM NAME can be anything you want

it to be. You can use letters, numbers and/or symbols—up to 16

characters in all. Note that you must enclose the PROGRAM NAME

in quotation marks. The cursor on your computer disappears while

the program is being SAVEd, but it returns when the process is com

pleted.

177 USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

The LOAD and

RUN Commands

SAVEing on Cassette

If you are using a Datassette to store your program, insert a blank

tape in the recorder, rewind the tape (if necessary) and type:

SAVE "PROGRAM NAME" |

Once a program has been SAVEd, you can LOAD it back into the

computer's memory and RUN it anytime you wish.

LOADing and RUNning from Disk

To load your program from a disk, type:

LOAD"PROGRAM NAME",8 HLIUIIN

Again, the 8 indicates to the computer that you are working with a

diskdrive.

To RUN the program, type RUN and press <RETURN>.

LOADing and RUNning from Cassette

To LOAD your program from cassette tape, type:

LOAD "PROGRAM NAME" niTUM!

If you do not know the name of the program, you can type:

and the next program on the tape will be retrieved.

You can use the counter on the Datassette to identify the starting

position of the programs. Then, when you want to retrieve a pro

gram, simply wind the tape forward from 000 to the program's start

location, and type:

LOAD

In this case, you don't have to specify the PROGRAM NAME; your

program will load automatically because it is the next program on

the tape.

NOTE: During the LOAD process, the program being LOADed

is not erased from the tape; it is simply copied into the com

puter. However, LOADing a program automatically erases any

BASIC program that may have been in the computer's memory.

To RUN the program, type RUN and press (RETURN).

u

LJ

U

U

u

u

u

LJ

178 USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

Other Disk-

Related

Commands

n

n

n

,n

n

n

n

n

n

Verifying A Program

To verify that a program has been correctly saved or loaded, type:

VERIFV'PROGRAM NAME",8 HHMHN

If the program in the computer is identical to the one on the disk, the

screen display will respond with the letters "OK."

The VERIFY command also works for tape programs. You type:

VERIFY"PROGRAM NAME" RETURN

Note that you do not need to enter the comma and the number 8,

since 8 indicates that you are working with a disk program.

Displaying Your Disk Directory

To see a list of the programs on your disk, first type:

The cursor disappears during this process. When the cursor re

appears, type:

A list of the programs on your disk will then be displayed. Note that

when you load the directory, any program that was in memory is

erased.

Initializing A Disk Drive

If the disk drive's ready light is blinking, it indicates a disk error. You

can restore the disk drive to the condition it was in before the error

occurred by using a procedure called INITIALIZING. To initialize a

drive, you type:

OPEN 1,8,15,"I":CLOSE 1 HblUHN

If the light is still blinking, remove the disk and turn the drive off,

then on.

For further information on SAVEing and LOADing your programs,

refer to your disk drive or Datassette manual. Also consult the

LOAD and SAVE command descriptions in Chapter V, BASIC 7.0

Encyclopedia.

179 USING C64 MODE—Storing and Reusing Your Programs in C64 Mode

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

n

n

n

n

H

n

n

i \

USING CP/M MODE

CHAPTER

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

Li

u

n

n

n

SECTION 11

Introduction To

CP/M 3.0

WHAT CP/M 3.0 IS

WHAT YOU NEED TO RUN CP/M 3.0

GETTING STARTED WITH CP/M 3.0

Loading or Booting CP/M 3.0

The Opening CP/M Screen Display

THE COMMAND LINE

Types of Commands

How CP/M Reads Command Lines

185

185

186

186

186

188

188

189

183 USING CP/M MODE—Introduction to CP/M 3.0

u

LJ

U

u

u

u

u

u

LJ

U

LJ

U

U

u

u

LJ

U

I I

What CP/M 3.0 Is

n

What You Need to

Run CP/M 3.0

n

n

p>

n

H

CP/M is a product of Digital Research, Inc. The version of CP/M used

on the Commodore 128 is CP/M Plus Version 3.0. In this chapter,

CP/M is generally referred to as CP/M 3.0, or simply CP/M. This chap

ter summarizes CP/M on the Commodore 128. For detailed informa

tion on CP/M 3.0, fill out and return the order form included in this

chapter.

CP/M 3.0 is a popular operating system for microcomputers. As an

operating system, CP/M 3.0 manages and supervises your comput

er's resources, including memory and disk storage, the console

(screen and keyboard), printer, and communication devices. CP/M

3.0 also manages information stored in disk files. CP/M 3.0 can copy

files from a disk to your computer's memory, or to a peripheral

device such as a printer. To do this, CP/M 3 places various programs

in memory and executes them in response to commands you enter

at your console. Once in memory, a program executes through a set

of steps that instructs your computer to perform a certain task.

You can use CP/M to create your own programs, or you can choose

from the wide variety of available CP/M 3.0 application programs.

The general hardware requirements for CP/M 3.0 are a computer

containing a Z80 microprocessor, a console consisting of a keyboard

and a display screen, and at least one floppy disk drive. For CP/M 3.0

on the Commodore 128 Personal Computer, the Z80 microprocessor

is built-in; the console consists of the full Commodore 128 keyboard

and an 80-column monitor; and the disk drive is the new Commodore

1571 fast disk drive. The CP/M system is packed, in disk format, in

the computer carton. The material on disk includes the CP/M 3.0

system and an extensive HELP utility program, as well as a number

of other utility programs.

NOTE: Although CP/M can be used with a 40-column monitor, only

40 columns can be displayed at one time. To view all 80 columns of

the display, you must scroll the screen horizontally by pressing the

CONTROL key and the appropriate cursor key (left or right).

CP/M can also be used with the 1541 disk drive. In this case only

single-sided GCR disks may be used, and the speed of operation will

be one-eighth to one-tenth the speed using the 1571 disk drive.

185 USING CP/M MODE—Introduction to CP/M 3.0

Getting Started

With CP/M 3.0

The following paragraphs tell you how to start or "boot" CP/M 3.0,

how to enter and edit the command line.

NOTE: Before you start to use CP/M, you should make a backup

copy of your CP/M disk data. Follow the procedure for copying disks

described in Section 12.

Loading Or Booting CPfM 3.0

Loading or "booting" CP/M 3.0 means reading a copy of the operat

ing system from your CP/M 3.0 system disk into your computer's

memory.

You can boot CP/M 3.0 in several ways. If your computer is off, you

can boot CP/M by first turning on your disk drive and inserting the

CP/M 3.0 system disk, and then turning on the computer. CP/M 3.0

will load automatically. If you are already in C128 BASIC mode, you

can boot CP/M 3.0 by inserting the CP/M system disk into the drive

and then typing the BASIC command BOOT. CP/M 3.0 will then load.

In C128 mode, you can also boot CP/M by inserting the system disk

and pressing the RESET button.

If you are in C64 mode, and you want to enter CP/M mode, first turn

off the computer. Then load the CP/M system disk in the drive and

turn on the computer.

Caution: Always make sure that the disk is fully inserted in the 1571

drive before you close the drive door.

In CP/M 3.0 on the Commodore 128, the user has a 59K TPA (Tran

sient Program Area), which in effect is user RAM.

The Opening CPfM Screen Display

After CP/M 3 is loaded into memory, a message similar to the follow

ing is displayed on your screen. (The screen shown here is the

80-column format.)

LJ

U

U

u

u

u

u

u

LJ

U

186 USING CP/M MODE—Introduction to CP/M 3.0

LJ

H

n

n

n

n

r<

} i

J s

An important part of the opening display is the following two-

character message:

A>

This is the CP/M 3.0 system prompt. The system prompt tells you

that CP/M is ready to read a command entered by you from your

keyboard. The prompt also tells you that drive A is your default drive.

This means that until you tell CP/M to do otherwise, it looks for pro

gram and data files on the disk in drive A. It also tells you that you are

logged in as user 0 (the default user number, indicated by the

absence of any user number).

NOTE: In CP/M a single disk drive is identified as drive A. This is

equivalent to unit number 8, drive 0 in C128 and C64 modes. Usually,

the maximum number of drives in CP/M 3.0 is 16. However, on the

Commodore 128 the number of drives is limited to four physical

drives, identified as A, B, C or D) and one logical or virtual drive,

identified as drive E. See page 198 for more information on the

virtual drive E.

187 USING CP/M MODE—Introduction to CP/M 3.0

The Command

Line

CP/M 3.0 performs tasks according to specific commands that you

type at your keyboard. These commands appear on the screen in

what is called a command line- A CP/M 3.0 command line is com

posed of a command keyword and an optional command tail. The

command keyword identifies a command (program) to be executed.

The command tail can contain extra information for the command,

such as a filename or parameters. The following example shows a

command line.

A>D/B MYFILE

Throughout this chapter, the characters that a user would type are in

slanted (italic) bold face type to distinguish them from characters

that the system displays. In this example, DIR is the command key

word and MYFILE is the command tail. To send the command line to

CP/M 3.0 for processing, press the RETURN key, as indicated in

this book by the HhlUHNl symbol.

As you type characters at the keyboard, they appear on your screen.

The cursor moves to the right as you type. If you make a typing error,

press either the INST/DEL key or CTRL-H to move the cursor to the

left and correct the error. CTRL is the abbreviation for the CONTROL

key. To specify a control character, hold down the CTRL key and

press the appropriate letter key. (A list of control characters and their

uses is given in Section 13.)

You can type the keyword and command tail in any combination of

upper-case and lower-case letters. CP/M 3.0 interprets all letters in

the command line as uppercase.

Generally, you must type a command line directly after the system

prompt. However, CP/M 3.0 does allow spaces between the prompt

and the command keyword.

Types Of Commands

CP/M 3.0 recognizes two different types of commands: built-in com

mands and transient utility commands. Built-in commands execute

programs that reside in memory as a part of the CP/M operating

system. Built-in commands can be executed immediately. Transient

utility commands are stored on disk as program files. They must be

loaded from disk to perform their task. You can recognize transient

utility program files when a directory is displayed on the screen

because their filenames are followed by a period and COM (.COM).

Section 14 presents lists of the CP/M built-in and transient utility

commands.

u

u

u

u

\ I
K I

u

u

u

LJ

u

LJ

LJ

188 USING CP/M MODE—Introduction to CP/M 3.0

LJ

n

n

n

n

n

H

n

H

n

n

H

n

n

n

For transient utilities, CP/M 3.0 checks only the command keyword.

Many utilities require unique command tails. If you include a com

mand tail, CP/M 3.0 passes it to the utility without checking it. A

command tail cannot contain more than 128 characters.

How CPIM Reads Command Lines

Let's use the DIR command to demonstrate how CP/M reads com

mand lines. DIR, which is an abbreviation for directory, tells CP/M to

display a directory of disk files on your screen. Type the DIR keyword

after the system prompt, and press RETURN:

CP/M responds to this command by displaying the names of all the

files that are stored on whatever disk is in drive A. For example, if the

CP/M system disk is in disk drive A, a list of filenames like this

appears on your screen:

A:CPM+ SYS:CCP COM:HELP COM:HELP HLP:KEYFIG COM

AiKEYFIG HLP:FORMAT COM:PIP COM:DIR COM:COPYSYS COM

CP/M 3.0 recognizes only correctly spelled command keywords. If

you make a typing error and press RETURN before correcting your

mistake, CP/M 3.0 repeats or "echoes" the command line, followed

by a question mark. For example, suppose you mistype the DIR

command, as in the following example:

CP/M replies with:

DJR?

This tells you that CP/M cannot find a command keyword spelled

DJR. To correct typing errors like this, you can use the INST/DEL key

to delete the incorrect letters. Another way to delete characters is to

hold down the CTRL key and press H to move the cursor to the left.

CP/M provides a number of other control characters that help you

edit command lines. Section 13 tells how to use control characters

to edit command lines and other information you enter at your
console.

DIR accepts a filename as a command tail. You can use DIR with a

filename to see if a specific file is on the disk. For example, to check

that the file program MYFILE is on your disk, type:

A>D/R MYFILE \

189 USING CP/M MODE—Introduction to CP/M 3.0

CP/M 3.0 performs this task by displaying either the name of the file

you specified, or the message:

No File

Be sure you type at least one space after DIR to separate the com

mand keyword from the command tail. If you do not, CP/M 3.0 re

sponds as follows:

A)DIRMYFILE HLIUHM

DIRMYFILE?
\ I

NOTE: The Digital Research Inc. COPYSYS command, normally

used in copying CP/M systems disks, is not implemented on your

computer. As described in Section 13, page 199, your Commodore J j
128 uses a different method to prepare a new system disk. To obtain

information on this method, type:

HELP COPYSYS U

at any system prompt. Be sure to include a space between HELP

and COPYSYS. |_J

LJ

U

LJ

U

LJ

U

U

U

LJ
190 USING CP/M MODE—Introduction to CP/M 3.0

u

n

n

n

SECTION 12

Files, Disks and

Oirives In GPBM

3.0

n

n

n

n

n

n

n

WHAT IS A FILE?

CREATING A FILE

NAMING A FILE

File Specification

Drive Specifier

Filename

Filetype

Password

Sample File Specification

User Number

Using Wildcard Characters to Access More Than

One File

Reserved Characters

Reserved Filetypes

CP/M SYSTEM FILES

CP/M + .SYS

CCP. COM

Other .COM Files

WHAT IS ON YOUR CP/M DISK

HOW TO MAKE COPIES OF YOUR CP/M 3.0 DISKS

AND FILES

193

193

193

193

194

194

194

195

195

195

196

196

197

198

198

198

198

199

199

191 USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

n

n

n

H

r—i

I \

n

What Is A File?

Creating A File

Naming A File

One of CP/M's most important tasks is to access and maintain files

on your disks. Files in CP/M are fundamentally the same as in C128

or C64 modes—that is, they are collections of information. However,

CP/M handles files somewhat differently than do C128 and C64

modes. This section defines the two types of files used in CP/M; tells

how to create, name and access a file; and describes how files are

stored on your CP/M disks.

As noted above, a CP/M 3.0 file is a collection of information. Every

file must have a unique name by which CP/M identifies the file. A

directory is also stored on each disk. The directory contains a list of

the filenames stored on that disk and the locations of each file on the

disk.

There are two kinds of CP/M files: program (command) files, and

data files. A program file contains a series of instructions that the

computer follows step-by-step to achieve some desired result. A

data file is usually a collection of related information (e.g., a list of

names and addresses, the inventory of a store, the accounting

records of a business, the text of a document).

There are several ways to create a CP/M file. One way is to use a text

editor. The CP/M text editor ED is used to create and name a file. You

can also create a file by copying an existing file to a new location;

you can rename the file in the process. Under CP/M, you can use the

PIP command to copy and rename files. Finally, some programs

(such as MAC, a CP/M machine language program) create output

files as they process input files.

The ED and PIP commands are summarized in Section 14, together

with other commonly used CP/M commands. Details on these and all

other CP/M 3.0 commands may be found in the CP/M Plus User's

Guide, which you can obtain by responding to the offer on the card

inserted in this chapter.

File Specification

CP/M identifies every file by a unique file specification. A file speci

fication can have four parts: a drive specifier, a filename, a file-

type and a password. The only mandatory part is the filename.

193 USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

Drive Specifier

Filename

Filetype

The drive specifier is a single letter (A-P) fol

lowed by a colon. Each disk drive in your system

is assigned a letter. When you include a drive

specifier as part of the file specification, you are

telling CP/M to look for the file on the disk cur

rently in the specified drive. For example, if you

enter:

BMYFILE \

CP/M looks in drive B for the file MYFILE. If you

omit the drive specifier, CP/M 3.0 looks for the

file in the default drive (usually A).

A filename can be from one to eight characters

long, such as:

MYFILE

A file specification can consist simply of a

filename. When you make up a filename, try to

let the name tell you something about what the

file contains. For example, if you have a list of

customer names for your business, you could

name the file:

CUSTOMER

so that the name gives you some idea of what is

in the file.

To help you identify files belonging to the same

category, CP/M allows you to add an optional

one- to three-character extension, called a file-

type, to the filename. When you add a filetype to

the filename, separate the filetype from the

filename with a period. Try to use letters that tell

something about the file's category. For exam

ple, you could add the following filetype to the

file that contains a list of customer names:

CUSTOMER.NAM

When CP/M displays file specifications, it adds

blanks to short filenames so that you can com

pare filetypes quickly. The program files that

CP/M loads into memory from a disk have the

filetype COM.

194 USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

u

u

u

u

u

u

u

u

U

u

u

u

u

u

u

u

u

u

n

n

n

n

Password In the Commodore 128's CP/M 3.0 you can

include a password as part of the file specifica

tion. The password can be from one to eight

characters. If you include a password, separate

it from the filetype (or filename, if no filetype is

included) with a semicolon, as follows:

CUSTOMER.NAM;ACCOUNT

A password is optional. However, if a file has

been protected with a password, you MUST

enter the password as part of the file specifica

tion to access the file.

Sample File

Specification

User Number

A file specification containing all four possible

elements consists of a drive specification, a

primary filename, a filetype and a password, all

separated by the appropriate characters or

symbols as in the following example:

A:DOCUMENT.LAW;SUSAN

CP/M 3.0 further identifies all files by assigning each one a user

number which ranges from 0 to 15. CP/M 3.0 assigns the user num

ber to a file when the file is created. User numbers allow you to sepa

rate your files into 16 file groups.

The user number always precedes the drive identifier except for

user 0, which is the default user number and is not displayed in

the prompt. Here are some examples of user numbers and their

meanings.

4A> User number 4, drive A

A> User number 0, drive A

2B> User number 2, drive B

You can use the built-in command USER to change the current user

number like this:

A) USER\

The screen displays:

ENTER USER #:

You enter a 3 and press I

3A>

1. The screen display is then:

195 USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

u

If you want to return to the normal A> prompt, you simply enter the \ j
USER command, like this:

The screen prompts you to:

I I

If you then enter a 0, the screen prompt returns to the A> format.

3A> USER

screen proi

ENTER USER #:

u then enter a 0,1

Most commands can access only those files that have the current j >

user number. However, if a file resides in user 0 and is marked with a (—I

system file attribute, the file can be accessed from any user number.

u
Using Wildcard Characters to Access More Than One File

Certain CP/M 3.0 built-in and transient commands can select and j j

process several files when special wildcard characters are included

in the filename or f iletype. A wildcard is a character that can be used

in place of some other characters. CP/M 3.0 uses the asterisk (*) and j j
the question mark (?) as wildcards. For instance, if you use a ? as the

third character in a filename, you are telling CP/M to let the ? stand

for any character that may be encountered in that position. Similarly, II

an * tells CP/M to fill the filename with ? question marks as indicated.

A file specification containing wildcards is called an ambiguous files-

pec and can refer to more than one file, because it gives CP/M 3.0 a II

pattern to match. CP/M 3.0 searches the disk directory and selects

any file whose filename or filetype matches the pattern. For exam

ple, if you type: M

A> ?????TAX.LIB

then CP/M 3.0 selects all files whose filename end in TAX and whose j |
filetype is .LIB.

U
Reserved Characters

196 USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

i 1The characters in Table 12-1 have special meaning in CP/M 3.0, so < ,

do not use these characters in file specifications except as indi- '—'
cated.

u

LJ

LJ

U

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Table 12-1. CP/M 3.0 Reserved Characters

Character Meaning

|[]
tab space

carriage return

*?

<>&

0

/$

\ + -

file specification delimiters

drive delimiter in file specification

filetype delimiter in file specification

password delimiter in file specification

comment delimiter at the beginning of a com

mand line

wildcard characters in an ambiguous file specifi

cation.

option list delimiters

option list delimiters for global and local options.

delimiters for multiple modifiers inside square

brackets for options that have modifiers.

option delimiters in a command line.

197

Reserved Filetypes

CP/M 3.0 has already established several file groups. Table 12-2 lists

some of their filetypes with a short description of each.

Table 12-2. CP/M 3.0 Reserved Filetypes

Filetype Meaning

ASM Assembler source file

BAS BASIC source program

COM Z80 or equivalent machine language program

HEX Output file from MAC (used by HEXCOM)

HLP HELP message file

$$$ Temporary file

PRN Print file from MAC or RMAC

REL Output file from RMAC (used by LINK)

SUB List of commands to be executed by SUBMIT

SYM Symbol file from MAC, RMAC or LINK

SYS System file

RSX Resident System Extension (a file automatically

loaded by a command file when needed)

USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

CP/M System

Files

CPM +. SYS

CCP. COM

Other

. COM Files

198

The following information is important for technically oriented users

who may want to create their own programs in CP/M mode.

CPM +. SYS is the main CP/M 3.0 system file. It contains all parts of

the system that remain permanently resident in memory: the Basic

Input/Output System (BIOS), which loads into the top of memory; the

Basic Disk Operating System (BDOS), which loads into memory

immediately below the BIOS; and the System Parameters, which

load into the bottom page of memory.

On booting CP/M the Console Command Processor (CCP) is loaded

into memory immediately below the BDOS. The remaining memory,

below CCP and above page 0, known as the Transient Program Area

(TPA) is the area into which applications are loaded. CP/M 3.0 on the

C128hasaTPAof59K.

CCP processes any input in response to the system prompt (A»). It

contains the built-in commands listed in Table 14-1, and also supports

the 14 console editing commands listed in Table 13-1.

Any word entered in response to the system prompt which is not one

of the built-in commands is treated by CCP as a transient command.

When a transient command is encountered, CCP attempts to find

and execute a file whose name is the command word plus the .COM

extension. If CCP does not find such a file on the currently logged

disk, the command word is displayed, followed by a question mark.

CCP then redisplays the system prompt. If more than one word is

entered in response to the system prompt, all words after the first

are treated as parameters to be passed to the transient command.

A language or applications program is loaded and run by invoking it

as if it were a command. All CP/M programs include a .COM file. As

shown in the following pages, the CPM +. SYS and CCP. COM files

are contained on the CP/M system disk.

The other. COM files are transient commands (see Table 14-2). The

file HELP. COM displays messages about the C128 CP/M system and

its commands. If you are not familiar with CP/M and have no other

manuals or books about it, you can print out any HELP you look at.

Press CONTROL and P to send any screen output to the printer;

press CONTROL P again to turn off this facility. If you are printing and

do not want pauses after each screen is printed, enter HELP C128

CP/M [NOPAGE] and follow the directions given on the screen.

USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

u

LJ

U

U

U

U

U

u

u

LJ

u

u

u

u

u

LJ

LJ

U

n

What Is On Your

CP/M Disk

You can get a list of what is on your CP/M system disk by inserting a

disk into a disk drive and entering a DIR command. You can get a

detailed listing of system programs, including program size and num

ber of records, by entering the following form of the DIR command:

DIR [FULL]

Shown below is a typical display in response to a DIR [FULL]

COMMAND.

Directory For Drive A: User 0

Name Bytes Recs Attributes Name Bytes Recs Attributes

CCP COM

CPM+ SYS

FORMAT COM

HELP HLP

KEYFIG HLP

4k

23k

5k

83k

9k

25 Dir RW

184 Dir RW

35 Dir RW

664 Dir RW

72 Dir RW

COPYSYS COM

DIR COM

HELP COM

KEYFIG COM

PIP COM

Ik

15k

7k

10k

9k

3 Dir RW

114 Dir RW

56 Dir RW

75 Dir RW

68 Dir RW

n Total Bytes

Total Ik Blocks =

166k

166

Total Records = 1296 Files Found = 10

Used/Max Dir Entries For Drive A: 16/ 64

How To Make

Copies Of Your

CP/M 3.0 Disks

And Files

H

/ i

n

i \

{ \

r \

f \

You can back up your CP/M 3.0 disks, using either one or two disk

drives. The back-up disks can be new or used. You might want to

format new disks, or reformat used disks with an appropriate CP/M

disk formatting program. If the disks have been used previously, be

sure that there are no other files on the disks.

To make backups use the format and PIP utility programs found on

your CP/M system disk. FORMAT formats the disk as either a C128

single-sided or double-sided diskette.

Making Copies With a Single Disk Drive

You can copy the contents of a disk to another disk with a single

Commodore disk drive (1541 or 1571). First type:

A> FORMAT

and follow the instructions given on the screen. For instance, the

following sequence of commands creates a bootable CP/M system

disk. First, when the copy disk is formatted, type;

A> PIPE: = A:CPM +.SYS

When the CPM +. SYS file is copied, you type:

A> PIPE: = A: CCP. COM

If you want to copy everything on a disk, use the following command

sequence:

A> FORMAT

A> PIPE: = A:*

199 USING CP/M MODE—Files, Disks and Disk Drives in CP/M 3.0

u

The system will prompt you to change disks as required. \ j
i)

Use drive A as the source drive and drive E as the destination drive.

Drive E is referred to as a virtual drive—that is, it does not exist as i ./

an actual piece of hardware. •■—*

i. ■

Making Copies With Two Disk Drives —

This section shows how to make distribution disk back-ups on a sys

tem that has two drives: drive A and drive B. Your drives might be [_J
named with other letters from the range A through D. To make a copy

of your CP/M 3.0 system disk, first use the FORMAT utility to copy

the operating system loader. Make sure that your distribution system ^J
disk is in drive A, the default drive, and the blank disk is in drive B.

Then enter the following command at the system prompt:

A> PIP B: =A: CPM +. SYS lJ

During the copying process, you will be prompted to place the

source disk in drive A and the destination or copy disk in drive B. [_j

When you have copied the CPM + SYS file you use the PIP com

mand to copy the CCP.COM file. You now have a copy of the operat- j j
ing system only. To copy the remaining files from the system disk,

enter the following PIP command:

A>P/PB; = A:* LJ
This PIP command copies all the files in your disk directory to drive B

from drive A. PIP displays the message COPYING followed by each ^J
filename as the copy operation proceeds. When PIP finishes copy

ing, CP/M 3 displays the system prompt, A>.
{ I

Now you have an exact copy of the system disk in drive B. Remove

the original system disk from drive A and store it in a safe place. As

long as you retain the original in an unchanged condition, you will be j j
able to restore your CP/M program files if something happens to your

working copy.

L- /

I)

200 USING CP/M MODE—Commodore Enhancements to CP/M 3.0

u

/ I

SECTION 13

Using the Console

and Printer nn

CP/M 3.0

[i

n

n

(I

(\

' \

CONTROLLING CONSOLE OUTPUT 203

CONTROLLING PRINTER OUTPUT 203

CONSOLE LINE EDITING 203

USING CONTROL CHARACTERS FOR LINE EDITING 204

201 USING CP/M MODE—Using the Console and Printer in CP/M 3.0

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

n

/ i

n

Controlling

Console Output

n

i i Controlling

Printer Output

n

) \

Console Line

Editing

This section describes how CP/M 3.0 communicates with your con

sole and printer. It tells how to start and stop console and printer

output, and edit commands you enter at your console.

Sometimes CP/M 3.0 displays information on your screen too quickly

for you to read it. To ask the system to wait while you read the display,

hold down the CONTROL (CTRL) key and press S. A CTRL-S key

stroke sequence causes the display to pause. When you are ready,

press CTRL-Q to resume the display. If you press any key besides

CTRL-Q during a display pause, CP/M 3.0 sounds the console bell.

Pressing the NO SCROLL key will also pause the system and place a

pause window on the status line at the bottom of the screen (line 25).

To resume the display, press NO SCROLL again.

Some CP/M 3.0 utilities (like DIR and TYPE) support automatic pag

ing at the console. This means that if the program's output is longer

than the screen can display at one time, the display automatically

halts when the screen is filled. When this occurs, CP/M 3.0 prompts

you to press RETURN to continue. This option can be turned on or

off using the SETDEF command.

You can also use a control command to echo (that is, display) con

sole output to the printer. To start printer echo, press CTRL-P. A beep

occurs to tell you that echo is on. To stop, press CTRL-P again. (There

is no beep at this point.) While printer echo is in effect, any charac

ters that appear on your screen are listed at your printer.

You can use printer echo with a DIR command to make a list of files

stored on a floppy disk. You can also use CTRL-P with CTRL-S and

CTRL-Q to make a hard copy of part of a file. Use a TYPE command

to start a display of the file at the console. When the display reaches

the part you need to print, press CTRL-S to stop the display, CTRL-P

to enable printer echo, and then CTRL-Q to resume the display and

start printing. You can use another CTRL-S, CTRL-P, CTRL-Q

sequence to terminate printer echo.

NOTE: Not all printers will respond properly to the CTRL-P

command.

As noted previously, you can correct simple typing errors by using

the INST/DEL key or CTRL-H. CP/M 3.0 also supports additional line-

editing functions that you perform with control characters. You can

use the control characters to edit command lines or input lines to

most programs.

' \

203 USING CP/M MODE—Using the Console and Printer in CP/M 3.0

Using Control

Characters for

Line Editing

By using the line-editing control characters listed in Table 13-1, you

can move the cursor left and right to insert and delete characters in

the middle of a command line. In this way you do not have to retype

everything to the right of your correction.

In the following sample example, the user mistypes PIP, and CP/M

3.0 returns an error message. The user recalls the erroneous com

mand line by pressing CTRL-W and corrects the error (the underbar

character represents the cursor):

n = B:* * (PIP mistyped)

(CTRL-W recalls the line)

(CTRL-B moves cursor to beginning of line)

(CTRL-F moves cursor to right)

(CTRL-G deletes error)

(type I corrects the command name)

POP?

A>POPA: = B:V

A>POPA: = B:*

A>PIPA: = B:V

After the command line is corrected, the user can press RETURN

even though the cursor is in the middle of the line. A RETURN key

stroke, (or one of the equivalent control characters) not only exe

cutes the command, but also stores the command in a buffer so that

you can recall it for editing or reexecution by pressing CTRL-W

When you insert a character in the middle of a line, characters to the

right of the cursor move to the right. If the line becomes longer than

your screen is wide, characters disapper off the right side of the

screen. These characters are not lost. They reappear if you delete

characters from the line or if you press CTRL-E when the cursor is in

the middle of the line. CTRL-E moves all characters to the right of the

cursor to the next line on the screen.

Table 13-1 gives a complete list of line-editing control characters for

the CP/M 3.0 system on the Commodore 128.

Table 13-1. CP/M 3.0 Line-editing Control Characters

Character Meaning

CTRL-Aor

SHIFT-LEFT

CURSOR

CTRL-B

Moves the cursor one character to the left.

Moves the cursor to the beginning of the com

mand line without having any effect on the con

tents of the line. If the cursor is at the beginning,

CTRL-B moves it to the end of the line.

LJ

LJ

LJ

LJ

i)

LJ

LJ

LJ

u

LJ

LJ

204 USING CP/M MODE—Using the Console and Printer In CP/M 3.0

/ I

Table 13-1. CP/M 3.0 Line-editing Control Characters

(Continued)

Character

n

CTRL-E

CTRL-F or

RIGHT

CURSOR

CTRL-G

CTRL-H

CTRL-I

CTRL-J

CTRL-K

CTRL-M

CTRL-R

CTRL-U

CTRL-Wor

t CRSR 4

Meaning

Forces a physical carriage return but does not

send the command line to CP/M 3.0. Moves the

cursor to the beginning of the next line without

erasing the previous input.

Moves the cursor one character to the right.

Deletes the character at current cursor position.

The cursor does not move. Characters to the

right of the cursor shift left one place.

Deletes the character to the left of the cursor

and moves the cursor left one character posi

tion. Characters to the right of the cursor shift

left one place.

Moves the cursor to the next tab stop. Tab stops

are automatically set at each eighth column.

Has the same effect as pressing the TAB key.

Sends the command line to CP/M 3.0 and

returns the cursor to the beginning of a new line.

Has the same effect as a RETURN or a CTRL-M

keystroke.

Deletes to the end of the line from the cursor.

Sends the command line to CP/M 3.0 and

returns the cursor to the beginning of a new line.

Has the same effect as a RETURN or a CTRL-J

keystroke.

Retypes the command line. Places a # charac

ter at the current cursor location, moves the

cursor to the next line, and retypes any partial

command you typed so far.

Discards all the characters in the command line,

places a # character at the current cursor posi

tion, and moves the cursor to the next line. How

ever, you can use a CTRL-W to recall any char

acters that were to the left of the cursor when

you pressed CTRL-U.

Recalls and displays previously entered com

mand line both at the operating system level and

within executing programs, if the CTRL-W is the

205 USING CP/M MODE—Using the Console and Printer in CP/M 3.0

Table 13-1. CP/M 3.0 Line-editing Control Characters

(Continued)

Character

CTRL-X

Meaning

first character entered after the prompt. CTRL-J,

CTRL-M, CTRL-U and RETURN define the com

mand line you can recall. If the command line

contains characters, CTRL-W moves the cursor

to the end of the command line. If you press

RETURN, CP/M 3.0 executes the recalled

command.

Discards all the characters left of the cursor and

moves the cursor to the beginning of the current

line. CTRL-X saves any characters right of the

cursor.

u

u

u

LJ

U

U

LJ

206 USING CP/M MODE—Using the Console and Printer in CP/M 3.0

I \

n

n

r—i

H

SECTION 14

Summary Of

Major CPIM 3.

Commands

THE TWO TYPES OF CP/M 3.0 COMMANDS

BUILT-IN COMMANDS

TRANSIENT UTILITY COMMANDS

REDIRECTING INPUT AND OUTPUT

ASSIGNING LOGICAL DEVICES

FINDING PROGRAM FILES

EXECUTING MULTIPLE COMMANDS

TERMINATING PROGRAMS

GETTING HELP

209

209

210

212

212

213

213

214

214

207 USING CP/M MODE—Summary of Major CP/M 3.0 Commands

u

u

u

u

u

U

u

u

u

U

u

u

u

u

u

/ i

) \

i \

I \

i S

The Two Types of

CPIM 3.0

Commands

Built-in

Commands

) \

) \

! \

I \

, \

209

As noted in Section 11, a CP/M 3.0 command line consists of a com

mand keyword, an optional command tail, and a RETURN keystroke.

This section describes the two kinds of commands the command

keyword can identify, and summarizes individual commands and

their functions. The section also gives examples of some commonly

used commands. In addition, the section explains the concept of

logical and physical devices under CP/M 3.0. This section then tells

how CP/M 3.0 searches for a program file on a disk, tells how to exe

cute multiple commands, and how to reset the disk system. Finally,

the section explains how to use the HELP command to get informa

tion on various CP/M topics including command formats and usage,

right at the keyboard.

There are two types of commands in CP/M 3.0:

• Built-in commands—which identify programs in memory

• Transient utility commands—which identify program files

on a disk

CP/M 3.0 has six built-in commands and over 20 transient utility com

mands. You can add utilities to your system by purchasing various

CP/M 3.0-compatible application programs. If you are an experi

enced programmer, you can also write your own utilities that operate

with CP/M 3.0.

Built-in commands are parts of CP/M 3.0 that are always available

for your use, regardless of which disk you have in which drive. Built-

in commands are entered in the computer's memory when CP/M 3.0

is loaded, and therefore execute more quickly than the transient

utilities. Table 14-1, on the next page, lists the Commodore 128 CP/M

3.0 built-in commands.

Some built-in commands have options that require support from a

related transient utility The related transient utiltiy command has the

same name as the built-in command and has a f iletype of COM.

USING CP/M MODE—Summary of Major CP/M 3.0 Commands

Transient Utility

Commands

Table 14-1. Built-in Commands

Command Function

DIR Displays filenames of all files in the directory

except those marked with the SYS attribute.

DIRSYS Displays filenames of files marked with the SYS

(system) attribute in the directory.

ERASE Erases a filename from the disk directory and

releases the storage space occupied by the file.

RENAME Renames a disk file.

TYPE Displays contents of an ASCII (TEXT) file at your

screen.

USER Changes to a different user number.

Some of the major CP/M 3.0 transient utility commands are listed in

Table 14-2. (The actual list of transient commands may change from

time to time as the CP/M system is updated or added to.) When you

enter a command keyword that identifies a transient utility, CP/M 3.0

loads the program file from the disk and passes that file any

filenames, data or parameters you entered in the command tail.

NOTE: The built-in commands, DIR, RENAME, and TYPE have

optional transient extensions.

u

u

LJ

LJ

\ t

LJ

LJ

LJ

210 USING CP/M MODE—Summary of Major CP/M 3.0 Commands

I \

Table 14-2. Transient Utility Commands

Name Function

DATE

DEVICE

DIR

DUMP

ED

ERASE

GENCOM

GET

FORMAT

HELP

INITDIR

KEYFIG

PATCH

PIP

PUT

RENAME

SAVE

SET

SETDEF

SHOW

SUBMIT

TYPE

Sets or displays the date and time.

Assigns logical CP/M devices to one or more

physical devices, changes device driver proto

col and baud rates, or sets console screen size.

Displays directory with files and their character

istics.

Displays a file in ASCII and hexadecimal format.

Creates and alters ASCII files.

Used for wildcard erase.

Creates a special COM file with attached RSX

file.

Temporarily gets console input from a disk file

rather than the keyboard.

Copies files.

Displays information on how to use CP/M 3.0

commands.

Initializes a disk directory to allow time and date

stamping.

Allows redefinition of keys

Displays or installs patches to CP/M system.

Copies files and combines files.

Temporarily directs printer or console output to

a disk file.

Changes the name of a file, or a group of files

using wildcard characters.

Saves a program in memory to disk.

Sets file options including disk labels, file attri

butes, type of time and date stamping and pass

word protection.

Sets system options including the drive search

chain.

Displays disk and drive statistics.

Automatically executes multiple commands.

Display contents of text file (or group of files, if

wildcard characters are used) on screen (and

printer if desired).

211 USING CP/M MODE—Summary of Major CP/M 3.0 Commands

Redirecting Input

and Output

Assigning Logical

Devices

212

CP/M 3.0's PUT command allows you to direct console or printer

output to a disk file. You can use a GET command to make CP/M 3.0

or a utility program take console input from a disk file. The following

examples illustrate some of the capabilities offered by GET and PUT

You can use a PUT command to direct console output to a disk file

as well as to the console. With PUT, you can create a disk file con

taining a directory of all files on that disk, as shown in Figure 14-1.

AyPUT CONSOLE OUTPUT TO FILE DIR.PRN

PUTTING CONSOLE OUTPUT TO FILE: DIR.PRN

A>D/fl

A: FILENAME

A: FOUR

A: TWO

TEX : FRONT

TEX : ONE

TEX : THREE

TEX : FRONT

TEX : LINEDIT

BAK : EXAMP2

A>7YP£ DIR.PRN

A: FILENAME TEX : FRONT TEX

A: FOUR TEX: ONE TEX

A: TWO TEX : THREE BAK

FRONT

LINEDIT

EXAMP2

BAK : ONE

TEX : EXAMP1

TXT

BAK : ONE

TEX : EXAMP1

TXT

BAK:THREE

TXT : TWO

BAK : THREE

TXT : TWO

TEX

BAK

TEX

BAK

Figure 14-1. PUT Command Example

A GET command can direct CP/M 3.0 or a program to read console

input from a disk file instead of from the keyboard. If the file is to be

read by CP/M 3.0, it must contain standard CP/M 3.0 command lines.

If the file is to be read by a utility program, it must contain input

appropriate for that program. A file can contain both CP/M 3.0 com

mand lines and program input if it also includes a command to start

a program.

The minimal Commodore 128 CP/M 3.0 hardware includes a console

consisting of a keyboard and screen display, and a 1571 disk drive.

You may want to add another device to your system, such as a

printer or a modem. To help keep track of these physically different

input and output devices, Table 14-3 gives the names of CP/M 3.0

logical devices. It also shows the physical devices assigned to these

logical devices in the Commodore 128 CP/M 3.0 system.

USING CP/M MODE—Summary of Major CP/M 3.0 Commands

u

u

u

Li

U

LJ

U

LJ

U

LJ

I \

I s

Finding Program

Files

H

Executing

Multiple

Commands

n

/ \

I \

) I

Table 14-3. CP/M 3.0 Logical Devices

Logical

Device Name

CONIN:

CONOUT:

AUXIN:

AUXOUT:

LST:

Device Type

Console input

Console output

Auxiliary input

Auxiliary output

List output

Physical Device

Assignment

Keys

80 COL or 40 COL

Null

Null

PTR1 or PTR2

You can change these assignments with a DEVICE command.

If a command keyword identifies a utility, CP/M 3.0 looks for that

program file on the default or specified drive. It looks under the cur

rent user number, and then under user 0 for the same file marked

with the SYS attribute. At any point in the search process, CP/M 3.0

stops the search if it finds the program file. CP/M 3.0 then loads the

program into memory and executes it. When the program termi

nates, CP/M 3.0 displays the system prompt and waits for your next

command. However, if CP/M 3.0 does not find the command file, it

repeats the command line followed by a question mark, and waits for

your next command.

In the examples so far, CP/M 3.0 has executed only one command at

a time. CP/M 3.0 can also execute a sequence of commands. You

can enter a sequence of commands at the system prompt, or you

can put a frequently needed sequence of commands in a disk file,

using a filetype of SUB. Once you have stored the sequence in a disk

file, you can execute the sequence whenever you need to with a

SUBMIT command.

213 USING CP/M MODE—Summary of Major CP/M 3.0 Commands

Terminating

Programs

Getting Help

You can use the two keystroke command CTRL-C to terminate pro

gram execution or reset the disk system. To enter a CTRL-C com

mand, hold down the CTRL key and press C.

Most application programs that run under CP/M and most CP/M tran

sient utilities can be terminated by a CTRL-C. However, if you try to

terminate a program while it is sending a display to the screen, you

may need to press a CTRL-S to halt the display before you enter

CTRL-C.

CP/M 3.0 includes a transient utility command called HELP that will

display a summary of the format and use for the most common CP/M

commands. To access HELP, simply enter the command:

A)HELP

You can press the HELP key instead of typing the word HELP and

pressing the RETURN key.

The list of available topics is then displayed, like this:

Topics available:

C128<-CP/M COMMANDS CNTRLCHARS COPYSYS DATE DEVICE

DIR DUMP ED ERASE FILESPEC GENCOM

GET HELP HEXCOM INITDIR KEYFIG LIB

LINK MAC PATCH PIP <COPY) PUT RENAME

RMAC SAVE SET SETDEF SHOW SID

SUBMIT TYPE USER XREF

NOTE: Some of the topics listed are not included with the basic

CP/M system. These topics are supplied when the user purchases

the additional CP/M materials, including manuals and disks, by filling

out the order form preceding page 219.

Suppose you type:

HELP> PIP

214 USING CP/M MODE—Summary of Major CP/M 3.0 Commands

u

u

LJ

U

U

U

U

U

U

LJ

U

U

n

n

n

H

n

n

; \

n

CP/M then displays the following information:

PIP (COPY)

Syntax:

DESTINATION SOURCE

PIP d: {Gn}|filespec {[Gn]} =filespec {[o]} ,...|d: {[o]}

Explanation:

The file copy program PIP copies files, combines files,

and transfers files between disks, printers, consoles, or

other devices attached to your computer. The first

filespec is the destination. The second filespec is the

source. Use two or more source filespecs separated by

commas to combine two or more files into one file, [o] is

any combination of the available options. The [Gn] option

in the destination filespec tells PIP to copy your file to

that user number.

PIP with no command tail displays an * prompt and

awaits your series of commands, entered and processed

one line at a time. The source or destination can be any

CP/M 3.0 logical device.

The HELP facility provides information like this on all the CP/M 3.0

built-in and transient utility commands. If you want information on a

specific area, you can type HELP subject after the system prompt,

where subject is a command tail describing the subject you are inter

ested in. For example:

A> HELP PIP

A> HELP DIRSYS

You can refer to HELP any time you need information on a specific

command. Or you can just browse through HELP to broaden your

knowledge of CP/M 3.0.

H

215 USING CP/M MODE—Summary of Major CP/M 3.0 Commands

u

LJ

U

U

U

U

u

u

u

u

u

LJ

u

u

u

u

u

u

n

n

H

n

n

SECTION 15

Commodore

Enhancements To

CP/M 3.0

KEYBOARD ENHANCEMENTS

KEYFIG

Defining a Key

Defining a String

Using ALT Mode

SCREEN ENHANCEMENTS

MFM DISK FORMATS

219

219

220

220

221

221

222

217 USING CP/M MODE—Commodore Enhancements to CP/M 3.0

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

Keyboard

Enhancements

) \

n

Commodore has added a number of enhancements to CP/M 3.0.

These enhancements tailor the capabilities of the Commodore 128

to those of CP/M 3.0. They include such things as a selectively dis

played disk status line, a virtual disk drive, local/remote handling of

keyboard codes, programmable function keys (strings), and a num

ber of additional functions/characters that are assigned to various

keys. This section describes these enhancements.

Any key on the keyboard can be defined to generate a code or func

tion, except the following keys:

Left SHIFT key

Right SHIFT key

Commodore key

CONTROL key

RESTORE key

40-80 key

CAPS LOCK key

In defining a key, the keyboard recognizes the following special func

tions. To indicate these functions, hold down the CONTROL key and

the right SHIFT key, and press the desired function key simultane

ously.

Key

CURSOR LEFT key

CURSOR RIGHT key

ALT key

Function

Defines key

Defines string (points to function

keys)

Toggles key filter

KEYFIG

The KEYFIG utility program allows you to alter the definition of

almost ANY key on the keyboard. The only keys that you CANNOT

modify are: the SHIFT keys, the SHIFT LOCK key, the CONTROL key,

the 40/80 DISPLAY key and the COMMODORE key. At each step,

options are presented in menu form. You can scroll through the

options in the menus by using the up and down arrow keys at the top

of the keyboard; pressing the return key selects the choice that is

highlighted.

At almost any point, you can exit the program by typing 'CTRL C (the

CONTROL and C keys simultaneously).

219 USING CP/M MODE—Commodore Enhancements to CP/M 3.0

LJ

Defining A Key t ;

A user can define the code that a key can produce. Each key has

four possible definitions: Normal, Alpha Shift, Shift and Control. The

Alpha Shift is toggled on/off by pressing the Commodore key. After]^j
entering this mode, a small box will appear on the bottom of the

screen. The first key that is pressed is the key to be defined. The

current HEX (hexadecimal) value assigned to this key is displayed; j {
the user can then type the new HEX code for the key, or abort by

typing a non-HEX key. The following is a definition of the codes that

can be assigned to a key. (In ALT mode, codes are returned to the \^j
application; see ALT Mode below.)

u

u

u

u

LJ

LJ
This function allows the user to assign more than one key code to a

single key. Any key that is typed in this mode is placed in the string.) j

To access this function, press CTRL, RIGHT SHIFT and RIGHT CUR- LJ
SOR. Then press the key to be defined. The user can see the results
of typing in a box at the bottom of the screen. | /

NOTE: Some keys may not display what they are. To provide the user
with control over the process of entering data, the following tive spe- , i

cial key functions, are available. To access these functions, press I '
the CONTROL and right SHIFT keys and the desired function keys.

Key Function J \

RETURN Complete string definition LJ
+ (on main keyboard) Insert space into string

- (on main keyboard) Delete cursor character j (

Left arrow Cursor left ^
Right arrow Cursor right

u
220 USING CP/M MODE—Commodore Enhancements to CP/M 3.0

LJ

Code

OOh

01hto7Fh

80hto9Fh

AOhtoAFh

BOhtoBFh

COhtoCFh

DOh to DFh

EOhtoEFh

FOh

F1h

F2h

F3h

F4h

F5htoFFh

Defining A String

Function

Null (same as not pressing a key)

Normal ASCII codes

String assigned

80-column character color

80-column background color

40-column character color

40-column background color

40-column border color

Toggle disk status on/off

System Pause

(Undefined)

40-column screen window right

40-column screen window left

(Undefined)

n

H

n

n

n

Using ALT Mode

ALT mode is a toggle function (that is, it can be switched between

ON and OFF) The default value is OFF This function allows the user

to send 8-bit codes to an application.

Screen

Enhancements

■

The default screen in CP/M 3.0 emulates an ADM31 terminal. The

following screen functions emulate ADM 3A operation, which is a

subset of ADM31 operation.

CTRLG

CTRLH

CTRLJ

CTRLK

CTRLL

CTRLM

CTRLZ

ESC = RC

Sound bell

Cursor left

Cursor down

Cursor up

Cursor right

Move cursor to start of current line (CR)

Home cursor and clear screen

; Cursor position where R is the row location (with

values from space to 8) and C is the column loca

tion (next values from space to 0), referenced to

the status line

Additional functions in ADM31 mode include:

ESCT)

ESCt i
ESCY)

ESCy i
ESC:)

ESCM

ESCQ

ESCW

ESCE

ESCR

Clear to end of line

Clear to end of screen

Home cursor and clear screen (including the

status line)

Insert character

Delete character

Insert line

Delete line

* ESC ESC ESC color# sets a screen color from a table of 16

color entries. (These are the same color values listed in Chapter

II, Section 6, Figure 6-2.) The color # will be set as follows:

20h to 2Fh physical character color

30h to 3Fh physical background color

40h to 4Fh physical border color (40 column only)

50h to 5Fh logical character color

60h to 6Fh logical background color

70h to 7Fh logical border color (40 column only)

NOTE: Physical and logical colors have the same default values.

221 USING CP/M MODE—Commodore Enhancements to CP/M 3.0

MFM Disk

Formats

The visual effects associated with following functions are visible only

with the 80-column screen format.

ESC>

ESC<

ESCG4

*ESCG3

ESCG2

*ESCG1

ESCGO

Half intensity

Full intensity

Reverse video ON

Turn underline ON

Blink ON

Select the alternate character set

All ESCG attributes OFF

222

*NOTE: This is NOT a normal ADM31 sequence.

For non-Commodore CP/M programs you will probably need to spec

ify the format of the CP/M program disk. Format in this case refers to

a particular way of arranging the data on a disk. These disk formats

(referred to as MFM formats) generally are designed to match the

specific capabilities of the system for which the particular CP/M

program was created.

When used with the fast 1571 disk drive, the Commodore 128 sup

ports a variety of double density MFM disk formats (for reading and/

or writing), including:

Epson QX10 (512 byte sectors, double sided, 10 sec

tors per track)

IBM-8 SS (CP/M 86) (512 byte sectors, single sided, 8 sectors

per track)

IBM-8 DS (CP/M 86) (512 byte sectors, double sided, 8 sectors

per track)

KayPro II (512 byte sectors, single sided, 10 sectors

per track)

KayPro IV (512 byte sectors, double sided, 10 sec

tors per track)

Osborne DD (1024 byte sectors, single sided, 5 sectors

per track)

When you insert one of these disks into the disk drive and try to

access it, the system senses the type of disk with respect to the

number of bytes per sector and the number of sectors per track. If

the disk format is not unique, a box is displayed near the bottom left

corner of the screen, showing which disk type you are accessing.

The system requires you to select the specific disk type by scrolling

through the choices given in this window. Note: The choices are

given one at a time; scroll through using the right and left arrow keys.

Type RETURN when the disk type that you know is in the disk drive is

displayed. Typing CONTROL RETURN will lock this disk format so

that you will not need to select the disk type each time you access

the disk drive.

USING CP/M MODE—Commodore Enhancements to CP/M 3.0

u

u

u

u

u

u

u

u

u

u

u

LJ

Li

U

U

U

U

u

EPSON is a registered trademark of EPSON Corp.

IBM is a registered trademark of International Business

Machines Corp.

Kaypro is a registered trademark of Kay Computers, a division

of Non-Linear Systems.

Osborne is a registered trademark of Osborne Computer Corp.

j i

The sections in this chapter provide a summary of the structure and

wide-ranging capabilities of CP/M 3.0 For detailed information on any

facet of CP/M 3.0, you should respond to the offer described on the

card included in this chapter. In return you will receive a copy of the

Digital Research, Inc. book, CP/M Plus User's Guide.

223

u

u

u

u

u

u

u

u

u

u

u

u

u

u

i V,

H

7 I

I .1

{ \

n

BASIC 7.0 ENCYCLOPEDIA

CHAPTER

u

u

u

u

u

u

u

u

u

u

u

LJ

u

n

n

n

n

n

n

n

n

n

n

n

SECTION 16

Introduction

ORGANIZATION OF ENCYCLOPEDIA

COMMAND AND STATEMENT FORMAT

229

229

227 BASIC 7.0 ENCYCLOPEDIA—Introduction

u

LJ

U

U

U

U

U

u

u

u

LJ

U

U

u

u

LJ

U

n

Q

Q

n

n

n

Organization of

Encyclopedia

Command and

Statement Format

This chapter lists BASIC 7.0 language elements. It gives a complete

list of the rules (syntax) of Commodore 128 BASIC 7.0, along with a

concise description of each.

BASIC 7.0 includes all the elements of BASIC 2.0. The new com

mands, statements, functions and operators provided in BASIC 7.0

are highlighted in color.

The different types of BASIC operations are listed in individual sec

tions, as follows:

1. COMMANDS and STATEMENTS: the commands used to

edit, store and erase programs; and the BASIC program

statements used in the numbered lines of a program.

2. FUNCTIONS: the string, numeric and print functions.

3. VARIABLES AND OPERATORS: the different types of vari

ables, legal variable names, arithmetic operators and logical

operators.

4. RESERVED WORDS AND SYMBOLS: the words and sym

bols reserved for use the BASIC 7.0 language, which cannot

be used for any other purpose.

The commands and statements definition in this encyclopedia are

arranged in the following format:

Command name-*'

Brief definition-*

Command format-*

Discussion of

format and use-*

Example(s)->

AUTO

—Enable/disable automatic line numbering

AUTO[line#]

This command turns on the automatic line-numbering fea

ture. This eases the job of entering programs, by automati

cally typing the line numbers for the user. As each program

line is entered by pressing RETURN, the next line number is

printed on the screen, and the cursor is positioned two

spaces to the right of the line number. The line number

argument refers to the desired increment between line

numbers. AUTO without an argument turns off the auto line

numbering, as does RUN. This statement can be used only

in direct mode (outside of a program).

EXAMPLES:

AUT010 Automatically numbers program lines in

increments of 10.

AUTO 50 Automatically numbers lines in increments
of 50.

AUTO Turns off automatic line numbering.

229 BASIC 7.0 ENCYCLOPEDIA—Introduction

The boldface line that defines the format consists of the following
elements:

DLOAD "program name" [,D0,U8]

t t t

keyword argument additional arguments

(possibiy optional)

The parts of the command or statement that must be typed exactly
as shown are in capital letters. Words the user supplies, such as the
name of a program, are not capitalized.

When quote marks (" ") appear (usually around a program name or

filename), the user should include them in the appropriate place,
according to the format example.

KEYWORDS, also called reserved words, appear in upper-case
letters. Keywords are words that are part of the BASIC language.

They are the central part of a command or statement, and they tell

the computer what kind of action to take. These words cannot be

used as variable names. A complete list of reserved words and sym

bols is given in Section 20.

Keywords may be typed using the full word or the approved abbrevi

ation. (A full list of abbreviations is given in Appendix K). The keyword

or abbreviation must be entered correctly or an error will result. The

BASIC and DOS error messages are defined in Appendices A and B,

respectively.

ARGUMENTS, also called parameters, appear in lower-case letters.

Arguments complement keywords by providing specific information

to the command or statement. For example, the keyword load tells

the computer to load a program while the argument tells the com

puter which specific program to load. A second argument specifies

from which drive to load the program. Arguments include filenames,

variables, line numbers, etc.

SQUARE BRACKETS [] show optional arguments. The user selects

any or none of the arguments listed, depending on requirements.

ANGLE BRACKETS < > indicate the user MUST choose one of the

arguments listed.

230 BASIC 7.0 ENCYCLOPEDIA—Introduction

A VERTICAL BAR | separates items in a list of arguments when the

choices are limited to those arguments listed. When the vertical bar

appears in a list enclosed in SQUARE BRACKETS, the choices are

limited to the items in the list, but the user still has the option not to

use any arguments. If a vertical bar appears within angle brackets,

the user must choose one of the listed arguments.

ELLIPSIS ... a sequence of three dots means an option or argu

ment can be repeated more than once.

QUOTATION MARKS " " enclose character strings, filenames and

other expressions. When arguments are enclosed in quotation

marks, the quotation marks must be included in the command or

statement. Quotation marks are not conventions used to describe

formats; they are required parts of a command or statement.

PARENTHESES () When arguments are enclosed in parentheses,

they must be included in the command or statement. Parentheses

are not conventions used to describe formats; they are required

parts of a command or statement.

VARIABLE refers to any valid BASIC variable names, such as X, A$,

T%,etc.

EXPRESSION refers to any valid BASIC expressions, such as

A+B + 2, .5*(X + 3),etc.

n

231 BASIC 7.0 ENCYCLOPEDIA—Introduction

u

u

u

u

u

LJ

U

U

u

u

u

u

u

u

u

Li

u

n

H

n

H

n

n

n

n

SECTION 17

BASIC Commands

and Statements

H

233 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

LJ

U

U

U

LJ

U

u

u

u

u

u

O

u

u

u

LJ

U

U

n

APPEND

n

n

n

—Append data to the end of a sequential file.

APPEND #logical file number,"filename"[,Ddrive number]

[<ON|,>Udevice]

This command opens the file having the specified filename, and

positions the pointer at the end of the file. Subsequent PRINT*

(write) statements will cause data to be appended to the end of this

logical file number. Default values for drive number and device num

ber are 0 and 8 respectively.

Variables or expressions used as filenames must be enclosed within

parentheses.

EXAMPLES: Append # 8, "MYFILE"

Append # 7, (A$),D0,U9

OPEN logical file 8

called "MYFILE" for

appending with

subsequent PRINT*

statements.

OPEN logical file

named by the

variable in A$ on

drive 0, device

number 9, and

prepare to APPEND.

n

AUTO —Enable/disable automatic line numbering

AUTO[line#]

This command turns on the automatic line-numbering feature. This

eases the job of entering programs, by automatically typing the line

numbers for the user. As each program line is entered by pressing

RETURN, the next line number is printed on the screen, and the cur

sor is positioned two spaces to the right of the line number. The line

number argument refers to the desired increment between line num

bers. AUTO without an argument turns off the auto line numbering,

as does RUN. This statement can be used only in direct mode (out

side of a program).

235 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

BACKUP

BANK

EXAMPLES:

AUTO 10 Automatically numbers program lines in increments of 10.

AUTO 50 Automatically numbers lines in increments of 50.

AUTO Turns off automatic line numbering.

—Copy the entire contents from one disk to another on a dual disk

drive

BACKUP source Ddrive number TO destination Ddrive

number [<ON | ,)Udevice]

This command copies all the files from the source diskette onto the

destination diskette, using a dual disk drive. With the BACKUP com

mand, a new destination diskette can be used without first format

ting it. This is because the BACKUP command copies all the infor

mation on the diskette, including the format, and destroys any

information already on the destination disk. Therefore, when backing

up onto a previously used diskette, make sure it contains no pro

grams you mean to keep. As a precaution the computer asks "ARE

YOU SURE?" before it starts the operation. Press the "Y" key to

perform the BACKUP, or any other key to stop it. You should always

create a backup of all your disks, in case the original diskette is lost

or damaged. Also see the COPY command. The default device num

ber is unit 8.

NOTE: This command can be used only with a dual-disk drive.

EXAMPLES:

BACKUP DO to D1

BACKUP DO TO D1 ON U9

Copies all files from the disk in drive

0 to the disk in drive 1, in dual disk

drive unit 8.

Copies all files from drive 0 to drive

1, in diskdrive unit 9.

236

—Select one of the 16 BASIC banks (default memory configura
tions), numbered 0-15

BANK bank number

This statement specifies the bank number and corresponding mem

ory configuration for the Commodore 128 memory. The default bank

is 15. Here is a table of available BANK configurations in the Commo
dore 128 memory:

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

u

LJ

U

LJ

LJ

U

LJ

U

U

LJ

U

U

U

LJ

U

LJ

U

LJ

n

n

n

n

n

H

BEGIN/BEND

n

ANK

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

RAM(O) only

RAM(1) only

RAM(2) only

RAM(3) only

Internal ROM ,

Internal ROM,

Internal ROM,

Internal ROM,

External ROM

External ROM

External ROM

External ROM

CONFIGURATION

RAM(O), I/O

RAM(1), I/O

RAM(2), I/O

RAM(3), I/O

, RAM(O), I/O

, RAM(1), I/O

, RAM(2), I/O

, RAM(3), I/O

Kernal and Internal ROM (LOW), RAM(O), I/O

Kernal and External ROM (LOW), RAM(1), I/O

Kernal and BASIC ROM, RAM(O), Character ROM

Kernal and BASIC ROM, RAM(O), I/O

To look at a particular bank, type BANK n (n = 0-15).

To access these banks within the machine language monitor, pre

cede the four-digit hexadecimal number of the address range you

are viewing with a hexadecimal digit (0-F).

Banks are described in detail in the Commodore 128 Program

mer's Reference Guide, published by Bantam Books.

A conditional statement like IF... THEN: ELSE, structured so that

you can include several program lines between the start (BEGIN)

and end (BEND) of the structure. Here's the format:

IF Condition THEN BEGIN: statement

statement

statement BEND: ELSE BEGIN

statement

statement BEND

237 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

n

BLOAD

For EXAMPLE:

10 IF X = 1 THEN BEGIN: PRINT "X = 1 is True"

20 PRINT "So this part of the statement is performed"

30 PRINT "When X equals 1"

40 BEND: PRINT "End of BEGIN/BEND structure":GO to 60

50 PRINT "X does not equal 1 ".PRINT "The statements

between BEGIN/BEND are skipped"

60 PRINT "Rest of Program"

If the conditional (IR.THEN) statement in line 10 is true, the state

ments between the keywords BEGIN and BEND are performed,

including all the statements on the same line as BEND. If the

(IR.THEN) conditional statement in line 10 is FALSE, all statements

between the BEGIN and BEND, including the ones on the same pro

gram line as BEND are skipped, and the program resumes with the

first program line immediately following the line containing BEND.

The BEGIN/BEND essentially treats lines 10 through 40 as one long

line.

The same rules are true if the ELSE:BEGIN clause is specified. If the

condition is true, all statements between ELSE:BEGIN and BEND

are performed, including all statements on the same line as BEND. If

false, the program resumes with the line immediately following the

line containing BEND.

—Load a binary file starting at the specified memory location

BLOAD "filename"[,Ddrive number][,Udevice number]

[,Bbank number][,Pstart address]

where:

• filename is the name of your file

• bank number lets you select one of the 16 BASIC banks

• start address is the memory location where loading

begins

A binary file is a file, whether a program or data, that has been

SAVEd either within the machine language monitor or by the BSAVE

command. The BLOAD command loads the binary file into the loca

tion specified by the start address.

EXAMPLES:

BLOAD "SPRITES", B0, P3584 LOADS the binary file

"SPRITES" starting in

location 3584 (in BANK 0).

LJ

U

LJ

LJ

U

u

u

u

u

u

u

u

238 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

LJ

U

LJ

U

n

H

H

H

BOOT

BOX

BLOAD "DATA1", DO, U8, B1, P4096 LOADS the binary file

"DATA 1" into location 4096

(BANK 1) from Drive 0,

unit 8.

—Load and execute a program which was saved as a binary file

BOOT "filename" [,Ddrive number][<ON 19>Udevice]

The command loads an executable binary file and begins execution

at the predefined starting address. The default device number is 8

(drive 0).

EXAMPLE:

BOOT BOOT a bootable disk (CP/M Plus for

example).

BOOT "GRAPHICS 1", LOADS the binary program

DO, U9 "GRAPHICS 1" from unit 9, drive 0,

and executes it.

—Draw box at specified position on screen

BOX [color source], X1, Y1[,X2,Y2][,[angle][,paint]]

where:

color source 0 = Background color

1 = Foreground color

2 = Multicolor 1

3 = Multicolor 2

x1, y1 Top left corner coordinate (scaled)

x2, y2 Bottom right corner opposite x1, y1,

(scaled); default is the PC location.

angle Rotation in clockwise degrees;

default is 0 degrees

paint Paint shape with color

0 = Do not print

1 = Paint

(default = 0)

This statement allows the user to draw a rectangle of any size on the
screen. Rotation is based on the center of the rectangle. The pixel
cursor (PC) is located at x2, y2 after the BOX statement is executed.
The color source number must be a zero (0) or one (1) if in standard

239 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

bit map mode, or a 2 or 3 if in multicolor bit map mode. Also see the

GRAPHIC command for selecting the appropriate graphic mode to

be used with the BOX color source number.

The x and y values can place the pixel cursor at absolute coordi

nates such as (100,100) or at coordinates relative to previous posi

tion (+ / - x and + / - y) of the pixel cursor such as (+ 20, - 10). The

coordinate of one axis (x or y) can be relative and the other can be

absolute. Here are the possible combinations of ways to specify the

x and y coordinates:

x,y absolute x, absolute y

relative x, absolute y

absolute x, relative y

relative x, relative y

Also see the LOCATE command for information on the pixel cursor.

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE and

GSHAPE have an additional notation which allows you to specify a

distance and an angle relative to the previous coordinates of the

pixel cursor (PC). The notation is as follows:

KEYWORD source, distance; angle

where:

KEYWORD

SOURCE

DISTANCE

ANGLE

EXAMPLE:

BOX 1,100; 90

displays a BOX in the foreground color, 100 pixels away from and 90
degrees relative to the previous pixel cursor coordinate. The angle is
calculated as follows:

(360°)

is a graphics command such as DRAW, CIRCLE,

PAINT, LOCATE, BOX or GSHAPE

is the same code as in all of the graphics

commands

is the number of pixels to move the pixel cursor

is the number of degrees to move relative to the

previous pixel cursor coordinate

270° PC (90°)

180°

240 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements

n

BSAVE

H

EXAMPLES:

B0X1, +10, +10

BOX 1,10,10, 60, 60

BOX , 10,10, 60, 60, 45, 1

BOX , 30, 90,, 45,1

Draw a box 10 pixels to the right and

10 down from the current pixel cursor

location.

Draws the outline of a rectangle.

Draws a painted, rotated box (a

diamond).

Draws a filled, rotated polygon.

Any parameter can be omitted but you must include a comma in its

place, as in the last two examples.

NOTE: Wrapping occurs if the degree is greater than 360.

—Save a binary file from the specified memory locations

BSAVE "filename"[,Ddrive number][,Udevice number]

[,Bbank number],Pstart address TO Pend address

where:

• filename is the name you give the file

• drive number is either 0 or 1 on a dual drive (0 is the default

for a single drive)

• device number is the number of disk drive unit (default is 8)

• bank number is the number of the BASIC bank you specify

(0-15)

• start address is the starting address where the program is

SAVEdfrom

• end address is the last address + 1 in memory which is

SAVEd

This is similar to the SAVE command in the Machine Language

Monitor.

EXAMPLES:

BSAVE "SPRITE DATA",B0,P3584 TO P4096 Saves the binary file

named "SPRITE

DATA", starting at

location 3584 through

4095 (BANK 0).

n

241 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

CATALOG

BSAVE "PROGRAM.SCR",D0,U9,B0,P3182 TO P7999

Saves the binary

file named

"PROGRAM.SCR" in

the memory address

range 3182 through

7999 (BANK 0) on

drive 0, unit 9.

—Display the disk directory

CATALOG [Ddrive number][<ON | ,)Udevice

number][,wildcard string]

The CATALOG command displays the directory on the specified

drive, just like the DIRECTORY command. See the DIRECTORY

command.

EXAMPLE:

CATALOG Displays the disk directory on drive 0.

—Display characters at the specified position on the screen

CHAR [color source],x,y[,string][,RVS]

This is primarily designed to display characters on a bit mapped

screen, but it can also be used on a text screen. Here's what the

parameters mean:

color source 0 = Background

1 = Foreground

x Character column (0-79)

(wraps around to the next line in 40-

column mode)

y Character row (0-24)

string String to print

reverse Reverse field flag (0 = off, 1 = on)

Text (alphanumeric strings) can be displayed on the screen at a given

location by the CHAR statement. Character data is read from the

Commodore 128 character ROM. The user supplies the x and y coor

dinates of the starting position and the text string to be displayed.

Color source and reverse imaging are optional.

u

u

u

u

u

u

u

u

u

LJ

u

u

u

LJ

LJ

LJ

U
242 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

I I

n

n

H

n

I \

n

n

n

n

n

n

H

n

n

n

CIRCLE

In 40-column format the string is continued on the next line if it

attempts to print past the (40th column) right edge of the screen.

When used in TEXT mode, the string printed by the CHAR command

works just like a PRINT command, including cursor and color control.

These control functions inside the string do not work when the CHAR

command is used to display text in bit map mode. Upper/lower case

controls (CHR$ (14) or CHR$ (142)) also operate in bit map mode.

Multicolor characters are handled differently than standard charac

ters. First select multicolori and multicolor 2 with the COLOR com

mand. Set the GRAPHIC mode to multicolor. To display the fore

ground on multicolor 1, set the color source in the CHAR command

to zero and the reverse flag to zero. To display the foreground on

multicolor 2, set the color source to 0 and the reverse flag to 1. The

following example displays the foreground character color using a

red background. Change the reverse flag to 1 and the characters are

displayed in multicolor 2 (blue).

10 Color 2,3: REM multicolor 1 = Red

20 Color 3,7: REM multicolor 2 = Blue

30 GRAPHIC 3,1

30 CHAR 0,10,10,"TEXT",0

—Draw circles, ellipses, arcs, etc. at specified positions on the

screen

CIRCLE [color source],X,Y[,Xr][,Yr]

[,sa][,ea][,angle][,inc]

where:

color source 0 = background color

1 = foreground color

2 = multicolor 1

3 = multicolor 2

x,y Center coordinate of the CIRCLE

xr X radius (scaled)

yr Y radius (default is xr)

sa Starting arc angle (default 0 degrees)

ea Ending arc angle (default 360 degrees)

angle Rotation is clockwise degrees (default

is 0 degrees)

inc Degrees between segments (default is

2 degrees)

n
243 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

ea

With the CIRCLE statement, the user can draw a circle, ellipse, arc,

triangle, octagon or other polygon. The pixel cursor (PC) is left at the

circumference of the circle at the ending arc angle. Any rotation is

relative to the center. Setting the y radius equal to the x radius does

not draw a perfect circle, since the x and y coordinates are scaled

differently (x = 0 -320 and y = 0 -200). Arcs are drawn from the

starting angle clockwise to the ending angle. The increment controls

the smoothness of the shape; using lower values results in more

nearly circular shapes. Specifying the inc greater than 2 creates a

rough-edged, boxed-in shape.

The x and y values can place the pixel cursor at absolute coordi

nates such as (100,100) or at coordinates relative to the previous

position (+ / - x and + / - y) of the pixel cursor such as (+ 20, - 10).

The coordinate of one axis (x or y) can be relative and the other can

be absolute. Here are the possible combinations of ways to specify

the x and y coordinates:

x,y

+ /-x,y

x, + /-y

absolute x, absolute y

relative x, absolute y

absolute x, relative y

f relative x, relative y

Also see the LOCATE command for information on the pixel cursor.

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE AND

GSHAPE have an additional notation which allows you to specify a

distance and an angle relative to the previous coordinates of the

pixel cursor (PC). The notation is as follows:

KEYWORD

where:

KEYWORD

SOURCE

DISTANCE

source, distance; angle

is a graphics command such as DRAW,

CIRCLE, PAINT, LOCATE, BOX or GSHAPE

is the same code as in all of the graphics

commands

is the number of pixels to move the pixel

cursor

244 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

u

u

LJ

LJ

LJ

U

U

U

U

LJ

U

U

U

U

LJ

u

u

U

n

H

n

n

n

H

n

n

n

n

n

n

n

n

n

n

H

n

CLOSE

CLR

CMD

245

ANGLE is the number of degrees to move relative to

the previous pixel cursor coordinate

EXAMPLES:

CIRCLE1,160,100,65,10

CIRCLE1,160,100,65,50

CIRCLE1, 60,40,20,18,,,,45

CIRCLE1, 260,40,20,,,,,90

Draws an ellipse.

Draws a circle.

Draws an octagon.

Draws a diamond.

CIRCLE1, 60,140,20,18,,,,120 Draws a triangle.

CIRCLE 1, + 2, + 2,50,50 Draws a circle (two pixels down and

two to the right) relative to the

original coordinates of the pixel

cursor.

You may omit a parameter, but you must still place a comma in the

appropriate position. Omitted parameters take on the default values.

—Close logical file

CLOSE file number

This statement closes any files used by the DOPEN or OPEN state

ments. The number following the word CLOSE is the file number to

be closed.

EXAMPLE:

CLOSE 2 Logical file 2 is closed.

—Clear program variables

CLR

This statement erases any variables in memory, but leaves the pro

gram intact. This statement is automatically executed when a RUN

or NEW command is given. There is no need to use CLR after edit

ing, because variables and text no longer share memory.

—Redirect screen output

CMD logical file number [,write list]

This command sends the output, which normally goes to the screen

(i.e., PRINT statement, LIST, but not POKES into the screen) to

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

COLLECT

COLLISION

246

another device, such as a disk data file or printer. This device or file

must be OPENed first. The CMD command must be followed by a

number or numeric variable referring to the file. The write list can be

any alphanumeric string or variable. This command is useful for

printing headings at the top of program listings.

EXAMPLE:

Open 1,4

CMD1

LIST

PRINT#1

CLOSE 1

OPENS device #4, which is the printer.

All normal output now goes to the printer.

The LISTing goes to the printer, not the

screen—even the word READY

Sends output back to the screen.

Closes the file.

—Free inaccessible disk space

COLLECT [Ddrive number][<ON | ,)Udevice]

Use this command to make available any disk space that has been

allocated to improperly closed (splat) files, and to delete references

to these files from the directory. Splat files are files that appear on

the directory with an asterisk next to them. Defaults to device

number 8.

EXAMPLE:

COLLECT DO Free all available space which has been

incorrectly allocated to improperly closed

files.

—Define handling for sprite collision interrupt

COLLISION type [statement]

type.

statement

.Type of interrupt, as follows:

1 = Sprite-to-sprite collision

2 = Sprite-to-display data collision

3 = Light pen

.BASIC line number of a subroutine

When the specified situation occurs, BASIC will finish processing

the currently executing instruction and perform a GOSUB to the line

number given. When the subroutine terminates (it must end with a

RETURN), BASIC will resume processing where it left off. Interrupt

action continues until a COLLISION of the same type without a line

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

u

u

LJ

LJ

U

U

U

u

u

u

u

LJ

LJ

U

LJ

U

LJ

LJ

n

n

n

n

n

COLOR

i ;

number is specified. More than one type of interrupt may be enabled

at the same time, but only one interrupt can be handled at a time

(i.e., there can be no recursion and no nesting of interrupts). The

cause of an interrupt may continue causing interrupts for some time

unless the situation is altered or the interrupt disabled.

When a sprite is completely off-screen and not visible, it cannot gen

erate an interrupt. To determine which sprites have collided since

the last check, use the BUMP function.

EXAMPLE:

Collision 1, 5000

Collision 1

Collision 2,1000

Detects a sprite-to-sprite collision

and program control sent to

subroutine at line 5000.

Stops interupt action which was

initiated in above example.

Detects sprite-to-data collision and

program control directed to

subroutine in line 1000.

—Define colors for each screen area

COLOR source number, color number

This statement assigns a color to one of the seven color areas:

Area Source

0

1

2

3

4

5

6

40-column (VIC) background

40-column (VIC) foreground

multicolor 1

multicolor 2

40-column (VIC) border

character color (40- or 80-column screen)

80-column background color

Colors that are usable are in the range 1 -16.

Color Code

1

2

3

4

5

6

7

8

Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Color Code

9

10

11

12

13

14

15

16

Color

Orange

Brown

Light Red

Dark Gray

Medium Gray

Light Green

Light Blue

Light Gray

Color Numbers in 40-Column Output

247 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

1

2

3

4

5

6

7

8

Black

White

Dark Red

Light Cyan

Light Purple

Dark Green

Dark Blue

Light Yellow

Color Numbers in

EXAMPLE:

Color 0,1:

Color 5, 8:

9

10

11

12

13

14

15

16

Dark Purple

Dark Yellow

Light Red

Dark Cyan

Medium Gray

Light Green

Light Blue

Light Gray

80-Column Output

Changes background color of 40-

column screen to black.

Changes character color to yellow.

CONCAT —Concatenate two data files

CONCAT "file 2" [,Ddrive number] TO "file 1"

[,Ddrive number][<ON | ,)Udevice]

The CONCAT command attaches file 2 to the end of file 1 and retains

the name of file 1. The device number defaults to 8 and the drive

number defaults to 0.

EXAMPLE:

Concat "File B' to "File A"

Concat (A$) to (B$), D1, U9

FILE B is attached to FILE A, and

the combined file is designated

FILE A.

The file named by B$ becomes a

new file with the same name with

the file named by A$ attached to

the end of B$—This is performed on

Unit 9, drive 1 (a dual disk drive).

Whenever a variable is used as a filename, as in the last example,

the filename variable must be within parentheses.

u

u

S)
s)

u

\ t

u

u

CONT —Continue program execution

CONT

This command is used to restart a program that has been stopped

by either using the STOP key, a STOP statement, or an END state

ment. The program resumes execution where it left off. CONT will

248 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

(\

n not resume with the program if lines have been changed or added to

the program or if any editing of the program is performed on the

screen. If the program stopped due to an error; or if you have caused

an error before trying to restart the program, CONT will not work.

The error message in this case is CANT CONTINUE ERROR.

COPY —Copy files from one drive to another in a dual disk drive, or within a

single drive

COPY [Ddrive number,]"source filename"TO"destination

filename"[,Ddrive number][<ON | ,)Udevice]

This command copies files from one disk (the source file) to another

(the destination file) on a dual-disk drive. It can also create a copy of

a file on the same disk within a single drive, but the filename must be

different. When copying from one drive to another, the filename may

be the same.

The COPY command can also COPY all the files from one drive to

another on a dual disk drive. In this case the drive numbers are spec

ified and the source and destination filenames are omitted.

The default parameters for the COPY command are device number

8, drive 0.

NOTE: Copying between two single or double disk drive units cannot

be done. This command does not support unit-to-unit copying. See

BACKUP.

EXAMPLES:

COPY DO, "test" TO D1, "test prog" Copies "test" from drive 0

to drive 1, renaming it

"test prog" on drive 1.

COPY DO, "STUFF" TO D1, "STUFF" Copies "STUFF" from

drive 0 to drive 1.

COPY DO to D1 Copies all files from drive

0 to drive 1.

COPY "WORK.PROG" TO "BACKUP" Copies "WORK.PROG" as

a file called "BACKUP" on

the same disk (drive 0).

249 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

DATA —Define data to be used by a program

DATA list of constants

This statement is followed by a list of data items to be input into the

computer's memory by READ statements. The items may be

numeric or string and are separated by commas. String data need

not be inside quote marks, unless they contain any of the following

characters: space, colon, or comma. If two commas have nothing

between them, the value is READ as a zero if numeric, or as an

empty string. Also see the RESTORE statement, which allows the

Commodore 128 to reread data.

EXAMPLE:

DATA 100, 200, FRED, "HELLO, MOM",, 3,14, ABC123

u

u

LJ

LJ

DCLEAR —Clear all open channels on disk drive

DCLEAR [Ddrive number][<ON | ,)Udevice]

This statement closes all files and clears all open channels on the

specified device number. Default is DO, U8. This command is analag-

oustoOPEN 10,8,15, "IO":CLOSE 10.

EXAMPLES:

DCLEAR DO

DCLEAR D1,U9

Clears all open files on drive 0,

device number 8.

Clears all open files (channels) on

drive 1, device number 9.

U

u

LJ

DCLOSE —Close disk file

DCLOSE [#logical file number][<ON | ,}Udevice]

This statement closes a single file or all the files currently open on

a disk unit. If no logical file number is specified, all currently open

files are closed. The default device number is 8. Note the following

examples:

EXAMPLES:

DCLOSE

DCLOSE #2

Closes all files currently open on unit 8.

Closes the file associated with the logical file

number on unit 8.

DCLOSE ON U9 Closes all files currently open on unit 9.

250 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

DEFFN

n

DELETE

n

i s

n
DIM

n

n

—Return the value of a user-defined function

DEF FN name (variable) = expression

This statement allows the definition of a complex calculation as a

function. In the case of a long formula that is used several times

within a program, this keyword can save valuable program space.

The name given to the function begins with the letters FN, followed

by any alphanumeric name beginning with a letter. First, define the

function by using the statement DEF, followed by the name given to

the function. Following the name is a set of parentheses () with a

dummy numeric variable name (in this case, X) enclosed. Next is an

equal sign, followed by the formula to be defined. The function can

be performed by substituting any number for X, using the format

shown in line 20 of the example below:

EXAMPLE:

10 DEF FNA(X) = 12*(34.75-X/.3) + X

20 PRINT FNA(7)

The number 7 is inserted each place X is located in the formula

given in the DEF statement. In the example above, the answer

returned is 144. (Function definitions are lost if BASIC is moved—

e.g., from $1C00 to $4000 when a GRAPHIC call occurs. Invoke a

graphic mode once before defining functions.)

—Delete lines of a BASIC program in the specified range

DELETE [first line] [-last line]

This command can be executed only in direct mode.

EXAMPLES:

DELETE 75

DELETE 10-50

DELETE-50

DELETE 75-

Deletes line 75.

Deletes lines 10 through 50, inclusive.

Deletes all lines from the beginning of the

program up to and including line 50.

Deletes all lines from 75 to the end of the

program, inclusive.

251

—Declare number of elements in an array

DIM variable (subscripts) [,variable(subscripts)]...

Before arrays of variables can be used, the program must first exe
cute a DIM statement to establish DIMensions of the array (unless

there are 11 or fewer elements in the array). The DIM statement is
followed by the name of the array, which may be any legal variable

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

DIRECTORY

name. Then, enclosed in parentheses, put the number (or numeric

variable) of elements in each dimension. An array with more than

one dimension is called a matrix. Any number of dimensions may be

used, but keep in mind the whole list of variables being created takes

up space in memory, and it is easy to run out of memory if too many

are used. Here's how to calculate the amount of memory used by an

array:

5 bytes for the array name

2 bytes for each dimension

2 bytes/elements for integer variables

5 bytes/elements for normal numeric variables

3 bytes/elements for string variables

1 byte for each character in each string element

Integer arrays take up two-fifths the space of floating-point arrays

(e.g., DIM A% (100) requires 209 bytes; DIM A (100) requires 512

bytes.)

More than one array can be dimensioned in a DIM statement by sep

arating the array variable name by commas. If the program executes

a DIM statement for any array more than once, the message

"RE'DIMed ARRAY ERROR" is posted. It is good programming prac

tice to place DIM statements near the beginning of the program.

EXAMPLE:

10 DIM A$(40),B7(15),CC%(4,4,4)

Dimensions three arrays, where arrays AH, B7, and CC% have,

respectively, 41 elements, 16 elements and 125 elements

—Display the contents of the disk directory on the screen

DIRECTORY [Ddrive number][,<ON | ,> Udevice][,wildcard]

The F3 function key in C128 mode displays the DIRECTORY for

device number 8, drive 0. Use CONTROL S or NO SCROLL to pause

the display; any key restarts the display after a pause. Use the COM

MODORE key to slow down the display The DIRECTORY command
cannot be used to print a hard copy. The disk directory must be

loaded (LOAD"$",8) destroying the program currently in memory in

order to print a hard copy. The default device number is 8, and the
default drive number is 0.

EXAMPLES:

DIRECTORY Lists all files on the disk in unit 8.

u

u

LJ

U

U

DIRECTORY D1, U9, "work" Lists the file named "work," on
drive 1 of unit 9.

252 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements

I \

n

n

n

n

1 \

n

n

n

DLOAD

] \

DIRECTORY "AB*"

DIRECTORY DO, "file ?.BAK'

DIRECTORY D1,U9,(A$)

Lists all files starting with the letters

"AB" like ABOVE, ABOARD, etc. on

all drives of unit 8. The asterisk

specifies a wild card, where all files

starting with 'AB" are displayed.

The ? is a wild card that matches

any single character in that position.

For example: file 1.BAK, file 2.BAK,

file 3.BAK all match the string.

LISTS the filename stored in the

variable A$ on device number 9,

drive 1. Remember, whenever a

variable is used as a filename, put

the variable in parentheses.

NOTE: To print the DIRECTORY of the disk in drive 0, unit 8, use the

following example:

LOAD"$0",8

OPEN4,4:CMD4:LIST

PRINT#4:CLOSE4

—Load a BASIC program from disk

DLOAD "filename" [,Ddrive number][,Udevice number]

This command loads a BASIC program from disk into current mem

ory. (Use LOAD to load programs from tape.) The program must be

specified by a filename of up to 16 characters. DLOAD assumes

device number 8, drive 0.

EXAMPLES:

DLOAD "BANKRECS" Searches the disk for the program

"BANKRECS" and LOADs it.

DLOAD (A$) LOADS from disk a program whose

name is stored in the variable A$.

An error message is given if A$ is

empty. Remember, when a variable

is used as a filename, it must be

enclosed in parentheses.

The DLOAD command can be used within a BASIC program to find

another program on disk. This is called chaining.

n
253 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

DOfLOOPfWHILEf

UNTILfEXIT

—Define and control a program loop

DO [UNTIL condition / WHILE condition] statements [EXIT]

LOOP [UNTIL condition / WHILE condition]

This loop structure performs the statements between the DO state

ment and the LOOP statement. If no UNTIL or WHILE modifies either

the DO or the LOOP statement, execution of the statements in

between continues indefinitely. If an EXIT statement is encountered

in the body of a DO loop, execution is transferred to the first state

ment following the LOOP statement. DO loops may be nested, follow

ing the rules defined by the FOR-NEXT structure. If the UNTIL

parameter is specified, the program continues looping until the con

dition is satisfied (becomes true). The WHILE parameter is basically

the opposite of the UNTIL parameter: the program continues looping

as long as the condition is TRUE. As soon as the condition is no

longer true, program control resumes with the statement immedi

ately following the LOOP statement. An example of a condition (bool

ean argument) is A = 1, or G>65.

This example performs the statements

X = X-1 and PRINT "X=";X until X = 0.

When X = 0 the program resumes with

the PRINT "End of Loop" statement

immediately following LOOP.

EXAMPLE:

10X = 25

20 DO UNTIL X = 0

30X = X-1

40 PRINT "X = ";X

50 LOOP

60 PRINT "End of Loop"

10 DO WHILE A$<> CHR$ (13):GETKEY A$:PRINT A$:LOOP

20 PRINT "THE RETURN KEY HAS BEEN PRESSED"

This DO loop waits for a key to be

pressed, receives input from the

keyboard one character at a time and

prints the letter of the key which was

pressed. If the RETURN key was

pressed, control is transferred out of

the loop and line 20 is executed.

10 DOPEN #8,"SEQFILE"This program opens file "SEQFILE"

20 DO and gets data until the ST system

30 GET #8,A$ variable indicates all data is input.
40 PRINT A$;

50 LOOP UNTIL ST

60 DCLOSE #8

u

LJ

254 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

I \

DOPEN

/ \

n

n

n

DRAW

J \

n

n

H

—Open a disk file for a read and/or write operation

DOPEN #logical file number,"filename[,<S/P>]%Lrecord

length][,Ddrive number][<ON | ,)Udevice

number][,w]

where:

S = Sequential File Type

P = Program File Type

L = Record Length = the length of records in a relative file only

W = Write Operation (if not specified a read operation occurs)

This statement opens a sequential, relative or random access file

for a read or write operation. The record length (L) pertains to a rela

tive file, which can be as long as 255. The "W" parameter is speci

fied only during a write (PRINT#) operation in a sequential file. If it is

not specified, the disk drive assumes the disk operation to be a read

operation.

The logical file number associates a number to the file for future disk

operatons such as a read (input#) or write (print#) operation. The

logical file number can range from 1 to 255. Logical file numbers

greater than 128 automatically send a carriage return and linefeed

with each write (print#) command. Logical file numbers less than

128 send only a carriage RETURN, which can be suppressed with a

semicolon at the end of the print# command. The default device

number is 8, and the default drive is 0.

EXAMPLES:

DOPEN#1, "ADDRESS",W Open the sequential file number 1

(ADDRESS) for a write operation

DOPEN#2 "RECIPES",D1,U9 Open the sequential file number 2

(RECIPES) for a read operation on

device number 9, drive 1

—Draw dots, lines and shapes at specified positions on screen

DRAW [color source], [X1, Y1][TO X2, Y2] ■..

This statement draws individual dots, lines, and shapes. Here are the

parameter values:

where:

Color source 0 Bit map background

1 Bit map foreground

2 Multicolor 1

3 Multicolor 2

255 BASIC 7.0 ENCYCLOPEDIA—-Basic Commands and Statements

X1,Y1 Starting coordinate (0,0 through

320,200)

X2,Y2 Ending coordinate (0,0 through

320,200)

The X and Y values can place the pixel cursor at absolute coordi

nates such as (100,100) or at coordinates relative to the previous

position (+ / - x and + / - y) of the pixel cursor such as (+ 20, - 10).

The coordinate of one axis (x or y) can be relative and the other can

be absolute. Here are the possible combinations of ways to specify

the x and y coordinates:

x,y absolute x, absolute y

+ / - x,y relative x, absolute y

x, + / - y absolute x, relative y

+ / - x, + / - y relative x, relative y

Also see the LOCATE command for information on the pixel cursor.

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE AND

GSHAPE have an additional notation which allows you to specify a

distance and an angle relative to the previous coordinates of the

pixel cursor (PC). The notation is as follows:

KEYWORD source, distance; angle

where:

KEYWORD is a graphics command such as DRAW,

CIRCLE, PAINT, LOCATE, BOX or GSHAPE

SOURCE is the same code as in all of the graphics

commands

DISTANCE is the number of pixels to move the pixel

cursor

ANGLE is the number of degrees to move relative to

the previous pixel cursor coordinate

EXAMPLES:

DRAW 1,100, 50 Draw a dot.

DRAW , 10,10 TO 100,60 Draw a line.

DRAW , 10,10 TO 10,60 TO 100,60 TO 10,10 Draw a triangle

DRAW Draw a dot at the present pixel cursor position. Use
LOCATE to position the pixel cursor.

256 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements

I \

I I

OSAVE

i I

/ \

n

n

DVERIFY

i t

I i

You may omit a parameter but you still must include the comma that

would have followed the unspecified parameter. Omitted parameters
take on the default values.

—Save a BASIC program file to disk

DSAVE "filename" [,Ddrive number][<ON | ,)Udev!ce

number]

This command stores (SAVEs) a BASIC program on disk. (See SAVE

to store programs on tape.) A filename up to 16 characters long must

be supplied. The default device number is 8, while the default drive
number is 0.

EXAMPLES:

DSAVE "BANKRECS"

DSAVE (A$)

DSAVE "PROG 3",D1,U9

SAVEs the program "BANKRECS" to

disk.

SAVEs the disk program named in

the variable A$.

SAVEs the program "PROG 3" to

disk on unit number 9, drive 1.

—Verify the program in memory against the one on disk

DVERIFY "filename"[,Ddrive number][<ON | ,>Udevice

number]

This command causes the Commodore 128 to check the program

on the specified drive against the program in memory. The default

drive number is 0 and the default device number is 8.

NOTE: If a graphic area is allocated or reallocated after a SAVE, an

error occurs. Because BASIC text is moved from its original (SAVEd)

location when a bit mapped graphics area is allocated or dealloca

ted, the original location where the C128 verified the SAVEd program

changes. Hence, VERIFY, which performs byte-to-byte comparisons,

fails, even though the program is valid. Make sure to VERIFY or

DVERIFY immediately after issuing the SAVE command to avoid this

problem.

n
257 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

To verify Binary data, see VERIFY "filename",8,1 format, under

VERIFY command description.

EXAMPLES:

DVERIFY "C128" Verifies program "C128" on drive 0,

unit 8.

DVERIFY "SPRITES",D0,U9 Verifies program "SPRITES" on

drive 0, device 9.

u

u

END —Define the end of program execution

END

When the program encounters the END statement, it stops RUNning

immediately. The CONT command can be used to restart the pro

gram at the next statement (if any) following the END statement.

ENVELOPE —Define a musical instrument envelope

ENVELOPE n[,atk] [,dec] [,sus] [,rel][,wf] [,pw]

where:

n Envelope number (0-9)

atk Attack rate (0-15)

dec Decay rate (0-15)

sus Sustain (0-15)

rel Release rate (0-15)

wf Waveform: 0 = triangle

1 = sawtooth

2 = variable pulse (square)

3 = noise

4 = ring modulation

pw Pulse width (0-4095)

A parameter that is not specified will retain its predefined or cur

rently redefined value. Pulse width applies to the width of the varia

ble pulse waveform (wf = 2) only and is determined by the formula

pwout = pw/40.95. The Commodore 128 has initialized the following
10 envelopes:

258 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

] \

f I

I \

FAST

FETCH

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

n

0,

1,

c\f
3,

4,

5,

6,

7,

oo"9,

A

0,

cm"
0,

0,

9,

0,

0,

0,

8,

0,

D

9,

0,

0,

5,

4,

9,

9,

9,

9,

9,

S

o,

12,

15,

5,

4,

2,

0,

9,

4,

0,

R

0,

0,

0,

0,

0,

1,

o,

o,

1,

o,

To play predefined musical instrument

specify the envelope number and omit

wf

2,

1

0

3

0

1

2,

2,

cm"
0

pw

1536

512

2048

512

envelopes.you

the rest of the

instrument

piano

accordion

calliope

drum

flute

guitar

harpsichord

organ

trumpet

xylophone

can simply

parameters

since they retain their predefined values.

—Put machine in 2 MHz mode of operation

FAST

This command initiates 2MHz mode, causing the VIC 40-column

screen to be turned off. All operations (except I/O) are speeded up

considerably. Graphics may be used, but will not be visible until a

SLOW command is issued. The Commodore 128 powers up in 1 MHz

mode.

—Get data from expansion (RAM module) memory

FETCH #bytes, intsa, expsa, expb

where bytes = number of bytes to get from expansion memory

(1-65536)

intsa = starting address of host ram (0-65535)

expb = 64k expansion RAM bank number (0-3)

expsa = starting address of expansion RAM (0-65535)

The host BANK is selected with the BANK command.

259 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

FILTER

FOR/TO/STEP/

NEXT

—Define sound (SID chip) filter parameters

FILTER [freq] [,lp] [,bp] [,hp] [,res]

where:

freq Filter cut-off frequency (0-2047)

|p Low-pass filter on (1), off (0)

bp Bank-pass filter on (1), off (0)

hp High-pass filter on (1), off (0)

res Resonance (0-15)

Unspecified parameters result in no change to the current value.

You can use more than one type of filter at a time. For example, both

low-pass and high-pass filters can be used together to produce a

notch-(or band-reject) filter response. For the filter to have an audible

effect, at least one type of filter must be selected and at least one

voice must be routed through the filter.

EXAMPLES:

FILTER 1024,0,1,0,2 Set the cutoff frequency at 1024,

select the band pass filter and a

resonance level of 2.

FILTER 2000,1,0,1,10 Set the cutoff frequency at 2000,

select both the low pass and high

pass filters (to form a notch reject)

and set the resonance level at 10.

—Define a repetitive program loop structure.

FOR variable = start value TO end value [STEP increment]

This statement works with the NEXT statement to set up a section of

the program (i.e., a loop) that repeats for a set number of times. This

is useful when something needs to be counted or something must be

done a certain number of times (such as printing).

This statement executes all the commands enclosed between the

FOR and NEXT statements repetitively, according to the start and

end values. The start value and the end value are the beginning and

ending counts for the loop variable. The loop variable is added to or

subtracted from during the FOR/NEXT loop.

LJ

U

LJ

Li

U

260 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

n

n

n

H

The logic of the FOR/NEXT statement is as follows. First, the loop

variable is set to the start value. When the program reaches a pro

gram line containing the NEXT statement, it adds the STEP incre

ment (default = 1) to the value of the loop variable and checks to

see if it is higher than the end value of the loop. If the loop variable is

less than the end value, the loop is executed again, starting with the

statement immediately following the FOR statement. If the loop vari

able is greater than the end value, the loop terminates and the pro

gram resumes immediately following the NEXT statement. The oppo

site is true if the step size is negative. See also the NEXT statement.

EXAMPLE:

10 FOR L = 1 TO 10

20 PRINT L

30 NEXT L

40 PRINT "I'M DONE! L = "L

This program prints the numbers from one to 10 followed by the mes

sage I'M DONE! L = 11.

The end value of the loop may be followed by the word STEP and

another number or variable. In this case, the value following the

STEP is added each time instead of one. This allows counting back

wards, by fractions, or in increments other than one.

The user can set up loops inside one another. These are known as

nested loops. Care must be taken when nesting loops so the last

loop to start is the first one to end.

EXAMPLE:

10 FOR L = 1 TO 100

20 FOR A = 5 TO 11 STEP .5

30 NEXT A

40 NEXT L

The FOR ... NEXT loop in lines 20 and 30 are nested inside the one

in line 10 and 40. Using a STEP increment of .5 is used to illustrate

the fact that floating point indices are valid.

GET —Receive input data from the keyboard, one character at a time,

without waiting for a key to be pressed

GET variable list

The GET statement is a way to receive data from the keyboard, one

character at a time. When GET is encountered in a program, the

character that is typed is stored in the C128 memory. If no character

261 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

is typed, a null (empty) character is returned, and the program con

tinues without waiting for a key There is no need to hit the RETURN

key. The word GET is followed by a variable name, either numeric or

string.

If the C128 intends to GET a numeric key and a key besides a num

ber is pressed, the program stops and an error message is dis

played. The GET statement may also be put into a loop, checking for

an empty result. The GETKEY statement could also be used in this

case. See GETKEY for more information. The GET and GETKEY

statements can be executed only within a program.

EXAMPLE:

10 DO:GETA$:LOOP UNTIL A$ = "A" This line waits for the A key

to be pressed to continue.

20 GET B, C, D GET numeric variables B,C

and D from the keyboard

without waiting for a key to

be pressed.

u

u

GETKEY —Receive input data from the keyboard, one character at a time and

wait for a key to be pressed

GETKEY variable list

The GETKEY statement is very similar to the GET statement. Unlike

the GET statement, GETKEY waits for the user to type a character

on the keyboard. This lets the computer wait for a single character to

be typed. This statement can be executed only within a program.

EXAMPLE:

10 GETKEY A$

This line waits for a key to be pressed. Typing any key continues the

program.

10 GETKEY A$,B$,C$

This line waits for three alphanumeric characters to be entered from

the keyboard.

262 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements

) i

GET#

n

GO64

n

n

n

GOSUB

n

H

; i

—Receive input data from a tape, disk or RS232

GET# file number, variable list

This statement inputs one character at a time from a previously

opened file. Otherwise, it works like the GET statement. This state

ment can be executed only within a program.

EXAMPLE:

10GET#1,A$ This example receives one character, which is

stored in the variable A$, from file number 1.

This example assumes that file 1 was

previously opened. See the OPEN statement.

—Switch to C64 mode

GO64

This statement switches from C128 mode to C64 mode. The ques

tion "Are You Sure?" is displayed in response to the GO64 statement.

If Y is typed, then the currently loaded program is lost and control is

given to C64 mode; otherwise, if any other key is pressed, the com

puter remains in C128 mode. This statement can be used in direct

mode or within a program. The prompt is not displayed in program

mode.

—Call a subroutine from the specified line number

GOSUB line number

This statement is similar to the GOTO statement, except the Commo

dore 128 returns from where it came when the subroutine is finished.

When a line with a RETURN statement is encountered, the program

jumps back to the statement immediately following the GOSUB

statement.

The target of a GOSUB statement is called a subroutine. A subrou

tine is useful if a task is repeated several times within a program.

Instead of duplicating the section of program over and over, set up a

subroutine, and GOSUB to it at the appropriate time in the program.

See also the RETURN statement.

263 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

GOTO/GOTO

GRAPHIC

EXAMPLE:

20 GOSUB 800 This example calls the subroutine beginning at

line 800 and executes it. All subroutines must

terminate with a RETURN statement.

800 PRINT "HI THERE": RETURN

—Transfer program execution to the specified line number

GOTO line number

After a GOTO statement is encountered in a program, the computer

executes the statement specified by the line number in the GOTO

statement. When used in direct mode, GOTO executes (RUNs) the

program starting at the specified line number without clearing the

variables. This is the same as the RUN command except it does not

clear variable values.

EXAMPLES:

10 PRINT"COMMODORE" The GOTO in line 20 makes line 10

20 GOTO 10 repeat continuously until RUN/STOP is

pressed.

GOTO 100 Starts (RUNs) the program starting at

line 100, without clearing the variable

storage area.

—Select a graphic mode

1) GRAPHIC mode [,clear][,s]

2) GRAPHIC CLR

This statement puts the Commodore 128 in one of the six graphic

modes:

mode description

0 40-column text

1 standard bit-map graphics

2 standard bit-map graphics (split screen)

3 multicolor bit-map graphics

4 multicolor bit-map graphics (split screen)

5 80-column text

u

u

LJ

U

264 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

n

/ t

/ \

H

n

n
HEADER

n

n

n

n

The clear parameter specifies whether the bit mapped screen is

cleared (equal to 1) upon running the program, or left intact (equal to

0). The S parameter indicates the starting line number of the split

screen when in graphic mode 2 or 4 (multicolor or standard bit map

split screen modes). The default starting line number of the split

screen is 19.

When executed, GRAPHIC 1-4 allocates a 9K-bit mapped area. The

start of BASIC text area is moved above the bit-map area, and any

BASIC program is automatically relocated. This area remains allo

cated even if the user returns to TEXT mode (GRAPHIC 0). If the

clear option is specified as 1, the screen is cleared. The GRAPHIC

CLR command deallocates the 9k, bit-mapped area, places it in its

original location below the bit-mapped area and makes it available

once again for BASIC text.

Select standard bit map mode and clear the

bit map.

Select split screen multicolor bit map mode,

do not clear the bit map and start the split

screen at line 10.

Select 40-column text.

Select 80-column text.

Clear and deallocate the bit map screen.

265

EXAMPLES:

GRAPHIC 1,1

GRAPHIC 4,0,10

GRAPHIC 0

GRAPHIC 5

GRAPHIC CLR

—Format a diskette

HEADER "diskname" [,l i.d.] [,Ddrive number]

[<ON | ,>Udevice number]

Before a new disk can be used for the first time, it must be formatted

with the HEADER command. The HEADER command can also be

used to erase a previously formatted disk, which can then be reused.

When you enter a HEADER command in direct mode, the prompt

ARE YOU SURE? appears. In program mode, the prompt does not

appear.

This command divides the disk into sections called blocks. It creates

a table of contents of files, called a directory. The diskname can be

any name up to 16 characters long. The i.d. number is any two alpha

numeric characters. Give each disk a unique i.d. number. Be careful

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

when using the HEADER command because it erases all stored

data.

You can HEADER a diskette quicker if it was already formatted, by

omitting the new disk i.d. number. The old i.d. number is used. The

quick header can be used only if the disk was previously formatted,

since it clears out the directory rather than formatting the disk. The

default device number is 8. The drive number must be specified (0

for a single disk drive).

As a precaution, the system asks "ARE YOU SURE?" before the

Commodore 128 completes the operation. Press the "Y" key to per

form the HEADER, or press any other key to cancel it.

The HEADER command reads the disk command error channel, and

if an error is encountered, the error message "?BAD DISK ERROR"

is displayed.

The HEADER command is analogous to the BASIC 2.0 command:

OPEN 1£,15,"N0:diskname,Ld."

EXAMPLES:

HEADER "MYDISK", I23, DO This HEADERS "MYDISK"

using i.d. 23 on drive 0,

(default) device number 8.

HEADER "RECS", I45, D1 ON U9 This HEADERS "RECS" using

i.d. 45, on Drive 1, device

number 9

HEADER "C128 PROGRAMS", DO This is a quick header on

drive 0, device number 8,

assuming the disk in the drive

was already formatted. The

old i.d. is used.

HEADER (A$),l(B$),D0,U9 This example HEADERS the

diskette with the name

specified by the variable A$,

and the i.d. specified by the

variable B$, on drive 0,

device number 9.

266 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

j I

HELP

n

IF/THEN/ELSE

n

H

—Highlight the line where the error occurred

HELP

The HELP command is used after an error has been reported in a

program. When HELP is typed in 40-column format, the line where

the error occurs is listed, with the portion containing the error dis

played in reverse field. In 80-column format, the portion of the line

where the error occurs is underlined.

—Evaluate a conditional expression and execute portions of a pro

gram depending on the outcome of the expression

IF expression THEN statements [:ELSE else-clause]

The IF... THEN statement evaluates a BASIC expression and takes

one of two possible courses of action depending upon the outcome

of the expression. If the expression is true, the statement(s) following

THEN is executed. This can be any BASIC statement. If the expres

sion is false, the program resumes with the program line immedi

ately following the program line containing the IF statement, unless

an ELSE clause is present. The entire IF... THEN statement must be

contained within 160 characters. Also see BEGIN/BEND.

The ELSE clause, if present, must be on the same line as the IF...

THEN portion of the statement, and separated from the THEN

clause by a colon. When an ELSE clause is present, it is executed

only when the expression is false. The expression being evaluated

may be a variable or formula, in which case it is considered true if

nonzero, and false if zero. In most cases, there is an expression

involving relational operators (=,<,>,< = ,> = ,<».

The IF... THEN statement can take two additional forms:

IF expression THEN line number

or:

IF expression GOTO line number

These forms transfer program execution to the specified line number

if the expression is true. Otherwise, the program resumes with the

program line number immediately following the line containing the IF

statement.

EXAMPLE:

50 IF X > 0 THEN PRINT "OK": ELSE END

This line checks the value of X. If X is greater than 0, the statement

immediately following the keyword THEN (PRINT "OK") is executed

267 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

and the ELSE clause is ignored. If X is less than or equal to 0, the

ELSE clause is executed and the statement immediately following

THEN is ignored.

10 IF X = 10 THEN 100 This example evaluates the

value of X. IF X equals 10, the

20 PRINT "X does not equal 10" program control is transferred to

line 100 and the message "X

EQUALS 10" is printed. IF X

does not equal 10, the program

resumes with line 20, the C128

prints the prompt "X does not

equal 10" and the program

stops.

99 STOP

100 PRINT "X equals 10"

LJ

LJ

LJ

LJ

U

INPUT —Receive a data string or a number from the keyboard and wait for

the user to press RETURN

INPUT ["prompt string";] variable list

The INPUT statement asks for data from the user while the program

is RUNning and places the data into a variable or variables. The pro

gram stops, prints a question mark (?) on the screen, and waits for

the user to type the answer and hit the RETURN key. The word

INPUT is followed by a prompt string and a variable name or list of

variable names separated by commas. The message in the prompt

string inside quotes suggests (prompts) the information the user

should enter. If this message is present, there must be a semicolon

(;) after the closing quote of the prompt.

When more than one variable is INPUT, separate them by commas.

The computer asks for the remaining values by printing two question

marks (??). If the RETURN key is pressed without INPUTting a value,

the INPUT variable retains the value previously input. The INPUT

statement can be executed only within a program.

EXAMPLE:

10 INPUT "PLEASE TYPE A NUMBER";A

20 INPUT "AND YOUR NAME";A$

30 PRINT A$ "YOU TYPED THE NUMBER";A

268 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

n
INPUT#

n

KEY

H

n

H

n

n

—Inputs data from a file into the computer's memory

INPUT# file number, variable list

This statement works like INPUT, but takes the data from a previously

OPENed file, usually on a disk or tape instead of the keyboard. No

prompt string is used. This statement can be used only within a pro

gram.

EXAMPLE:

10 OPEN 2,8,2

20 INPUT#2, A$, C, D$

This statement INPUTS the data stored in variables A$, C and D$

from the disk file number 2, which was OPENed in line 10.

—Define or list function key assignments

KEY [key number, string]

There are eight function keys (F1-F8) available to the user on the

Commodore 128: four unshifted and four shifted. The Commodore

128 allows you to perform a function or operation for each time the

specified function key is pressed. The definition assigned to a key

can consist of data, or a command or series of commands. KEY with

no parameters specified returns a listing displaying all current KEY

assignments. If data is assigned to a function key, that data is dis

played on the screen when that function key is pressed. The maxi

mum length for all the definitions together is 241 characters.

EXAMPLE:

KEY 7, "GRAPHICO" + CHR$(13) + "LIST" + CHR$(13)

This tells the computer to select the (VIC) text screen and list the

program whenever the F7 key is pressed (in direct mode). CHR$(13)

is the ASCII character for RETURN and performs the same action as

pressing the RETURN key. Use CHR$(27) for ESCape. Use CHR$(34)

to incorporate the double quote character into a KEY string. The

keys may be redefined in a program. For example:

10 KEY2,"PRINT DS$" + CHR$(13)

This tells the computer to check and display the disk drive error

channel variables (PRINT DS$) each time the F2 function key is
pressed.

10 FOR I = 1 to 8:KEY I, CHR$(I + 132):NEXT

This defines the function keys as CHR$ 133 through CHR$ 140.

269 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

LET

To restore all function keys to their BASIC default values, reset the
Commodore 128 by pressing the RESET button.

—Assigns a value to a variable

[LET] variable = expression

The word LET is rarely used in programs, since it is not necessary.
Whenever a variable is defined or given a value, LET is always
implied. The variable name that receives the result of a calculation is
on the left side of the equal sign. The number, string or formula is on
the right side. You can only assign one value with each (implied) LET
statement. For example, LET A = B = 2 is illegal.

EXAMPLE:

10 LET A = 5 Assign the value 5 to numeric variable A.

20 B = 6 Assign the value 6 to numeric variable B.

30C = A*B + 3 Assign the numeric variable C, the value

resulting from 5 times 6 plus 3.

40 D$ = "HELLO" Assign the string "HELLO" to string variable
D$.

LJ

U

LJ

LJ

LJ

LIST —List the BASIC program currently in memory

LIST [first line] [- last line]

The LIST command displays a BASIC program listing that has been

typed or LOADed into the Commodore 128's memory so you can

read and edit it. When LIST is used alone (without numbers following

it), the Commodore 128 gives a complete LISTing of the program on

the screen. The listing process may be slowed down by holding

down the COMMODORE key, paused by CONTROL S or NO SCROLL

KEY (and resumed by pressing any other key), or stopped by hitting

the RUN/STOP key. If the word LIST is followed by a line number, the

Commodore 128 shows only that line number. If LIST is typed with

two numbers separated by a dash, all lines from the first to the sec

ond line number are displayed. If LIST is typed followed by a number

and just a dash, the Commodore 128 shows all lines from that num

ber to the end of the program. And if LIST is typed with a dash, then a

number, all lines from the beginning of the program to that line num

ber are LISTed. By using these variations, any portion of a program

can be examined or brought to the screen for modification. In Com

modore 128 mode, LIST can be used in a program and the program

can resume with the CONT command.

270 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

H

n

EXAMPLES:

LIST

LIST 100-

LIST 10

LIST -100

LIST 10-200

Shows entire program.

Shows from line 100 until the end of the

program.

Shows only line 10.

Shows all line from the beginning through line

100.

Shows lines from 10 to 200, inclusive.

LOAD —Load a program from a peripheral device such as the disk drive or

Datassette

LOAD "filename" [,device number] [^relocate flag]

This is the command used to recall a program stored on disk or cas

sette tape. Here, the filename is a program name up to 16 charac

ters long, in quotes. The name must be followed by a comma (out

side the quotes) and a number which acts as a device number to

determine where the program is stored (disk or tape). If no number is

supplied, the Commodore 128 assumes device number 1 (the Datas

sette tape recorder).

The relocate flag is a number (0 or 1) that determines where a pro

gram is loaded in memory. A relocate flag of 0 tells the Commodore

128 to load the program at the start of the BASIC program area. A

flag of 1 tells the computer to LOAD from the point where it was

SAVEd. The default value of the relocate flag is 0. The program

parameter of 1 is generally used when loading machine language

programs.

The device most commonly used with the LOAD command is the

disk drive. This is device number 8, though the DLOAD command is

more convient to use when working with disk.

If LOAD is typed with no arguments, followed by RETURN, the C128

assumes you are loading from tape and you are prompted to "PRESS

PLAY ON TAPE". If you press PLAY, the Commodore 128 starts look

ing for a program on tape. When the program is found, the Commo

dore 128 prints FOUND"filename", where the filename is the name

of the first file which the Datassette finds on the tape. Press the

Commodore key to LOAD the found filename, or press the spacebar

to keep searching on the tape. Once the program is LOADed, it can

be RUN, LISTed or modified.

271 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

LOCATE

EXAMPLES:

LOAD

LOAD "HELLO"

LOAD (A$),8

LOAD"HELLO",8

Reads in the next program from tape.

Searches tape for a program called

HELLO, and LOADs it if found.

LOADs the program from disk whose

name is stored in the variable A$.

Looks for the program called HELLO on

disk drive number 8, drive 0. (This is

equivalent to DLOAD "HELLO").

LOAD"MACHLANG",8,1 LOADs the machine language program

called "MACHLANG" into the location

from which it was SAVEd.

The LOAD command can be used within a BASIC program to find

and RUN the next program on a tape or disk. This is called chaining.

—Position the bit map pixel cursor on the screen

LOCATE x,y

The LOCATE statement places the pixel cursor (PC) at any specified

pixel coordinate on the screen.

The pixel cursor (PC) is the coordinate on the bit map screen where

drawing of circles, boxes, lines and points and where PAINTing

begins. The PC ranges from X and Y coordinates 0,0 through

320,200. The PC is not visible like the text cursor but it can be con

trolled through the graphics statements (BOX,CIRCLE,DRAW etc.)

The default location of the pixel cursor is the coordinate specified as

the X and Y portions in each particular graphics command. So the

LOCATE command does not have to be specified.

The X and Y values can place the pixel cursor at absolute coordi

nates such as (100,100) or at coordinates relative to previous posi

tion (+ / - x and + / - y) of the pixel cursor such as (+ 20, - 10). The

coordinate of one axis (x or y) can be relative and the other can be

absolute. Here are the possible combinations of ways to specify the

x and y coordinates:

x,y

+ /-x,y

x, + /-y

absolute x, absolute y

relative x, absolute y

absolute x, relative y

relative x, relative y

u

LJ

LJ

LJ

LJ

LJ

U

LJ

U

U

272 BASIC 7.0 ENCYCLOPEDIA—-Basic Commands and Statements

n

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE AND

GSHAPE have an additional notation which allows you to specify a

distance and an angle relative to the previous coordinates of the

pixel cursor (PC). The notation is as follows:

KEYWORD

where:

KEYWORD

SOURCE

DISTANCE

ANGLE

EXAMPLE:

LOCATE 160,100

LOCATE +20,100

source, distance; angle

is a graphics command such as DRAW,

CIRCLE, PAINT, LOCATE, BOX or GSHAPE

is the same code as in all of the graphics

commands

is the number of pixels to move the pixel

cursor

is the number of degrees to move relative to

the previous pixel cursor coordinate

Positions the PC in the center of the bit map

screen. Nothing will be seen until something

is drawn.

Move the pixel cursor 20 pixels to the right of

the last PC position and place it at Y

coordinate 100.

LOCATE - 30, + 20 Move the PC 30 pixels to the left and 20

down from the previous PC position.

The PC can be found by using the RDOT(0) function to get the X-

coordinate and RDOT(1) to get the Y-coordinate. The color source of

the dot at the PC can be found by PRINTing RDOT(2).

MONITOR —Enter the Commodore 128 machine language monitor

MONITOR

See Appendix J for details on the Commodore 128 Machine Lan

guage Monitor.

273 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

—Position or move sprite on the screen

1) MOVSPR number,x,y Place the specified sprite at absolute
coordinate x,y.

2) MOVSPR number, +/-x, +/-y

Move sprite relative to the position of the

pixel cursor.

3) MOVSPR number,x;y Move sprite distance x at angle y relative

to the pixel cursor.

4) MOVSPR number,x angle #y speed

Move sprite at an angle (x) relative to its

original coordinates, in the clockwise

direction and at the specified speed (y).

where:

number is sprite's number (1 through 8)

<,x,y> is coordinate of the sprite location.

ANGLE is the angle (0-360) of motion in the clockwise direction rela

tive to the sprites original coordinate.

SPEED is a speed (0-15) in which the sprite moves.

This statement locates a sprite at a specific location on the screen

according to the SPRITE coordinate plane (not the bit map plane) or

initiates sprite motion at a specified rate. See MOVSPR in Section 6

for a diagram of the sprite coordinate system.

EXAMPLES:

MOVSPR 1,150,150 Position sprite 1 near the center of

the screen, x,y coordinate 150,150.

MOVSPR 1, + 20, - 30 Move sprite 1 to the right 20

coordinates and up 30 coordinates.

MOVSPR 4, - 50, +100 Move sprite 4 to the left 50

coordinates and down 100

coordinates.

MOVSPR 5, 45 #15 Move sprite 5 at a 45 degree angle

in the clockwise direction, relative to

its original x and y coordinates. The

sprite moves at the fastest rate (15).

NOTE: Once you specify an angle and a speed in the third form of

the MOVSPR statement, you must set the angle back to zero before

moving other sprites, or their movement will be affected. Also, keep

in mind that the SCALE command affects the MOVSPR coordinates.

274 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

n
NEW

n

n

ON

H

n

n

I S

OPEN

If you add SCALing to your programs, you also must adjust the

sprites new coordinates so they appear correctly on the screen.

—Clear (erase) program and variable storage

NEW

This command erases the entire program in memory and clears any

variables that may have been used. Unless the program was stored

on disk or tape, it is lost. Be careful with the use of this command.

The NEW command also can be used as a statement in a BASIC

program. However, when the Commodore 128 gets to this line, the

program is erased and everything stops.

—Conditionally branch to a specified program line number accord

ing to the results of the specified expression

ON expression <GOTO/GOSUB> line #1 [, line #2,...]

This statement can make the GOTO and GOSUB statements operate

like special versions of the (conditional) IF statement. The word ON is

followed by a logical or mathematical expression, then either of the

keywords GOTO or GOSUB and a list of line numbers separated by

commas. If the result of the expression is 1, the first line in the list is

executed. If the result is 2, the second line number is executed and

so on. If the result is 0, or larger than the number of line numbers in

the list, the program resumes with the line immediately following the

ON statement. If the number is negative, an ILLEGAL QUANTITY

ERROR results.

EXAMPLE:

10 INPUT X:IF X<0 THEN 10

20 ON X GOTO 30, 40, 50, 60 When X= 1fON sends control to the

25 STOP

30 PRINT "X

40 PRINT "X

50 PRINT "X

1"

2"

3"

first line number in the list (30)

When X = 2, ON sends control to the

second line (40),etc

60 PRINT "X = 4"

—Open files for input or output

OPEN logical file number, device number [^secondary

address] [,"filename, filetype, mode"]/[,cmd string])

J i

275 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

The OPEN statement allows the Commodore 128 to access files

within devices such as a disk drive, a Datassette cassette recorder,

a printer or even the screen of the Commodore 128. The word OPEN

is followed by a logical file number, which is the number to which all

other BASIC input/output statements will refer, such as

PRINT#(write), INPUT#(read), etc. This number is from 0 to 255.

The second number, called the device number, follows the logical file

number. Device number 0 is the Commodore 128 keyboard; 1 is the

cassette recorder; 3 is the Commodore 128 screen, 4-7 are the

printer(s); and 8-11 are reserved for disk drives. It is often a good

idea to use the same file number as the device number because it

makes it easy to remember which is which.

Following the device number may be a third parameter called the

secondary address. In the case of the cassette, this can be 0 for

read, 1 for write and 2 for write with END-OF-TAPE marker at the

end. In the case of the disk, the number refers to the channel num

ber. See your disk drive manual for more information on channels

and channel numbers. For the printer, the secondary addresses are

used to select certain programming functions.

There may also be a filename specified for disk or tape OR a string

following the secondary address, which could be a command to the

disk/tape drive or the name of the file on tape or disk. If the filename

is specified, the type and mode refer to disk files only. File types are

PROGRAM, SEQUENTIAL, RELATIVE and USER; modes are READ

and WRITE.

EXAMPLES:

10 OPEN 3,3

20 OPEN 1,0

OPENs the screen as file number 3.

OPENs the keyboard as file number 1.

30 OPEN 1,1,0,"DOT" OPENs the cassette for reading, as file

number 1, using "DOT" as the filename.

OPEN 4,4

OPEN 15,8,15

OPENs the printer as file number 4.

OPENs the command channel on the disk

as file 15, with secondary address 15.

Secondary address 15 is reserved for the

disk drive error channel.

u

LI

LJ

LJ

U

U

U

276 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

n

H

5 OPEN 8,8,12,"TESTFILE,SEQ,WRITE" OPENs a sequential disk

file for writing called

TESTFILE as file

number 8, with

secondary address 12.

See also: CLOSE, CMD, GET#, INPUT#, and PRINT# statements and

system variables ST, DS, and DS$.

PAINT

) i

—Fill area with color

PAINT [color source],x,y[,mode]

where:

color source 0 Bit map foreground

1 Bit map background (default)

2 Multicolor 1

3 Multicolor 2

x,y starting coordinate, scaled (default at

pixel cursor (PC))

mode 0 = paint an area defined by the color

source selected

1 = paint an area defined by any non-

background source

The PAINT command fills an area with color. It fills in the area around

the specified point until a boundary of the same source is encoun

tered. For example, if you draw a circle in the foreground color

source, start PAINTing the circle where the coordinate assumes the

background source. The Commodore 128 will only PAINT where the

specified source in the PAINT statement is different than the source

of the x and y pixel coordinate. It cannot PAINT points where the

sources are the same in the PAINT statement and the pixel coordi

nate. The x and y coordinate must lie completely within the boundary

of the shape you intend to PAINT, and the source of the starting pixel

coordinate and the specified color source must be different.

The x and y values can place the pixel cursor at absolute coordi

nates such as (100,100) or at coordinates relative to previous posi

tion (+ / - x and + / - y) of the pixel cursor such as (+ 20, - 10). The

coordinate of one axis is (x or y) can be relative and the other can be

absolute. Here are the posible combinations of ways to specify the
x and y coordinates:

x,y absolute x, absolute y

277 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

+ /-x,y

x, + /-y

relative x, absolute y

absolute x, relative y

relative x, relative y

Also see the LOCATE command for information on the pixel cursor.

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE AND

GSHAPE have an additional notation which allows you to specify a distance

and an angle relative to the previous coordinates of the pixel cursor (PC).

The notation is as follows:

KEYWORD

where:

KEYWORD

SOURCE

DISTANCE

ANGLE

source, distance; angle

is a graphics command such as DRAW,

CIRCLE, PAINT, LOCATE, BOX or GSHAPE

is the same code as in all of the graphics

commands

is the number of pixels to move the pixel

cursor

is the number of degrees to move relative to

the previous pixel cursor coordinate

EXAMPLE:

10 CIRCLE 1, 160,100,65,50

20 PAINT 1,160,100

10 BOX 1,10,10, 20, 20

20 PAINT 1,15,15

30 PAINT 1, +10, +10

Draws an outline of a circle.

Fills in the circle with color from

source 1 (VIC foreground), assuming

point 160,100 is colored in the

background color (source 0).

Draws an outline of a box.

Fills the box with color from source

1, assuming point 15,15 is colored in

the background source (0).

PAINT the screen in the foreground

color source at the coordinate

relative to the pixel cursor's previous

position plus 10 in both the vertical

and horizontal positions.

—Defines and plays nnusical notes and elements within a string or

string variable.

278 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

H

n

h

n

n

n

PLAY"Vn,On,Tn,Un,Xn,elements,notes"

where the string or string variable is composed of the following:

Vn = Voice (n = 1-3)

On = Octave (n = 0-6)

Tn = Tune Envelope Defaults (n = 0-9)

0 = piano

1 = accordion

2 = calliope

3 = drum

4 = flute

5 = guitar

6 = harpsichord

7 = organ

8 = trumpet

9 = xylophone

Un = Volume (n = 0-8)

Xn = Filter on (n = 1), off (n = 0)

Notes: A,B,C,D,E,F,G

Elements: # Sharp

$ Flat

W Whole note

H Half note

Q Quarter note

I Eighth note

S Sixteenth note

Dotted

R Rest

M Wait for all voices cur

rently playing to end

the current "measure"

The PLAY statement gives you the power to select voice, octave and

tune envelope (including ten predefined musical instrument enve

lopes), the volume and the notes you want to PLAY. All these controls

are enclosed in quotes. You may include spaces in a PLAY string for

readability.

All elements except R and M precede the musical notes in a PLAY

string.

279 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

EXAMPLES:

PLAY "V1O4T0U5X0CDEFGAB" Play the notes C,D,E,F,G,A

and B in voice 1, octave 4,

tune envelope 0 (piano), at

volume 5, with the filter

off.

PLAY "V3O5T6U7X1#B$AW.CHDQEIF"Play the notes B sharp, A

flat, a whole dotted-C note,

a half D-note, a quarter E-

note and an eighth F-note.

A$ = "V3O5T6U3ABCDE"

PLAY A$

PLAY the notes and

elements within A$.

POKE —Change the contents of a RAM memory location

POKE address, value

The POKE statement allows changing of any value in the Commo

dore 128 RAM, and allows modification of many of the Commodore

128 Input/Output registers. The keyword POKE is always followed by

two parameters. The first is a location inside the Commodore 128

memory. This can be a value from 0 to 65535. The second parameter

is a value from 0 to 255, which is placed in the location, replacing

any value that was there previously. The value of the memory loca

tion determines the bit pattern of the memory location. The POKE

occurs into the currently selected RAM bank. The POKE address

depends on the BANK number. See BANK in this Encyclopedia for

the appropriate BANK configurations.

EXAMPLE:

10 POKE 53280,1 Changes VIC border color

NOTE: PEEK, a function related to POKE, returns the contents of the

specified memory location, is listed under FUNCTIONS.

PRINT —Output to the text screen

PRINT [print list]

The PRINT statement is the major output statement in BASIC. While

the PRINT statement is the first BASIC statement most people learn

to use, there are many variations of this statement. The word PRINT

can be followed by any of the following:

Characters inside quotes ("text")

280 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

PRINT #

Variable names

Functions

Punctuation marks

(A, B, A$, X$)

(SIN(23),ABS(33))

The characters inside quotes are often called literals because they

are printed literally, exactly as they appear. Variable names have the

value they contain (either a number or a string) printed. Functions

also have their number values printed.

Punctuation marks are used to help format the data neatly on the

screen. The comma separates printed output by 10 spaces, while

the semicolon separates printed output by three spaces. Either

punctuation mark can be used as the last symbol in the statement.

This results in the next PRINT statement acting as if it is continuing

the previous PRINT statement.

EXAMPLES: RESULTS

10 PRINT "HELLO" HELLO

20 A$ = "THERE":PRINT "HELLO ";A$ HELLO THERE

30A = 4:B = 2:?A+B 6

40 J = 41:PRINT J;:PRINT J -1 41 40

50 PRINT A;B;:D = A + BrPRINT D;A-B 4 2 6 2

See also POS, SPC, TAB and CHAR functions.

—Output data to files

PRINT# file number, print list

PRINT# is followed by a number which refers to the data file previ

ously OPENed. The number is followed by a comma and a list of

items to be output to the file which can be strings, numeric or string

variables or numeric data. The comma and semicolon act in the

same manner for spacing with printers as they do in the PRINT state

ment. Some devices may not work with TAB and SPC.

EXAMPLE:

10 OPEN 4,4 Outputs the data "HELLO

20 PRINT#4,"HELLO THERE!",A$,B$ THERE and the variables

A$ and B$ to the printer.

10 OPEN 2,8,2

20 PRINT#2,A,B$,C,D

Outputs the data variables

A, B$, C and D to the disk

file number 2.

281 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

PRINT USING

NOTE: The PRINT# command is used by itself to close the channel

to the printer before closing the file, as follows:

10 OPEN 4,4

30 PRINT#4,"PRINT WORDS"

40 PRINT#4

50 CLOSE 4

—Output using format

PRINT [#filenumber,] USINCformat list"; print list

This statement defines the format of string and numeric items for

printing to the text screen, printer or other device. The format is put

in quotes. This is the format list. Then add a semicolon and a list of

what is to be printed in the format for the print list. The list can be

variables or the actual values to be printed.

EXAMPLE:

5 X = 32: Y = 100.23: A$ = "CAT"

10 PRINT USING "$##.## ";13.25,X,Y

20 PRINT USING "###>#";"CBM",A$

When this is RUN, line 10 prints:

$13.25 $32.00 $*

Line 20 prints this:

CBM CAT

CHARACTER

Pound sign (#)

Plus sign (+)

Minus sign (-)

Decimal Point (.)

Comma (,)

Dollar Sign ($)

Four Up Arrows (tttt)

Equal Sign (=)

Greater Than Sign (»

Five asterisks (*****) are printed

instead of a Y value because Y has five

digits, and this condition does not con

form to format list (as explained below)

Leaves three spaces before printing

"CBM" as defined in format list.

NUMERIC

X

X

X

X

X

X

X

STRING

X

X

X

282 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

I)

I ;

The pound sign (#) reserves room for a single character in the output

field. If the data item contains more characters than there are #

signs in the format field, the entire field is filled with asterisks (*); no

characters are printed.

EXAMPLE:

10 PRINT USING "####";X

For these values of X, this format displays:

A = 12.34 12

A = 567.89 568

A = 123456 ****

For a STRING item, the string data is truncated at the bounds of the

field. Only as many characters are printed as there are pound signs

(#) in the format item. Truncation occurs on the right.

The plus (+) and minus (-) signs can be used in either the first or

last position of a format field, but not both. The plus sign is printed if

the number is positive. The minus sign is printed if the number is

negative.

If a minus sign is used and the number is positive, a blank is printed

in the character position indicated by the minus sign.

If neither a plus nor a minus sign is used in the format field for a

numeric data item, a minus sign is printed before the first digit or

dollar symbol if the number isjiegative. No sign is printed if the num

ber is positive. This means that one additional character, the minus

sign, is printed if the number is negative. If there are too many char

acters to fit into the field specified by the pound sign and plus/minus

signs, then an overflow occurs and the field is filled with asterisks

(*)•

A decimal point (.) symbol designates the position of the decimal

point in the number. There can be only one decimal point in any for

mat field. If a decimal point is not specified in the format field, the

value is rounded to the nearest integer and printed without decimal

places.

When a decimal point is specified, the number of digits preceding

the decimal point (including the minus sign, if the value is negative)

283 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

must not exceed the number of pound signs before the decimal

point. If there are too many digits, an overflow occurs and the field is

filled with asterisks (*).

A comma (,) allows placing of commas in numeric fields. The posi

tion of the comma in the format list indicates where the commas

appear in a printed number. Only commas within a number are

printed. Unused commas to the left of the first digit appear as filler

character. At least one pound sign must precede the first comma in

afield.

If commas are specified in a field and the number is negative, then a

minus sign is printed as the first character, even if the character posi

tion is specified as a comma.

EXAMPLES:

FIELD EXPRESSION

####

####

-.1

1

-100.5

-1000

10

1

RESULT

-0.1

1.0

-101

* * * *

10.

$1

COMMENT

Leading zero added.

Trailing zero added.

Rounded to no decimal

places.

Overflow because four

digits and a minus sign

cannot fit in field.

Decimal point added.

Floating dollar sign.

A dollar sign ($) symbol shows that a dollar sign will be printed in the

number. If the dollar sign is to float (always be placed before the

number), at least one pound sign must be specified before the dollar

sign. If a dollar sign is specified without a leading pound sign, the

dollar sign is printed in the position shown in the format field. If com

mas and/or a plus or minus sign are specified in a format field with a

dollar sign, the program prints a comma or sign before the dollar

sign. The up arrows or caret symbols (aa) are used to specify that

the number is to be printed in E + format (scientific notation). A

pound sign must be used in addition to the four carets to specify the

field width. The carets can appear either before or after the pound

sign in the format field. Four carets must be specified when a num

ber is to be printed in E format. If more than one but fewer than four

carets are specified, a syntax error results. If more than four carets

are specified, only the first four are used. The fifth caret is inter-

284 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

H

n

preted as a no-text symbol. An equal sign (=) is used to center a

string in a field. The field width is specified by the number of charac

ters (pound sign and equal sign) in the format field. If the string con

tains fewer characters than the field width, the string is centered in

the field. If the string contains more characters that can be fit into

the field, then the right-most characters are truncated and the string

fills the entire field. A greater than sign (»is used to right justify a

string in a field.

PUDEF —Redefine symbols in PRINT USING statement

PUDEF "nnnn"

Where "nnnn" is any combination of characters, up to four in all,

PUDEF allows you to redefine any of the following four symbols in

the PRINT USING statement: blanks, commas, decimal points and

dollar signs. These four symbols can be changed into some other

character by placing the new character in the correct position in the

PUDEF control string.

Position 1 is the filler character. The default is a blank. Place a new

character here for another character to appear in place of blanks.

Position 2 is the comma character. Default is a comma.

Position 3 is the decimal point. Default is a decimal point.

Position 4 is the dollar sign. Default is a dollar sign.

EXAMPLES:

10 PUDEF "*" PRINTS * in the place of blanks.

20 PUDEF " <" PRINTS < in the place of commas.

READ —Read data from DATA statements and input it into the computer's

memory (while the program is RUNning)

READ variable list

This statement inputs information from DATA statements and stores

it in variables, where the data can be used by the RUNning program.

The READ statement variable list may contain both strings and num

bers. Be careful to avoid reading strings where the READ statement

expects a number and vice versa. This produces a TYPE MISMATCH

ERROR message.

285 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

RECORD

The data in the DATA statements are READ in sequential order. Each

READ statement can read one or more data items. Every variable in

the READ statement requires a data item. If one is not supplied, an

OUT OF DATA ERROR occurs.

In a program, you can READ the data and then re-read it by issuing

the RESTORE statement. The RESTORE sets the sequential data

pointer back to the beginning, where the data can be read again. See

the RESTORE statement.

EXAMPLES:

10 READ A, B, C

20 DATA 3, 4, 5

READ the first three numeric

variables from the closest data

statement.

10 READ A$, B$, C$ READ the first three string

20 DATA JOHN, PAUL, GEORGE string variables from the nearest

data statement.

10 READ A, B$, C

20 DATA 1200, NANCY, 345

READ (and input into the C128

memory) a numeric variable, a

string variable and another

numeric variable.

—Position relative file pointers

RECORD# logical file number, record number [,byte

number]

This statement positions a relative file pointer to select any byte

(character) of any record in the relative file. The logical file number

can be in the range between 0 and 255. The record number can be

in the range 0 through 65535. Byte number is in the range 1 through

254. See your disk drive manual for details about relative files.

When the record number value is set higher than the last record

number in the file, the following occurs:

For a write (PRINT#) operation, additional records are created to

expand the file to the desired record number.

For a read (INPUT#) operation, a null record is returned and a

"RECORD NOT PRESENT ERROR occurs".

286 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

n

n

n

H

r—i

1 I.

EXAMPLES:

10 OPEN 2,8,2"CUSTOMER,R,W"

20 RECORD#2,10,1

30 PRINT#2,A$

40 CLOSE 2

This example opens an existing relative file called "CUSTOMER" as

file number 2 in line 10. Line 20 positions the relative file pointer at

the first byte in record number 10. Line 30 actually writes the data,

A$, to file number 2.

The RECORD command accepts variables for its parameters. It is

often convienent to place a RECORD command within a FOR...

NEXT or DO loop. Also see DOPEN and OPEN.

REM —Comments or remarks about the operation of a program line

REM message

The REMark statement is a note to whoever is reading a listing of the

program. REM may explain a section of the program, give informa

tion about the author, etc. REM statements do not affect the opera

tion of the program, except to add length to it (and therefore use

more memory). Nothing to the right of the keyword REM is inter

preted by the computer as an executable instruction. Therefore, no

other executable statement can follow a REM on the same line.

EXAMPLE:

10 NEXT X:REM This line increments X.

RENAME —Change the name of a file on disk

RENAME "old filename" TO "new filename" [,Ddrive

number] [,Udevice number]

This command is used to rename a file on a disk, from the old

filename to the new filename. The disk drive does not RENAME a file

if it is OPEN.

EXAMPLES:

RENAME "TEST" TO 'FINALTEST",D0 Change the name of the

file "TEST" to "FINAL

TEST".

287 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

RENUMBER

RENAME (AS) to (B$),D0,U9 Change the filename

specified in A$ to the

filename specified in B$

on drive 0, device

number 9. Remember,

whenever a variable

name is used as a

filename, it must be

enclosed in parentheses.

u

u

u

u

u
—Renumber lines of a BASIC program

RENUMBER [new starting line number][,increment] [,old

starting line number]

The new starting line is the number of the first line in the program

after renumbering; the default value is 10. The increment is the inter

val between line numbers, (i.e., 10, 20, 30, etc.); the increment

default value is also 10. The old starting line number is the first line

number before you renumber the program. This allows renumbering

of a select portion of the program. The default in this case is the first

line of the program. This command can only be executed from direct

mode.

An "UNRESOLVED REFERENCE" error occurs if any reference to

line number that doesn't exist is encountered. A "LINE NUMBER

TOO LARGE" error occurs if RENUMBERing expands the program

beyond its limits. Either error leaves the program unharmed.

EXAMPLES:

RENUMBER

RENUMBER 20, 20,1

RENUMBER,, 65

Renumbers the program starting at

10, and increments each additional

line by 10.

Starting at line 1, renumbers the

program. Line 1 becomes line 20,

and other lines are numbered in

increments of 20.

Starting at line 65, renumbers in

increments of 10. Line 65 becomes

line 10. If you omit a parameter, you

must still enter a comma as a

placeholder.

288 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

n

n

n

n

n

RESTORE

RESUME

—Reset READ pointer so the DATA can be reREAD

RESTORE [line #]

When executed in a progrann, the pointer to the item in a DATA state

ment that is to be read next is reset to the first item in the DATA state

ment. This provides the capability to reREAD the data. If a line num

ber follows the RESTORE statement, the READ pointer is set to the

first data item in the specified program line. Otherwise the pointer is

reset to the beginning of the BASIC program.

EXAMPLES:

10 FOR I = 1 TO 3

20 READ X

30 TOTAL = X + TOTAL

40 NEXT

50 RESTORE

60 GOTO 10

70 DATA 10,20,30

10 READ A,B,C

20 DATA 100,500,750

30 READ X,Y,Z

40 DATA 36,24,38

50 RESTORE 40

60 READ S,P,Q

This example READs the data

in line 70 and stores it in

numeric variable X. It adds

the total of all the numeric

data items. Once all the data

has been READ, three cycles through

the loop, the READ pointer is

RESTOREd to the beginning of the

program and it returns to line 10 and

performs repetitively.

This example RESTORES the DATA

pointer to the beginning data

item in line 40. When line 60

is executed, it will READ the

DATA 36,24,38 from line 40,

since you don't need to READ line 20's

DATA again.

—Define where the program will continue (RESUME) after an error

has been trapped

RESUME [line # I NEXT]

This statement is used to restart program execution after TRAPping

an error. With no parameters, RESUME attempts to re-execute the

statement in which the error occurred. RESUME NEXT resumes

execution at the statement immediately following the one containing

the error; RESUME followed by a line number will GOTO the specific

line and resume execution from that line number. RESUME can only

be used in program mode.

EXAMPLE:

10 INPUT "OENTER A NUMBER";A

15 TRAP 100

20B = 100/A

289 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

40 PRINT'THE RESULT =";B: PRINT'THE END"

50 INPUT "DO YOU WANT TO RUN IT AGAIN (Y/N)";Z$:IF

Z$ = "Y"THEN10

60 STOP

100 INPUT'ENTER ANOTHER NUMBER (NOT ZERO)";A

110 RESUME 20

This example traps a "division by zero error" in line 20 if 0 is entered

in line 10. If zero is entered, the program goes to line 100, where you

are asked to input another number besides 0. Line 110 returns to line

20 to complete the calculation. Line 50 asks if you want to repeat the

program again. If you do, press the Y key.

RETURN —Return from subroutine

RETURN

This statement is always paired with the GOSUB statement. When

the program encounters a RETURN statement, it goes to the state

ment immediately following the last GOSUB command executed. If

no GOSUB was previously issued, then a RETURN WITHOUT

GOSUB ERROR message is displayed and the program stops. All

subroutines end with a RETURN statement.

EXAMPLE:

10 PRINT "ENTER SUBROUTINE"

20 GOSUB 100

30 PRINT "END OF SUBROUTINE"

90 STOP

100 PRINT "SUBROUTINE 1"

110 RETURN

This example calls the subroutine at line 100 which prints the mes

sage "SUBROUTINE 1" and RETURNS to line 30, the rest of the

program.

RUN —Execute BASIC program

1) RUN [line #]

2) RUN "filename" [,Ddrive number][,Udevice number]

Once a program has been typed into memory or LOADed, the RUN

command executes it. RUN clears all variables in the program

290 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

n

n

n

n

n

n

n

n

n

n

SAVE

before starting program execution. If there is a number following the

RUN command, execution starts at that line number. If there is a

filename following the RUN command, the named file is loaded from

the disk drive and RUN, with no further action required of the user.

RUN may be used within a program. The default drive number is 0

and default device number is 8.

EXAMPLES:

RUN

RUN 100

RUN"PRG1"

RUN(A$)

Starts execution from the beginning of the

program.

Starts program execution at line 100.

DLOADS "PRG1" from disk drive 8, and runs

it from the starting line number.

DLOADs the program named in the variable

A$.

—Store the program in memory to disk or tape

SAVE ["filename"][,device number][,EOT flag]

This command stores a program currently in memory onto a cas

sette tape or disk. If the word SAVE is typed alone followed by

RETURN, the Commodore 128 assumes that the program is to be

stored on cassette tape. It has no way of checking if there is already

a program on the tape in that location, so make sure you do not

record over valuable information on your tape. If SAVE is followed by

a filename in quotes or a string variable name, the Commodore 128

gives the program that name, so it may be located easily and

retrieved in the future. If a device number is specified for the SAVE,

follow the name with a comma (after the quotes) and a number or

numeric variable. Device number 1 is the tape drive, and number 8 is

the disk drive. After the device number on a tape command, there

can be a comma and a second number, which is 2. If the 2 is

present, the Commodore 128 puts an END-OF-TAPE marker (EOT

flag) after the program (tape output only). If, in trying to LOAD a pro

gram, the Commodore 128 finds one of these markers, rather than

loading the program, a FILE NOT FOUND ERROR is reported.

EXAMPLES:

SAVE

SAVE "HELLO"

SAVE A$,8

Stores program on tape, without a name.

Stores a program on tape, under the name

HELLO.

Stores on disk, with the name stored in

variable A$.

291 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

SCALE

SAVE "HELLO", 8 Stores on disk, with name HELLO (equivalent

to DSAVE "HELLO").

SAVE "HELLO", 1, 2 Stores on tape, with name HELLO, and

places an END-OF TAPE marker after the

program.

—Alter scaling in graphics mode

SCALE n [,xmax,ymax]

where:

n = 1 (on) or 0 (off)

In Standard bit map mode 320 < =X max < 32767

(default = 1023)

200< = Ymax< 32767

(default = 1023)

In Multicolor mode 160 < =X max < 32767

(default = 511)

160<=Ymax< 32767

(default = 511)

This statement changes the scaling of the bit maps in multicolor and

high-resolution modes. Entering:

SCALE 1

turns scaling on. Coordinates may then be scaled from 0 to 32767 in

both X and Y, rather than the normal scale values, which are:

multicolor mode X = 0 to 159 Y = 0 to 199

bit map mode X = 0 to 319 Y = 0 to 199

EXAMPLES:

10 GRAPHIC 1,1 Enter standard bit

20 SCALE 1:CIRCLE 1,180,100,100,100 map, turn scaling on to

default size (1023,1023)

and draw a circle.

10 GRAPHIC 3,1 Enter multicolor mode,

20 SCALE 1,1000,5000 turn scaling on to size

30 CIRCLE 1,180,100,100,100 (1000,5000) and draw a

circle.

The SCALE command affects the sprite coordinates in the MOVSPR

command. If you add scaling to a program that contains sprites,

adjust the MOVSPR coordinates accordingly.

292 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

I }

I 1

I)

SCNCLR

r \

SCRATCH

n

n

SLEEP

—Clear screen

SCNCLR mode number

The modes are as follows:

Mode Number

0

1

2

3

4

5

Mode

40 column (VIC) text

bit map

split screen bit map

multicolor bit map

split screen multicolor bit map

80 column (8563) text

This statement with no argument clears the graphic screen, if it is

present, otherwise the current text screen is cleared.

EXAMPLES:

SCNCLR 5 Clears 80 column text screen.

SCNCLR 1 Clears the (VIC) bit map screen.

SCNCLR 4 Clears the (VIC) split screen multicolor bit map.

—Delete a file from the disk directory

SCRATCH "filename" [,Ddrive number][,Udevice number]

This command deletes a file from the disk directory. As a precaution,

the system asks "ARE YOU SURE?" (in direct mode only) before the

Commodore 128 completes the operation. Type a Y to perform the

SCRATCH or press any other key to cancel the operation. Use this

command to erase unwanted files, and to create more space on the

disk. The filename may contain template, or wildcards (?,* etc.). The

default drive number is 0 and default device number is 8.

EXAMPLE:

SCRATCH "MY BACK", DO

This erases the file MY BACK from the disk in drive 0.

—Delay program for a specific period of time

SLEEPN

where N is seconds 0< N < 65535.

293 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

u

—Return the Commodore 128 to 1 Mhz operation j /

SLOW

The Commodore 128 is capable of running the 8502 microprocessor \ f

at a speed of 1 or 2 megahertz (Mhz). *—'

The SLOW command slows down the microprocessor to 1 Mega- .

hertz from 2 Megahertz. The FAST command sets the Commodore Lj
at 2 Mhz. The Commodore 128 can process internally substantially

faster at 2 Mhz than at 1 Mhz. However, there is no increase in the

speed of input and output to peripherals. The 8502 microprocessor lJ
defaults to 1 Mhz speed.

—Output sound effects and musical notes ^jj

SOUND v,f,d[,dir][,m][,s][,w][,p]

I *!
where : v = voice (1..3) I)

f = frequency value (0..65535)

d = duration (0..32767) { »

dir = step direction (0(up) ,1(down) or 2(oscillate)) default = 0 I—I
m = minimum frequency (if sweep is used) (0..65535)

default = 0 < i

s = step value for sweep (0..32767) default = 0 LJ
w = waveform (0 = triangle, 1 = sawtooth,2 = variable,

3 = noise) default-2 < .

p = pulse width (0..4095) default = 2048 LJ

The SOUND command is a fast and easy way to create sound

effects and musical tones. The three required parameters v,f and d J I
select the voice, frequency and duration of the sound. The duration

is in units called jiffies. Sixty jiffies equals 1 second.

The SOUND command can sweep through a series of frequencies

which allows sound effects to pass through a range of notes. Specify

the direction of the sweep with the DIR parameter. Set the minimum I I

frequency of the sweep with M and the step value of the sweep with (—
S. Select the appropriate waveform with W and specify P as the

width of the variable pulse waveform if selected in W.)\

EXAMPLES:

SOUND 1,40960,60 Play a SOUND at frequency 40960 Vj

in voice 1 for 1 second.

294 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

I 1

/ I

f 1

I)

n

SPRCOLOR

i i SPRDEF

I \

, \

SOUND 2,20000,50,0,2000,100 Output a sound by sweeping

through frequencies starting at

2000 and incrementing upward in

units of 100 up to 20,000. Each

frequency is played for 50 jiffies.

SOUND 3,5000,90,2,3000,500,1 This example outputs a range of

sounds starting at a minimum

frequency of 3000, through 5000, in

increments of 500. The direction of

the sweep is back and forth

(oscillating). The selected waveform

is sawtooth and the voice selected

is 3.

—Set multicolor 1 and/or multicolor 2 colors for all sprites

SPRCOLOR [smcr-1][,smcr-2]

where:

smcr-1 Sets multicolor 1 for all sprites.

smcr-2 Sets multicolor 2 for all sprites.

Either of these parameters may be any color from 1 through 16.

EXAMPLES:

SPRCOLOR 3,7 Sets sprite multicolor 1 to red and multicolor 2 to

blue.

SPRCOLOR 1,2 Sets sprite multicolor 1 to black and multicolor 2 to

white.

—Enter the SPRite DEFinition mode to create and edit sprite

images.

SPRDEF

The SPRDEF command defines sprites interactively.

Entering the SPRDEF command, displays a sprite work area on the

screen which is 24 characters wide by 21 characters tall. Each char

acter position in the grid corresponds to a sprite pixel in the sprite

displayed to the right of the work area. Here is a summary of the

SPRite DEFinition mode operations and the keys that perform them:

295 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

User Input

1-8

A

CRSR keys

RETURN key

RETURN key

HOME key

CLR key

1-4

CTRL key, 1-8

Commodore key, 1-8

STOP key

SHIFT RETURN

X

Y

M

C

Description

Selects a sprite number.

Turns on and off automatic cursor

movement.

Moves cursor.

Moves cursor to start of next line.

Exits sprite designer mode at the SPRITE

NUMBER? prompt only.

Moves cursor to top left corner of sprite

work area.

Erases entire grid.

Selects color source.

Selects sprite foreground color (1-8).

Selects sprite foreground color (9-16).

Cancels changes and returns to prompt.

Saves sprite and returns to SPRITE

NUMBER? prompt.

Expands sprite in X (horizontal) direction.

Expands sprite in Y (vertical) direction.

Multicolor sprite.

Copies sprite data from one sprite to

another.

SPRITE —Turn on and off, color, expand and set screen priorities for a sprite

SPRITE (number) [,on/off][,fgnd][,priority][,x-exp]

[,y-exp][,mode]

The SPRITE statement controls most of the characteristics of a

sprite.

Parameter Description

number Sprite number (1-8)

on/off Turn sprite on (1) or off (0)

foreground Sprite foreground color (1-16)

priority Priority is 0 if sprites appear in front of objects on

the screen. Priority is 1 if sprites appear in back of

objects on the screen.

x-exp Horizontal EXPansion on (1) or off (0)

y-exp Vertical EXPansion on (1) or off (0)

mode Select standard sprite (0) or multicolor sprite (1)

Unspecified parameters in subsequent sprite statements take on the

characters of the previous SPRITE statement. You may check the

characteristics of a SPRITE with the RSPRITE function.

u

LJ

u

u

LJ

u

LJ

U

U

U

u

LJ

296 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

/ i

/ I

f \

SPRSAV

n

SSHAPEIGSHAPE

EXAMPLES:

SPRITE 1,1,3

SPRITE 2,1,7,1,1,1

Turn on sprite number 1 and color it red.

Turn on sprite number 2, color it blue

make it pass behind objects on the

screen and expand it in the vertical and

horizontal directions.

SPRITE 6,1,1,0,0,1,1 Turn on SPRITE number 6, color it black.

The first 0 tells the computer to display

the sprites in front of objects on the

screen. The second 0 and the 1

following tell the C128 to expand the

sprite verticaly only. The last 1 specifies

multicolor mode. Use the SPRCOLOR

command to select the sprite's

multicolor.

—Store sprite data from a text string variable into a sprite storage

area or vice versa

SPRSAV (origin),(destination)

This command transfers a sprite image from a string variable to a

sprite storage area. It can also transfer the data from the sprite stor

age area into a string variable. Either the origin or the destination

can be a sprite number or a string variable but they both cannot be

string variables. If you are moving a string into a sprite, only the first

63 bytes of data are used. The rest are ignored since a sprite can

only hold 63 data bytes.

EXAMPLES:

SPRSAV 1,A$ Transfers the image pattern from sprite 1 to the

string named A$.

SPRSAV B$,2 Transfers the data from string variable B$ into

sprite 2.

SPRSAV 2,3 Transfers the data from sprite 2 to sprite 3.

—Save/retrieve shapes to/from string variables

SSHAPE and GSHAPE are used to save and load rectangular areas

of multicolor or bit mapped screens to/from BASIC string variables.

The command to save an area of the screen into a string variable is:

SSHAPE string variable, X1, Y1 [,X2,Y2]

297

\

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

u

where: . ,

string variable String name to save data in

X1,Y1 Corner coordinate (0,0 through 319,199)

(scaled)) j

X2,Y2 Corner coordinate opposite (X1 ,Y1) —'
(default is the PC)

Because BASIC linnits strings to 255 characters, the size of the area LJ
that can be saved is limited. The string size required can be calcu

lated using one of the following (unsealed) formulas:

L(mcm)=INT((ABS(X1-X2) + 1)/4 + .99) * (ABS(Y1 -Y2)+ 1) + 4 ^—J
L(h- r)= INT ((ABS(X1 -X2) + 1) / 8 + .99) * (ABS(Y1 - Y2)+ 1) + 4 ,

I
The first equation pertains to multicolor bit map mode; the second

equation applies to standard bit map mode.

The command to retrieve (load) the data from a string variable and

display it on specified screen coordinates is:

GSHAPE string variable [,X,Y] [,mode]

where:

string Contains shape to be drawn

X,Y Top left coordinate (0,0 through 319,199) telling

where to draw the shape (scaled—the default is

the pixel cursor)

mode Replacement mode:

0: place shape as is (default)

1: invert shape

2: OR shape with area

3: AND shape with area

4: XOR shape with area

The replacement mode allows you to change the data in the string

variable so you can invert it, perform a logical OR, exlusive OR or

AND operation on the image. The X and Y values can place the pixel

cursor at absolute coordinates such as (100,100) or at coordinates

relative to the previous position (+ / - X and + / - Y) of the pixel cur

sor such as (+ 20, - 10). The coordinate of one axis (X or Y) can be

relative and the other can be absolute. Here are the posible combi

nations of ways to specify the X and Y coordinates.

x,y absolute x, absolute y

+ /-x,y relative x, absolute y

x, + / - y absolute x, relative y

+ / - x, + / - y relative x, relative y

298 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

Also see the LOCATE command for information on the pixel cursor.

(0°)

(360°)

270c PC • (90°)

180c

The graphics commands DRAW, BOX, CIRCLE, PAINT, LOCATE AND

GSHAPE have an additional notation which allows you to specify a

distance and an angle relative to the previous coordinates of the

pixel cursor (PC). The notation is as follows:

KEYWORD

where:

KEYWORD

SOURCE

DISTANCE

ANGLE

EXAMPLES:

SSHAPE A$,10,10

SSHAPE B$,20,30,47,51

SSHAPE D$, +10, + 10

source, distance; angle

is a graphics command such as DRAW,

CIRCLE, PAINT, LOCATE, BOX or GSHAPE

is the same code as in all of the graphics

commands

is the number of pixels to move the pixel

cursor

is the number of degrees to move relative to

the previous pixel cursor coordinate

Saves a rectangular area from the

coordinates 10,10 to the location of the

pixel cursor, into string variable A$.

Saves a rectangular area from top left

coordinate (20,30) through bottom right

coordinate (47,51) into string variable

B$.

Saves a rectangular area 10 pixels to

the right and 10 pixels down from the

current position of the pixel cursor.

299 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

GSHAPE A$,120,20

GSHAPE B$,30,30,1

GSHAPE C$, +20, + 30

Retrieves shape contained in string

variable A$ and displays it at top left

coordinate (120,20).

Retrieves shape contained in string

variable B$ and displays it at top left

coordinate 30,30. The shape is inverted

due to the replacement mode being

selected by the 1.

Retrieve shape from string variable C$

and displays it 20 pixels to the right and

30 pixels down from the current position

of the pixel cursor.

NOTE: Beware using modes 1-4 with multicolor shapes. You may

obtain unpredictable results.

u

u

U

u

u

u

STASH —Move contents of host memory to expansion RAM

STASH #bytes, intsa, expsa, expb

Refer to FETCH command for description of parameters.

STOP —Halt program execution

STOP

This statement halts the program. A message, BREAK IN LINE XXX,

occurs (only in program mode), where XXX is the line number con

taining the STOP command. The program can be restarted at the

statement following STOP if the CONT command is used immedi

ately, without any editing occurring in the listing. The STOP state

ment is often used while debugging a program.

SWAP —Swap contents of host RAM with contents of expansion RAM

SWAP #bytes, intsa, expsa, expb

Refer to FETCH command for description of parameters.

SYS —Call and execute a machine language subroutine at the specified

address

SYS address [,a][,x][,y][,s]

This statement performs a call to a subroutine at a given address in a

300 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

[\

n

n

TEMPO

n

TRAP

n

301

memory configuration set up according to the BANK command.

Optionally, arguments a,x,y and s are loaded into the accumulator, x,

y and status registers, respectively before the subroutine is called.

The address range is 0 to 65535. The program begins executing the

machine-language program starting at that memory location. Also

see the BANK command.

EXAMPLES:

SYS 40960

SYS 8192,0

Calls and executes the machine-language routine at

location 40960.

Calls and executes the machine-language routine at

location 8192 and load zero into the accumulator.

—Define the speed of the song being played

TEMPO n

where n is a relative duration between (1 and 255)

The actual duration for a whole note is determined by using the for

mula given below:

whole note duration = 19.22/n seconds

The default value is 8, and note duration increases with n.

EXAMPLES:

TEMPO 16 Defines the Tempo at 16.

TEMPO 1 Defines the TEMPO at the slowest speed.

TEMPO 250 Defines the TEMPO at 250.

—Detect and correct program errors while a BASIC program is

RUNning

TRAP [line #]

When turned on, TRAP intercepts most error conditions (excluding

DOS error messages but including the STOP KEY) except an

"UNDEF'D STATEMENT ERROR." In the event of any execution

error, the error flag is set and execution is transferred to the line

number specified in the TRAP statement. The line number in which

the error occurred can be found by using the system variable EL.

The specific error condition is contained in system variable ER. The

string function ERR$ (ER) gives the error message corresponding to

any error condition.

The RESUME statement can be used to resume program execution.

TRAP with no line number turns off error trapping. An error in a TRAP

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

; \

VERIFY

routine cannot be trapped. Also see system variables ST, DS and

DS$.

EXAMPLES:

100 TRAP 1000 If an error occurs, go to line 1000.

1000 ?ERR$ (ER);EL Print the error message, and the error

number.

1010 RESUME Resume with program execution.

—Turn off error tracing mode

TROFF

This statement turns off trace mode.

—Turn on error tracing mode

TRON

TRON is used in program debugging. This statement begins trace

mode. When you RUN the program, the line numbers of the program

appear in brackets before any action for that line occurs.

—Verify program in memory against one saved to disk or tape

VERIFY "filename" [,device number] ^relocate flag]

This command causes the Commodore 128 to check the program

on tape or disk against the one in memory, to determine if the pro

gram is really SAVEd. This command is also very useful for position

ing a tape so that the Commodore 128 writes after the last program

on the tape. It will do so, and inform the user that the programs don't

match. The tape is then positioned properly, and the next program

can be stored without fear of erasing the old one.

VERIFY, with no arguments after the command, causes the Commo

dore 128 to check the next program on tape, regardless of its name,

against the program now in memory. VERIFY, followed by a program

name in quotes or a string variable in parentheses, searches the

tape for that program and then checks it against the program in

memory when found. VERIFY, followed by a name, a comma and a

number, checks the program on the device with that number (1 for

tape, 8 for disk). The relocate flag is the same as in the LOAD com

mand. It verifies the program from the memory location from which

it was SAVEd.

EXAMPLES:

VERIFY Checks the next program on the tape.

302 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

u

u

LJ

Li

Li

LJ

U

U

LJ

U

U

LJ

LJ

U

U

u

u

u

I \

VOL

n

WAIT

n

VERIFY "HELLO" Searches for HELLO on tape, checks it

against memory.

VERIFY "HELLO", 8,1 Searches for HELLO on disk, then checks

it against memory

NOTE: If a graphic area is reallocated for use after a SAVE, VERIFY

and DVERIFY will report an error. Technically this is correct. BASIC

text in this case has been moved from its original (saved) location

to another address range. Hence, VERIFY, which performs byte-to-

byte comparisons, will fail, even though the program is valid.

—Define output level of sound

VOL volume level

This statement sets the volume for SOUND and PLAY statements.

VOLUME level can be set from 0 to 15, where 15 is the maximum

volume, and 0 is off. VOL affects all voices.

EXAMPLES:

VOL 0 Sets volume to its lowest level.

VOL 15 Sets volume for SOUND and PLAY statements to its highest

output.

—Pause program execution until a data condition is satisfied

WAIT (Location), <mask-1 > [,mask-2>]

The WAIT statement causes program execution to be suspended

until a given memory address recognizes a specified bit pattern or

value. In other words, WAIT can be used to halt the program until

some external event has occurred. This is done by monitoring the

status of bits in the Input/Output registers. The data items used with

the WAIT can be any values. For most programmers, this statement

should never be used. It causes the program to halt until a specific

memory location's bits change in a specific way. This is used for

certain I/O operations and almost nothing else. The WAIT statement

takes the value in the memory location and performs a logical AND

operation with the value in mask-1. If mask-2 is specified, the result

of the first operation is exclusively ORed with mask-2. In other words,

mask-1 "filters out" any bits not to be tested. Where the bit is 0 in

mask-1, the corresponding bit in the result will always be 0. The

mask-2 value flips any bits, so that an off condition can be tested for

as well as an on condition. Any bits being tested for a 0 should have a

1 in the corresponding position in mask-2. If corresponding bits of

the <mask-1 > and <mask-2> operands differ, the exclusive-OR opera

tion gives a bit result of 1. If the corresponding bits get the same

303 BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

WIDTH

WINDOW

304

result the bit is 0. It is possible to enter an infinite pause with the

WAIT statement, in which case the RUN/STOP and RESTORE keys

can be used to recover. WAIT may require a BANK command if the

memory you wish to access is not in the currently selected BANK.

The first example below WAITs until a key is pressed on the tape unit

to continue with the program. The second example will WAIT until a

sprite collides with the screen background.

EXAMPLES:

WAIT 1, 32, 32

WAIT 53273, 6, 6

WAIT 36868,144,16

(144 and 16 are binary masks. 144 = 10010000 in binary and 16 =

10000 in binary.)

—Set the width of drawn lines

WIDTH n

This command sets the width of lines drawn using BASIC'S graphic

commands to either single or double width. Giving n a value of 1

defines a single width line; a value of 2 defines a double width line.

EXAMPLES:

WIDTH 1 Set single width for graphic commands

WIDTH 2 Set double width for drawn lines

—Defines a screen window

WINDOW top left col,top left row,bot right col, bot right

row[,clear]

This command defines a logical window within the 40 or 80 column

text screen. The coordinates must be in the range 0-39/79 for column

values and 0-24 for row values screen. The clear flag, if provided (1),

causes a screen-clear to be performed (but only within the limits of

the newly described window).

EXAMPLES:

WINDOW 5,5,35,20 Defines a window with top left corner

coordinate as 5,5 and bottom right corner

coordinate as 35,20.

WINDOW 10,2,33,24,1 Defines a window with upper left corner

coordinate (10,2) and lower right corner

coordinate (33,24). Also clears the portion of

the screen with the window as specified by

the 1.

BASIC 7.0 ENCYCLOPEDIA—Basic Commands and Statements

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

LJ

LJ

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

SECTION 18

BASIC Functions

305 BASIC 7.0 ENCYCLOPEDIA--Basic Functions

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

u

Basic Functions

/ 1

I I

n

n

n

n

n

n

ABS

ASC

ATN

The format of the function description is:

FUNCTION (argument)

where the argument can be a numeric value, variable or string.

Each function description is followed by an EXAMPLE. The lines

appearing in bold face in the examples are the functions you type in.

The line without bold is the computer's response.

—Return absolute value

ABS(X)

The absolute value function returns the positive value of the argu

ment X.

EXAMPLE:

PRINT ABS (7*(-5))

35

—Return CBM ASCII code for character

ASC(XS)

This function returns the ASCII code of the first character of X$. You

no longer have to append CHR$(0) to a null string. ILLEGAL QUAN

TITY ERROR is no longer issued.

EXAMPLE:

X$ = C12&PRINT ASC (X$)

67

—Return angle whose tangent is X radians

ATN (X)

This function returns the angle whose tangent is X, measured in radi

ans.

EXAMPLE:

PRINT ATN (3)

1.24904577

307 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

BUMP

CHR$

COS

—Return sprite collision information

BUMP(N)

To determine which sprites have collided since the last check, use

the BUMP function. BUMP(1) records which sprites have collided

with each other and BUMP(2) records which sprites have collided

with other objects on the screen. COLLISION need not be active to

use BUMP The bit positions (0-7) in the BUMP value correspond to

sprites 1 through 8 respectively. BUMP(n) is reset to zero after each

call.

The value returned by BUMP is the result of two raised to the power

of the bit position. For example, if BUMP returned a value of 16,

sprite 4 was involved in a collision since 2 raised to the fourth power

equals 16. Here's how the sprite numbers and BUMP values

returned correspond:

BUMP Value: 128

Sprite Number: 7

64

6

32

5

16

4

8

3

4

2

2

1

1

0

EXAMPLES:

PRINT BUMP (1)

12 Indicates that sprite 2 and 3 have collided.

PRINT BUMP (2)

32 Indicates that sprite 5 has collided with an

object on the screen.

—Return ASCII character for specified CBM ASCII code

CHR$(X)

This is the opposite of ASC and returns the string character whose

CBM ASCII code is X. Refer to Appendix E for a table of CHR$ codes.

EXAMPLES:

PRINT CHR$ (65) Prints the A character.

A

PRINT CHR$ (147) Clears the text screen.

—Return cosine for angle of X radians

COS(X)

This function returns the value of the cosine of X, where X is an angle

measured in radians.

EXAMPLE:

PRINT COS (tt/3)

.500000001

u

u

LJ

U

U

LJ

U

LJ

LJ

U

308 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

DEC

H

I \

—Return decimal value of hexadecimal number string

DEC (hexadecimal-string)

This function returns the decimal value of a character string repre

senting a hexadecimal number in the range 0-$FFFF (0-65535

decimal).

EXAMPLE:

PRINT DEC ("D020")

53280

n

m

n

ERRS

—Return the string describing an error condition

ERR$(N)

This function returns a string describing an error condition. The

range for N lies between 1 and 41. Also see system variables EL and

ER and Appendix A for a list of BASIC error messages.

EXAMPLES:

PRINT ERR$(20)

DIVISION BY ZERO

PRINT ERR$(38)

LINE NUMBER TOO LARGE

n

n

n

EXP —Return value of an approximation of e (2.7182813) raised to the X

power

EXP(X)

This function returns a value of e (2.7182813) raised to the power of

X.

EXAMPLE:

PRINT EXP(1)

2.71828183

n

n

FNxx —Return value from user defined function

FNxx(x)

This function returns the value from the user-defined function xx

created in a DEF FNxx statement.

309 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

EXAMPLE:

FRE

HEX$

INSTR

310

10 DEF FNAA(X) = (X-32)*5/9

20 INPUT X

30 PRINT FNAA(X)

RUN

? 40 (? is input prompt)

4.44444445

NOTE: If GRAPHIC is used in a program that defines a function, issue

the GRAPHIC command before defining the function, or else the

function definition is destroyed.

—Return number of available bytes in memory

FRE (X)

where X is the bank number. X = 0 BASIC program storage and X = 1

to check for available BASIC variable storage.

EXAMPLES:

PRINT FRE (0) Returns the number of free bytes for BASIC

48893 programs.

PRINT FRE

(1) Returns the number of free bytes for BASIC

64256 variable storage.

—Return hexadecimal number string from decimal number

HEX$(X)

This function returns a four-character string containing the hexadeci

mal representation of value X (0 < = X < = 65535). The decimal

counterpart of this function is DEC.

EXAMPLE:

PRINT HEX$(53280)

D020

—Return position of string 1 in string 2

INSTR (string 1, string 2 ^starting position])

The INSTR function searches for the first occurrence of string 2

within string 1, and returns the position within the string where the

match is found. The optional parameter for STARTING POSITION

establishes the position in string 1 where the search begins. The

STARTING POSITION must be in the range 1 through 255. If no

match is found or, if the STARTING POSITION is greater than the

length of string 1 or if string 1 is null, INSTR returns the value 0. If

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

u

u

LJ

U

U

u

u

LJ

LJ

LJ

U

U

J \

I \

n

H

n

n

n

n

n

INT

JOY

string 2 is null, INSTR returns the value of the STARTING POSITION

or the value 1.

EXAMPLE:

PRINT INSTR ("COMMODORE 128","128")

11

—Return integer form (truncated) of a floating point value

INT(X)

This function returns the integer value of the expression. If the

expression is positive, the fractional part is left out. If the expression

is negative, any fraction causes the next lower integer to be

returned.

EXAMPLES:

PRINT INT(3.14)

3

PRINTING-3.14)

-4

—Return position of joystick and the status of the fire button

JOY(N)

when N equals:

1 JOY returns position of joystick 1.

2 JOY returns position of joystick 2.

Any value of 128 or more means that the fire button is also pressed.

To find the JOY value, add the direction value of the joystick plus 128,

if the fire button is pressed. The direction is indicated as follows:

8

6

0

5

EXAMPLES:

JOY (2) =135

Joystick 2 fires to the left.

IF (JOY (1) >127) = 128 THEN PRINT "FIRE".

Determines whether the fire button is pressed.

311 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

LEFTS

LEN

LOG

MID$

312

—Return the leftmost characters of string

LEFT$ (string,integer)

This function returns a string comprised of the number of leftmost

characters of the string determined by the specified integer. The

integer argument must be in the range 0 to 255. If the integer is

greater than the length of the string, the entire string is returned. If

an integer value of zero is used, then a null string (of zero length) is

returned.

EXAMPLE:

PRINT LEFTS ("C0MM0D0RE",5)

COMMO

—Return the length of a string

LEN (string)

This function returns the number of characters in the string expres

sion. Non-printed characters and blanks are included.

EXAMPLE:

PRINT LEN ("COMMODORE128")

12

—Return natural log of X

LOG(X)

This function returns the natural log of X. The natural log is log to the

base e (see EXP(X)). To convert to log base 10, divide by LOG(10).

EXAMPLE:

PRINT LOG (37/5)

2.00148

—Return a substring from a larger string

MID$ (string,starting position[,length])

This function returns a substring specified by the LENGTH, starting

at the character specified by the starting position. The starting posi

tion of the substring defines the first character where the substring

begins. The length of the substring is specified by the length argue-

ment. Both of the numeric arguments can have values ranging from

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

u

u

u

u

u

u

LJ

U

u

u

PEEK

PEN

1 to 255. If the starting position value is greater than the length of the

string, or if the length value is zero, then MID$ returns a null string

value. If the length argument is left out, all characters to the right of

the starting position are returned. You can assign a MID$ to a value

with the equals sign.

EXAMPLE:

PRINT MID$("COMMODORE 128",3,5)

MMODO

—Return contents of a specified memory location

PEEK(X)

This function returns the contents of memory location X, where X is

located in the range 0 to 65535, returning a result between 0 and

255. This is the counterpart of the POKE statement. The data will be

returned from the bank selected by the most recent BANK com

mand. See the BANK command.

EXAMPLE:

10 BANK 15:VIC = DEC("D000")

20 FOR I = 1 TO 47

30 PRINT PEEK(VIC + I)

40 NEXT

This example displays the contents of the registers of the VIC chip.

—Return X and Y coordinates of the light pen

PEN(n)

where n = 0 PEN returns the X coordinate of light pen position,

n = 1 PEN returns the Y coordinate of light pen position,

n = 2 PEN returns the X coordinate of the 80 column display,

n = 3 PEN returns the Y coordinate of the 80 column display,

n = 4 PEN returns the (80-column) light pen trigger value.

Note that, like sprite coordinates, the PEN value is not scaled and

uses real coordinates, not graphic bit map coordinates. The X posi

tion is given as an even number, ranging from approximately 60 to

320, while the Y position can be any number from 50 to 250. These

are the visible screen coordinate ranges, where all other values are

not visible on the screen. A value of zero for either position means

the light pen is off screen and has not triggered an interrupt since

313 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

POINTER

POS

the last read. Note that COLLISION need not be active to use PEN. A

white background is usually required to stimulate the light pen. PEN

values vary from CRT to CRT

Unlike the 40 column (VIC) screen, the 80 column (8563) coordinates

are character row and column positions and not pixel coordinates

like the VIC screen. Both the 40 and 80 column screen coordinate

values are approximate and vary, due to the nature of light pens. The

read values are not valid until PEN(4) is true.

EXAMPLES:

10 PRINT PEN(0);PEN(1) Displays the X and Y coordinates of

the light pen (for the 40 column

screen).

10 DO UNTIL PEN(4):LOOP Ensures the read values are valid (for

the 80 column screen).

20X = PEN(2)

30Y = PEN(3)

40 REM:REST OF PROGRAM

—Return the value of pi (3.14159265)

7T

EXAMPLE:

PRINT 7T This returns the result 3.14159265.

—Return the address of a variable name

POINTER (variable name)

EXAMPLE:

A = POINTER (Z) This example returns the address of variable Z.

(Address returned is in BANK 1.)

314

—Return the current cursor column position within the current

screen window

POS(X)

The POS function indicates where the cursor is within the defined

screen window. X is a dummy argument, which must be specified,

but the value is ignored.

EXAMPLE:

PRINT POS(0)

10

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

u

LJ

U

LJ

U

U

u

u

u

I [

u

u

u

POT

/ 's

n

n

RCLR

J \

T 1

J t

n

n

This displays the current cursor position within the defined text win

dow, in this case 10.

—Returns the value of the game-paddle potentiometer

POT (n)

when:

n = 1, POT returns the position of paddle #1

n = 2, POT returns the position of paddle #2

n = 3, POT returns the position of paddle #3

n = 4, POT returns the position of paddle #4

The values for POT range from 0 to 255. Any value of 256 or more

means that the fire button is also depressed.

EXAMPLE:

10 PRINT POT(1)

20 IF POT(1) > 256 THEN PRINT "FIRE"

This example displays the value of the game paddle 1.

—Return color of color source

RCLR(N)

This function returns the color (1 through 16) assigned to the color

source N (0< N < 6), where the following N values apply:

0 = 40-column background

1 = bit map foreground

2 = multicolor 1

3 = multicolor 2

4 = 40-column border

5 = 40- or 80-column character color

6 = 80-column background color

The counterpart to the RCLR function is the COLOR command.

EXAMPLE:

10 FOR I = 0 TO 6

20 PRINT "SOURCE";I;"IS COLOR CODE";RCLR(I)

30 NEXT

This example prints the color codes for all seven color sources.

315 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

ROOT

RGR

RIGHTS

—Return current position or color source of pixel cursor

RDOT (N)

where:

N = 0 returns the X coordinate of the pixel cursor

N = 1 returns the Y coordinate of the pixel cursor

N = 2 returns the color source of the pixel cursor

This function returns the location of the current position of the pixel

cursor (PC) or the current color source of the pixel cursor. The

returned coordinate value is affected by scaling, and will return the

scaled coordinate value.

EXAMPLES:

PRINT RDOT(0) Returns X position of PC

PRINT RDOT(1) Returns Y position of PC

PRINT RDOT(2) Returns color source of PC

—Return current graphic mode

RGR(X)

This function returns the current graphic mode. X is a dummy argu

ment, which must be specified. The counterpart of the RGR function

is the GRAPHIC command. The value returned by RGR(X) pertains to

the following modes:

VALUE

0

1

2

3

4

5

EXAMPLE:

GRAPHIC MODE

40 column (VIC) text

Standard bit map

Split screen bit map

Multicolor bit map

Split screen Multicolor bit map

80 column (8563) text

316

PRINT RGR(O) Displays the current graphic mode;

1 in this case, standard bit map mode.

—Return sub-string from rightmost end of string

RIGHTS ((string), (numeric))

This function returns a sub-string taken from the rightmost charac

ters of the string argument. The length of the sub-string is defined by

the length argument which can be any integer in the range of 0 to

255. If the value of the numeric expression is zero, then a null string

is returned. If the value given in the length argument is greater than

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

LJ

U

U

U

u

u

u

u

u

u

u

u

RND

n

n

H

n

n
RSPCOLOR

the length of the string, the entire string is returned. Also see the

LEFTS and MID$ functions.

EXAMPLE:

PRINT RIGHT$("BASEBALL",5)

EBALL

—Return a random number

RND (X)

This function returns a random number between 0 and 1. This is use

ful in games, to simulate dice roll and other elements of chance. It is

also used in some statistical applications.

If X = 0 RND returns a random number based on the hardware

clock.

If X > 1 RND generates a reproducible psuedo-random number

based on the seed value below.

If X < 0 produces a random number which is used as a base

called a seed.

To simulate the rolling of a die, use the formula INT(RND(1)*6 +1).

First the random number from 0 to 1 is multiplied by 6, which

expands the range to 0-6 (actually, greater than zero and less than

six). Then 1 is added, making the range greater than 1 and less than

7. The INT function truncates all the decimal places, leaving the

result as a digit from 1 to 6.

EXAMPLES:

PRINT RND(O) Displays a random number

.507824123 between 0 and 1.

PRINT INT(RND(1)*100 + 1) Displays a random number

89 between 1 and 100.

—Return sprite multicolor values

RSPCOLOR (register)

When:

X = 1 RSPCOLOR returns the sprite multicolor 1.

X = 2 RSPCOLOR returns the sprite multicolor 2.

The returned color value is a value between 1 and 16. The counter

part of the RSPCOLOR function is the SPRCOLOR statement. Also

see the SPRCOLOR statement.

317 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

RSPPOS

EXAMPLE:

10 SPRITE 1,1,2,0,1,1,1
20 SPRCOLOR 5,7

30 PRINT'SPRITE MULTICOLOR 1 IS";RSPCOLOR(1)

40 PRINT'SPRITE MULTICOLOR 2 IS";RSPCOLOR(2)

RUN

SPRITE MULTICOLOR 1 IS 5

SPRITE MULTICOLOR 2 IS 7

In this example line 10 turns on sprite 1, colors it white, expands it in

both the X and Y directions and displays it in multicolor mode. Line

20 selects sprite multicolors 1 and 2. Lines 30 and 40 print the RSP-

COLOR values for multicolor 1 and 2.

—Return the speed and position values of a sprite

RSPPOS (sprite number,position/speed)

where sprite number identifies which sprite is being checked, and

position and speed specifies X and Y coordinates or the sprite's

speed.

When position equals:

0 RSPPOS returns the current X position of the specified sprite.

1 RSPPOS returns the current Y position of the specified sprite.

When speed equals:

2 RSPPOS returns the speed (0-15) of the specified sprite.

EXAMPLE:

10 SPRITE 1,1,2

20 MOVSPR 1,45#13

30 PRINT RSPPOS (1,0);RSPPOS (1,1);RSPPOS (1,2)

This example returns the current X and Y sprite coordinates and the

speed (13). The returned coordinate value is affected by scaling. If

scaling is enabled, the returned coordinate is proportional to the

specified scaled coordinates.

u

u

u

LJ

U

U

u

u.

LJ

LJ

U

LJ

LJ

U

RSPRDTE

318

—Return sprite characteristics

RSPRITE (sprite number,characteristic)

RSPRITE returns sprite characteristics that were specified in the

SPRITE command. Sprite number specifies the sprite you are check-

BASIC 7.0 ENCYCLOPEDIA—Basic Functions

u

LJ

U

/ f

i)

1 \

n

n

n

n

n

RWINDOW

ing and the characteristic specifies the sprite's display qualities as

follows:

Characteristic

0

1

2

3

4

5

EXAMPLE:

RSPRITE returns

these values:

Enabled(1)/disabled(O)

Sprite color (1-16)

Sprites are displayed in front

of (0) or behind (1) objects

on the screen

Expand in X direction

Expand in Y direction

Multicolor

yes = 1, no = 0

yes=1, no = 0

yes=1, no = 0

10 FOR I = 0 TO 5

20 PRINT RSPRITE (1,1)

30 NEXT

This example prints all 5

characteristics of sprite 1.

—Returns the size of the current window

RWINDOW (n)

When n equals:

0 RWINDOW returns a value one less than the number of lines in

the current window.

1 RWINDOW returns a value one less than the number of rows in

the current window.

2 RWINDOW returns either of the values 40 or 80, depending on

the current screen output format you are using.

The counterpart of the RWINDOW function is the WINDOW

command.

EXAMPLE:

10 WINDOW 1,1,10,10

20 PRINT RWINDOW(0);RWINDOW(1);RWINDOW(2)

RUN

9 9 40

319 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

SGN

SIN

SPC

—Return sign of argument X

SGN(X)

This function returns the sign,(positive, negative or zero) of X. The

result is +1 if X > 0,0 if X = O.and -1 if X < 0.

EXAMPLE:

PRINT SGN(4.5);SGN(0);SGN(-2.3)

1 0 -1

—Return sine of argument

SIN(X)

This is the trigonometric sine function. The result is the sine of X. X is

measured in radians.

EXAMPLE:

PRINT SIN (tt/3)

.866025404

—Skip spaces on the screen

SPC(X)

This function is used in PRINT or PRINTf commands to control the

formatting of data, as either output to the screen or output to a logi

cal file. The number of SPaCes specified by X determines the num

ber of characters to fill with spaces across the screen or in a file. For

screen or tape files, the value of the argument is in the range 0 to

255 and for disk files the maximum is 254. For printer files, an auto

matic carriage-return and line-feed will be performed by the printer if

a SPaCe is printed in the last character position of a line. No SPaCes

are printed on the following line.

EXAMPLE

PRINT "COMMODORE";SPC(3);"128"

COMMODORE 128

LJ

U

LJ

U

U

U

u

u

u

u

u

u

u

320 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

SOR

I V.

STRS

I v

n

TAB

H

—Return square root of argument

SQR(X)

This function returns the value of the SQuare Root of X, where X is a

positive number or 0. The value of the argument must not be nega

tive, or the BASIC error message 7ILLEGAL QUANTITY is displayed.

EXAMPLE:

PRINT SQR(25)

5

—Return string representation of number

STR$(X)

This function returns the STRing representation of the numeric value

of the argument X. When the STR$ value is converted to each varia

ble represented in the argument, any number displayed is preceded

and followed by a space except for negative numbers which are pre

ceded by a minus sign. The counterpart of the STR$ function is the

VAL function.

EXAMPLE

PRINT STR$(123.45)

123.45

PRINT STR$(- 89.03)

-89.03

PRINT STR$(1E20)

1E + 20

—Moves cursor to tab position in present statement

TAB (X)

This function moves the cursor forward if possible to a relative posi

tion on the text screen given by the argument X, starting with the left

most position of the current line. The value of the argument can

range from 0 to 255. If the current print position is already beyond

position X, TAB places the cursor in the X position in the next line.

The TAB function can only be used with the PRINT statement, since

it has no effect if used with the PRINT# to a logical file.

EXAMPLE:

10 PRINT"COMMODORE"TAB(25)"128"

COMMODORE 128

321 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

TAN

USR

VAL

—Return tangent of arguement

TAN(X)

This function returns the tangent of X, where X is an angle in radians.

EXAMPLE:

PRINT TAN(.785398163)

1

—Call user-defined subprogram

USR(X)

When this function is used, the program jumps to a machine lan

guage program whose starting point is contained in memory loca

tions 4633($1219) and 4634($121A), (and 785($0311) and 786($0312)

for C64 mode). The parameter X is passed to the machine-language

program in the floating point accumulator. A value is returned to the

BASIC program through the calling variable. You must redirect the

value into a variable in your program in order to receive the value

back from the floating point accumulator. An ILLEGAL QUANTITY

ERROR results if you don't specify this variable. This allows the user

to exchange a variable between machine code and BASIC.

EXAMPLE:

10 POKE 4633,0

20 POKE 4634,192

30 A = USR(X)

40 PRINT A

Place starting location ($C000 = 49152:$00 = 0:$C0 = 192) of

machine language routine in location 4633 and 4634. Line 30 stores

the returning value from the floating point accumulator.

—Return the numeric value of a number string

VAL(X$)

This function converts the string X$ into a number which is the

inverse operation of STR$. The string is examined from the left-most

character to the right, for as many characters as are in recognizable

number format. If the Commodore 128 finds illegal characters, only

the portion of the string up to that point is converted. If no numeric

characters are present, VAL returns a 0.

LJ

u

LI

U

\ 1
(;

u

u

u

LI

1 i

LI

322 BASIC 7.0 ENCYCLOPEDIA—Basic Functions

I \

H

XOR

EXAMPLE:

10 A$ = "120"

20 B$ = "365"

30 PRINT VAL A$ + VAL B$

RUN

485

—Return exclusive OR

XOR(n1,n2)

This function provides the exclusive OR of the argument values n1

and n2.

x = XOR (n1,n2)

where n1, n2, are 2 unsigned values (0-65535).

EXAMPLE:

PRINT XOR(128,64)

192

323 BASIC 7.0 ENCYCLOPEDIA-Basic Functions

u

Li

U

u

u

LJ

u

u

u

u

LJ

LJ

U

u

LJ

U

Li

U

n

n

I (

(\

n

n

/ \

n

n

I !

, I

SECTION 19

and

VARIABLES

OPERATORS

327

329

325 BASIC 7.0 ENCYCLOPEDIA—Variables and Operators

u

u

U

u

u

u

u

u

u

u

u

u

u

u

u

u

u

n

Variables
i i

i i

n

n

n

n

The Commodore 128 uses three types of variables in BASIC. These

are: normal numeric, integer numeric and string (alphanumeric).

Normal NUMERIC VARIABLES, also called floating point variables,

can have any value from **superscript** - 10 to ^super

script* * + 10, with up to nine digits of accuracy. When a number

becomes larger than nine digits can show, as in +10 or - 10, the

computer displays it in scientific notation form, with the number nor

malized to one digit and eight decimal places, followed by the letter E

and the power of 10 by which the number is multiplied. For example,

the number 12345678901 is displayed as 1.23456789E + 10.

INTEGER VARIABLES can be used when the number is from

+ 32767 to - 32768, and with no fractional portion. An integer varia

ble is a number like 5,10 or - 100. Integers take up less space than

floating point variables, particularly when used in an array.

STRING VARIABLES are those used for character data, which may

contain numbers, letters and any other characters the Commodore

128 can display. An example of a string variable is "Commodore

128."

VARIABLE NAMES may consist of a single letter, a letter followed by

a number or two letters. Variable names may be longer than two

characters, but only the first two are significant. An integer is speci

fied by using the percent sign (%) after the variable name. String

variables have a dollar sign ($) after their names.

EXAMPLES:

Numeric Variable Names: A, A5, BZ

Integer Variable Names: A%, A5%, BZ%

String Variable Names: A$, A5$, BZ$

ARRAYS are lists of variables with the same name, using an extra

number (or numbers) to specify an element of the array. Arrays are

defined using the DIM statement and may be floating point, integer

or string variable arrays. The array variable name is followed by a set

of parentheses () enclosing the number of the variable in the list.

EXAMPLE:

A(7),BZ%(11),A$(87)

Arrays can have more than one dimension. A two-dimensional array

may be viewed as having rows and columns, with the first number

identifying the row and the second number identifying the column

(as if specifying a certain grid on a map).

327 BASIC 7.0 ENCYCLOPEDIA—Variables and Operators

u

EXAMPLE:

A(7,2), BZ%(2,3,4), Z$(3,2)

RESERVED VARIABLE NAMES are names reserved for use by the }

Commodore 128, and may not be used for another purpose. These | I
are the variables DS, DS$, ER, ERR$, EL, ST, Tl and Tl$. KEYWORDS

such as TO and IF or any other names that contain KEYWORDS,

such as RUN, NEW or LOAD cannot be used. j j

ST is a status variable for input and output (except normal screen/

keyboard operations). The value of ST depends on the results of the] (
last I/O operation. In general, if the value of ST is 0, then the opera

tion was successful.

Li
Tl and Tl$ are variables that relate to the real time clock built into the

Commodore 128. The system clock is updated every 1 /60th of a sec

ond. It starts at 0 when the Commodore 128 is turned on, and is j j
reset only by changing the value of Tl$. The variable Tl gives the cur

rent value of the clock in 1/60th of a second. Tl$ is a string that reads

the value of the real time clock as a 24-hour clock. The first two char- j j
acters of Tl$ contain the hour, the third and fourth characters are

minutes and the fifth and sixth characters are seconds. This variable

can be set to any value (so long as all characters are numbers) and j j
will be updated automatically as a 24-hour clock.

EXAMPLE: ,

Tl$ = "101530" Sets the clock to 10:15 and 30 seconds (AM).

The value of the clock is lost when the Commodore 128 is turned off. i i

It starts at zero when the Commodore 128 is turned on, and is reset LJ
to zero when the value of the clock exceeds 235959 (23 hours, 59

minutes and 59 seconds). i >

The variable DS reads the disk drive command channel and returns

the current status of the drive. To get this information in words, i i

PRINT DS$. These status variables are used after a disk operation, I—I
like DLOAD or DSAVE, to find out why the red error light on the disk

drive is blinking. I i

ER, EL and ERR$ are variables used in error trapping routines. They

are usually only useful within a program. ER returns the last error , .

encountered since the program was RUN. EL is the line where the I—I
error occurred. ERR$ is a function that allows the program to print

one of the BASIC error messages. PRINT ERR$(ER) prints out the < «

proper error message. LJ

u
328 BASIC 7.0 ENCYCLOPEDIA-Variables and Operators

U

n

Operators

n

n

H

n

The BASIC OPERATORS include ARITHMETIC, RELATIONAL and

LOGICAL OPERATORS. The ARITHMETIC operators include the fol

lowing signs:

+ addition

- subtraction

* multiplication

/ division

t raising to a power (exponentiation)

On a line containing more than one operator, there is a set order in

which operations always occur. If several operators are used

together, the computer assigns priorities as follows: First, exponen

tiation, then multiplication and division, and last, addition and sub

traction. If two operators have the same priority, then calculations

are performed in order from left to right. If these operations are to

occur in a different order, Commodore 128 BASIC allows giving a

calculation a higher priority by placing parentheses around it. Opera

tions enclosed in parentheses will be calculated before any other

operation. Make sure the equations have the same number of left

and right parentheses, or a SYNTAX ERROR message is posted

when the program is run.

There are also operators for equalities and inequalities, called RELA

TIONAL operators. Arithmetic operators always take priority over

relational operators.

= is equal to

< is less than

> is greater than

< = or = < is less than or equal to

> = or = > is greater than or equal to

<> or >< is not equal to

Finally, there are three LOGICAL operators, with lower priority than

both arithmetic and relational operators:

AND

OR

NOT

These are most often used to join multiple formulas in IF ... THEN

statements. When they are used with arithmetic operators, they are

evaluated last (i.e., after + and -). If the relationship stated in the

329 BASIC 7.0 ENCYCLOPEDIA—Variables and Operators

u

expression is true, the result is assigned an integer value of - 1. If , >

false, a value of 0 is assigned. LJ

EXAMPLES:

IF A= BAND C = D THEN 100 Requires both A=B & C = D [_J
to be true.

IFA=BORC = DTHEN 100 Allows either A = B or C = D

to be true. I I
A = 5:B = 4:PRINT A = B Displays a value of 0.

A = 5:B = 4:PRINT A>3 Displays a value of - 1. , .

PRINT 123 AND 15:PRINT 5 Displays 11 and 7. LJ
OR 7

LJ

U

u

u

u

u

u

u

u

u

u

u
330 BASIC 7.0 ENCYCLOPEDIA—Variables and Operators

u

n

n

n

n

n

n

n

H

SECTION 20

Reserved Words

and Symbols

RESERVED SYSTEM WORDS (KEYWORDS)

RESERVED SYSTEM SYMBOLS

333

334

331 BASIC 7.0 ENCYCLOPEDIA—Reserved Words and Symbols

u

u

u

u

u

u

u

LJ

U

U

u

u

u

u

u

LJ

U

u

n

n

n

h

!)
I !

Reserved System

Words (Keywords)

n

n

This section lists the words and symbols used to make up the BASIC

7.0 language. These words and symbols cannot be used within a

program as other than a component of the BASIC language. The only

exception is that they may be used within quotes in a PRINT state

ment.

ABS

AND

APPEND

ASC

ATN

AUTO

BACKUP

BANK

BEGIN

BEND

BLOAD

BOOT

BOX

BSAVE

BUMP

CHAR

CHR$

CIRCLE

CLOSE

CLR

CMD

COLLECT

COLOR

CONCAT

CONT

COPY

COS

DATA

DCLEAR

DCLOSE

DEC

DEFFN

DELETE

DIM

DIRECTORY

DLOAD

DO

DOPEN

DRAW

DS

DSAVE

DS$

DVERIFY

EL

ELSE

END

ENVELOPE

ER

ERRS

EXIT

EXP

FAST

FETCH

FILTER

FN

FOR

FRE

GET

GETKEY

GET#

G064

GOSUB

GOTO

GOTO

GRAPHIC

GSHAPE

HEADER

HELP

HEX$

IF

INPUT

INPUT#

INSTR

INT

JOY

KEY

LEFTS

LEN

LET

LIST

LOAD

LOCATE

LOG

LOOP

MID$

MONITOR

MOVSPR

NEW

NEXT

NOT

OFF

ON

OPEN

OR

PAINT

PEN

PLAY

POS

POT

PRINT

PRINT USING

PRINT#

PRINT# USING

PUDEF

QUIT

RCLR

RDOT

READ

RECORD

RENAME

RENUMBER

RESTORE

RESUME

RETURN

RGR

RIGHTS

RND

RSPCOLOR

RSPPOS

RSPRITE

RUN

RWINDOW

SAVE

SCALE

SCNCLR

SCRATCH

SGN

SIN

SLEEP

SLOW

SOUND

SPC

SPRCOLOR

SPRDEF

SPRITE

SPRSAV

SQR

ST

STASH

STEP

STOP

STRS

SWAP

SYS

TAB

TAN

TEMPO

THEN

Tl

Tl$

TO

TRAP

TRON

TROFF

UNTIL

USR

VAL

VERIFY

VOL

WAIT

WHILE

WIDTH

WINDOW

XOR

333 BASIC 7.0 ENCYCLOPEDIA—Reserved Words and Symbols

Reserved System

Symbols

The following characters are reserved system symbols.

Symbol Use(s)

+ Plus sign movement

- Minus sign

movement

* Asterisk

/ Slash

t Up arrow

Blank space

= Equal sign

< Less than

> Greater than

, Comma

Period

; Semicolon

Colon

"" Quotation mark

? Question mark

(Left parenthesis

) Right parenthesis

% Percent

Number

$ Dollar sign

& And sign

* Pi

Arithmetic addition; string concatenation;

relative Pixel Cursor/sprite movement;

declare decimal number in machine

language monitor

Arithmetic subtraction; negative number;

unary minus; relative pixel cursor/ sprite

movement

Arithmetic multiplication

Arithmetic division

Arithmetic exponentiation

Separate keywords and variable names

Value assignment; relationship testing

Relationship testing

Relationship testing

Format output in variable lists; command/

statement function parameters

Decimal point in floating point constants

Format output in variable lists

Separate multiple BASIC statements on a

program line

Enclose string constants

Abbreviation for the keyword PRINT

Expression evaluation and functions

Expression evaluation and functions

Declare a variable name as integer;

declare binary number in machine

language monitor

Precede the logical file number in input/

output statements

Declare a variable name as a string and

declares hexadecimal number in

machine language monitor

Declare octal number in machine

language monitor

Declare the numeric constant

3.141592654

334 BASIC 7.0 ENCYCLOPEDIA—Reserved Words and Symbols

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

u

u

Li

U

n

n APPENDICES

n

n

H

H

APPENDIX A — BASIC LANGUAGE ERROR MESSAGES

APPENDIX B — DOS ERROR MESSAGES

APPENDIX C — CONNECTORS/PORTS FOR PERIPHERAL

EQUIPMENT

APPENDIX D — SCREEN DISPLAY CODES

APPENDIX E — ASCII AND CHR$ CODES

APPENDIX F — SCREEN AND COLOR MEMORY MAPS

APPENDIX G — DERIVED MATHEMATICAL FUNCTIONS

APPENDIX H — MEMORY MAP

APPENDIX I — CONTROL AND ESCAPE CODES

APPENDIX J — MACHINE LANGUAGE MONITOR

APPENDIX K — BASIC 7.0 ABBREVIATIONS

APPENDIX L — DISK COMMAND SUMMARY

n

335 APPENDICES

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

n

n

n

n

n

n

n

n

The following error messages are displayed by BASIC. Error mes

sages can also be displayed with the use of the ERR$() function. The

error numbers below refer only to the number assigned to the error

for use with the ERR$() function.

ERROR # ERROR NAME

1 TOO MANY FILES

FILE OPEN

FILE NOT OPEN

FILE NOT FOUND

DEVICE NOT PRESENT

8

9

NOT INPUT FILE

NOT OUTPUT FILE

MISSING FILE NAME

ILLEGAL DEVICE

NUMBER

DESCRIPTION

There is a limit of 10 files

OPEN at one time.

An attempt was made to open

a file using the number of an

already open file.

The file number specified in an

I/O statement must be opened

before use.

Either no file with that name

exists (disk) or an end-of-tape

marker was read (tape).

The required I/O device is not

available or buffers dealloca

ted (cassette). Check to make

sure the device is connected

and turned on.

An attempt was made to GET

or INPUT data from a file that

was specified as output only.

An attempt was made to send

data to a file that was speci

fied as input only.

File name missing in

command.

An attempt was made to use a

device improperly (SAVE to

the screen, etc.).

337 APPENDIX A—Basic Language Error Messages

10 NEXT WITHOUT FOR

11

12

13

14

SYNTAX

RETURN WITHOUT

GOSUB

OUT OF DATA

ILLEGAL QUANTITY

15

16

OVERFLOW

OUT OF MEMORY

17

18

UNDEF'D STATEMENT

BAD SUBSCRIPT

19 REDIM'D ARRAY

Either loops are nested incor

rectly, or there is a variable

name in a NEXT statement

that doesn't correspond with

one in FOR.

A statement not recognized by

BASIC. This could be because

of a missing or extra parenthe

sis, misspelled keyword, etc.

A RETURN statement was en

countered when no GOSUB

statement was active.

A READ statement encoun

tered without data left

unREAD.

A number used as the argu

ment of a function or state

ment is outside the allowable

range.

The result of a computation is

larger than the largest number

allowed (1.701411834E +38).

Either there is no more room

for program code and/or pro

gram variables, or there are

too many nested DO, FOR or

GOSUB statements in effect.

A line number referenced

doesn't exist in the program.

The program tried to reference

an element of an array out of

the range specified by the DIM

statement.

An array can only be DIMen-

sioned once.

338 APPENDIX A—Basic Language Error Messages

u

LJ

U

u

u

u

u

u

u

u

u

u

u

u

u

u

u

Q

f i

i i

n

20

21

22

23

24

25

DIVISION BY ZERO

ILLEGAL DIRECT

TYPE MISMATCH

STRING TOO LONG

FILE DATA

FORMULATOO

COMPLEX

Division by zero is not allowed,

INPUT, GET, INPUT #, GET #

and GETKEY statements are

only allowed within a program

This occurs when a numeric

value is assigned to a string

variable or vice versa.

A string can contain up to 255

characters.

Bad data read from a tape or

disk file.

The computer was unable to

understand this expression.

Simplify the expression (break

into two parts or use fewer

parentheses).

26

27

CANT CONTINUE

UNDEF'D FUNCTION

The CONT command does not

work if the program was not

RUN, there was an error, or a

line has been edited.

A user-defined function was

referenced that was never

defined.

n

I \

28

29

30

VERIFY

LOAD

BREAK

The program on tape or disk

does not match the program in

memory.

There was a problem loading.

Try again.

The STOP command was

issued in a program or the

stop key was pressed to halt

program execution.

H
339 APPENDIX A—Basic Language Error Messages

340

31

32

33

34

35

36

37

38

CANT RESUME

LOOP NOT FOUND

LOOP WITHOUT DO

DIRECT MODE ONLY

NO GRAPHICS AREA

BAD DISK

BEND NOT FOUND

LINE NUMBER

TOO LARGE

A RESUME statement was

encountered without a TRAP

statement in effect.

The program has encountered

a DO statement and cannot

find the corresponding LOOP.

LOOP was encountered with

out a DO statement active.

This command is allowed only

in direct mode, not from a

program.

A command (DRAW, BOX,

etc.) to create graphics was

encountered before the

GRAPHIC command was

executed.

An attempt failed to HEADER

a diskette, because the quick

header method (no ID) was

attempted on an unformatted

diskette or the diskette is bad.

The program encountered an

"IF... THEN BEGIN" or "IF

...THEN... ELSE BEGIN"

construct, and could not find a

BEND keyword to match the

BEGIN.

An error has occurred in

renumbering a BASIC pro

gram. The given parameters

result in a line number >

63999 being generated; there

fore, the renumbering was not

performed.

APPENDIX A—Basic Language Error Messages

LJ

U

i i
u

Lj

I J

LJ

i {
LJ

u

u

u

u

u

t I

LJ

u

LJ

u

u

u

u

n

n

n

n

n

n

39 UNRESOLVED

REFERENCE

40

41

UNIMPLEMENTED

COMMAND

FILE READ

i J

n

An error has occurred in

renumbering a BASIC pro

gram. A line number referred

to by a command (e.g., GOTO

999) does not exist. Therefore,

the renumbering was not

performed.

A command not supported by

BASIC 7.0 was encountered.

An error condition was

encountered while loading or

reading a program or file from

the disk drive (e.g., opening

the disk drive door while a

program was loading).

341 APPENDIX A—Basic Language Error Messages

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

I I

I \

APPENDIX B

DOS ERROR

MESSAGES

/ i

The following DOS error messages are returned through the DS and

DS$ variables. The DS variable contains just the error number and

the DS$ variable contains the error number, the error message, and

any corresponding track and sector number. NOTE: Error message

numbers less than 20 should be ignored with the exception of 01,

which gives information about the number of files scratched with the

SCRATCH command.

ERROR ERROR MESSAGE AND

NUMBER DESCRIPTION

20 READ ERROR (block header not found)

The disk controller is unable to locate the header of the

requested data block. Caused by an illegal sector num

ber, or the header has been destroyed.

21 READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on

the desired track. Caused by misalignment of the read/

write head, no diskette is present, or unformatted or

improperly seated diskette. Can also indicate a hard

ware failure.

22 READ ERROR (data block not present)

The disk controller has been requested to read or verify

a data block that was not properly written. This error

occurs in conjunction with the BLOCK commands and

can indicate an illegal track and/or sector request.

23 READ ERROR (checksum error in data block)

This error message indicates there is an error in one or

more of the data bytes. The data has been read into the

DOS memory, but the checksum over the data is in error.

This message may also indicate hardware grounding

problems.

24 READ ERROR (byte decoding error)

The data or header has been read into the DOS memory

but a hardware error has been created due to an invalid

bit pattern in the data byte. This message may also indi

cate hardware grounding problems.

343 APPENDIX B—DOS Error Messages

344

25 WRITE ERROR (write-verify error)

This message is generated if the controller detects a

mismatch between the written data and the data in the

DOS memory.

26 WRITE PROTECT ON

This message is generated when the controller has been

requested to write a data block while the write protect

switch is depressed. This is caused by using a diskette

with a write protect tab over the notch or a notchless

diskette.

27 READ ERROR

This message is generated when a checksum error has

been detected in the header of the requested data

block. The block has not been read into DOS memory.

28 WRITE ERROR

This error message is generated when a data block is

too long and overwrites the sync mark of the next

header.

29 DISK ID MISMATCH

This message is generated when the controller has been

requested to access a diskette which has not been ini

tialized or improperly formatted. The message can also

occur if a diskette has a bad header.

30 SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the

command channel. Typically, this is caused by an illegal

number of file names, or patterns are illegally used. For

example, two file names appear on the left side of the

COPY command.

31 SYNTAX ERROR (invalid command)

The DOS does not recognize the command. The com

mand must start in the first position.

32 SYNTAX ERROR (invalid command)

The command sent is longer than 58 characters. Use

abbreviated disk commands.

33 SYNTAX ERROR (invalid file name)

Pattern matching is invalidly used in the OPEN or SAVE

command. Spell out the file name.

APPENDIX B—DOS Error Messages

u

u

u

u

u

u

u

u

u

u

u

L!

U

LJ

U

U

U

U

n

n

34 SYNTAX ERROR (no file given)

The file name was left out of the command or the DOS

does not recognize it as such. Typically, a colon (:) has

been left out of the command.

39 SYNTAX ERROR (invalid command)

This error may result if the command sent to the com

mand channel (secondary address 15) is unrecognized

by the DOS.

50 RECORD NOT PRESENT

Result of disk reading past the last record through

INPUT# or GET# commands. This message will also

occur after positioning to a record beyond end-of-f ile in a

relative file. If the intent is to expand the file by adding

the new record (with a PRINT# command), the error

message may be ignored. INPUT # and GET # should

not be attempted after this error is detected without first

repositioning.

51 OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Informa

tion is truncated. Since the carriage return which is sent

as a record terminator is counted in the record size, this

message will occur if the total characters in the record

(including the final carriage return) exceeds the defined

size of the record.

52 FILE TOO LARGE

Record position within a relative file indicates that disk

overflow will result.

60 WRITE FILE OPEN

This message is generated when a write file that has not

been closed is being opened for reading.

61 FILE NOT OPEN

This message is generated when a file is being

accessed that has not been opened in the DOS. Some

times, in this case, a message is not generated; the

request is simply ignored.

62 FILE NOT FOUND

The requested file does not exist on the indicated drive.

345 APPENDIX B—DOS Error Messages

u

63 FILE EXISTS M

The file name of the file being created already exists on

the diskette.

64 FILE TYPE MISMATCH *—)
The requested file access is not possible using files of

the type named. Reread the chapter covering that file 1 I

type.

65 NO BLOCK j }
Occurs in conjunction with Block Allocation. The sector {—
you tried to allocate is already allocated. The track and

sector numbers returned are the next higher track and j }

sector available. If the track number returned is zero (0),

all remaining higher sectors are full. If the diskette is not

full yet, try a lower track and sector. j j

66 I LLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or block j j

which does not exist in the format being used. This may ^^
indicate a problem reading the pointer to the next block.

67 I LLEGAL SYSTEM T OR S ^J
This special error message indicates an illegal system

track or sector. \ /

70 NO CHANNEL (available)

The requested channel is not available, or all channels j \

are in use. A maximum of five buffers are available for '—'
use. A sequential file requires two buffers; a relative file

requires three buffers; and the error/command channel j j

requires one buffer. You may use any combination of '—'
those as long as the combination does not exceed five

buffers. \ i

71 DIRECTORY ERROR

The BAM (Block Availability Map) on the diskette does \ j

not match the copy on disk memory. To correct, initialize (—]

the disk drive.

72 DISK FULL LJ
Either the blocks on the diskette are used or the direc

tory is at its entry limit. DISK FULL is sent when two j j

blocks are still available on the diskette, in order to allow ^
the current file to be closed.

LJ
346 APPENDIX B—DOS Error Messages

u

n

H

) L

n

73 DOS VERSION NUMBER (73, CBM DOS V30 1571,

00, 00)

DOS 1 and 2 are read compatible but not write compat

ible. Disks may be interchangeably read with either

DOS, but a disk formatted on one version cannot be

written upon with the other version because the format

is different. This error is displayed whenever an attempt

is made to write upon a disk which has been formatted

in a non-compatible format. This message will also

appear after power-up or reset and is not an error in

this case.

74 DRIVE NOT READY

An attempt has been made to access the disk drive

without a diskette inserted; or the drive lever or door is

open.

347 APPENDIX B—DOS Error Messages

u

u

u

u

L)

u

u

u

u

u

u

u

u

u

u

u

u

LJ

/ I

(1

n

n

APPENDIX C

CONNECTORS/

PORTS FOR

PERIPHERAL

EQUIPMENT

COMMODORE CONNECTIONS FOR PERIPHERALS

2 1

1. Power Socket

2. Power Switch

3. Reset Button

4. Controller Ports

5. Expansion Port

6. Cassette Port

7. Serial Port

8. Composite Video/Audio Port

9. Channel Selector

10. RF Connector

11. RGBI Connector

12. User Port

349 APPENDIX C—Connectors/Ports for Peripheral Equipment

Side Panel

Connections

1. Power Socket—The free end of the cable from the power supply

is attached here.

2. Power Switch—Turns on power from the transformer.

3. Reset Button—Resets computer (warm start).

4. Controller Ports—There are two Controller ports, numbered 1

and 2. Each Controller port can accept a joystick or game con

troller paddle. A light pen can be plugged only into port 1, the

port closest to the front of the computer. Use the ports as

instructed with the software.

Control Port 1

Pin

1

2

3

4

5

6

7

8

9

Type

JOYAO

JOYA1

JOYA2

JOYA3

POT AY

BUTTON A/LP

+ 5V

GND

POT AX

Note

MAX. 50mA
(front view of port)

Control Port 2

Pin

1

2

3

4

5

6

7

8

9

Type

JOYBO

JOYB1

JOYB2

JOYB3

POT BY

BUTTON B

+ 5V

GND

POT BX

Note

AAAX. 50mA

350 APPENDIX C—Connectors/Ports for Peripheral Equipment

u

u

u

u

u

u

u

u

u

u

LI

u

u

Li

U

U

U

u

n

n Rear Connections

i

f l

5. Expansion Port—This rectangular slot is a parallel port that

accepts program or game cartridges as well as special

interfaces.

Cartridge Expansion Slot

Pin

12

13

14

15

16

17

18

19

20

21

22

Pin

N

P

R

S

T

U

V

W

X

Y

Z

Type

BA

DMA

07

D6

05

D4

D3

D2

Dl

DO

GND

Type

A9

A8

A7

A6

A5

A4

A3

A2

Al

A0

GND

22 2120 1918 17 161514 13 12 1110 9 8 7 6 5 4 3 2 1

ZY XWVUTSRPNMLKJHFEDCBA

(view of port from the back of the C128)

Pin

1

2

3

4

5

6

7

8

9

10

11

Type

GND

+5V

+5V

IRQ

R/W

Dot Clock

I/O 1

GAME

EXROM

I/O 2

ROML

Pin

A

B

C

D

E

F

H

J

K

L

M

Type

GND

ROMH

RESET

NMI

S 02

A15

A14

A13

A12

All

A10

351 APPENDIX C—Connectors/Ports for Peripheral Equipment

352

6. Cassette Port—A1530 Datassette recorder can be attached

here to store programs and information.

Cassette

Pin

A-1

B-2

C-3

D-4

E-5

F-6

GND

+5V

CASSETTE

CASSETTE

CASSETTE

CASSETTE

Type

MOTOR

READ

WRITE

SENSE

12 3 4 5

A B C D E F

7. Serial Port—A Commodore serial printer or disk drive can be

attached directly to the Commodore 128 through this port.

Serial I/O

Pin

1

2

3

4

5

6

SERIAL

GND

SERIAL

SERIAL

SERIAL

RESET

Type

SRQIN

ATN IN/OUT

CLK IN/OUT

DATA IN/OUT

(view of port

while facing the

rear of the C128)

APPENDIX C—Connectors/Ports for Peripheral Equipment

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u.

u

u

I \

n
8. Composite Video Connector—This DIN connector supplies

direct audio and composite video signals. These can be con

nected to the Commodore monitor or used with separate

components. This is the 40 column output connector.

D

n

n
(view of port while facing the rear of the C128)

Pin

1

2

3

4

5

6

7

8

Type

LUM/SYNC

GND

AUDIO OUT

VIDEO OUT

AUDIO IN

COLOR OUT

NC

NC

Note

Luminance/SYNC output

Composite signal output

Chroma signal output

No connection

No connection

9. Channel Selector—Use this switch to select which TV channel

(L = channel 3, H = channel 4) the computer's picture will be

displayed on when using a television instead of a monitor.

10. RF Connector—This connector supplies both picture and sound

to your television set. (A television can display only a 40 column

picture.)

353 APPENDIX C—Connectors/Ports for Peripheral Equipment

11. RGBI Connector—This 9-pin connector supplies direct audio and

an RGBI (Red/Green/Blue/lntensity) signal. This is the 80-column

output.

Pin

1

2

3

4

5

6

7

8

9

Signal

Ground

Ground

Red

Green

Blue

Intensity

Monochrome

Horizontal Sync

Vertical Sync
(rear view of port)

12. User Port—Various interface devices can be attached here,

including a Commodore modem.

User I/O

Pin

1

2

3

4

5

6

7

8

9

10

11

12

Type

GND

+5V

RESET

CNT1

SP1

CNT2

SP2

PC2

SER. ATN IN

9 VAC

9 VAC

GND

Note

MAX. 100 mA

AAAX. 100 mA

MAX. 100 mA

Pin

A

B

C

D

E

F

H

J

K

L

M

N

Type

GND

FLAG2

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PA2

GND

Note

1 2 3 4 5 6 7 8 9 10 11 12

354

ABCDEFHJKLMN

(rear view of port)

APPENDIX C—Connectors/Ports for Peripheral Equipment

u

u

u

u

u

LJ

n

n

n

n

n

n

n

APPENDIX D

SCREEN DISPLAY

CODES

Screen Display

Codes

40 Columns

The following chart lists all of the characters built into the Commo

dore screen character sets. It shows which numbers should be

POKEd into the VIC chip (40 column) screen memory (location 1024

to 2023) to get a desired character on the 40-column screen.

(Remember, to set color memory, use locations 55296 to 56295.)

Also shown is which character corresponds to a number PEEKed

from the screen.

Two character sets are available. Both are available simultaneously

in 80-column mode, but only one is available at a time in 40-column

mode. The sets are switched by holding down the SHIFT and Cf

(Commodore) keys simultaneously. The entire screen of characters

changes to the selected character set.

From BASIC, PRINT CHR$(142) will switch to upper-case/graphics

mode and PRINTCHR$(14) will switch to upper/lower-case mode.

Any number on the chart may also be displayed in REVERSE. The

reverse character code may be obtained by adding 128 to the values

shown.

SET1

@

A

B

C

D

E

F

G

H

I

J

K

L

M

SET 2

a

b

c

d

e

f

g

h

j

j

k

I

m

POKE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

SET1

N

0

P

Q

R

S

T

U

V

w

X

Y

z

[

SET 2

n

0

P

q

r

s

t

u

V

w

X

y

z

POKE

14

15

16

17

18

19

20

21

22

23

24

25

26

27

SET 1 SET 2

£

]

T

I SPACE ■
j

#

$

%

&

'

(

)

POKE

28

29

30

31

32

33

34

35

36

37

38

39

40

41

355 APPENDIX D—Screen Display Codes

SET1 SET 2 POKE SET 1 SET 2 POKE

0

1

2

3

4

5

6

7

8

9

>

B

m

B

□

A

B

C

D

E

F

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

SET 1 SET 2 POKE

LJ

□

a

Q

□

CB
a

H

S3
U

H
B
H
ffl
C

C

□
H
U

□ 0

E

a
H

E
H

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Codes from 128-255 are reversed images of codes 0-127.

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

Li

356 APPENDIX D—Screen Display Codes

n

n

APPENDIX E

ASCII AND CHR$

CODES

ASCII and CHR$

Codes

I i

H

This appendix shows you what characters will appear if you PRINT

CHR$(X), for all possible values of X. It also shows the values

obtained by typing PRINT ASC ("x"), where x is any character that

can be displayed. This is useful in evaluating the character received

in a GET statement, converting upper to lower case and printing

character-based commands (like switch to upper/lower case) that

could not be enclosed in quotes.

PRINTS CHR$

0

1

2

3

4

m 5

6

7

DlSABLEsBOge

ENABLESBB99

10

11

12

HMIfflfil 14

15

16

^B^9 ■*

HI 18

H 19
H 20

21

22

PRINTS CHR$

23

24

25

26

27

^^^^^ 28

g 29

g^ 30

jg^ 31

£^Q 32

! 33

34

35

$ 36

% 37

& 38

39

(40

) 41

42

+ 43

44

45

PRINTS

.

/

0

1

2

3

4

5

6

7

8

9

i

;

<I

=

:>

?

@

A

B

C

D

CHR$

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

PRINTS

E

F

G

H

I

J

K

L

M

N

0

P

Q

R

S

T

U

V

w

X

Y

z

[

CHR$

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

357 APPENDIX E—ASCII and CHR$ Codes

PRINTS CHR$

m
B

H

H

D

a

s

□

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

PRINTS CHR$

[¥]

D
a

m

115

116

117

118

119

120

121

122

123

124

125

|TT| 126

H 127

128

Orange 129

130

131

132

f1 133

f3 134

f5 135

f7 136

f2 137

PRINTS CHR$ PRINTS CHRS

D
□

□

E
□
ffl

a

u

H

H

B
ffl

D

c
a

□

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

u

u

LJ

U

u

u

u

u

u

u

LJ

LJ

U

LJ

U

LJ

358 APPENDIX E—ASCII and CHR$ Codes

PRINTS

H

CHR$

184

185

PRINTS

□

B

CHR$

186

187

PRINTS

B

CHRS

188

189

PRINTS

E
H

CHR$

190

191

CODES

CODES

CODE

192-223

224-254

255

SAME AS

SAME AS

SAME AS

96-127

160-190

126

H

G

H

n

n

NOTE: The 80 column (RGBI) output has three colors which are different than the 40

column (composite video) color output. This means that the character string codes

that represent color codes for these three colors are used differently depending on

which video output is used. The following character string codes represent these

colors in each video output.

CHRS

129

149

151

40 Column (VIC Composite)

Orange

Brown

Dark Gray

80 Column (8563 RGBI)

Dark Purple

Dark Yellow

Dark Cyan

359 APPENDIX E—ASCII and CHR$ Codes

LI

U

U

U

U

U

u

u

LJ

U

LJ

U

U

U

u

u

u

u

n

H

n

n

n

APPENDIX F

SCREEN AND

COLOR MEMORY

MAPS

Screen And Color

Memory Maps—

C128 Mode,

40 Column

And C64 Mode

The following maps display the memory locations used in 40-column
mode (C128 and C64) for identifying the characters on the screen as

well as their color. Each map is separately controlled and consists of
1,000 positions.

The character displayed on the maps can be controlled directly with
the POKE command.

VIC CHIP (40 COLUMN) SCREEN MEMORY MAP

COLUMN

20 39

1024-

1064

1104

1144

1184

1224

1264

1304

1344

1384

1424

1464

1504

1544

1584

1624

1664

1704

1744

1784

1824

1864

1904

1944

1984

1063

\

20

2023

The Screen Map is POKEd with a Screen Display Code value (see

Appendix D). For example:

POKE 1024,13

will display the letter M in the upper-left corner of the screen.

361 APPENDIX F—Screen and Color Memory Maps

VIC CHIP (40 COLUMN) COLOR MEMORY MAP
COLUMN

20

55335

55296-

55336

55376

55416

55456

55496

55536

55576

55616

55656

55696

55736

55776

55816

55856

55896

55936

55976

56016

56056

56096

56136

56176

56216

56256

—T "

56295

The color RAM appears in this range in RAM BANKS 0 and 1. If the

color map is POKEd with a color value; this changes the character

color. For example:

If the color map is POKEd with a color value; this changes the char

acter color. For example:

POKE 55296,1

will change the letter M inserted above from light green to white.

Color Codes—40 Columns

0 Black

1 White

2 Red

3 Cyan

4 Purple

5 Green

6 Blue

7 Yellow

8

9

10

11

12

13

14

15

Orange

Brown

Light Red

Dark Gray

Medium Gray

Light Green

Light Blue

Light Gray

Border Control Memory 53280

Background Control Memory 53281

362 APPENDIX F—Screen and Color Memory Maps

u

u

u

LI

U

u

u

u

LJ

LJ

U

U

U

LJ

U

LJ

U

U

n

H

n

n

APPENDIX G

DERIVED

TRIGONOMETRIC

FUNCTIONS

FUNCTION

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE

INVERSE HYPERBOLIC COSINE

INVERSE HYPERBOLIC TANGENT

INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

BASIC EQUIVALENT

SEC(X)=1/COS(X)

CSC(X)=1/SIN(X)

COT(X)=1/TAN(X)

ARCSIN(X)=ATN(X/SQR(-X*X+1))

ARCCOS(X)= -ATN(X/SQR

(-X*X +1)) +7T/2

ARCSEC(X)=ATN(X/SQR(X*X-1))

ARCCSC(X)=ATN(X/SQR(X*X-1))

+ (SGN(X)-1*tt72

ARCOT(X)=ATN(X)+tt/2

SINH(X)=(EXP(X)-EXP(-X))/2

COSH(X)=(EXP(X)+EXP(-X))/2

TANH(X)=EXP(-X)/(EXP(x)+EXP

SECH(X)=2/(EXP(X)+ EXP(- X))

CSCH(X)= 2/(EXP(X)- EXP(- X))

COTH(X)=EXP(-X)/(EXP(X)

-EXP(-X))*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1))

ARCCOSH(X)= LOG(X+SQR(X*X-1))

ARCTANH(X)=LOG((l+X)/(l-X))/2

ARCSECH(X)=LOG((SQR

ARCCSCH(X)=LOG((SGN(X)*SQR

(X*X+l/x)

ARCCOTH(X)= LOG((X+1)/(x-1))/2

363 APPENDIX G—Derived Trigonometric Functions

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

n

n

f i

f ;

H

H

n

n

n

H

n

APPENDIX H

MEMORY MAP

System Memory

Map

The Commodore 128 memory map is shown below.

COMMODORE 128 MODE

MEMORY MAP

COMMODORE 128 MODE

MEMORY MAP

FFFF

FFFA

FFDO

FF05

FFOO

C128

RAM

NMIRSTIRQ

CP/M RAM Code

Krnl RAM Code

MMU

Configuration Register

4000

BASIC TEXT AREA

(Basic text begins

at $1C00 if bit-map
unallocated)

FFFF

FF4D

FF05

FFOO

FC80

FA80

E000

D000

C000

B000

8000

4000

C128

ROM

— Kernal Jump Table & -
Hardware Vectors

— Kernal Interrupt

Dispatch Code

MMU Configuration

- ROM Reserved for
Foreign Lang. Versions

-Editor Tables

- Kernal ROM Code

I/O Space

- Editor ROM Code--

- Monitor ROM Code -

~'\HIGH
_/ROM

"\ MID
/ROM

Basic ROM Code i"

'""\low
!. / R0M

365 APPENDIX H-Memory Map

4000

2000

1C00
1B00
1A00
1900
1800

1400

1300

1200

1108

1100

1000

0F00

0E00

0D00

0C00

OBCO

0B00

0A00

0900

0800

0400

0380

033C

02FC

02A2

0200

0149

0110

0100

0090

0002

0000

C128

RAM

VIC BIT-MAP
Screen

VIC BIT-MAP
Color (Vm #2)

Reserved for

Applications

Reserved for

Applications

Reserved for
Applications

Basic

Absolute

Variables

Basic

DOS/VSP
Variables

CP/M Reset
Code

Function

Key

Buffer

Sprite
Definition

Area

RS-232
Output
Buffer

RS-232

Input

Buffer

{DjskBoot^age)

Cassette Buffer

Monitor & Kernal

Absolute
Variables

Basic
Run-Time
Stack

VIC

Text
Screen
(VM#1)

Basic RAM_Cod_e_

Kernal Tables

Indirects

Kernal RAM Code

Basic & Monitor

Input Buffer

Syste_m_Stack_ _

Basic DOSjJsing_

FBUFFER

_KernalZ.P.

Basic Z. P.

4000

C128

ROM

COMMODORE 64 MODE

MEMORY MAP

C64

Cartridges
FFFF , 1 FFFF

E000

D000

C000

B000

A000

8000

GAME CARD

I/O, Char ROM

or RAM

RAM (4K)

Application ROM

Card—HI

Application ROM

Card-LO

E000

D000

C000

A000

C64

KERNAL

and
EDITOR

I/O and Chars

ROM or RAM

RAM (4K)

BASIC ROM

or RAM (8K)

RAM

COMMODORE 64 MODE

MEMORY MAP

4000

0800

0400

0300

0200

0100

0000 -

C64

Cartridaes C64

BASIC PROGRAM SPACE

VIC (40 Column) TEXT

SCREEN

SYSTEM STACK

366 APPENDIX H—Memory Map

APPENDIX I

CONTROLAND

ESCAPE CODES

Control Codes The following are the control codes used by the Commodore 128.

The first column, Print Codes, are used in PRINT statements. The

second column is the key codes. Key codes are the sequence of

keys pressed to perform specific controls. Hold down the control key

(or the key specified on the left in the key code column) and strike

the key specified to the right in the key code column.

Print Codes

(CHR$)

CHR$(2)

CHR$(5)

CHR$(7)

CHR$(8)

CHR$(9)

CHR$(10)

CHR$(11)

CHR$(12)

CHR$(13)

CHR$(14)

CHR$(15)

CHR$(17)

CHR$(18)

CHR$(19)

Key Codes

Key

Sequence

CTRLB

CTRL 2 or CTRL E

CTRLG

CTRLH

CTRL I

CTRLJ

CTRLK

CTRLL

CTRLM

CTRLN

CTRLO

CRSR DOWN/CTRL Q

CTRL 9 or CTRL R

HOME

Effective

in

Mode:

Function C64 C128

Underline (80)

Set character color to

white * *

Produce bell tone *

Disable character set

change *

Enable character set

change *

Move cursor to next

set tab position *

Line feed *

Enable character set

change *

Disable character

mode change *

Send a carriage return

and line feed to the

computer and enter a

line of BASIC

Set character set to

upper/lowercase * *

Turn flash on (80) *

Move the cursor down

one row * *

Cause characters to

be printed in reverse

field

Move the cursor to the

home position (top left)

of the display (the cur

rent window) * *

NOTE: (40)... 40 column screen only

(80)... 80 column screen only

367 APPENDIX I—Control and Escape Codes

CHR$

Key

Sequence Function

Effective

in

Mode:

C64 C128

CHR$(20) DEL or CTRL T

CHR$(24)

CHR$(27)

CHR$(28)

CHR$(29)

CHR$(30)

CHR$(31)

CHR$(34)

CHR$(129)

CHR$(130)

CHR$(131)

CHR$(133) F1

CHR$(134) F3

CHR$(135) F5

CHR$(136) F7

CHR$(137) F2

CHR$(138) F4

CHR$(139) F6

CHR$(140) F8

CTRL X, CTRL TAB

orfrTAB
ESCorCTRL[

CTRL 3 or CTRL £

CRSRorCTRL]

CTRL 6 or CTRL f

CTRL 7 or CTRL =

Delete last character

typed and move all

characters to the right

of the deleted charac

ter one space to the

left

Tab set/clear

Send an ESC

character

Set character color to

red (40) and (80)

Move cursor one

column to the right

Set character color to

green (40) and (80)

Set character color to

blue (40) and (80)

Print a double quote on

screen and place edi

tor in quote mode

Set character color to

orange (40); dark pur

ple (80)

Underline off (80)

Run a program. This

CHR$ code does not

work in PRINT CHR$

(131), but works from

keyboard buffer

Reserved CHR$ code
for F1 key

Reserved CHR$ code

for F3 key

Reserved CHR$ code

for F5 key

Reserved CHR$ code
for F7 key

Reserved CHR$ code
for F2 key

Reserved CHR$ code
for F4 key

Reserved CHR$ code
for F6 key

Reserved CHR$ code
for F8 key

368 APPENDIX I—Control and Escape Codes

CHR$

Key

Sequence Function

Effective

in

Mode:

C64 C128

n

n

n

H

n

n

n

n

n

CHR$(141) SHIFT RETURN, CTRL

ENTER.fr ENTER or Cf
RETURN

CHR$(142)

CHR$(143)

CHR$(144) CTRL1

CHR$(145) CRSRUP

CHR$(146) CTRLO

CHR$(147) CLEAR HOME

CHR$(148) INST

CHR$(149) C*2

CHR$(150) C*3

CHR$(151) C

CHR$(152)

CHR$(153) CS6

CHR$(154) CF7

CHR$(155) C*8

CHR$(156) CTRL 5

CHR$(157) CRSRLEFT

CHR$(158) CTRL 8

CHR$(159) or CTRL 4

Send a carriage return

and line feed without

entering a BASIC line *

Set the character set

to uppercase/graphic *

Turn flash off (80)

Set character color to

black (40) and (80)

Move cursor or print

ing position up one row *

Terminate reverse field

display *

Clear the window

screen and move the

cursor to the top left

position *

Move character from

cursor position end of

line right one column *

Set character color to

brown (40); dark yellow

(80)

Set character color to

light red (40) and (80) *

Set character color to

dark grey (40); dark

cyan (80)

Set character color to

medium grey (40) and

(80)

Set character color to

light green (40) and

(80)

Set character color to

light blue (40) and (80) *

Set character color to

light grey (40) and (80) *

Set character color to

purple (40) and (80)

Move cursor left by

one column *

Set character color to

yellow (40) and (80)

Set character color to

cyan (40); light cyan

(80)

369 APPENDIX I—Control and Escape Codes

Escape Codes Following are key sequences for the ESCape functions available on

the Commodore 128. ESCape sequences are entered by pressing

and releasing the "ESC" key, followed by pressing the key listed

below.

ESCAPE FUNCTION ESCAPE KEY

Cancel quote mode ESC C

Erase to end of current line ESC Q

Erase to start of current line ESC P

Clear to end of screen ESC @

Move to start of current line ESC J

Move to end of current line ESC K

Enable auto-insert mode ESC A

Disable auto-insert mode ESC O

Delete current line ESC D

Insert line ESC I

Set default tab stop (8 spaces) ESC Y

Clear all tab stops ESCZ

Enable scrolling ESC L

Disable scrolling ESC M

Scroll up ESCV

Scroll down ESCW

Enable bell (by control-G) ESC G

Disable bell ESC H

Set cursor to non-flashing mode ESC E

Set cursor to flashing mode ESC F

Set bottom of screen window at cursor position ESC B

Set top of screen window at cursor position ESC T

Swap 40/80 column display output device ESC X

The following ESCape sequences are valid on an 80-column screen

only. (See Section 8 for information on using an 80-column screen.)

Change to underlined cursor ESC U

Change to block cursor ESC S

Set screen to reverse video ESC R

Return screen to normal (non reverse video) state ESC N

370 APPENDIX I—Control and Escape Codes

I i.

n

n

n

n

APPENDIX J

MACHINE

LANGUAGE

MONITOR

Introduction

KEYWORD

ASSEMBLE

COMPARE

DISASSEMBLE

FILL

GO

HUNT

JUMP

LOAD

MEMORY

REGISTERS

SAVE

TRANSFER

VERIFY

EXIT

(period)

(greater than)

(semicolon)

(at sign)

Commodore 128 has a built-in machine language monitor program

which lets the user write and examine machine language programs

easily Commodore 128 MONITOR includes a machine language

monitor, a mini-assembler and a disassembler. The built-in monitor

works only in C128 mode; either 40 column or 80 column.

Machine language programs written using Commodore 128 MONI

TOR can run by themselves or be used as very fast subroutines for

BASIC programs since the Commodore 128 MONITOR has the abil

ity to coexist peacefully with BASIC.

Care must be taken to position the assembly language programs in

memory so the BASIC program does not overwrite them.

To enter the monitor from BASIC, type:

MONITOR!

Summary of Commodore 128 Monitor Commands

FUNCTION FORMAT

Assembles a line of 8502 code A <start_address> (opcode) [operand]

Compares two sections of memory and reports

differences

Disassembles a line or lines of 8502 code

Fills a range of memory with the specified byte

Starts execution at the specified address

Hunts through memory within a specified range

for all occurrences of a set of bytes

Jumps to the subroutine

Loads a file from tape or disk

Displays the hexadecimal values of memory

locations

Displays the 8502 registers

Saves to tape or disk

Transfers code from one section of memory to

another

Compares memory with tape or disk

Exits Commodore 128 MONITOR

Assembles a line of 8502 code

Modifies memory

Modifies 8502 register displays

Displays disk status, sends disk command, dis

plays directory

disk status

disk command

disk catalog

C <start_address> <end_address> (new.starLad-

dress)

D [<start_address> <end_address]]

F <start_address> <end_address> <byte>

G [address]

H <start_address> <end_address> <byte1 >

[<byte_n>...]

H <start_address> <end_address> 4<ascii_string>

J

L

M

R

S

V

X

[address]

"(filename)" [,(device_#> [,(load_address>]]

[(starLaddress) [end_address]]

"(filename)", (device_#>,(start_address)

(lasLaddress + 1)

(starLaddress) (end_address) (new_starLad-

dress)

"(filename)" [,(device_#> [,(load_address>]]

@[device_#]

@[device_#][,(command_string>]

@[device_#],$[[(drive)][:(file_spec>]]

NOTES: (> enclose required parameters.

[] enclose optional parameters.

NOTE: See important 5-digit Address note on the next page.

371 APPENDIX J—Machine Language Monitor

NOTE: 5-Digit Addresses

The Commodore 128 displays 5-digit hexadecimal addresses within

the machine language monitor. Normally, a hexadecimal number is

only four digits, representing the allowable address range. The extra

left-most (high order) digit specifies the BANK configuration (at the

time the given command is executed) according to the following

memory configuration table:

O-RAM 0 only 8-EXT ROM, RAM 0, I/O

1—RAM 1 only 9-EXT ROM, RAM 1, I/O

2—RAM 2 only A-EXT ROM, RAM 2, I/O

3-RAM 3 only B-EXT ROM, RAM 3, I/O

4-INT ROM, RAM 0, I/O C-KERNAL + INT (lo), RAM 0, I/O

5-INT ROM, RAM 1, I/O D-KERNAL + EXT (lo), RAM 1, I/O

6—INT ROM, RAM 2, I/O E-KERNAL + BASIC, RAM 0, CHARROM

7—INT ROM, RAM 3, I/O F-KERNAL + BASIC, RAM 0, I/O

Summary of Monitor Field Descriptors

The following designators precede monitor data fields (e.g., memory

dumps). When encountered as a command, these designators

instruct the monitor to alter memory or register contents using the

given data.

. (period) precedes lines of disassembled code.

> <right_angle> precedes lines of a memory dump.

; <semicolon) precedes line of a register dump.

The following designators precede number fields (e.g., address) and

specify the radix (number base) of the value. Entered as commands,

these designators instruct the monitor simply to display the given

value in each of the four radices.

<null> (default) precedes hexadecimal values.

$ <dollar> precedes hexadecimal (base-16) values.

+ <plus> precedes decimal (base-10) values.

& (ampersand) precedes octal (base-8) values.

% (percent) precedes binary (base-2) values.

The following characters are used by the monitor as field delimiters

or line terminators (unless encountered within an ASCII string).

(space) delimiter—separates two fields.

, (comma) delimiter—separates two fields.

: (colon) terminator—logical end of line.

? (question) terminator—logical end of line.

372 APPENDIX J—Machine Language Monitor

H

n

n

Commodore 128

Monitor

Command

Descriptions

n

H

n

n

n

H

Number field (e.g. addresses, device numbers, and data bytes) may

be specified as a based number. This affects the operand field of the

ASSEMBLE command. Also note the addition of the directory syntax

to the disk command.

As a further aid to programmers, the Kernal error message facility

has been automatically enabled while in the Monitor. This means the

Kernal will display 'I/O ERROR #' and the error code, should there be

any failed I/O attempt from the MONITOR. The message facility is

turned off when exiting the MONITOR.

COMMAND: A

PURPOSE: Enter a line of assembly code.

SYNTAX: A <address> <opcode mnemonic) (operand)

(address)

(opcode

mnemonic)

(operand)

A number indicating the location

in memory to place the opcode.

(See 5-digit address note on pre

vious page.)

A standard MOS technology

assembly language mnemonic,

e.g., LDA, STX, ROR.

The operand, when required, can

be any of the legal addressing

modes.

A RETURN is used to indicate the end of the assembly line. If there

are any errors on the line, a question mark is displayed to indicate an

error, and the cursor moves to the next line. The screen editor can

be used to correct the error(s) on that line.

EXAMPLE

.A01200LDX#$00

.A01202

NOTE: A period (.) is equal to the ASSEMBLE command.

EXAMPLE:

.02000 LDA #$23

i I

373 APPENDIX J—Machine Language Monitor

u

COMMAND: C I]
PURPOSE: Compare two areas of memory.

SYNTAX: C (address 1) (address 2) (address 3)

(address 1) A number indicating the start LJ
address of the area of memory to

compare against. , i

(address 2) A number indicating the end LJ,
address of the area of memory to

compare against. ,

(address 3) A number indicating the start lJ
address of the other area of mem

ory to compare with. Addresses | •

that do not agree are printed on i_j

the screen.

COMMAND: D LJ
PURPOSE: Disassemble machine code into assembly language

mnemonics and operands. , .

SYNTAX: D [(address)] [(address 2>] LJ

(address) A number setting the address to

start the disassembly. j j

(address 2) An optional ending address of '—*•

code to be disassembled.

The format of the disassembly differs slightly from the input format of '—*•

an assembly. The difference is that the first character of a disassem

bly is a period rather than an A (for readability), and the hexadecimal J ,

of the code is listed as well. '—l

A disassembly listing can be modified using the screen editor. Make j |

any changes to the mnemonic or operand on the screen, then hit the ^
carriage return. This enters the line and calls the assembler for fur

ther modifications.) |

A disassembly can be paged. Typing a D (RETURN) causes the next

page of disassembly to be displayed. \ >

EXAMPLE:

D 3000 3003 i .

.03000 A900 LDA#$00 Lj

.03002 FF ???

.03003 DO 2B BNE$3030

u

u
374 APPENDIX J—Machine Language Monitor

u

/ t

1 1

n

H

n

n

n

COMMAND: F

PURPOSE: Fill a range of locations with a specified byte.

SYNTAX: F <address 1 > (address 2> <byte>

(address 1 > The first location to fill with the

<byte>.

(address 2> The last location to fill with the

<byte>.

< byte value) A1 - or 2-digit hexadecimal num

ber to be written.

This command is useful for initializing data structures or any other
RAM area.

EXAMPLE:

F 0400 0518 EA

Fill memory locations from $0400 to $0518 with $EA (a

NOP instruction).

COMMAND: G

PURPOSE: Begin execution of a program at a specified address.
SYNTAX: G [<address>]

(address) An address where execution is to

start. When address is left out,

execution begins at the current

PC. (The current PC can be

viewed using the R command.)

The GO command restores all registers (displayable by using the R

command) and begins execution at the specified starting address.

Caution is recommended in using the GO command. To return to

Commodore 128 MONITOR mode after executing a machine lan

guage program, use the BRK instruction at the end of the program.

EXAMPLE:

G140C

Execution begins at location $140C.

375 APPENDIX J—Machine Language Monitor

u

COMMAND: H LJ
PURPOSE: Hunt through memory within a specified range for all

occurrences of a set of bytes.

SYNTAX: H (address 1 > (address 2> <data> [J

<address 1 > Beginning address of hunt

procedure.

<address 2> Ending address of hunt

procedure.

<data> Data set to search for data may

be hexadecimal or an ASCII

string.

EXAMPLE: UJ

HA000A101 A9FF4C

Search for data $A9, $FF, $4C, U
fromA000toA101.

H 2000 9800'CASH' [J

Search for the alpha string "CASH".

COMMAND: J (J

PURPOSE: Jump to a machine language subroutine LJ
SYNTAX: J < address)

The JUMP command directs program control to the machine Ian- ^—^
guage subroutine located at the specified address. The JUMP com

mand does not save the return address as does the 8502 instruction j)

JSR (Jump to subroutine). The JMP 8502 instruction is comparable to *—*

the J monitor instruction. In other words, the JUMP command is a

one-way instruction, where the application gains control of the com- I |

puter. Only after it stops does the machine language monitor regain '—*■
control.

EXAMPLE: j_i

J2000

Jump to the subroutine starting at $2000. \ j

COMMAND: L

PURPOSE: Load a file from cassette or disk.

SYNTAX: L <"file name">[,<device> [,alt load address]] U

< "file name" > Any legal Commodore 128 file

name. |i

(device) A number indicating the device to

load from. 1 is cassette. 8 is disk

(or 9, A, etc.). "\ r

376 APPENDIX J—Machine Language Monitor

n

n

n

h

n

H

n

[alt load address] Option to load a file to a speci

fied address.

The LOAD command causes a file to be loaded into memory. The

starting address is contained in the first two bytes of the disk file (a
program file). In other words, the LOAD command always loads a file

into the same place it was saved from. This is very important in

machine language work, since few programs are completely relocat

able. The file is loaded into memory until the end of file (EOF) is

found.

EXAMPLE:

L "PROGRAM",8 Loads the file named PROGRAM from the

disk.

COMMAND: M

PURPOSE: To display memory as a hexadecimal and ASCII dump

within the specified address range.

SYNTAX: M [< address 1 >] [<address>]

{address 1 > First address of memory dump.

Optional. If omitted, one page is

displayed. The first byte is the

bank number to be displayed, the

next four bytes are the first

address to be displayed.

(address 2> Last address of memory dump.

Optional. If omitted, one page is

displayed. The first byte is the

bank number to be displayed, the

next four bytes are the ending

address to be displayed.

Memory is displayed in the following format:

>1A04841 E7 00AAAA00 98 56 45:A!.*..VE

Memory content may be edited using the screen editor. Move the

cursor to the data to be modified, type the desired correction and hit

<RETURN). If there is a bad RAM location or an attempt to modify

ROM has occurred, an error flag (?) is displayed. An ASCII dump of

the data is displayed in REVERSE (to contrast with other data dis

played on the screen) to the right of the hex data. When a character

is not printable, it is displayed as a reverse period (o). As with the dis

assembly command, paging down is accomplished by typing M and

<RETURN>.

EXAMPLE:

M21C00 21C10

>21C0041 E700 AAAA00985645 :A!.*..VE

377 APPENDIX J—Machine Language Monitor

>21 C08 42 43 02 AZ AD 11 94 57 44 :BC.*..WD

>21C10 45 E7 00 DF FE 07 064647 :E!.*..EF

Note: The above display is produced by the 40-column editor.

COMMAND: R

PURPOSE: Show important 8502 registers. The program status

register, the program counter, the accumulator, the

X and Y index registers and the stack pointer are

displayed.

SYNTAX: R

EXAMPLE:

R

PC

01002

SR

01

AC

02

XR

03

YR

04

SP

F6

NOTE:; (semicolon) can be used to modify register displays in

the same fashion as > can be used to modify memory registers.

COMMAND: S

PURPOSE: Save the contents of memory onto tape or disk.

SYNTAX: S ("file name"),(device),(address 1),

(address 2)

< "file name") Any legal Commodore 128 file

name. To save the data the file

name must be enclosed in double

quotes. Single quotes cannot be

used.

(device) A number indicating on which

device the file is to be placed.

Cassette is 01; disk is 08, 09, etc.

(address 1 > Starting address of memory to be

saved.

(address 2) Ending address of memory to be

saved + 1. All data up to, but not

including the byte of data at this

address, is saved.

The file created by this command is a program file. The first two

bytes contain the starting address (address 1 > of the data. The file

may be recalled, using the L command.

378 APPENDIX J—Machine Language Monitor

LI

U

U

U

U

LI

U

U

U

LJ

U

u

n

H

EXAMPLE:

S"GAME",8,0400,0BFF

Saves memory from $0400 to $0BFF onto disk.

COMMAND: T

PURPOSE: Transfer segments of memory from one memory area

to another.

SYNTAX: T <address 1 > (address 2> (address 3>

(address 1 > Starting address of data to be

moved,

(address 2> Ending address of data to be

moved,

(address 3> Starting address of new location

where data will be moved.

Data can be moved from low memory to high memory and vice

versa. Additional memory segments of any length can be moved

forward or backward. An automatic "compare" is performed as

each byte is transferred, and any differences are listed by address.

EXAMPLE:

T 1400 1600 1401

Shifts data from $1400 up to and including $1600 one byte

higher in memory.

COMMAND: V

PURPOSE: Verify a file on cassette or disk with the memory con

tents.

SYNTAX: V ("file name">[,(device>] [,alt start address]

("file name"> Any legal Commodore 128 file

name,

(device) A number indicating which device

the file is on; cassette is 01, disk is

08, 09, etc.

[alt start Option to start verification

address] at this address.

The verify command compares a file to memory contents. The

Commodore 128 responds with VERIFYING. If an error is found the

word ERROR is added; if the file is successfully verified the cursor

reappears.

EXAMPLE:

V "WORKLOAD", 08

379 APPENDIX J—Machine Language Monitor

COMMAND:

PURPOSE:

SYNTAX:

COMMAND:

PURPOSE:

SYNTAX:

Exit to BASIC.

X

> (greater than)

Can be used to set one to eight memory locations

at a time.

> <address> <data byte) 1 <data byte 2 ... 8)

<address) First memory address to set.

<data byte 1 > Data to be put at address.

<databyte2...8>

Data to be placed in the suc

cessive memory locations

following the first address

(optional) with a space pre

ceding each data byte.

@ (at sign)

Can be used to display the disk status.

@ [<unit#>], (disk cmd string)

<unit #) Device unit number

(optional).

<disk cmd string) String command to disk.

NOTE: @ alone gives the status of the disk drive.

COMMAND:

PURPOSE:

SYNTAX:

EXAMPLES:

>,$

checks disk status

00, OK, 00, 00

initializes drive 8

Checks the directory on Unit 8

),$0:F* List all files on Unit 8, drive 0 beginning with the
letter "F".

380 APPENDIX J—Machine Language Monitor

r i

APPENDIX K

BASIC 7.0

ABBREVIATIONS

n

n

n

n

n

Note: The abbreviations below operate in uppercase/graphics mode.

Press the letter key(s) indicated, then hold down the SHIFT key

and press the letter key following the word SHIFT.

KEYWORD ABBREVIATION

ABS A SHIFT B

APPEND. A SHIFTP

ASC A SHIFTS

ATN ASHIFTT

AUTO A SHIFT U

BACKUP BASHIFTC

BANK B SHIFT A

BEGIN B SHIFT E

BEND BE SHIFT N

BLOAD B SHIFT L

BOOT BSHIFTO

BOX none

BSAVE B SHIFTS

BUMP B SHIFT U

CATALOG C SHIFTA

CHAR CH SHIFTA

CHR$ C SHIFT H

CIRCLE CSHIFTI

CLOSE CLSHIFTO

CLR C SHIFT L

CMD C SHIFT M

COLLECT COLL SHIFTE

COLLISION COL SHIFT L

COLOR COL SHIFTO

CONCAT C SHIFTO

CONT none

COPY CO SHIFT P

COS none

DATA D SHIFTA
DEC none

DCLEAR DCL SHIFTE
DCLOSE DSHIFTC
DEFFN none

DELETE DE SHIFT L
DIM DSHIFTI
DIRECTORY Dl SHIFTR
DLOAD D SHIFT L
DO none

DOPEN D SHIFTO

H

381 APPENDIX K—BASIC 7.0 Abbreviations

LJ

Li

KEYWORD ABBREVIATION j $

DRAW D SHIFT R ^
DSAVE D SHIFTS
DVERIFY DSHIFTV i >
EL none '—*
END none

ENVELOPE E SHIFT N ,')
ER none ^—*

ERRS ESHIFTR
EXIT EXSHIFTI ; ;
EXP ESHIFTX i—>
FAST none

FETCH FSHIFTE , >

FILTER FSHIFTI O
FOR FSHIFTO
FRE FSHIFTR , j
FNXX none LJ
GET G SHIFT E

GETKEY GETKSHIFTE

GET # none

GOSUB GO SHIFT S

GO64 none , j

GOTO G SHIFTO Li
GRAPHIC G SHIFT R

GSHAPE G SHIFTS , ,

HEADER HE SHIFTA Li
HELP HEX$ H SHIFT E

IF...GOTO none , ,

IF... THEN ... ELSE none LJ
INPUT none

INPUT# I SHIFT N , ,

INSTR IN SHIFTS LJ
INT none

JOY J SHIFTO , ,

KEY K SHIFT E Li
LEFTS LE SHIFT F

LEN none

LET L SHIFT E LJ
LIST LSHIFTI

LOAD L SHIFTO

LOCATE LO SHIFTC U
LOG none

LOOP LO SHIFTO

u
382 APPENDIX K—BASIC 7.0 Abbreviations

u

i 1

n

n

n

n

H

n

H

H

n

KEYWORD ABBREVIATION

MID$ MSHIFTI

MONITOR MO SHIFT N

MOVSPR M SHIFTO

NEW none

NEXT N SHIFT E

ON...GOSUB ON... GO SHIFTS

ON ... GOTO ON ... G SHIFTO

OPEN O SHIFT P

PAINT P SHIFT A

PEEK PE SHIFT E

PEN PSHIFTE

PI none

PLAY P SHIFT L

POKE PO SHIFT K

POS none

POT P SHIFTO

PRINT ?

PRINT# PSHIFTR

PRINT USING 7USSHIFTI

PUDEF P SHIFT U

RCLR RSHIFTC

RDOT R SHIFT D

READ RE SHIFT A

RECORD R SHIFT E

REM none

RENAME RE SHIFT N

RENUMBER REN SHIFT U

RESTORE RE SHIFTS

RESUME RES SHIFT U

RETURN RESHIFTT

RGR RSHIFTG

RIGHTS RSHIFTI

RND R SHIFT N

RREG R SHIFT R

RSPCOLOR RSP SHIFTC

RSPPOS R SHIFTS

RSPR none

RSPRITE RSP SHIFT R

RUN R SHIFT U

RWINDOW R SHIFT W

383 APPENDIX K—BASIC 7.0 Abbreviations

u

KEYWORD ABBREVIATION , ,

SAVE S SHIFTA LJ
SCALE SC SHIFTA

SCNCLR SSHIFTC , ,

SCRATCH SC SHIFT R LJ
SGN SSHIFTG

SIN SSHIFTI (.

SLEEP S SHIFT L Ui
SLOW none

SOUND SSHIFTO .,

SPC(none Jj

SPRCOLOR SPR SHIFTC

SPRDEF SPR SHIFT D ,

SPRITE S SHIFT P LJ
SPRSAV SPR SHIFTS

SQR SSHIFTQ ,

SSHAPE S SHIFTS LJ

STASH SSHIFTT

STatus none ,

STEP ST SHIFT E U
STOP STSHIFTO

STR$ ST SHIFT R .

SWAP S SHIFT W LJ

SYS none

TAB(T SHIFTA

TAN none i [
TEMPO T SHIFT E

Tl none

Tl$ none LJ
TO none

TRAP T SHIFT R

TROFF TRO SHIFT F LJ
TRON TRSHIFTO

UNTIL U SHIFT N

USR U SHIFTS LJ
VAL none

VERIFY VSHIFTE

VOL VSHIFTO M
WAIT W SHIFTA

WHILE W SHIFT H

WIDTH WI SHIFT D \j
WINDOW WSHIFTI

XOR XSHIFTO

LJ

U
384 APPENDIX K—BASIC 7.0 Abbreviations

LJ

n

APPENDIX L

DISK COMMAND

SUMMARY

n

n

n

n

This appendix lists the commands used for disk operation in C128

and C64 modes on the Commodore 128. For detailed information on

any of these commands, see Chapter V, BASIC 7.0 Encyclopedia.

Your disk drive manual also has information on disk commands.

The new BASIC 7.0 commands can be used only in C128 mode. All

BASIC 2.0 commands can be used in both C128 and C64 modes.

Basic 2.0 Basic 7.0Command

APPEND

BLOAD

BOOT

BSAVE

CATALOG

CLOSE

CMD

COLLECT

CONCAT

COPY

DCLEAR

DCLOSE

DIRECTORY

DLOAD

DOPEN

DSAVE

DVERIFY

GET*

HEADER

LOAD

OPEN

PRINT*

Use

Append data to file

Load a binary file starting at

the specified memory

location

Load and execute a bootable

program

Save a binary file from the

specified memory location

Display directory contents of

disk on screen*

Close logical disk file

Redirect screen output to a

peripheral device

Free inaccessible disk

space*

Concatenate two data files*

Copy files between devices*

Clear all open channels on

disk drives

Close logical disk file

Display directory of contents

of disk on screen*

Load a BASIC program from

disk

Open a disk file for a read

and/or write operation

Save a BASIC program to

disk

Verify program in memory

against program on disk

Receive input from open disk

file

Format a disk*

Load a file from disk

Open a file for input or output

Output a data to file

* Although there is no single equivalent command for this function in BASIC 2.0, there is an

equivalent multi-command instruction. See your disk drive manual for these BASIC 2.0

conventions.

385 APPENDIX L—Disk Command Summary

Command

RECORD

RENAME

RUN filename

SAVE

VERIFY

Use

Position relative file pointers*

Change name of a file on

disk*

Execute BASIC program from

disk

Store program in memory to

disk

Verify program in memory

against program on disk

Basic 2.0 Basic 7.0

*Although there is no single equivalent command in BASIC 2.0, there is an equivalent multi-

command instruction. See your disk drive manual for these BASIC 2.0 conventions.

386 APPENDIX L—Disk Command Summary

■u

u

u

LJ

LJ

LJ

LJ

U

LJ

U

LJ

U

U

U

LJ

U

n

GLOSSARY

GLOSSARY

n

n

n

H

n

H

n

This glossary provides brief definitions of frequently used computing

terms.

Acoustic Coupler or Acoustic Modem: A device that converts

digital signals to audible tones for transmission over telephone

lines. Speed is limited to about 1,200 baud, or bits per second

(bps). Compare direct-connect modem.

Address: The label or number identifying the register or memory

location where a unit of information is stored.

Alphanumeric: Letters, numbers and special symbols found on the

keyboard, excluding graphic characters.

ALU: Arithmetic Logic Unit. The part of a Central Processing Unit

(CPU) where binary data is acted upon.

Animation: The use of computer instructions to simulate motion of

an object on the screen through gradual, progressive

movements.

Array: A data-storage structure in which a series of related con

stants or variables are stored in consecutive memory locations.

Each constant or variable contained in an array is referred to as

an element. An element is accessed using a subscript. See

Subscript.

ASCII: Acronym for American Standard Code for Information Inter

change. A seven-bit code used to represent alphanumeric

characters. It is useful for such things as sending information

from a keyboard to the computer, and from one computer to

another. See Character String Code.

Assembler: A program that translates assembly-language instruc

tions into machine-language instructions.

387 GLOSSARY

LJ

Assembly Language: A machine-oriented language in which mne- < .

monies are used to represent each machine-language instruc- LJ
tion. Each CPU has its own specific assembly language. See

CPU and machine language. . .

Assignment Statement A BASIC statement that sets a variable,

constant or array element to a specific numeric or string value. , .

Asynchronous Transmission: A scheme in which data characters

are sent at random time intervals. Limits phone-line transmis

sion to about 2,400 baud (bps). See Synchronous Transmission. 1 /

Attack: The rate at which the volume of a musical note rises from i .

zero to peak volume. LJ

Background Color: The color of the portion of the screen that the , .

characters are placed upon. LJ

BASIC: Acronym for Beginner's All-purpose Symbolic Instruction (.

Code. LJ

Baud: Serial-data transmission speed. Originally a telegraph term, , ,

300 baud is approximately equal to a transmission speed of 30 i I
bytes or characters per second.

Binary: A base-2 number system. All numbers are represented as a 1 I
sequence of zeros and ones.

Bit: The abbreviation for Binary digIT A bit is the smallest unit in a I 1
computer. Each binary digit can have one of two values, zero or

one. A bit is referred to as enabled or "on" if it equals one. A bit { ,

is disabled or "off" if it equals zero. 1 !

Bit Control: A means of transmitting serial data in which each bit l ,

has a significant meaning and a single character is surrounded I I
with start and stop bits.

Bit Map Mode: An advanced graphic mode in the Commodore 128 LJ
in which you can control every dot on the screen.

Border Colon The color of the edges around the screen. LJ

Branch: To jump to a section of a program and execute it. GOTO and ,

GOSUB are examples of BASIC branch instructions. I I

u
388 GLOSSARY

u

H

n

H

H

p

H

n

H

H

n

n

Bubble Memory: A relatively new type of computer memory, it uses

tiny magnetic "pockets" or "bubbles" to store data.

Burst Mode: A special high speed mode of communication

between a disk drive and a computer, in which information is

transmitted at many times normal speed.

Bus: Parallel lines used to transfer signals between devices. Com

puters are often described by their bus structure (i.e., S-100-bus

computers, etc.).

Bus Network: A system in which all stations or computer devices

communicate by using a common distribution channel or bus.

Byte: A group of eight bits that make up the smallest unit of address

able storage in a computer. Each memory location in the Com

modore 128 contains one byte of information. One byte is the

unit of storage needed to represent one character in memory.

See Bit.

Carrier Frequency: A constant signal transmitted between commu

nicating devices that is modulated to encode binary

information.

Character: Any symbol on the computer keyboard that is printed on

the screen. Characters include numbers, letters, punctuation

and graphic symbols.

Character Memory: The area in Commodore 128's memory which

stores the encoded character patterns that are displayed on

the screen.

Character Set: A group of related characters. The Commodore 128

character sets consist of: upper-case letters, lower-case letters

and graphic characters.

Character String Code: The numeric value assigned to represent a

Commodore 128 character in the computer's memory.

Chip: A miniature electronic circuit that performs a computer opera

tion such as graphics, sound and input/output.

Clock: The timing circuit for a microprocessor.

389 GLOSSARY

Clocking: A technique used to synchronize a sending and a receiv

ing data-communications device that is modulated to encode

binary information.

Coaxial Cable: A transmission medium, usually employed in local

networks.

Collision Detection: Determination of occurrence of collision

between two or more sprites, or between sprites and data.

Color Memory: The area in the Commodore 128's memory that

controls the color of each location in screen memory.

Command: A BASIC instruction used in direct mode to perform an

action. See Direct Mode.

Compiler: A program that translates a high-level language, such as

BASIC, into machine language.

Composite Monitor: A device used to provide a 40-column video

display.

Computer: An electronic, digital device that stores and processes

information.

Condition: Expression(s) between the words IF and THEN, evalu

ated as either true or false in an IF... THEN statement. The

condition IF... THEN statement gives the computer the ability

to make decisions.

Coordinate: A single point on a grid having vertical (Y) and horizon

tal (X) values.

Counter: A variable used to keep track of the number of times an

event has occurred in a program.

CPU: Acronym for Central Processing Unit. The part of the com

puter containing the circuits that control and perform the exe

cution of computer instructions.

Crunch: To minimize the amount of computer memory used to store

a program.

Cursor: The flashing square that marks the current location on the

screen.

390 GLOSSARY

H

H

n

n

n

n

Data: Numbers, letters or symbols that are input into the computer

to be processed.

Data Base: A large amount of data stored in a well-organized man

ner. A data-base management system is a program that allows

access to the information.

Data Link Layer: A logical portion of data communications control

that mainly ensures that communication between adjacent

devices is error free.

Data Packet: A means of transmitting serial data in an efficient

package that includes an error-checking sequence.

Data Rate or Data Transfer Rate: The speed at which data is

sent to a receiving computer—given in baud, or bits per

second (bps).

Datassette: A device used to store programs and data files sequen

tially on tape.

Debug: To correct errors in a program.

Decay: The rate at which the volume of a musical note decreases

from its peak value to a mid-range volume called the sustain

level. See Sustain.

Decrement: To decrease an index variable or counter by a specific

value.

Dedicated Line or Leased Line: A special telephone line arrange

ment supplied by the telephone company, and required by cer

tain computers or terminals, whereby the connection is always

established.

Delay Loop: An empty FOR ... NEXT loop that slows the execution

of a program.

Dial-Up Line: The normal switched telephone line that can be used

as a transmission medium for data communications.

Digital: Of or relating to the technology of computers and data com

munications where all information is encoded as bits of 1 s or Os

that represent on or off states.

391 GLOSSARY

Dimension: The property of an array that specifies the direction

along an axis in which the array elements are stored. For exam

ple, a two-dimensional array has an X-axis for rows and a Y-axis

for columns. See Array.

Direct Connect Modem: A device that converts digital signals from

a computer into electronic impulses for transmission over tele

phone lines. Contrast with Acoustic Coupler.

Direct Mode: The mode of operation that executes BASIC com

mands immediately after the RETURN key is pressed. Also

called Immediate Mode. See Command.

Disable: To turn off a bit, byte or specific operation of the computer.

Disk Drive: A random access, mass-storage device that saves and

loads files to and from a floppy diskette.

Disk Operating System: Program used to transfer information to

and from a disk. Often referred to as a DOS.

Duration: The length of time a musical note is played.

Electronic Mail or E-Mail: A communications service for computer

users where textual messages are sent to a central computer,

or electronic "mail box," and later retrieved by the addressee.

Enable: To turn on a bit, byte or specific operation of the computer.

Envelope Generator: Portion of the Commodore 128 that produces

specific waveforms (sawtooth, triangle, pulse width and noise)

for musical notes. See Waveform.

EPROM: A PROM that can be erased by the user, usually by expos

ing it to ultraviolet light. See PROM.

Error Checking or Error Detection: Software routines that identify,

and often correct, erroneous data.

Execute: To perform the specified instructions in a command or

program statement.

Expression: A combination of constants, variables or array ele

ments acted upon by logical, mathematical or relational opera

tors that return a numeric value.

392 GLOSSARY

n

p

n

n

n

n

n

n

n

n

File: A program or collection of data treated as a unit and stored on

disk or tape.

Firmware: Computer instructions stored in ROM, as in a game

cartridge.

Frequency: The number of sound waves per second of a tone. The

frequency corresponds to the pitch of the audible tone.

Full-Duplex Mode: Allows two computers to transmit and receive

data at the same time.

Function: A predefined operation that returns a single value.

Function Keys: The four keys on the far right of the Commodore

128 keyboard. Each key can be programmed to execute a

series of instructions. Since the keys can be SHIFTed, you can

create eight different sets of instructions.

GCR Format: The abbreviation for Group Code Recording, a

method of storing information on a disk in CP/M mode. The

1541 and 1571 disk drives can read, write and format GCR

disks.

Graphics: Visual screen images representing computer data in

memory (i.e., characters, symbols and pictures).

Graphic Characters: Non-alphanumeric characters on the comput

er's keyboard.

Grid: A two-dimensional matrix divided into rows and columns. Grids

are used to design sprites and programmable characters.

Half-Duplex Mode: Allows transmission in only one direction at a

time; if one device is sending, the other must simply receive

data until it's time for it to transmit.

Hardware: Physical components in a computer system such as

keyboard, disk drive and printer.

Hexadecimal: Refers to the base-16 number system. Machine lan

guage programs are often written in hexadecimal notation.

Home: The upper-left corner of the screen.

IC: Integrated Circuit. A silicon chip containing an electric circuit

i s

393 GLOSSARY

made up of components such as transistors, diodes, resistors

and capacitors. Integrated circuits are smaller, faster and more

efficient than the individual circuits used in older computers.

Increment: To increase an index variable or counter with a specified

value.

Index: The variable counter within a FOR .. .NEXT loop.

Input: Data fed into the computer to be processed. Input sources

include the keyboard, disk drive, Datassette or modem.

Integer: A whole number (i.e., a number containing no fractional j t

part), such as 0,1,2, etc. wJ

Interface: The point of meeting between a computer and an exter- i i

nal entity, whether an operator, a peripheral device or a com- I—I
munications medium. An interface may be physical, involving a

connector, or logical, involving software. j >

I/O: Input/output. Refers to the process of entering data into the

computer, or transferring data from the computer to a disk j »

drive, printer or storage medium. I—I

Keyboard: Input component of a computer system. , .

Kilobyte (K): 1,024 bytes.

Local Network: One of several short-distance data communica- I I
tions schemes typified by common use of a transmission

medium by many devices and high-data speeds. Also called a j j

Local Area Network, or LAN. I I

Loop: A program segment executed repetitively a specified number

of times. LJ

Machine Language: The lowest level language the computer under- .

stands. The computer converts all high-level languages, such I I
as BASIC, into machine language before executing any state

ments. Machine language is written in binary form that a com- h

puter can execute directly. Also called machine code or object LJ

code.

Matrix: A two-dimensional rectangle with row and column values. LJ

LJ
394 GLOSSARY

n

n

/ ■;

H

H.

H

n

n

n

Memory: Storage locations inside the computer. ROM and RAM are

two different types of memory.

Memory Location: A specific storage address in the computer.

There are 131,072 memory locations (0-131,071) in the

Commodore 128.

MFM: The abbreviation for Modified Frequency Modulation, a

method of storing information on disks. There are a number of

different MFM formats used for CP/M programs. The 1571 disk

drive can read an'd write to many MFM formats.

Microprocessor: A CPU that is contained on a single integrated

circuit (IC). Microprocessors used in Commodore personal

computers include the 6510, the 8502 and the Z80.

Mode: A state of operation.

Modem: Acronym for MOdulator/DEModulator. A device that trans

forms digital signals from the computer into electrical impulses

for transmission over telephone lines, and does the reverse for

reception.

Monitor: A display device resembling a television set but with a

higher-resolution (sharper) image on the video screen.

Motherboard: In a bus-oriented system, the board that contains the

bus lines and edge connectors to accommodate the other

boards in the system.

Multi-Color Character Mode: A graphic mode that allows you to

display four different colors within an 8 x 8 character grid.

Multi-Color Bit Map Mode: A graphic mode that allows you to dis

play one of four colors for each pixel within an 8 x 8 character

grid. See Pixel.

Multiple-Access Network: A flexible system by which every station

can have access to the network at all times; provisions are

made for times when two computers decide to transmit at the

same time.

Null String: An empty character (" "). A character that is not yet

assigned a character string code. Produces an illegal quantity

error if used in a GET statement.

395 GLOSSARY

Octave: One full series of eight notes on the musical scale.

Operating System: A built-in program that controls everything your

computer does.

Operator: A symbol that tells the computer to perform a mathemati

cal, logical or relational operation on the specified variables,

constants or array elements in the expression. The mathemati

cal operators are +,-,*,/ and t. The relational operators are

<,=,>,<=,> = and < >. The logical operators are AND, OR

NOT, and XOR.

Order of Operations: Sequence in which computations are per

formed in a mathematical expression. Also called Heirarchy of

Operations.

Parallel Port: A port used for transmission of data one byte at a time

over multiple wires.

Parity Bit: A1 or 0 added to a group of bits that identifies the sum of

the bits as odd or even.

Peripheral: Any accessory device attached to the computer such

as a disk drive, printer, modem or joystick.

Pitch: The highness or lowness of a tone that is determined by the

frequency of the sound wave. See Frequency.

Pixel: Computer term for picture element. Each dot on the screen

that makes up an image is called a pixel. Each character on the

screen is displayed within an 8 x 8 grid of pixels. The entire

screen is composed of a 320 x 200 pixel grid. In bit-map

mode, each pixel corresponds to one bit in the computer's

memory.

Pointer: A register used to indicate the address of a location in

memory.

Polling: A communications control method used by some computer/

terminal systems whereby a "master" station asks many

devices attached to a common transmission medium, in turn,

whether they have information to send.

Port: A channel through which data is transferred to and from the

CPU. An 8-bit CPU can address 256 ports.

396 GLOSSARY

r

n.

n

n.

n

n.

Printer: Peripheral device that outputs the contents of the comput

er's memory onto a sheet of paper. This paper is referred to as

a hard copy.

Program: A series of instructions that direct the computer to per

form a specific task. Programs can be stored on diskette or

cassette, reside in the computer's memory, or be listed on a

printer.

Programmable: Capable of being processed with computer

instructions.

Program Line: A statement or series of statements preceded by a

line number in a program. The maximum length of a program

line on the Commodore 128 is 160 characters.

PROM: Acronym for Programmable Read Only Memory. A semicon

ductor memory whose contents cannot be changed.

Protocol: The rules under which computers exchange information,

including the organization of the units of data to be transferred.

Random Access Memory (RAM): The programmable area of the.

computer's memory that can be read from and written to

(changed). All RAM locations are equally accessible at any time

in any order. The contents of RAM are erased when the com

puter is turned off.

Random Number A nine-digit decimal number from 0.000000001

to 0.999999999 generated by the RaNDom (RND) function.

Read Only Memory (ROM): The permanent portion of the comput

er's memory. The contents of ROM locations can be read, but

not changed. The ROM in the Commodore 128 contains the

BASIC language interpreter, character-image patterns and por

tions of the operating system.

Register: Any memory location in RAM. Each register stores one

byte. A register can store any value between 0 and 255 in

binary form.

Release: The rate at which the volume of a musical note decreases

from the sustain level to zero.

397 GLOSSARY

Remark: Comments used to document a program. Remarks are not

executed by the computer, but are displayed in the program

listing.

Resolution: The density of pixels on the screen that determine the

fineness of detail of a displayed image.

RGBI Monitor: Red/Green/Blue/lntensity A high-resolution display

device necessary to produce an 80-column screen format.

Ribbon Cable: A group of attached parallel wires.

Ring Network: A system in which all stations are linked to form a

continuous loop or circle.

RS-232: A recommended standard for electronic and mechanical

specifications of serial transmission ports. The Commodore

128 parallel user port can be treated as a serial port if ac

cessed through software, sometimes with the addition of an

interface device.

Screen: Video display unit which can be either a television or video

monitor.

Screen Code: The number assigned to represent a character in

screen memory. When you type a key on the keyboard, the

screen code for that character is entered into screen memory

automatically. You can also display a character by storing its

screen code directly into screen memory with the POKE

command.

Screen Memory: The area of the Commodore 128's memory that

contains the information displayed on the video screen.

Serial Port: A port used for serial transmission of data; bits are

transmitted one bit after the other over a single wire.

Serial Transmission: The sending of sequentially ordered data bits.

Software: Computer programs (sets of instructions) stored on disk,

tape or cartridge that can be loaded into random access mem

ory Software, in essence, tells the computer what to do.

398 GLOSSARY

u

u

u

u

u

u

u

u

u

u

u

LJ

u

LJ

LJ

U

U

u

n

0

n

n

n

) i

H

n

Sound Interface Device (SID): The MOS 6581 sound synthesizer
chip responsible for all the audio features of the Commodore

128. See the Commodore 128 Programmer's Reference Guide

for chip specifications.

Source Code: A non-executable program written in a high-level lan

guage. A compiler or assembler must translate the source code

into an object code (machine language) that the computer can

understand.

Sprite: A programmable, movable, high-resolution graphic image.

Also called a Movable Object Block (MOB).

Standard Character Mode: The mode the Commodore 128 oper

ates in when you turn it on and when you write programs.

Start Bit: A bit or group of bits that identifies the beginning of a data
word.

Statement: A BASIC instruction contained in a program line.

Stop Bit: A bit or group of bits that identifies the end of a data word

and defines the space between data words.

String: An alphanumeric character or series of characters sur

rounded by quotation marks.

Subroutine: An independent program segment separate from the

main program that performs a specific task. Subroutines are

called from the main program with the GOSUB statement and

must end with a RETURN statement.

Subscript: A variable or constant that refers to a specific element in

an array by its position within the array.

Sustain: The midranged volume of a musical note.

Synchronous Transmission: Data communications using a syn

chronizing, or clocking signal between sending and receiving

devices.

Syntax: The grammatical rules of a programming language.

399 GLOSSARY

u

Tone: An audible sound of specific pitch and waveform. j |

Transparent: Describes a computer operation that does not require

user intervention. ' j |

Variable: A unit of storage representing a changing string or

numeric value. Variable names can be any length, but only the [|

first two characters are stored by the Commodore 128. The first <—J
character must be a letter.

Video Interface Controller (VIC): The MOS chip (8564/8566) LJ
responsible for the 40-column graphics features of the Commo

dore 128. See the Commodore 128 Programmer's Reference i t

Guide for chip specifications. ^

Voice: A sound-producing component inside the SID chip. There are j i*

three voices within the SID chip so the Commodore 128 can <—*

produce three different sounds simultaneously. Each voice

consists of a tone oscillator/waveform generator, an envelope j j

generator and an amplitude modulator. t—J

Waveform: A graphic representation of the shape of a sound wave. j >

The waveform determines some of the physical characteristics '—*
of the sound.

Word: Number of bits treated as a single unit by the CPU. In an eight- ui
bit machine, the word length is eight bits; in a 16-bit machine,

the word length is 16 bits. j >>

U

LJ

U

U

U

u
400 GLOSSARY

h

u

H -

H INDEX

n

H

n

n

n

n

n

n--

n -

n .

n-

n

Abbreviations—BASIC, 29,33,

381

ABS function, 70,307

Addition, 36

ADM3,221

ADSR, 129,142

Alt key, 91

Alt mode, 221

Animation, 109,121

APPEND, 235

Arrays, 61,62,327

ASC function, 69,307

ASCII character codes, 69,357

ASM, 197

Asterisk key (*), 36,196,197

Attack, 140

ATN function, 307

AUTO command, 81,235

AUXIN, 213

AUXOUT, 213

B
Bach, 154

BACKUP, 236

Bandpass, 149

BANK, 236

Bank table, 237

BAS, 197

BASIC

abbreviations, 29

commands, 233

functions, 67,305

mathematics, 36

operators, 36

statements, 233

variables, 327

BASIC 2.0,11, 229

BASIC 7.0, 5,229

BEGIN:/:BEND,77,237

Binary files, 123

Bit Map mode, 98

BLOAD, 123,238

BOOT, 239

Booting, 186

BOX, 96,102,239

BSAVE, 123,125,241

BUMP, 308

c
C128 Mode, 10

C64 Mode, 10

Caps Lock key, 91

Cartridge Port, 351

Cartridges, 12

Cassette Port, 352

CATALOG, 242

Channel selector, 353

CHAR, 96,104, 242

Character sets, 21

Character string code, 69

CHR$ codes, 357,367

CHR$ function, 69,308

CIRCLE, 96,101,242

Clock, 328

CLOSE statement, 177,245

CLR, 41,100, 245

CLR/HOMEkey,26

CMD, 245

COLLECT, 246

COLLISION, 246

Colon (:), 52

COLOR, 96,97,247

Color

code display chart, 30,97,98,

247

control, 25,, 34

CHR$ codes, 357

keys, 30

memory map, 361

screen and border, 99

source codes, 97

COM, 188,197,198

Comma (,), 28

Command, 19

Command keys, 21

Command keyword, 188

Command line, 188

Command tail, 188

Commodore key, 25,26

Composite monitor, 162

CONCAT, 248

CONIN:,213

CONOUT:, 213

Constants, 38

CONTinue command, 71,248

Control characters table, 145

Control key, 25,185

■n
401 INDEX

Coordinate grid, 101

COPY, 249

Copying music, 154

Copying programs, 27,199

COPYSYS, 190

COSine function, 308

CP/M characters, 197

CP/M mode, 185

CP/M Plus User's Guide, 223

CP/M Plus 3.0,185

CTRL-, 188,204

CuRSoR keys, 22,171

Cursor, 21

Cutoff frequency, 148

D
Datassette, 41

DATA, 59,250

Data file, 193

DATE, 211

DCLEAR, 250

DCLOSE, 250

Debug, 70,86

DEC, 309

Decay, 140

DEF FN, 251

Delay loop, 54

DELETE, 82,251

DELete key, 24

DEVICE, 211,213

Dice, 68

DIMension statement, 61,251

DIR command, 189,210,211

Direct mode, 19

DIRECTORY, 46,252

DIRSYS,210

Disk commands, 43,177,385

Disk directory, 42,46,179

Disk Parameters, 42,187

Division, 36

DLOAD", 19,45,253

Dollar sign ($), 40,147,179,334

DO/LOOP, 75,254

DOPEN, 255

DRAW, 96,102,255

Drive specifier, 194

DS/DS$ variables, 328

DSAVE", 19,44,257

Dual screens, 165

DUMP, 211

Duration, 130,140

DVERIFY",46,257

E
Echo, 203

ED, 193,211

Editing, 35,203

EL variable, 328

ELSE clause, 77,267

END statement, 51,258

Envelope generator, 142

ENVELOPE, 142,258

Equals (=), 39,52

ERASE, 210,211

ER/ERR$ variables, 85,309,328

Error functions, 85

Error messages, 337,343

Escape codes, 370

ESCape key, 87,163,222

EXIT, 76,254

Exponentiation, 37

EXPonent function, 309

F
40/80 Display key, 91,161

FAST command, 89,259

Features, 9

FETCH, 259

File, 193

Filename, 194

File specification, 193

Filetype, 194

FILE NOT FOUND, 45

FILTER, 150,260

Filter—SID, 147

Flashing cursor, 88

FN function, 309

FOR... NEXT statement, 53,260

FORMAT, 199,211

Formatting disks, 42,177,199

FRE function, 310

Frequency, 130,138

Function, 19

Function keys, 27,89,172

u

u

u

•I 1

u

u

u

1 i

u

u

u

u

j 1

u

u

u

u

it

S |

Lj

402 INDEX

H

D

n

n

n

H

n

n

H

n

H

n

n

n

Game controls and ports, 350

GET, 57,211,212,261

GETKEY,80,262

GET# statement, 263

GO64,263

GOSUB,64,263

GOTO, 33,264

GRAPHIC, 96,99,264

Graphic characters, 27

Graphic modes, 89,99

GSHAPE, 297

H
Harmonics, 138

Hash mark (#), 78,116,147

HEADER, 42,265

HELP, 83,90,211,214,267

HELP key, 90

HEX, 197

HEX$,310

HLP, 197

HOME key, 26

Hyperbolic functions, 363

I
IF... THEN statement, 51,267

INITDIR, 211

Initializing, 179

INPUT, 55,268

INPUT#,269

Input Prompt, 56

INSerTkey,24

INSTR,310

INTeger function, 67,311

J
JOY, 311

Joystick ports, 350

K
KEY command, 90,269

Keyboard, 20

Key assignment—CP/M, 220

LEFTS function, 312

LENgth function, 312

LET statement, 270

Light pen, 12

Line Feed key, 92

Line numbers, 31

LIST command, 32,270

LOAD command, 45,178,271

LOADing cassette software, 178

LOADing CP/M software, 186

LOADing disk software, 178

LOCATE, 272

LOGarithm function, 312

Loops, 53

LST, 213

M
Machine language, 371

Mathematics, 36,363

Memory maps, 360,361,365

MID$ function, 312

Mode switching chart, 13

MONITOR, 273

Monitor—dual 1902,14,163

Monitor—machine language, 90

Monitor switching, 101,164

MOVSPR, 116,274

Multicolor bit mode, 98

Multiplication, 36

Music programs, 151,156

Music videos, 153

Musical notes, 144

Musical instruments, 142

Musical scale, 154

N
Nested loops, 54

NEW, 34,275

NEXT statement, 53,260

Noise, 139

No Scroll key, 91

Notch Reject Filter, 153

Notes, 144

Numeric functions, 67

403 INDEX

404

0
Object code file, 123

ON GOTO/GOSUB, 65,275

OPEN statement, 177,275

Operating System, 185

Operators

arithmetic, 36,329

logical, 329

order of, 37

relational, 52,329

P
PAINT, 96,103,277

Parentheses, 38,197

Password, 195

PEEK function, 66,313

PEN, 313

PERFECT series software, 5

Period (.), 147

PI, 334

PIP, 193,199,211

Pixel, 98,114

PLAY, 143,278

POINTER, 314

POKE, 66,280

POS function, 314

POT, 315

Pound symbol (#)—see Hash

mark

PRINT, 28,280

PRINT USING, 78,282

PRINT#, 177,281

Printer control—CP/M, 203

PRN, 197

Program file, 193

Program mode, 19

Programmable keys, 172

Programming aids, 81

Programmer's Reference Guide, 6

PUDEF, 79,285

Pulse width, 134,141

PUT, 211,212

Q
Question mark (?), 29,196

Quotation marks ("), 29

Quote mode, 31

INDEX

R
RAM, 65,

Random sounds, 136

RCLR, 315

RDOT, 316

READ, 59,285

RECORD, 286

Relational operators, 52

REL, 197

Release, 140

REMark statement, 28,287

RENAME, 210,211,287

RENUMBER, 81,288

Reset button, 161

Reserved variables, 328

Rest, 144

Restore key, 26

RESTORE statement, 60,289

RESUME command, 84,289

Return key, 21

RETURN statement, 64,290

RGBI monitor, 163

RGBI port, 162,354

RGR, 316

RIGHTS function, 316

RND function, 68,136,317

RSPCOLOR, 317

RSPPOS, 318

RSPRITE, 318

RUN command, 32,290

RUN/STOP key, 25,100,136,144,

161

RWINDOW,319

s
SAVE command, 44,176,291

Saving programs on tape, 178

Saving programs on disk, 176

Sawtooth waveform, 139

SCALE, 104,292

SCRATCH command, 293

SCNCLR command, 89,293

Screen display codes, 355

Screen display, 98,161

Screen memory map, 361

Scrolling, 88

Sector, 42

Semicolon (;), 29

Serial port, 352

u

LJ

U

U

LJ

U

U

LJ

LJ

U

U

M

U

U

LJ

U

U

LJ

I

n

H

SET, 211

SETDEF, 203,211

SGN function, 320

SSHAPE, 96,111,297

Sharps (#), 147

Sheet music, 154

Shift key, 22

SHOW, 211

SID chip, 129

SINe function, 320

Slash key (/), 36

SLEEP, 78,293

SLOW command, 89,294

Software—80 column, 165

SOUND, 133,294

Sound Interface Device, 129

Sound Player Program, 135

Sound reset, 136,144

SPC function, 320

Split screen display, 98

SPRCOLOR, 295

SPRDEF, 96,109,295

SPRITE, 96,115,296

Sprite Combinations, 119

Sprite control, 115

Sprite editor, 110

Sprite programming, 109,118

Sprite memory map, 125

Sprite movement, 116

Sprite viewing area, 117

Sprites, 108

SPRSAV, 96,115,297

SQR function, 321

ST variable, 328

STASH, 300

Statement, 19,31

STEP, 260

STOP, 300

STOP key, 25

Storing programs, 175

String functions, 67

Strings, 29,40

STR$ function, 321

SUB, 197

SUBMIT, 211

Subroutine, 64

Subscripts, 61

Subtraction, 36

Sustain, 140

SWAP, 300

Sweep, 131

Syntax, 19

Syntax error, 22

Synthesizer, 129,145

SYM, 197

SYS, 197,300

System prompt, 187

T
Tab key, 92

TAB function, 321

TAB stops, 88

TANgent function, 322

TEMPO, 143,301

Terminating CP/M, 214

THEN, 51,267

Timbre, 138

Time delay, 54

TI/TI$ variables, 328

TO, 102,260

Track, 42

Transient Utility commands, 188,

210

TRAP, 83,301

Triangle waveform, 139

Trigonometric functions, 363

TRON/TROFF, 85,302

TYPE command, 210,211

Typing rules, 27

u
UNTIL statement, 75,254

Up arrow (t) key, 37

Upper case/graphic set, 21,171

Upper/Lower case set, 21,171

USER, 195,210

User Number, 195

User port, 354

USR function, 322

VALue function, 70,322

Variables, 39,61,327

VERIFY command, 46,179,302

VIC chip, 95

r

I I

405 INDEX

Video Ports, 162,353

Voice, 129

VOLume, 132,143,303

W
WAIT command, 303

Waveform, 129,139,141

WHILE statement, 76,254

WIDTH, 304

Wildcard, 196

WINDOW command, 86,304

Windowing, 86

X
XOR, 323

Z80 Microprocessor, 185 u

u

u

u

u

u

(J

u
406 INDEX

LJ

n

: NOTES

n

n

n

n

n

n

n

n

n

n.

n

n

- \

n

n

n
i

■A

r -■ '

U

NOTES- I >

U

u

u

LJ

U

U

U

U

U

u

u

u

u

■U

u

6
NOTES

n

.n

n

n

n

n

n

n

n

n

n

n

o

n

NOTES

U

U

u

u

u

L!

U

U

U

U

U

u

u

u

0
T

1 f
.<—, : NOTES
D

0

D-

0-

0"

o

o

n

a

n

n

D

£1-

1 f

TEXT bys

LARRY GREENLEY

NORM MCVEY

STEVE FINKEL

MAX SPOLOWICH

ADAM TAIT

JOYCE WETMORE

DESBGN by:

WILSON HARP

JO-ELLEN TEMPLE

SPECIAL ACKNOWLEDGEMENT

• The manifold contributions of the Commodore ENGINEERING, QUALITYASSURANCE, and

MARKETING groups to the C128 System Guide are gratefully acknowledged. These contributions, which

included but were not limited to technical guidance and the review of voluminous draft materials and

galleys, were indispensable to the production of this book. Without the contributions of these groups

there would be no C128 System Guide—and indeed, no Commodore 128 Personal Computer.

■<<-■

—-

n

COMMODORE?

WOULD YOU LIKE TO DO MORE WITH

CP/M® ON YOUR COMMODORE 128?

Digital Research Inc. (DRI) and Commodore have arranged for additional CP/M

documentation to be made available to you. DRI's complete CP'M Plus Version

3.0 user's manual, consisting of User's Guide, Programmer's Reference Guide,

and System Guide can be yours for $19.95 ($29.95 for Canadian residents). You

will also receive two utility disks not included with your Commodore 128.

Complete the order form below, tear oft and return to appropriate address. Retain this top

portion for your records.

Date mailed: Please allow 6 to 8 weeks for delivery.

Y6S, I would like to receive the complete Digital Research Inc. user documentation for CP/M

and the two CP'M utility disks.

Enclosed is my payment of $19.95 ($29.95 if Canadian resident)' per order.

□ Check CD Money Order
(Do no! send cash)

"Residents of Pennsylvania add 6% sales tax, residents of Ontario add 7% sales tax.

NAME.

ADDRESS

CITY, STATE OR PROVINCE

ZIP OR POSTAL CODE

PHONE NUMBER_()

Return to:

In the U.S.

(Payable to Commodore Direct Marketing)

Commodore Direct Marketing

DRI Offer

C-2651

West Chester, Pennsylvania 19380

In CANADA

(Payable to Commodore Business Machines, Ltd.)

National Fulfillment

DRI Offer

3470 Pharmacy Ave.

Agincourt, Ontario, Canada M1W3G3

Please allow 6 to 8 weeks for delivery.

CP'M is a Registered Trademark of Digtlal Research Inc.

r -■ '

U

NOTES- I >

U

u

u

LJ

U

U

U

U

U

u

u

u

u

■U

u

