Pl e 1

it o W oo o B o S s o N S e L

| 1 2

! P =52 I L £ -
1 e 2 — — - S— - — —

N A Friendly Introduction to Your 1541 Disk Drive

= COMPUTRR

USER’S GUIDE STATEMENT

"“This equipment generates and uses radio frequency energy. If it is
not properly installed and used in strict accordance with the manufac-
turer’s instructions, this equipment may interfere with radio and tele-
vision reception. This machine has been tested and found to comply
with the limits for a Class B computing device peripheral in accord-
ance with the specifications in Subpart J of Part 15 of FCC Rules,
which are designed to provide reasonable protection against such
interference in a residential installation. |f you suspect interference,
you can test this equipment by turning it off and on. If you determine
that there is interference with radio or television reception, try one
or more of the following measures to correct it:

® reorient the receiving antenna

® move the equipment away from the receiver

® change the relative positions of the equipment and the receiver

® plug the equipment into a different outlet so that the equipment
and the receiver are on different branch circuits.

If necessary, consult your Commodore dealer or an experienced radio/
television technician for additional suggestions. You may also wish to
consult the following booklet, which was prepared by the Federal
Communications Commission:

“How to Identify and Resolve Radio-TV Interference Problems”.
This booklet is available from the U.S. Government Printing Office,
Washington, D.C. 20402, Stock No. 004-000-00345-4.

COMMODORE
15491

DISK DRIVE
USER’S GUIDE

A Friendly Introduction to Your 1541 Disk Drive

(= commodore
COMPUTER

The information in this manual has been reviewed and is believed to be entirely
reliable. No responsibility, however, is assumed for inaccuracies. The material in this
manual is for information purposes only, and is subject to change without notice.

©Commodore Business Machines Electronics Ltd., September 1982
**All rights reserved.”

Table of Contents Page

1.

2.

3.

5.

6.

GENERAL DESCRIPTION......... deTe s v aas et Simewees Sassenes - 1

UNPACKING AND CONNECTINGocvviinnnrnnnnaaans gyt i

4
Contents of Box....... s A A e N A e il vossons &
Connection of Cablesovveenniinrrnrrrrisnsrenennannaans e S
PoweringOn oo e R R A orusanian,
Insertion Of DHSKEte o« onvreescessssrsannonnsiinsnscssanssasns T
Using with VIC 20 or Commodore 64 A o St AN 7

USING PROGRAMS........... crbevessessess i resbann cesseenens .

8
Loading Pre-packaged Software0 S e e ceses B
LOAD. . .cconsvssoss SsTiiaE P Edeeee enameese shmeeees: |8
Directory of Disk.......... e Ssees e~ S 9
Pattern Matching & Wild Cards...... T R S e es 11
SAVE i civistssaniss P e svacs 12
SAVEandreplace AN~ TR R ey A 12
VERIFY ...ovvvnnnnnnnnns S e L s s 13
DOS Support Programoovvvencesanrnnannnns SR p— .

DISK COMMANDS............ CE e e s e e e e cereeeas 14

OPENANDPRINT# .vvvernniiincnncnnnncnnans - vees 14
NEW....cooevnennnn IS P R TR e ernsss B2
COPY.....oonvvnnn . cossress PR T = 5 cssssss 10
RENAMEcovevenneccccnannns e SRR A SRR SR 16
SCRATCH......ooccununne SRR cinsne sesereane sevens e 17
INITIALIZE R e PP ST e sesseses 17
VYALIDATE....... s AP sasesens P ooem g nba 17
DUPLICATE e T oo ueeseas siaaenie saneses 18
Reading the Error Channel............. kR I S 18
CLOSE....ccoov0e R SR T T RN saisinenwes AF

SEQUENTIALFILES s camm s nyssbad T 20

OPEN....covvvvenrnnanas T caeensie iadiEeni Sievan s .20
PRINT #and INPUT #........ sdEede des e R Saaees cusiseeee 21

RANDOMFILES........... comaran cesseuas N Sovas e vene 28

Opening a channel for random accessdata AT e e 29
BLOCK-READ.......... creusnnes crssran carneanaa R I wiei A
BLOCK-WRITE..... I T P T RE e S 30
BLOCK-ALLOCATE Cisssaennensansariesess e was
BLOCK-FREE. RS e e e caeeEE e e |
BUFFER-POINTER........ e VR R S ——— vin 33
USER1and USER2..........covevunee S s s S 34

7. RELATIVEFILESccccuuuumrn.. sesssssviiesin seeseanssii SsseiesiR T 36

Creating a relative file..............evvvvvvvennnnns tossssssarnsrnsssssassnn svisinaiic 30
Using relative files LT wediwiesiivits R AR e A . evansenesans I8
Create a relative file e s se LTI T IIT TP CI e, Siadisisveaseh .43
Summary......... [sasseamiEse B FivisiEaa vee 43
Modifying the program................ S S PP P oY .).

8. PROGRAMMING THE DISK CONTROLLER......... sssensesnesnresancnsasares §5

BLOCK-EXECUTE........ R ——— T T T ppany e esivsiasent cerees 45
MEMORY-READ raenssenves RO S shieTRTR .
MEMORY-WRITE......ccuvtuieiereieiieeenaenerenerneeneennns Ty vassun il
MEMORY-EXECUTE P T T T Seirisesibiei FETT L YV | Yingaiiee 46
USER Commands...... Fa R A SRS SN S SR s Siaviasiiel SYasepiss 47

9. CHANGING THE DISK DEVICE NUMBER............ AP~ R 48

Software Method....................... isriieeetaa B it iR ea PO &
Hardware Method................... T T T T PTT T T T T e 49

10. ASSEMBLY LANGUAGE AND THE 1541oovvoovveeenreeneeensssseennnn. 50

Appendices

cow>

Disk Command Summary T TG A ol 01 51
Error Messaiges: . o it e IR R0 O evnssassrinsieie DD
Demonstration Disk Programs................vvvvveerneernnnnn, WL [P 7
Disk Formats Tables....... Gtdiidiaeisi R TR R o Ak eee. 64

1. GENERAL DESCRIPTION
INTRODUCTION

Welcome to the fastest, easiest, and most efficient filing system available for your
Commodore 64 or VIC 20 computer, your 1541 DISK DRIVE. This manual has been
designed to show you how to get the most from your drive, whether you're a beginner
or an advanced professional.

If you are a beginner, the first few chapters will help you through the basics of
disk drive installation and operation. As your skill and programming knowledge im-
proves, you will find more uses for your disk drive and the more advanced chapters of
this manual will become much more valuable.

If you're a professional, this reference guide will show you how to put the 1541
through its paces to perform just about all the disk drive jobs you can think of.

No matter what level of expertise you have, your 1541 disk drive will dramatically
improve the overall capabilities of your computer system.

Before you get to the details of 1541 operation, you should be aware of a few im-
portant points. This manual is a REFERENCE GUIDE, which means that unless the
information you seek directly pertains to the disk or disk drive you will have to use
your Commodore 64 or VIC 20 User's Guides and Programmer’s Reference Guides to
find programming information. In addition, even though we give you step-by-step in-
structions for each operation, you should become familiar with BASIC and the in-
structions (called commands) that help you operate your disks and drives. However, if
you just want to use your disk drive unit to load and save prepackaged software, we've
included an easy and brief section on doing just that.

Now . . . let’s get on with the general information.

The commands for the disk drive come in several levels of sophistication. Starting
in chapter three, you can learn how the command that allow you to SAVE and LOAD
programs with the disk work. Chapter four teaches you how commands are sent to the
disk, and introduces the disk maintenance commands.

Chapter five tells you how to work with SEQuential data files. These are very
similar to their counterparts on tape (but much faster). Chapter six introduces the com-
mands that allow you to work with random files, to access any piece of data on the
disk, and how you organize the diskette into tracks and blocks. Chapter seven
describes the special relative files. RELative files are the best method of storing data
bases, especially when they are used along with sequential files.

Chapter eight describes methods for programming the disk controller circuits at
the machine language level. And the final chapter shows you how to change the disk
device number, by cutting a line inside the drive unit or through software.

Remember, you don’t really need to learn everything in this book all at once. The
first four chapters are enough to get you going, and the next couple are enough for
most operations. Getting to know your disk drive will reward you in many ways —
speed of operation, reliability, and much more flexibility in your data processing
capabilities.

SPECIFICATIONS

This disk drive allows you to store up to 144 different programs and/or data files
on a single mini-floppy diskette, for a maximum of over 174,000 bytes worth of infor-
mation storage.

Included in the drive is circuitry for both the disk controller and a complete disk
operating system, a total of 16K of ROM and 2K of RAM memory. This circuitry
makes your Commodore 1541 disk drive an *‘intelligent’” device. This means it does its
own processing without taking any memory away from your Commodore 64 or VIC 20
computer. The disk uses a ““pipeline’’ software system. The “‘pipeline’’ makes the disk
able to process commands while the computer is performing other jobs. This
dramatically improves the overall throughput (input and outpu'} of the system.

Diskettes that you create in this disk drive are read and write compatible with
Commodore 4040 and 2031 disk drives. Therefore, diskettes can be used inter-
changeably on any of these systems. In addition, this drive can read programs created
on the older Commodore 2040 drives.

The 1541 disk drive contains a dual ‘‘serial bus’’ interface. This bus was specially
created by Commodore. The signals of this bus resemble the parallel IEEE-488 inter-
face used on Commodore PET computers, except that only one wire is used to com-
municate data instead of eight. The two ports at the rear of the drive allows more than
one device to share the serial bus at the same time. This is accomplished by ‘‘daisy-
chaining”’ the devices together, each plugged into the next. Up to five disk drives and
one printer can share the bus simultaneously.

Figure 1.1 Specifications VIC 1540/1541 Single Drive Floppy Disk

STORAGE

Total capacity
Sequential
Relative

Directory entries
Sectors per track
Bytes per sector
Tracks
Blocks

IC’s:

6502
6522 (2)

Buffer
2114 (4)

PHYSICAL:

Dimensions
Height
Width
Depth

Electrical:

Power Requirements
Voltage
Frequency
Power

MEDIA:

Diskettes

174848 bytes per diskette
168656 bytes per diskette
167132 bytes per diskette
65535 records per file
144 per diskette

17 to 21

256

35

683 (664 blocks free)

MiCroprocessor
I/0, internal timers

2K RAM

97 mm
200 mm
374 mm

100, 120, 220, or 240 VAC
50 or 60 Hertz
25 Watts

Standard mini 5%"’, single sided,

single density

2. UNPACKING AND CONNECTING

CONTENTS OF BOX

Included with the 1541 disk drive unit, you should find a gray power cable, black
serial bus cable, this manual, and a demonstration diskette. The power cable has a con-
nection for the back of the disk drive on one end, and for a grounded (three-prong)
electrical outlet on the other. The serial bus cable is exactly the same on both ends. It
has a 6-pin DIN plug which attaches to the VIC 20, Commodore 64 or another disk
drive.

Please, don't hook up anything until you’ve completed the following section!

(| Figl.A
I C:mmudum_E 1541
L
L
e

DRIVE INDICATER (RED LED)
LIGHT: ACTIVE
FLASH: ERROR

POWER INDICATER
Fig1. Front Panel (GREEN LED) LIGHT: POWER ON

qug 1.B

| (= commodore

1541 |

S

i \ ;
\ DOOR LEVER

DRIVE INDICATER (RED LED) LIGHT: ACTIVE
FLASH: ERROR

POWER INDICATER
(GREEN LED) LIGHT: POWER ON

-+

Fig 2. Back Panel POWER SWITCH SERIAL BUS

@

(_————-—-_-' e —
9
-

— \ — !
| AC INPUT \ FUSE/HOLDER |

CONNECTION OF CABLES

Your first step is to take the power cable and insert it into the back of the disk
drive (see figure 2). It won’t go in if you try to put it in upside down. Once it’s in the
drive, plug the other end into the electrical outlet. If the disk drive makes any sound at
this time, please turn it off using the switch on the back! Don’t plug any other cables
into the disk drive if the power is on.

Next, take the serial bus cable and attach it to either one of the serial bus sockets
in the rear of the drive. Turn off the computer, and plug the other end of the cable into
the back of the computer. That’s all there is to it!

If you have a printer, or any additional disk drives, attach the cables into the se-
cond serial bus port (see figure 3). For directions on using multiple drives at one time,
read chapter 9. If you are a first-time user with more than one drive, start working with
only one drive until you're comfortable with the unit.

VIC 1541
Single Drive
Floppy Disk

Commodore 64 or VIC20
Personal Computer

Fig 3. Floppy Disk Hookup

POWERING ON

When you have all the devices hooked together, it’s time to start turning on the
power. It is important that you turn on the devices in the correct order. The computer
should always be turned on last. As long as the computer is the last one to be turned
on, everything will be OK.

First, make sure that you've removed all diskettes from the disk drives
before powering on.

After all the other devices have been turned on, only then is it safe to turn on the
computer. All the other devices will go through their starting sequences. The printer’s
motor goes on, with the print head moving halfway across the line and back again. The
1541 disk drive will have its green light on, and then the red drive/error light will blink,
while your TV screen forms the starting picture.

Once the red drive/error light has stopped flashing on the drive, it is safe to begin
working with it.

z
w
m
D
-
z
WRITE o
PROTECT =
NOTCH D
=t
— m
=]

WHEN COVERED, DISKETTE
CONTENTS CANNOT BE
AL TERED

Je000AMNOD

Fig.4. Position for Diskette Insertion

INSERTION OF DISKETTE

There is different way to open and close the drive door, and insertion/
removal the diskette.

TYPEL1: figure 1.A

To open the door on the drive, simply press the door catch lightly, and the
door will pop open. If there is a diskette in the drive, it is ejected by a small
spring. Take the diskette to be inserted, and place it in the drive face-up with the
large opening going in first and write-protect notch to the left (covered with tape
in the demonstration disk) (see figure 4).

Press itin gently, and when the diskette is in all the way, you will feel a click
and the diskette will not spring out. Close the drive door by pulling downward
until the latch clicks into place. Now you are ready to begin working with the
diskette.

TYPE2: figure 1.B

To open the door on the drive, simply turn the door lever counter-clockwise.
Take the diskette to be inserted, and place it in the drive face-up with the large
opening going in first and write-protect notch to the left (covered with tape in
the demonstration disk) (see figure 4).

Close the drive door by turning clockwise direction until the latch clicks
into place. Now you are ready to begin working with the disk.

Remember to always remove the diskette before the drive is turned off or on.
Never remove the diskette when the red drive light in on! Data can be destroyed by the
drive at this time!

USING WITH A VIC 20 OR COMMODORE 64

The 1541 Disk Drive can work with either the VIC 20 or Commodore 64 com-
puters. However, each computer has different requirements for speed of incoming
data. Therefore, there is a software switch for selecting which computer’s speed to use.
The drive starts out ready for a Commodore 64. To switch to VIC 20 speed, the follow-
ing comand must be sent after the drive is started (power-on or through software):

OPEN 15, 8, 15, *“Ul-"": CLOSE 15

To return the disk drive to Commodore 64 speed, use this command:

OPEN 15, 8, 15, “Ul+": CLOSE 15

More about using this type of command is in chapter 4, with a detailed explana-
tion of the U (user) commands in chapter 8.

3. USING PROGRAMS
LOADING PREPACKAGED PROGRAMS

For those of you interested in using only prepackaged programs available on car-
tridges, cassette, or disk, here’s all you have to do:

Using your disk drive, carefully insert the preprogrammed disk so that the label on
the disk is facing up and is closest to you. Look for a little notch on the disk (it might
be covered with a little piece of tape). If you're inserting the disk properly, the notch
will be on the left side. Once the disk is inside, close the protective gate by pushing in
on the level. Now type LOAD “PROGRAM NAME", 8 and hit the [T key.
The disk will make noise and your screen will say:

SEARCHING FOR PROGRAM NAME
LOADING

READY
]

When the word READY appears, just type RUN, and your prepackaged software
is ready to use.

LOAD

The BASIC commands used with programs on the disk drive are the same as the
commands used on the Commodore DATASSETTE™ recorder. There are a few extra
commands available for use with disks, however.

First of all, the program name must be given with each command. On a
DATASSETTE™, you could omit the program name in order to just LOAD the first
program there. On disk, since there are many different programs that are equally ac-
cessible, the program name must be used to tell the disk drive what to do. In addition,
the disk drive’s device number must be specified. If no device number is listed, the
computer assumes the program is on tape.

FORMAT FOR THE LOAD COMMAND:
LOAD name$,device#, command#

The program name is a string, that is, either a name in quotes or the contents of a
given string variable. Some valid names are: ““HELLO", “PROGRAM #1", AS,
NAMES.

The device# is preset on the circuit board to be #8. If you have more than one
drive, see chapter 9 on how to change the device number. This book assumes that
you’re using device number 8 for the disk drive,

The command# is optional. If not given, or zero, the program is LOADed nor-
mally, that is, beginning at the start of your available memory for BASIC programs. If
the number is 1, the program will be LOADed at exactly the same memory locations
from which it came. In the case of computers with different memory configurations,
like VICs with 5K, 8K, or more memory, the start of BASIC memory is in different
places. The command# 0 permits BASIC programs to LOAD normally. Command# 1
is used mainly for machine language, character sets, and other memory dependent
functions.

EXAMPLES
LOAD “TEST”, 8
LOAD “‘Program # 17, 8
LOAD AS,] , K

LOAD ““Mach Lang”, 8, 1

NOTE: You can use variables to represent device numbers, commands, and
strings, as long as you've previously defined them in your program.

DIRECTORY OF DISKETTE

The DATASSETTE™ tape deck is a sequential device. It can only read from the*
beginning of the tape to the end, without skipping around the tape and without the
capability of going backward or recording over old data.

Your disk drive is a random access device. The read/write head of the disk can go
to any spot on the disk and access a single block of data which holds up to 256 bytes of
information. There are a total of 683 blocks on a single diskette.

Fortunately, you don’t really have to worry about individual blocks of data.
There is a program in the disk drive called the Disk Operating System, or the DOS.
This program keeps track of the blocks for you. It organizes them into a Block
Availability Map, or BAM, and a directory.

The Block Availability Map is simply a checklist of all 683 blocks on the disk. It is
stored in the middle of the diskette, halfway between the center hub and the outer rim.
Every time a program is SAVEd or a data file is CLOSEd, the BAM is updated with
the list of blocks used up.

The directory is a list of all programs and other files stored on the disk. It is
physically located right next to the BAM. There are 144 entries available in the direc-
tory, consisting of information like file name and type, a list of blocks used, and the
starting block. The directory is automatically updated every time a program is SAVEd

9

or a file is OPENed for writing. BEWARE: the BAM isn’t updated until the file is
CLOSEd, even though the directory changes right away. If a file isn’t CLOSEd pro-
perly, all data in that file will probably be lost.

The directory can be LOADed into your memory just like a BASIC program.
Place the diskette in the drive, and type the following command:

LOAD *$”, 8

The computer responds with:

SEARCHING FOR §

FOUND S

LOADING

READY.

Now the directory is in your computer’s memory. Type LIST, and you'll see the
directory displayed on the screen. To print the directory on your printer, type the
following command line (in this example your printer is plugged in as device# 4):

OPEN 4, 4: CMD 4: LIST

NOTE: When using CMD, the file must be closed using the command PRINT#
4: CLOSE 4. See the VIC 1525/1515 printer manual for detailed explanation.

To read the directory without LOADing it into your memory, see the section later
in this chapter on the DOS Support Program. In addition, to examine the directory
from inside a BASIC program, see the section in chapter 5 that deals with the GET#
statement.

10

PATTERN MATCHING AND WILD CARDS

When using the tape deck, you can LOAD any program starting with certain let-
ters just by leaving off any following letters. Thus, the command LOAD “T"” will find
the first program on the tape beginning with the letter T. And LOAD ‘“HELLO'" will
find the first program beginning with the letters HELLO, like ““HELLO THERE."”

When using the disk, this option is called pattern matching, and there is a special
character in the file name used to designate this. The asterisk (*) character
following any program name tells the drive you want to find any program start-
ing with that name.

FORMAT FOR PATTERN MATCHING:

LOAD namw//

In other words, if you want to LOAD the first program on the disk starting with
the letter T, use the command LOAD ““T*”, 8.

Can Be A String
Variable Or The
Name Inside Quotes

If only the ““* is used for the name, the last program accessed on the disk is the
one LOADed. If no program has yet been LOADed, the first one listed in the directory
is the one used.

You are probably familiar with the concept of wild cards in poker where one card
can replace any other card needed. On your 1541, the question mark (?) can be used as
a wild card on the disk. The program name on the disk is compared to the name in the
LOAD command, but any characters where there is a question mark in the name aren’t
checked.

For instance, when the command LOAD “T?NT"’, 8 is given, programs that
match include TINT, TENT, etc.

When LOADiIng the directory of the disk, pattern matching and wild cards can be
used to check for a list of specific programs. If you gave the command LOAD
“$0:TEST"’, only the program TEST would appear in the directory (if present on the
disk). The command LOAD *‘$0:T*"* would give you a directory of all programs
beginning with the letter T. And LOAD “$0:T?ST"' would give you all the programs
with 4-letter names having the first letter of T and the third and fourth letters ST.
LOAD “$0:T?ST*'" would give names of any length with the correct first, third, and
fourth letters.

11

SAVE

To SAVE a program to the diskette, all that is needed is to add the device number
after the program name. Just like the SAVE command for the tape deck, the device
number can be followed by a command number, to prevent the automatic re-location
on LOADing (see the section on the LOAD command, above).

FORMAT FOR THE SAVE COMMAND:
SAVE name$, device#, command#

See the LOAD command (page 10) for an explanation of the parameters device#
and command#.

When you tell the disk drive to SAVE a program, the DOS must take several
steps. First, it looks at the directory to see if a program with that name already exists.
Next it checks to see that there is a directory entry available for the name. Then it
checks the BAM to see if there are enough blocks in which to store the program. If
everything is OK up to this point, the program is stored. If not, the error light will
flash.

SAVE AND REPLACE

If a program already exists on the disk, it is often necessary to make a change and
re-SAVE it onto the disk. In this case, it would be inconvenient to have to erase the old
version of the program and then SAVE it.

If the first characters of the program name are the ‘@’ sign followed by a 0 and
a colon (:), the DOS knows to replace any old program that has that name with the
program that is now in the computer’s memory. The drive checks the directory to find
the old program, then it marks that entry as deleted, and it next creates a new entry
with the same name. Finally, the program is stored normally.

FORMAT FOR SAVE WITH REPLACE:
SAVE “@0:"" + name$, device#, command#
For example, if a file was called TEST, the SAVE and replace command would be

SAVE “@0: TEST”,8. If the name is in A$, the command is SAVE A$ + “@0:
TEST”,8.

! The reason for the 0: is to keep compatibility with other Commodore disk

or 1 is used to specify which drive is being used.

[drive units which have more than one drive built in. In that case, the number 0

12

VERIFY

The VERIFY command works to check the program currently in memory against
the program on disk. You must include a device# with the VERIFY command. The
computer does a byte-by-byte comparison of the program, including line links —
which may be different for different memory configurations. For instance, if a pro-
gram was SAVEd to disk from a 5K VIC 20, and re-LOADed on an 8K machine, it
wouldn’t VERIFY properly because the links point to different memory locations.

FORMAT FOR VERIFY COMMAND:
VERIFY name$, device#
DOS SUPPORT PROGRAM

On your demonstration disk, there may be a program called DOS SUPPORT.
This program, also called a wedge, allows you to use many disk commands more easily
(different wedges are used for the VIC 20 and the Commodore 64). Just LOAD the
program and RUN it. It automatically sets itself up and erases itself when it’s finished.
You’'ll have a few hundred less bytes to work with when this program is running, but
youw’ll also have a handy way to send the disk commands.

As a result of the DOS Support, the */”" key now takes the place of the LOAD
command. Just hit the slash followed by the program name, and the program is
LOADed. When you use this method, you don’t need to use the LOAD command or
the comma 8.

The “@" and ** > keys are used to send commands to the disk drive. If you
type @$ (or > $), the directory of the disk is displayed on the screen, without
LOADing into your memory! These keys also take the place of the PRINT# (see
chapter 4) to send commands listed in the next chapter.

To read the error channel of the disk (when the red error light is blinking), just hit
either the @ or the > and hit RETURN Key. The complete error message is dis-
played to you: message number, text, and track and block numbers.

4. DISK COMMANDS
OPEN AND PRINT #

Up ’til now, you have explored the simple ways of dealing with the disk drive. In
order to communicate with the disk drive more fully, you have to touch on the OPEN
and PRINT# statements in BASIC (more details of these commands are available in
your VIC 20 or Commodore 64 User's Guide or Programmer’s Reference Guide). You
may be familiar with their use with data files on cassette tape, where the OPEN state-
ment creates the file and the PRINT# statement fills the file with data. They can be
used the same way with the disk, as you will see in the next chapter. But they can also
be used to set up a command channel. The command channel lets you exchange infor-
mation between the computer and the disk drive.

FORMAT FOR THE OPEN STATEMENT:
OPEN file#, device#, channel#, text$

The file# can be any number from 1 to 255. This number is used throughout the
program to identify which file is being accessed. But numbers greater than 127 should
be avoided, because they cause the PRINT# statement to generate a linefeed after the
return character. These numbers are really meant to be used with non-standard
printers.

The device# of the disk is usually 8.

The channel# can be any number from 2 to 15. These refer to a channel used to
communicate with the disk, and channels numbered 0 and 1 are reserved for the
operating system to use for LOADing and SAVEing. Channels 2 through 14 can be
used for data to files, and 15 is the command channel.

The text$ is a string that is PRINTed to the file, as if with a PRINT# statement.
This is handy for sending a single command to the channel.

EXAMPLES OF OPEN STATEMENTS:

OPEN 15, 8, 15

(BEvic?)

COMMAND CHANNEL@

OPEN A, B, C, COMMANDS(text$)

OPEN 2, §, 2

14

The PRINT# command works exactly like a PRINT statement, except that the
data goes to a device other than the screen, in this case to the disk drive. When used
with a data channel, the PRINT# sends information into a buffer in the disk drive,
which LOADs it onto the diskette. When PRINT# is used with the command channel,
it sends commands to the disk drive.

FORMAT FOR SENDING DISK COMMANDS:
OPEN 15, 8, 15, command$
or

PRINT# 15, command$

NEW

This command is necessary when using a diskette for the first time. The NEW
command erases the entire diskette, it puts timing and block markers on the diskette
and creates the directory and BAM. The NEW command can also be used to clear out
the directory of an already-formatted diskette. This is faster than re-formatting the
whole disk.

FORMAT FOR THE NEW COMMAND TO FORMAT DISK:

PRINT#15, “NEW:name,id"
or abbreviated as
PRINT#15, ‘““N:name,id”’

FORMAT FOR THE NEW COMMAND TO CLEAR DIRECTORY:
PRINT#15, ““N:name”’

The name goes in the directory as the name of the entire disk. This only appears
when the directory is listed. The ID code is any 2 characters, and they are placed not
only on the directory but on every block throughout the diskette. That way, if you
carelessly replace diskettes while writing data, the drive will know by checking the ID
that something is wrong.

15

COPY

This command allows you to make a copy of any program or file on the disk
drive. It won’t copy from one drive to a different one (except in the case of dual drives
like the 4040), but it can duplicate a program under another name on the drive.

FORMAT FOR THE COPY COMMAND:

PRINT# 15, ““COPY:newfile= oldfile"”
or abbreviated as
PRINT# 15, “C:newfile= oldfile””

The COPY command can also be used to combine two through four files on the
disk.

FORMAT FOR COPY TO COMBINE FILES:
PRINT# 15, “C:newfile= oldfilel, oldfile2, oldfile3, oldfiled’”
EXAMPLES OF COPY CODMMAND:

PRINT# 15, “C:BACKUP= ORIGINAL"
PRINT# 15, ““C:MASTERFILE= NAME, ADDRESS, PHONES"

RENAME

This command allows you to change the name of a file once it is in the disk direc-
tory. This is a fast operation, since only the name in the directory must be changed.

FORMAT FOR RENAME COMMAND:

PRINT# 15, “RENAME:newname = vldname”’
or abbreviated as
PRINT# 15, ““R:newname = oldname”’

EXAMPLE OF RENAME COMMAND:
PRINT#15, “R:MYRA =MYRON"

The RENAME command will not work on any files that are currently OPEN.

16

SCRATCH

This command allows you to erase unwanted files and programs from the disk,
which then makes the blocks available for new information. You can erase programs
one at a time or in groups by using pattern matching and or wild cards.

FORMAT FOR SCRATCH COMMAND

PRINT# 15, “SCRATCH:name"’
or abbreviated as
PRINT# 15, **S:name”’

If you check the error channel after a scratch operation (see below), the number
usually reserved for the track number now tells you how many files were scratched. For
example, if your directory contains the programs KNOW and GNAW, and you use the
command PRINT# 15, ““S:?N?W"’, you will scratch both programs. If the directory
contains TEST, TRAIN, TRUCK, and TAIL, and you command the disk to PRINT#
15, “‘S:T*", you will erase all four of these programs,

INITIALIZE

At times, an error condition on the disk will prevent you from performing some
operation you want to do. The INITIALIZE command returns the disk drive to the
same state as when powered up. You must be careful to re-match the drive to the com-
puter (see chapter 2).

FORMAT FOR INITIALIZE COMMAND:

PRINT# 15, “INITIALIZE"
or abbreviated as
PRINT# 15, “1”

VALIDATE

After a diskette has been in use for some time, the directory can become
disorganized. When programs have been repeatedly SAVEd and SCRATCHed, they
may leave numerous small gaps on the disk, a block here and a few blocks there. These
blocks never get used because they are too small to be useful. The VALIDATE com-
mand will go in and re-organize your diskette so that you can get the most from the
available space.

Also, there may be data files that were OPENed but never properly CLOSEd.

This command will collect all blocks taken by such files and make them available to the
drive, since the files are unusable at that point.

17

There is a danger in using this command. When using random files (see chapter 6),
blocks allocated will be de-allocated by this command. Therefore, this command
should never be used with a diskette that uses random files.

FORMAT FOR VALIDATE COMMAND:

PRINT#15, “VALIDATE”
or abbreviated as
PRINT# 15, “V”

DUPLICATE

This command is a hangover from the operating systems that were contained on
the dual drives like the 4040. It was used to copy entire diskettes from one drive to
another, but has no function on a single disk drive.)

READING THE ERROR CHANNEL

Without the DOS Support Program, there is no way to read the disk error channel
without a program, since you need to use the INPUT# command which won’t work
outside a program. Here is a simple BASIC routine to read the error channel:

10 OPEN 15, 8, 15
20 INPUT# 15, AS, BS, C§, D$
30 PRINT AS, BS, C§, D3

Whenever you perform an INPUT# operation from the command channel, you
read up to 4 variables that describe the error condition. The first, third, and fourth
variables come in as numbers, and can be INPUT into numeric variables if you like.
The first variable describes the error#$, where 0 is no error. The second variable is the
error description. The third variable is the track number on which the error occurred,
and the fourth and final is the block number inside that track. (A block is also known
as a sector)

Errors on track 18 have to do with the BAM and directory. For example, a READ
ERROR on track 18 block 0 may indicate that the disk was never formatted.

18

CLOSE

It is extremely important that you properly CLOSE files-once you are finished
using them. Closing the file causes the DOS to properly allocate blocks in the BAM
and to finish the entry in the directory. If you don’t CLOSE the file, all your data will
be lost!

FORMAT FOR CLOSE STATEMENT:

CLOSE file#

You should also be careful not to CLOSE the error channel (channel# 15) before
CLOSEing your data channels. The error channel should be OPENed first and
CLOSEA last of all your files! That will keep your programs out of trouble.

If you close the error channel while other files are OPEN, the disk drive will

CLOSE them for you, but BASIC will still think they are open (unless you CLOSE
them properly), and let you to try to write to them.

NOTE: If your BASIC program leads you into an error condition, all files are
CLOSEd in BASIC, without CLOSEing them on your disk drive! This is a very
dangerous condition. You should immediately type the statement OPEN 15, 8, 15,
“1"_ This will re-initialize your drive and make all your files safe.

19

5. SEQUENTIAL FILES
OPEN

SEQuential files are limited by their sequential nature, which means they must be
read from beginning to end. Data is transferred byte by byte, through a buffer, onto
the magnetic media. To the disk drive all files are created equal. That is, SEQuential
files, program files, and user files all work the same on the disk. Only program files can
be LOADed, but that's really the only difference. Even the directory works like this,
except that it is read-only. The only difference is with relative files.

FORMAT FOR OPENING A SEQUENTIAL FILE:
OPEN file#, device#f, channel#, **0:name,type,direction’’

The file number is the same as in all your other applications of the OPEN state-
ment, and it is used throughout the program to refer to this particular file. The device#
is usually 8. The channel# is a data channel, number 2 through 14. It is convenient to
use the same number for both the channel# and file#, to keep th.m straight. The name
is the file name (no wild cards or pattern matching if you’re creating a write file). The
type can be any of the ones from the chart below, at least the first letter of each type.
The direction must be READ or WRITE, or at least the first letter of each.

FILE TYPE MEANING
PRG Program
SEQ Sequential
USR User

REL Relative

EXAMPLES OF OPENING SEQUENTIAL FILES:

OPEN 2, 8, 2, “0:DATA, S, W"

OPEN 8, 8, 8, *“0:Program, P, R’

OPEN A, B, C, “0:" + AS + “U, W»

If the file already exists, you can use the replace option in the OPEN statement,
similar to the SAVE-and-replace described in chapter 3. Simply add the @0: before the
file’s name in the OPEN statement.

EXAMPLE OF SEQUENTIAL FILE WITH REPLACE OPTION:

OPEN 2, 8, 2, “@0:DATA,S,W”’

The 0: should always precede the name of the file or the drive will only allow you
to use 2 of the available buffers.

20

PRINT# and INPUT#

The PRINT# command works exactly like the PRINT statement, except that out-
put is re-directed to the disk drive. The reason for the special emphasis on the word ex-
actly is that all the formatting capabilities of the PRINT statement, as applies to punc-
tuation and data types, applies here too. It just means that you have to be careful when
putting data into your files.

FORMAT FOR WRITING TO FILE WITH PRINT#:
PRINT# file#, data list
The file# is the one from the OPEN statement when the file was created.

The data list is the same as the regular PRINT statement — a list of variables
and/or text inside quote marks. However, you must be especially careful when writing
data so that it is as easy as possible to read the data back again.

When using the PRINT# statement, if you use commas (,) to separate items on the
line, the items will be separated by some blank spaces, as if it were being formatted for
the screen. Semicolons (;) don’t result in any extra spaces.

In order to more fully understand what’s happening, here is a diagram of a se-
quential file created by the statement OPEN 5, 8, 5, “O:TEST,S,W'":

loadf 1.1 1 01 § 0 & L 0 1 L L

chal‘1|2l3l415|6|?\8‘9‘101I1]12|13|14115i,..

The eof stands for the end-of-file marker. String data entering the file goes in byte
by byte, including spaces.

For instance, let's set up some variables with the statement A$= “HELLO;
B$= “ALL”: C$= “BYE". Here is a picture of a file after the statement PRINT# 5,
AS$; BS; C3:

|H|EIL|L
charlil.’,|3|4

CR stands for the CHRS code of 13, the carriage return, which is PRINTed at the
end of every PRINT or PRINT# statement unless there is a comma or semicolon at the
end of the line.

NOTE: Do not leave a space between PRINT and #, and do not try to abbreviate the
command as ?#. See the appendixes in the user manual for the correct abbreviation.

FORMAT FOR INPUT# STATEMENT:
INPUT# file#, variable list

21

When using the INPUT# to read in data, the disk drive can’t tell that it’s not
supposed to be one long string. You need something in the file to act as a separator.
Characters to use as separators include the CR, a comma or a semicolon. The CR can
be added easily by just using one variable per line on the PRINT# statement, and the
system puts one there automatically. The statement PRINT# 5, A$: PRINT# 5, BS:
PRINT# 5, C$ puts a CR after every variable being written, providing the proper
separation for a statement like INPUT#S5, AS$, BS, C$. Or else a line like
Z$="*,":PRINT# 5, A$ Z$ B$ Z$ C$ will do the job as well, and in less space. The file
after that line looks like this:

L | |
3

|
| I

Putting commas between variables results in lots of extra space on the disk being
used. A statement like PRINT# 5, AS, B$ makes a file that looks like:

sl &) el el ¥ 1 FE i | cr| eof|
chaill 2 3|4|5|al1|s|9||o|n|12||3'|4[,_,|33[34[

| 6

| u] e |
2

L] O AILIL[' ﬁlY[El(‘Rlcu[l
4| s 1|alu|m|1|||2|13|

You can see that much of the space in the file is wasted.

The moral of all this is: take care when using PRINT# so your data will be in order
for reading back in.

Numeric data written in the file takes the form of a string, as if the STRS function
had been performed on it before writing it out. The first character will be a blank space
if the number is positive, and a minus sign (—) if the number is negative. Then comes
the number, and the last character is the cursor right character. This format provides
enough information for the INPUT# statement to read them in as separate numbers if
several are written with no other special separators. It is somewhat wasteful of space,
since there can be two unused characters if the numbers are positive.

Here is a picture of the file after the statement PRINT# 5, 1; 3; 5; 7 is performed:

||

char I 1

[—=] [s3]=] |s|>] | 7]—] cr]eof]
3|4|5|61?‘8“J[I0|Hi|2 |3|14||5

1
s

Appendix B contains a program demonstrating the use of a sequential disk file.

22

GET#

The GET# retrieves data from the disk, one character at a time.
FORMAT FOR THE GET# STATEMENT:

GETH# file#, variable list

Data comes in byte by byte, including the CR, comma, and other separating
characters. It is much safer to use string variables when using the GET# statement. You
will get a BASIC error message if string data is received where a number was requested,
but not vice-versa.

EXAMPLES OF GET# STATEMENT:
GET# 5, AS

GETH# A, BS, C§, D$

R‘%‘_ You can get more than 1 character at a tim
- —(You cn el moe G 1 Shafacier &t a time)

The GET# statement is extremely useful when examining files with unknown con-
tents, like a file that may have been damaged by an experimental program. It is safer
than INPUT# because there is a limit to the number of characters allowed between
separators of INPUT variables. With GET#, you receive every character, and you can
examine separators as well as other data.

Here is a sample program that will allow you to examine any file on the disk:

10 INPUT “FILE NAME";F$

20 INPUT “FILE TYPE";TS

30 TS=LEFTS (T§,1)

40 IF TS<>*S” THEN IF TS<>“P"” THEN IF T$<>*U" THEN20
45 OPENIS5,8,15

50 OPENS,8,5,“0:* + F$+"",” +T$+,R”

60 GOSUB200

70 GET#5,A8

80 IF ST=0 THEN 90

85 IF ST=64 THEN CLOSES,15:END
87 PRINT ST:STOP
90 PRINT ASC(A$+ CHRS(0));
100 GOTO70

200 INPUT#15,A$,B$,CS8,DS

210 IF VAL(AS)>0 THEN PRINTAS,BS,CS,D$:STOP
220 RETURN

IN CASE A
NULL CHARACTER
IS READ

23

READING THE DIRECTORY

The directory of the diskette may be read just like a sequential file. Just use $ for
the file name, and OPEN §, 8, §, *‘$”’. Now the GET# statement works to examine the
directory. The format here is identical to the format of a program file: the file sizes are
the line numbers, and names are stored as characters within quote marks.

Here's a program that lets you read the directory of the diskette:

20 FOR X=1TOI141:GET#1,AS:NEXT

30 T3$(0)=*DEL'":T$(1)="SEQ’":T$(2)=“PRG":T$(3) = ““USR"":
“(4)_ “REL”
40 J=17:GOSUBS00

50 N$ BS (_‘
60 J= 2 SET LENGTH OF ID STRING
70 Gosuasoo

80 I$=BS$

85 GET#1,AS
90 J=2 SET LENGTH OF OPERATING SYSTEM STRING
100 GOSUBS500

110 O3=BS

120 FOR L=1TO88
130 GET#1,A$< |\ GET REST OF BLOCK

140 NEXT
160 PRINT CHRS (147) *'DISK NAME:''N§,“ID:”'1§,*‘0S:’ 0%

161 PRINT “LENGTH","TYPE",“NAME” F\/:\;)
165 FOR P=1TO8 FILE TYP
170 GET#1,TS“AS.AS

ALY amases®

g LOW & HIGH BYTES
210 N$=BS

220 GET#1,AS,AS,AS,AS,AS,AS,AS,AS,AS, LS, HS OF FILE LENGTH
225 L=ASC(LS+ CHRS$(0)) +256*ASC(H$+ CHRS$(0)):IF L=0 THEN 260
227 IF ST THEN CLOSEI:END

230 PRINT L, T$(ASC(T$)— 128),NS

250 IF P<8 THEN GET#1,AS,AS

260 NEXT P:GOTOI165

500 B$="**"

510 FOR L=0TOJ ?

520 GET#1,A% STRING
530 IF AS <>CHRS$(96) THEN IF AS<<>CHR$(160) THEN B$ = B$ + AS > BUILDING
540 NEXT ROUTINE
550 RETURN

24

Table 5.1: 1540/1541 BAM FORMAT

Track 18, Sector 0.

BYTE CONTENTS DEFINITION
0,1 18,01 Track and sector of first directory block.
2 65 ASCII character A indicating 4040 format.
3 0 Null flag for future DOS use.
4—143 Bit map of available blocks for tracks 1-35.
*] = available block
0 = block not available

(each bit represents one block)

Table 5.2: 1540/1541 DIRECTORY HEADER

Track 18, Sector 0.

BYTE CONTENTS DEFINITION
144—161 Disk name padded with shifted spaces.
162—163 Disk ID.
164 160 Shifted space.
165,166 50,65 ASCII representation for 2A which is DOS version
and format type.
166—167 160 Shifted spaces.
171—255 0 Nulls, not used.

Note: ASCII characters may appear in locations 180 thru 191 on some diskettes.

25

Table 5.3: DIRECTORY FORMAT i

Track 18, Sector 1 for 1540/1541

BYTE DEFINITION
0,1 Track and sector of next directory block.
2—31 *File entry 1
34—63 *File entry 2
66—95 *File entry 3
98—127 *File entry 4
130—159 |*File entry §
162—191 | *File entry 6
194—223 | *File entry 7
226—255 |*File entry 8
*STRUCTURE OF SINGLE DIRECTORY ENTRY
BYTE CONTENTS DEFINITION
0 128 + type | File type OR’ed with $80 (hexadecimal) to indicate
properly closed file.
TYPES: 0 = DELeted
1 = SEQential
2 = PROGram
3 = USER
4 = RELative
12 Track and sector of 1st data block.
3—18 File name padded with shifted spaces.
19,20 Relative file only: track and sector for first side sector
block.
21 Relative file only: Record size.
2225 Unused.
26,27 Track and sector of replacement file when OPEN@ is
in effect.
28,29 Number of blocks in file: low byte, high byte.

Table 5.4: SEQUENTIAL FORMAT

BYTE DEFINITION
0,1 Track and sector of next sequential data block.
2256 254 bytes of data with carriage returns as record terminators.

Table 5.5: PROGRAM FILE FORMAT

BYTE DEFINITION

0,1 Track and sector of next block in program file.

2256 254 bytes of program info stored in CBM memory format (with key
words tokenized). End of file is marked by three zero bytes.

27

6. RANDOM FILES

Sequential files are fine when you're just working with a continuous stream of
data, but some jobs require more than that. For example, with a large mailing list, you
would not want to have to scan through the entire list to find a person’s record. For
this you need some kind of random access method, some way to get to any record in-
side a file without having to read through the entire file first.

There are actually two different types of random access files on the Commodore
disk drive. The relative files discussed in the next chapter are more convenient for data
handling operations, although the random files in this chapter have uses of their own,
especially when working with machine language.

Random files on the Commodore disk drive reach the individual 256-byte blocks
of data stored on the disk. As was mentioned in the first chapter, there are a total of
683 blocks on the diskette, of which 664 are free on a blank diskette.

The diskette is divided into tracks, which are laid out as concentric circles on the
surface of the diskette. There are 35 different tracks, starting with track 1 at the outside
of the diskette to track 35 at the center. Track 18 is used for the directory, and the DOS
fills up the diskette from the center outward.

Each track is subdivided into blocks. Because there is more room on the outer
tracks, there are more blocks there. The outer tracks contain 21 blocks each, while the
inner ones only have 17 blocks each. The table below shows the number of blocks per
track.

Table 6.1: Track and Block Format

TRACK NUMBER BLOCK RANGE TOTAL BLOCK
1to 17 0to 20 21
18 to 24 Oto 18 19
25t0 30 0to 17 18
31 to 35 Oto 16 17

The DOS contains commands for reading and writing directly to any track and
block on the diskette. There are also commands for checking to see which blocks are
available, and for marking off used blocks.

These commands are transmitted through the command channel (channel# 15),

and tell the disk what to do with the data. The data must be read later through one of
the open data channels.

28

OPENING A DATA CHANNEL FOR RANDOM ACCESS

When working with random access files, you need to have 2 channels open to the
disk: one for the commands, and the other for the data. The command channel is
OPENed to channel 15, just like other disk commands you’ve encountered so far. The
data channel for random access files is OPENed by selecting the pound sign (#) as the
file name.

FORMAT FOR OPEN STATEMENT FOR RANDOM ACCESS DATA:

OPEN file#, device#, channel#, “#”
or optionally
OPEN file#, device#f, channel#, ‘‘#buffer#”’

EXAMPLES OF OPENING RANDOM ACCESS DATA CHANNEL:

OPEN S, 8, 5, “#” DON'T CARE wmcy/lg/\/\mma)

BLOCK-READ
FORMAT FOR BLOCK-READ COMMAND:

PRINT#file#, “BLOCK-READ:” channel; drive; track; block
or abbreviated as
PRINT#file#, “B-R:” channel; drive; track; block

This command will move one block of data from the diskette into the selected
channel, Once this operation has been performed, the INPUT# and GET# statements
can read the information.

SAMPLE PROGRAM TO READ BLOCK 2 FROM TRACK 18: (stores contents in
10 OPENIS5,8,15

BS) m
20 OPENS,8,5,“#" }“ﬁ

30 PRINT#15,“B—R:""5,0;18;
40 B$= ey

50 FOR L=0TO0255

60 GETH#5,AS

70 IF ST=0 THENBS=BS$+ AS:NEXTL
80 PRINT ““FINISHED”
90 CLOSE5:CLOSEIS

COLLECT ENTIRE
BLOCK: BYTE
BY BYTE

29

BLOCK-WRITE

The BLOCK-WRITE command is the exact opposite of the BLOCK-READ com-
mand. First you must fill up a data buffer with your information, then you write that
buffer to the correct location on the disk.

FORMAT FOR BLOCK-WRITE COMMAND:

PRINT#file#, ““BLOCK-WRITE:" channel; drive; track; block
or abbreviated as
PRINT#file, **‘B-W:"" channel; drive; track; block

When the data is being put into the buffer, a pointer in the DOS keeps track of
how many characters there are. When you perform the BLOCK-WRITE operation,
that pointer is recorded on the disk. That is the reason for the ST check in line 70 of the
program above: the ST will become non-zero when you try to read past the end-of-file
marker within the record.

SAMPLE PROGRAM TO WRITE DATA ON TRACK I, SECTOR 1:

OPEN A RANDOM

10 OPENIS5,8,15 ACCESS CHANNEL

20 OPENS5,8,5,"#"
30 FOR L=1TOs50
40 PRINT#S5,"TEST”

50 NEXT

60 PRINT#15,"“B—W:"5;0;1;1
70 CLOSES:CLOSEIS

BLOCK-ALLOCATE

In order to safely use random files along with regular files, your programs must
check the BAM to find available blocks, and change the BAM to reflect that you've
used them. Once you update the BAM, your random files will be safe — at least unless
you perform the VALIDATE command (see chapter 3).
FORMAT FOR THE BLOCK-ALLOCATE COMMAND:

PRINT#file#, “BLOCK-ALLOCATE:"" drive; track; block

30

How do you know which blocks are available to use? If you try a block that isn’t
available, the DOS will set the error message to number 65, NO BLOCK, and set the
track and block numbers to the next available track and block number. Therefore, any
time you attempt to write a block to the disk, you must first try to allocate that block.
If that block isn’t available, read the next block available from the error channel and
then allocate that block.

EXAMPLE OF PROCEDURE TO ALLOCATE BLOCK:

10 OPENIS,8,15 wa @

20 OPENS5,8,5,“#"

30 PRINT#5,"DATA”
40 T=1:B=1

50 PRINT#15,“B-A:"0;T;B

60 INPUT#15,A,B$,C,D

70 IF A=65 THEN T=C:B=D:GOTO50
80 PRINT #15,"B—W:"5;0;1;1

90 CLOSES:CLOSE1S

BLOCK-FREE

The BLOCK-FREE command is the opposite of BLOCK-ALLOCATE, in that it
frees a block that you don't want to use anymore for use by the system. It is vaguely
similar to the SCRATCH command for files, since it doesn’t really erase any data from
the disk — just frees the entry, in this case just in the BAM.

FORMAT FOR BLOCK-FREE COMMAND:

PRINT#file#, *‘BLOCK-FREE:"’ drive; track; block
or abbreviated as
PRINT#file#, ““B-F:’" drive; track; block

USING RANDOM FILES

The only problem with what you’ve learned about random files so far is that you
have no way of keeping track of which blocks on the disk you used. After all, you can’t
tell one used block on the BAM from another. You can’t tell whether it contains your
random file, just part of a program, or even sequential or relative files.

To keep track, the most common method is to build up a sequential file to go with
each random file. Use this file to keep just a list of record, track, and block locations.
This means that there are 3 channels open to the disk for each random file: one for the
command channel, one for the random data, and the other for the sequential data,
This also means that there are 2 buffers that you're filling up at the same time!

31

SAMPLE PROGRAM WRITING 10 RANDOM-ACCESS BLOCKS WITH SE-
QUENTIAL FILE:

FIND NEXT
AVAILABLE
TRACK &
BLOCK

10 OPENIS5,8,15

20 OPENS,8,5,“#”

30 OPEN4,84,“@0:KEYS,S,W”
40 AS=*"RECORD CONTENTS #&”
50 FOR R=1TOI10
70 PRINT#5,A8'R
90 T=1:B=1 _
100 PRINT#15,“B—A:"0;T;B
110 INPUT#15,A,B8,C,D
120 IF A=65 THEN T=C:B=D: GOTOI(X)
130 PRINT#15,B—W:"5;0;T:B

140 PRINT#4,T“,”’B

150 NEXT R

160 CLOSE4:CLOSES:CLOSEI1S

SAMPLE PROGRAM READING BACK 10 RANDOM-ACCESS BLOCKS WITH
SEQUENTIAL FILE:

10 OPENI5,8,15

20 OPENS,8,5,#”

30 OPEN4,8,4,“KEYS,S,R”
40 FOR R=1TOI10

50 INPUT#4,T,B

60 PRINT#15,“B—R:"5;0;T;B
80 INPUTH#5,A3,X

90 IF AS<>*"RECORD CONTENTS #'OR X<>R THEN STOP
100 PRINTAS;R

110 PRINT#15,B—-F:""0;T;B
120 NEXT R

130 CLOSE4:CLOSES

140 PRINT#15,'SO:KEYS"
150 CLOSEI15

CHECKS TO
MAKE SURE
DATA 1S OK

FREES THIS
TRACK & BLOCK
FOR LATER USE

32

BUFFER-POINTER

The buffer pointer keeps track of where the last piece of data was written. It also
is the pointer for where the next piece of data is to be read. By changing the buffer
pointer’s location within the buffer, you can get random access to the individual bytes
within a block. This way, you can subdivide each block into records.

For example, let’s take a hypothetical mailing list. The information such as name,
address, etc., will take up a total of 64 characters maximum. We could divide each
block of the random access file into 4 separate records, and by knowing the track, sec-

tor, and record numbers, we can access that individual record.
FORMAT FOR BUFFER-POINTER COMMAND:

PRINT#file#, “BUFFER-POINTER:" channel; location
or abbreviated as
PRINT#file#, ““B-P:"" channel; location

EXAMPLE OF SETTING POINTER TO 64TH CHARACTER OF BUFFER:

PRINT# 15, “‘B-P:” 5; 64

Here are versions of the random access writing and reading programs shown

above, modified to work with records within blocks:

SAMPLE PROGRAM WRITING 10 RANDOM-ACCESS BLOCKS WITH 4

RECORDS EACH:

10 OPENIS5,8,15

20 OPENS5,8,5,“#”

30 OPEN4,8,4,'@O0:KEYS,S,W"

40 AS$=“RECORD CONTENTS #"
50 FOR R=1TOIO

60 FOR L=1TO4

70 PRINT#15,“B—P:"5;(L-1)*64+1
80 PRINTH#S,AS “,”L

SET POSITION
TO 1, 65, 129, 193

FIND

90 NEXTL AVAILABLE
100 T=1:B=1 TRACK &
110 PRINTELS,“B— A:"0;T;B“ BLOCK

120 INPUTEIS.A,BS,C.D<— 4
130 IF A=65 THEN T=C:B=D:GOTO110
140 PRINTEIS, B — W:"'5;0;T;B

150 PRINTE4,T*,”B

160 NEXT R

170 CLOSE4:CLOSES:CLOSEIS

33

SAMPLE PROGRAM READING BACK 10 RANDOM-ACCESS BLOCKS WITH
4 RECORDS EACH:

10 OPENIS,8,15

20 OPENS,8,5,“#"

30 OPEN4,8,4,"KEYS,S,R”

40 FOR R=1TOI10

50 INPUT#4,T,B

60 PRINT#15,"B—R:"'5;0;T;B

70 FOR L=1TO4

80 PRINT#15,“B—-P:"5;(L-1)*64+1
85 INPUT#5,AS8,X

90 IF AS< >“RECORD CONTENTS #' OR X<>L THEN STOP
95 PRINT R;AS;L

100 NEXT L

110 PRINT#15,B—F:"’0;T;B

120 NEXT R

130 CLOSE4:CLOSES

140 PRINT#15,"*SO:KEYS"’

150 CLOSEIS

USER1 and USER2

The USER commands are generally designed to work with machine language (see
chapter 8 for more on this). The USER! and USER2 commands are special versions of
the BLOCK-READ and BLOCK-WRITE commands, but . . . with an important dif-
ference: the way USERI and USER2 work with the buffer-pointer.

The BLOCK-READ command reads up to 256 characters, but stops reading when
the buffer-pointer stored with the block says that block is finished. The USERI com-
mand performs the BLOCK-READ operation, but first forces the pointer to 255 in
order to read the entire block of data from the disk.

FORMAT FOR USER! COMMAND

PRINTH#file#, ““Ul:"" channel; drive; track; block
or
PRINT#file#, ““UA:"’ channel; drive; track; block

There is no difference between the Ul and UA designations for this command.

34

The BLOCK-WRITE command writes the contents of the buffer to the block on
the disk along with the value of the buffer-pointer. The USER2 command writes the
buffer without disturbing the buffer-pointer value already stored on that block of the
diskette. This is useful when a block is to be read in with BLOCK-READ, updated
through the BUFFER-POINTER and PRINT# statements, and then written back to
the diskette with USER2.

FORMAT FOR USER2 COMMAND:

PRINT#file#f, *“U2:>’ channel; drive; track; block

or
PRINT#file#, *“UB:"’ channel; drive; track; block

For a more complex sample program, see Appendix C.

35

T RELATIVE FILES

RELative files allow you to easily zero in on exactly the piece of data that you
want from the file. It is more convenient for data handling because it allows you to
structure your files into records, and into fields within those records.

The DOS keeps track of the tracks and blocks used, and even allows records to
overlap from one block to the next. It is able to do this because it establishes side sec-
tors, a series of pointers for the beginning of each record. Each side sector can point to
up to 120 records, and there may be 6 side sectors in a file. There can be up to 720

records in a file, and each record can be up to 254 characters, so the file could be as
large as the entire diskette.

CREATING A RELATIVE FILE

When a RELative file is first to be used, the OPEN statement will create that file;
after that, that same file will be used. The replace option (witk the @ sign) does not
erase and re-create the file. The file can be expanded, read, and written into.
FORMAT FOR THE OPEN STATEMENT TO CREATE RELATIVE FILE:

OPEN file#, device#, channel#, ‘“‘name,L,”” + CHRS$(record length)
EXAMPLES OF OPEN STATEMENT CREATING RELATIVE FILES:

OPEN 2, 8, 2, “FILE,L,"* + CHR$(100)

OPENF, 8, F, A$+*“,L,"* + CHR$(Q) = Record Length

P
OPEN A, B, C, “TEST,L,* + CHR$(33) <

36

Table 7.1: RELATIVE FILE FORMAT

DATA BLOCK
BYTE DEFINITION
0,1 Track and block of next data block.
2—256 254 bytes of data. Empty records contain FF (all binary ones) in the
first byte followed by 00 (binary all zeros) to the end of the record.
Partially filled records are padded with nulls (00).
SIDE SECTOR BLOCK
BYTE DEFINITION
0,1 Track and block of next side sector block.
2 Side sector number. (0-5)
3 Record length.
4,5 Track and block of first side sector (number 0)
6,7 Track and block of second side sector (number 1)
8,9 Track and block of third side sector (number 2)
10,11 Track and block of fourth side sector (number 3)
12,13 Track and block of fifth side sector (number 4)
14,15 Track and block of sixth side sector (number 5)
16—256 Track and block pointers to 120 data blocks.

Upon execution, the DOS first checks to see if the file exists. If it does, then
nothing happens. The only way to erase an old relative file is by using the SCRATCH
command (see chapter 4), but not by using the replace option.

37

USING RELATIVE FILES

In order to OPEN a relative file once it exists, the format is simpler.
FORMAT FOR OPENING AN EXISTING RELATIVE FILE:

OPEN file#, device#, channel#, ‘‘name”’

In this case, the DOS automatically knows that it is a relative file. This syntax, and
the one shown in the above section, both allow either reading or writing to the file.

In order to read or write, you must, before any operation, position the file pointer
to the correct record position.

FORMAT FOR POSITION COMMAND:

PRINT#file#, *“P** CHRS(channel¥ + 96) CHRS(rec#lo) CHRS$(rec#hi)
CHRS$(position)

EXAMPLES OF POSITION COMMAND: @E

PRINT#15, ““P” CHRS(2+ 96)/CHRS(1) CHRS(0)

PRINT#1S, “P” CHR$(CH + 96)) CHR$(R1) CHR$(R2)

Position

PRINT#15, ““P”* CHR$(4 + 96) CHR$(R1) CHRS$(R2) CHR$(P) (Within Record

The 2-byte format for the record number is needed because one byte can only hold
256 different numbers, and we can have over 700 records in the file. The rec# lo con-
tains the least significant part of the address, and the rec# hi is the most significant
part. This could be translated to the actual record number by the formula
REC#=REC HI * 256 + REC LO.

If the record number is known, the high and low bytes can be determined as
follows:

REC# HI=INT(REC#/256)
REC# LO=REC#— REC# HI*256

EXAMPLE:
PRINT#1S, “P”" CHR$(4+96) CHRS$(R1) CHR$(R2) CHRS(0)

If REC#=540: R2=INT(540/256) . . . so R2=2
R1=1540-R2*256 . . . so R1=28

38

Let’s assume we have a mailing list. The list consists of 8 pieces of data, according
to this chart:

Field Name Length
first name 12
last name 15
address line 1 20
address line 2 20
city 12
state 2
zip code 9
phone number 10
TOTAL 100

This is how the record length is determined. We would probably want to allow an
extra character in length for each field, to allow for separations; otherwise the INPUT#
command would pick up a much longer piece of the file than needed, just like in se-
quential files. Therefore, we’ll set up a file with a length of 108 characters per record.
In the first record, we’ll put the number 1, representing the largest record# used so far.
Here is the program as described so far:

5 X=0

10 OPENL,38,15

20 OPEN2,8,3,“0:MAILING LIST,L," + CHR$(108)

30 GOSUB900

40 PRINT#1,*P”CHRS(3 +96)CHR$(1)CHRS(0)CHR3(1)
50 GOSUB%00

60 IF E=50 THEN PRINT#2,1:GOTO40

70 INPUT#2,X

300 STOP:CLOSE1;CLOSEZ;END

900 INPUT#1,E,B$,C,D
910 IF (E=50) OR (E<20) THEN RETURN
920 PRINT E;BS$;C;D:STOP:RETURN

Error #50 which is checked in line 60 of the program is the RECORD NOT PRE-
SENT error, which means that the record hadn’t been created yet. Writing into the
record will solve the problem. This error condition must be watched carefully within
your programs.

39

So far, all it does is create the file and the first record, but doesn’t actually put any
data in it. Below is a greatly expanded version of the program, to actually allow you to
work with a mailing list where the records are coded by numbers.

OPEN
RELATIVE
FILE CALLED
“*MAILING LIST*

5 A()=12:A(2) = 15:A(3) = 20:A(4) = 20: A(5) = 12: A(6) = 2: A(7) = 9:A(8) = 10

10 OPENI,8,15:0PEN2,8,3, 0:MAILING LIST,L, " + CHR$(108): GOSUB900

20 PRINT#1,*“P”CHRS(3 + 96)CHRS(1)CHR$(0)CHRS(1): INPUT#2,XS$:
X=VAL(XS): X=0 THEN X=2

30 INPUT *“READ,WRITE,OR END";JS$:IF J$=“E"”THEN CLOSE2:

CLOSEI1:END
40 IF J$=*“W” THEN 200 READ ROUTINE
50 PRINT:INPUT “RECORD #;R:IF R<0 OR R>X THEN 50

60 IF R<2 THEN 30

70 RI1=R:R2=0:IF R1>256 THEN R2=INT (R1/256):R1 = Rl — 256*R2

80 RESTORE:DATAI,FIRST NAME,14,LAST NAME,30,ADDRESSI,51,
ADDRESS2

90 DATA72,CITY,85,STATE,88,ZIP,98, PHONE#

100 FOR L=1TO8:READ A,AS:PRINT#1,*P”’CHRS(3 + 96) (R1)CHRS(R2)
HRS$(A):GOSUB900

110 ON A/50 GOTO50

115 INPUT#2,Z$:PRINT AS,ZS:NEXT:GOTOS0

200 PRINT:INPUT “RECORD #”;R:IF R<0 OR R>500 THEN 200

210 IF R<2 THEN 30

215 IF R>K THEN R= X+ 1:PRINT:PRINT “RECORD#";R

220 R1=R:R2=0:IF R>255 THEN R2=INT (R1/256):R1 = R1-256*R2

230 RESTORE:FOR L= 1T0O8:READ A,AS$:PRINT#1,“P"CHRS$(3 + 96)
CHRS$(R1)CHRS(R2)CHRS$(A)

232 GOSUB900

235 PRINT AS;:INPUT Z8$:IF LEN(Z$)>A(L) THEN Z$ = LEFT$(Z$,A(L))

240 PRINT#2,Z8:GOSUB900:NEXT:IF R>X THEN X =R

245 PRINT#1,“P”’CHRS$(3 + 96)CHRS$(1)CHRS$(0)CHRS(1)

250 PRINT#2,X:GOSUB900: GOTO200

900 INPUT#1,A,BS$,C,D:IF A< 20 THEN RETURN S

910 IF A<>50 THEN PRINT A;BS$,C;D:STOP:RETURN

920 IF J$=*‘R”” THEN PRINT BS$

930 RETURN

WRITE ROUTINE

ERROR CHECKING
SUBROUTINE

This program asks for record numbers when retrieving records. It won’t let you
retrieve from beyond the end of the file, and if you try to write beyond the end it forces
you to write on the next higher record.

A more advanced version than this would keep track of the items by “keys”, to
index the records. For example, you would probably want to search for a record by
name, or print out labels by zip code. For this you would need a separate list of keys
and record numbers, probably stored in sequential files.

40

When working with a new relative file that will soon be very large, it will save
much time to create a record at the projected end of the file. In other words, if you ex-
pect the file to be 1000 records long, create a record# 1000 as soon as the file is created.
This will force the DOS to create all intermediate records, making later use of those
records much faster.

EXAMPLE OF CREATING LARGE FILE:
OPEN 1, 8, 15: OPEN 2, 8, 2, “0:REL,L,** + CHRS$(60)
PRINT#1, “P"”” CHRS$(2+96) CHR$(0) CHRS(4) CHRS(1)
PRINT#2, “END"
CLOSE 2: CLOSE 1

PROGRAM AND EXPLANATION

1 REM RELATIVE FILE PROGRAM

2 DIM AS$ (5):DIM CS(5) :PRINT** @ "

3 PRINT “HIT FI TO CONSTRUCT A RELATIVE FILE”

4 PRINT “HIT F3 TO READ A RELATIVE FILE"”

5 PRINT “HIT FS TO READ THE ERROR CHANNEL":GOSUB 5000

6 INPUT“ENTER RELATIVE FILE NAME";Z$

8 OPEN2,8,2,7$+ *,L,” + CHR$(50) :REM CREATE THE RELATIVE FILE
9 OPEN1,8,15

11 GOSUB 1000

20 FORI=1TOS

30 PRINTEL“P"CHRS(2 +96)CHRS(I)CHRS(0)CHRS(1):REM POSITION THE
RECORD POINTER

40 PRINT “ENTER A NAME”

50 INPUT AS(I)

60 PRINT#2,AS$,(])

63 INPUT “ENTER ADDITIONAL INFO'*;CS(I)

65 PRINT#I,*P”CHRS(2+96)CHRS(I)CHRS(0)CHR$(25) :REM POSITION
POINTER TO 25TH CHARACTER

67 PRINT #2,C8()

70 NEXTI

75 PRINT*DO YOU WISH TO REPLACE A RECORD':INPUT D$

76 IF D$S=“N"THEN 80

77 GOSUB 8000

78 GOTO75

80 PRINT“THE RELATIVE FILE IS CONSTRUCTED"

82 FOR DE=1 TO 2500:NEXT DE:GOSUB 6000

85 CLOSE2

90 END:STOP

100 INPUT “ENTER DESIRED FILE TO READ";Z$

105 OPEN 2,8,2,Z$:0OPEN 1,8,15

106 PRINT “READING "’Z$

110 FORI=1TOS

115 REM FOR I=5TOl STEP -1

130 PRINT#L,"“P""CHRS(2 + 96)CHRS$(I)CHRS(0)CHRS(1)

160 INPUT#2,AS(I)

41

170 PRINT “RECORD#(*‘I'")="",A%(I)

175 K=6-1

177 PRINT#1,**P"”CHR$(2 + 96)CHRS$(I)CHRS(0)CHR$(25)

179 INPUT#2,C3(I): PRINT“ADDITIONAL INFO:"";C$(I)

180 NEXT 1

181 PRINT “DO YOU WISH TO REPLACE A RECORD:INPUT D$
182 IF D§=“N"" THEN 185

183 GOSUB 8000

184 GO TO 181
185 GOSUB 1000
186 J=1+1

150 PRINT “END OF READ":FOR DE=1 TO 1500:NEXT DE:GOSUB
6000:CLOSE2:CLOSE1:END

1000 INPUT#1,A,B$,C,D,:IF A < 20 THEN RETURN

1001 IF A< >50 THEN PRINT A,BS$,C,D :STOP:RETURN

1999 END

2000 OPEN 15,8,15

2001 INPUT#15,A,BS,C,D

2002 PRINT A,BS,C,D

2003 CLOSE 15:END

5000 GET SS:IF S$=“"THEN 5000 :REM SCAN KEYBOARD FOR
FUNCTION KEY CHRS CODES

5001 IF S$=CHR$(133) THEN 6:REM ASSIGN F1 FUNCTION KEY

5002 IF S$=CHRS$(134) THEN 100:REM ASSIGN F3 FUNCTION KEY

5003 IF S§=CHRS$(135) THEN 2000:REM ASSIGN F5 FUNCTION KEY

5004 RETURN

6000 PRINT “BHIT F7: FOR HARD COPY OR C TO CONTINUE”

6001 GET PS$:IF P§ < > CHR$(136) AND P$=*C’’ THEN RETURN

6002 FOR DE=1 TO 500:NEXT DE:IF P§ = ‘" OR P$< >CHRS$(136) THEN
6000

6003 OPEN 4,4 :CMD4

6004 PRINT#4,“THE “ZS$"" FILE CONSISTS OF:”

6005 FORI=1TOS

6010 PRINT#4,“RECORD # ";I;* =""; A$(I)

6012 PRINT#4,"“ADDITIONAL INFO’’;I;** = "";C3(1)

6015 NEXT I

6020 CLOSE4:RETURN

7000 REM TO READ IN RECORDS IN REVERSE ORDER REMOVE THE
REM IN LINE #115 AND

7002 REM PUT A REM BEFORE LINE#110

7005 REM TO READ THE IST FIELD OF THE 1ST RECORD AND THE 2ND
FIELD OF THE LAST

7007 REM REPLACE THE CHRS$(I) IN LINE 177 WITH CHRS$(K)

8000 PRINT*WHICH RECORD # DO YOU WANT REPLACED”:INPUT |

8001 INPUT“ENTER NEW RECORD'";A%(I)

8002 PRINT#1,“P”CHRS(2+ 96)CHRS$(I)CHRS$(0)CHRS(1):REM POSITION FILE
POINTER

8003 PRINT#2,A%(I)

8004 INPUT“ENTER NEW RECORD (FIELD 2)’*;C$(I)

42

8005 PRINT#1,“P""CHRS$(2+ 96)CHRS(I)CHRS(0)CHRS(25) :REM POSITION FILE
POINTER

8007 PRINT#2,CS(I)

8009 PRINT‘‘RECORD#";I;**HAS BEEN REPLACED"”

8010 RETURN

CREATE A RELATIVE FILE

The program below, creates a relative file with 2 fields. The first field starts in
position 1 of the record and the second field starts in position 25.

LINE 8: Create the file. Make room for records of 50 characters with the CHR$(50).
Use the Z$ as a file, input variable in LINE 6, you can then press the f1 function key to
create a file.

LINE 30: Point to the first character position of a file. P tells the disk drive to point to
the position in the record that corresponds to the optional, CHR$(1).

NOTE: If the CHRS is not specified, character position defaults to 1.

LINE 65: Point to the twenty-fifth character position of a file. P tells the disk drive to
point to the position in the record that corresponds to the CHR$(25).

NOTE: The POSITION command does NOT write anything to, or read anything
from the file. It just points to the position specified in the record.

WRITE TO A RELATIVE FILE

LINE 60: Use the PRINT# statement after the POSITION command to move to
character position 1, as specified in LINE 30 — CHR$(1).

READ FROM A RELATIVE FILE

LINE 130: Specify the character position using the POSITION command. Then follow
it with LINE 160, the INPUT# statement.

SUMMARY

In this program, you press the f1 key and a RELative file is created on disk. You
can type RUN and press the 3 key to READ the previous RELative file. 1f an error
condition exists (flashing red light on the disk drive) you can hit the RUN/STOP key,
type RUN and press the f5 key. This reads the ERROR CHANNEL from the drive,
shows the error number and message, as well as the track and sector of the error. It
then resets the drive for use. Later on the program asks if the file should be printed. To
print the file, press the {7 key when prompted, or press C to continue.

43

REMEMBER:

1
2)

3)

4)

Before a file can be written to, or read from, a POSITION command must be ex-
ecuted.

You must always use PRINT #1 with the POSITION command. This puts your
data under command channel control.

The FIRST character string code in the POSITION command must correspond to
the THIRD number (channel #) in the OPEN statement. Except OPEN 1, 8, 15
(see lines 8 and 30 of above program).

For convenience, use the FOR . . . NEXT loop variable in the SECOND character
string, CHRS(I), of the POSITION command where I equals the record number
(see lines 20 and 30 of above program).

MODIFYING THE PROGRAM

1y

2)
3)

You can add more POSITION commands to make more fields within each record.
Remember to include the character position number as the last CHRS, when ad-
ding fields.

To change the length of each record, change the value of CHR$(50) in LINE 8.
The number of records in the file is determined by the POSITION command. The
current example can process 5 records; the FOR . . . NEXT loop variable is 1 to 5.
The program can process 720 records, but in order to use more than 512 records,
the number 2 must be in the THIRD CHRS$() of the POSITION command. For
more than 256, use the number 1. For up to 256 records, simply use the FOR . . .
NEXT loop variable. EXAMPLE: FOR 1=1 TO 256 may access 256 records.

8. PROGRAMMING THE DISK CONTROLLER

The expert programmer can actually design routines that reside and operate on the
disk controller. DOS routines can be added that come from the diskette. Routines can
be added much the same way as the DOS Support Program is ‘‘wedged’ into your
memory.

BLOCK-EXECUTE

This command will load a block from the diskette containing a machine language
routine, and begin executing it at location 0 in the buffer until a RTS (ReTurn from
Subroutine) command is encountered.

FORMAT FOR BLOCK-EXECUTE:
PRINT#file#, ‘“B-E:"* channel; drive; track; block
MEMORY-READ

There is 16K of ROM in the disk drive as well as 2K of RAM. You can get direct
access to these, or to the buffers that the DOS has set up in the RAM, by using the
MEMORY commands. MEMORY-READ allows you to select which byte to read,
through the error channel.

FORMAT FOR MEMORY-READ:

PRINT#file#, *“M-R”’ CHRS(low byte of address) CHRS$(high byte)
(no abbreviation!)

The next byte read using the GET# statement through channel# 15, the error
channel, will be from that address in the disk controller’s memory, and successive bytes
will be from successive memory locations.

Any INPUT# to the error channel will give peculiar results when you're using this
command. This can be cleared up by any other command to the disk (aside from a
memory command).

PROGRAM TO READ THE DISK CONTROLLER’S MEMORY:
10 OPENI15,8,15

20 INPUT“LOCATION PLEASE;A

25 FOR L=1TOS50

30 Al=INT(A/256):A2=A— Al1*256

40 PRINT#15,“M — R CHRS$(A2)CHRS$(AI)

50 GET#IS.A$4'———\
60 PRINT ASC(A$ + CHRS$(0));

70 A=A+l

80 NEXT

90 INPUT “CONTINUE’";AS

100 IF LEFT$(A$,1)="'Y"" THEN 25

110 GOTO20

GET CHARACTERS
FROM ERROR
CHANNEL

45

MEMORY-WRITE

The MEMORY-WRITE command allows you to write up to 34 bytes at a time in-
to the disk controller’s memory. The MEMORY-EXECUTE and USER commands
can be used to run this code.

FORMAT FOR MEMORY-WRITE:

PRINT#file#, “M-W' CHRS(low address byte) CHRS$(high address byte)
CHRS(#-of-characters) byte data

PROGRAM TO WRITE AN “RTS” TO DISK:

10 OPENS.S.IS,“I”t”/

20 PRINT#8,“M — W’CHR$(0)CHR$(3)CHR$(1)CHRS3(96)
30 PRINT#8,“M — E”CHRS$(0)CHRS(3)
40 CLOSES8

MEMORY-EXECUTE

Any routine in the DOS memory, RAM or ROM, can be executed with the
MEMORY-EXECUTE command.

FORMAT FOR MEMORY-EXECUTE:
PRINTH#file#, ““M-E’ CHRS$(low address byte) CHRS(high byte)

See line 30 above for an example.

USER COMMANDS

Aside from the USER1 and USER2 commands discussed in chapter 6, and the
Ul+ and Ul - commands in chapter 2, the USER commands are jumps to a table of
locations in the disk drive's RAM memory.

USER COMMAND FUNCTION

Ul or UA BLOCK-READ without changing buffer-pointer
U2 or UB BLOCK-WRITE without changing buffer-pointer
U3 or UC jump to 30500

U4 or UD jump to $03503

Us or UE jump to 30506

U6 or UF jump to 30509 (HEXADECIMAL LOCATIONS)
U7 or UG jump to $050C

U8 or UH jump to SO50F

U9 or UI jump to SFFFA

U; or U] power-up vector

Ul + set Commodore 64 speed

Ul- set VIC 20 speed

By loading these locations with another jump command, like JMP $0520, you can
create longer routines that operate in the disk’s memory along with an easy-to-use
jump table — even from BASIC!

EXAMPLES OF USER COMMANDS:

PRINT# 15, *“U3”
PRINT# 15, “U” + CHR$(50+ Q)
PRINT# 15, *“UI"

47

9. CHANGING THE DISK DRIVE DEVICE NUMBER
SOFTWARE METHOD

The device number is selected by the drive by looking at a hardware jumper on the
board and writing the number based on that jumper in a section of its RAM. Once
operation is underway, it is easy to write over the previous device number with a new
one.

FORMAT FOR CHANGING DEVICE NUMBER:

PRINT#filed, “M-W:"" CHRS(119) CHR$(0) CHR$(2) CHRS(address + 32)
CHRS$(address + 64)

EXAMPLZ= OF CHANGING DEVICE NUMBER (FROM 8 TO 9):

10 OPEN 15, 8, 15
20 PRINT# 15, “M-W"" CHR$(119) CHRS$(0) CHRS$(2) CHRS$(9 + 32)
CHRS3(9+64)

If you have more than one drive, it's sensible to change the address through hard-
ware (see below). If you must, the procedure is easy. Just plug in the drives one at a
time, and change their number to the desired new values. That way you won’t have any
conflicts.

48

HARDWARE METHOD

It's an easy job to permanently change the device number of your drive for use in
multiple drive systems. The tools needed are a phillips-head screwdriver and a knife.

STEPS TO CHANGING DEVICE NUMBER ON HARDWARE:

Disconnect all cables from drive, including power.

Turn drive upside down on a flat, steady surface.

Remove 4 screws holding drive box together.

Carefully turn drive right side up, and remove case top.

Remove 2 screws on side of metal housing.

Remove housing.

Locate device number jumpers. If facing the front of the drive, it’s on the

left edge in the middle of the board.

8. Cut either or both of jumpers 1 and 2 for Model 1541.
Cut either or both of jumpers A and B for Model 1541CR.
(see chart below)

9. Replace housing and 2 screws, and case top and 4 screws.

10. Re-connect cables and power up.

SHONIA ST bans

DEVICE# JUMPER A/1 JUMPER B/2
8 DON'T CUT DON'T CUT
9 CuUT DON'T CUT
10 DON'T CUT CuT
11 CuT CuT

49

10. ASSEMBLY LANGUAGE AND THE 1541

If you want to use your 1541 disk drive to manipulate data directly from assembly
language you can use the information presented below.

Here is a list of subroutines that provide the start of memory locations in each of
the Kernal routines. These routines are used in conjunction with the assembly language
command JSR to jump to that subroutine location in memory:

SUBROUTINE

SETLFS = SFFBA ; set logical, physical & secondary addresses
SETNAM = SFFBD ; save length & address of filename

OPEN = SFFCO ; open a logical file

CLOSE = $FFC3 ; close a logical file

CHKIN = SFFCé ; open a channel for input

CLRCH = S$FFCC ; clear all channels

BASIN = SFFCF ; get a byte from a file

BSOUT = SFFD2 ; output a character to the screen

For a more complete description as to what each routine does and what
paramelters are passed to and from each routine, see your Commodore 64 or VIC-20
Programmer’s Reference Guide.

Now, for a practical application of the subroutines listed above, here is a sample
program using those routines to read a sequential file on a disk. Assume that you have
stored the filename “TEST’ at $C000.

INIT ; initialize:

LDA #3504 ; filename length

LDX #3%00 ; low byte of filename address

LDY #8C0 ; high byte of filename address

JSR SETNAM ; save length & address of filename
LDA #503 ; logical address

LDX #808 ; device number

LDY #5800 ; secondary address (0 = read seq. file)
JSR SETLFS ; set logical, physical & secondary addresses
JSR OPEN ; open logical file

LDX #503 ; set x-register to logical address

JSR CHKIN ; open input channel

your program info ; get data and print it one byte at a time
JSR BASIN ; get one byte

BEQ END ; if O then end of file or error

JSR BSOUT ; output character to the screen

JMP your prog. info ; loop

END

LDA #503 ; set accumulator to logical address
JSR CLOSE ; close file

JSR CLRCH ; clear channels and reset defaults

RTS ; end of assembly language program

50

APPENDIX A: DISK COMMAND SUMMARY

General Format: PRINT#file#, command

COMMAND

NEW

COPY

RENAME
SCRATCH
INITIALIZE
VALIDATE
DUPLICATE
BLOCK-READ
BLOCK-WRITE
BLOCK-ALLOCATE
BLOCK-FREE
BUFFER-POINTER
USERI and USER2
POSITION

BLOCK-EXECUTE
MEMORY-READ
MEMORY-WRITE

MEMORY-EXECUTE
USER Commands

“N

“C:new file=:orginal file

“R:new name = old name

“S:file name

9

ey

not for single drives

“B-R:"" channel; drive; track; block
“B-W:" channel; drive; track; block
“B-A:" drive; track; block

“B-F:" drive; track; block

“B-P:" channel; position

“Un:”’ channel; drive; track; block

«p" CHRS$(channel¥) CHRS(rec#lo) CHRS(rec#hi)
CHRS$(position)

“B-E:" channel; drive; track; block

“M-R’* CHR$(address lo) CHR$(address hi)
“M-W'' CHRS$(address lo) CHR$(address hi)
CHRS$(#chars) “‘data’

“M-E" CHRS$(address lo) CHRS(address hi)
‘lUnII

51

APPENDIX B: SUMMARY OF CBM FLOPPY ERROR MESSAGES

0 OK, no error exists.

1 Files scratched response. Not an error condition.
2-19 Unused error messages: should be ignored.
20 Block header not found on disk.

21 Sync character not found.

22 Data block not present.

23 Checksum error in data.

24 Byte decoding error.

25 Write-verify error.

26 Attempt to write with write protect on.
27 Checksum error in header.

28 Data extends into next block.

29 Disk id mismatch.

30 General syntax error

31 Invalid command.

32 Long line.

33 Invalid filename.

34 No file given.

39 Command file not found.

50 Record not present.

51 Overflow in record.

52 File too large.

60 File open for write.

61 File not open.

62 File not found.

63 File exists.

64 File type mismatch.

65 No block.

66 Illegal track or sector.

67 Illegal system track or sector.

70 No channels available.

71 Directory error.

72 Disk full or directory full.

73 Power up message, or write attempt with DOS Mismatch.
74 Drive not ready.

52

DESCRIPTION OF DOS ERROR MESSAGES

NOTE: Error message numbers less than 20 should be ignored with the exception of 01
which gives information about the number of files scratched with the SCRATCH com-
mand.

20: READ ERROR (block header not found)
The disk controller is unable to locate the header of the requested data block.
Caused by an illegal block number, or the header has been destroyed.

21: READ ERROR (no sync character)
The disk controller is unable to detect a sync mark on the desired track. Caused
by misalignment of the read/writer head, no diskette is present, or unformatted
or improperly seated diskette. Can also indicate a hardware failure.

22: READ ERROR (data block not present)
The disk controller has been requested to read or verify a data block that was
not properly written. This error message occurs in conjunction with the BLOCK
commands and indicates an illegal track and/or block request.

23: READ ERROR (checksum error in data block)
This error message indicates that there is an error in one or more of the data
bytes. The data has been read into the DOS memory, but the checksum over the
data is in error. This message may also indicate grounding problems.

24: READ ERROR (byte decoding error)
The data or header as been read into the DOS memory, but a hardware error has
been created due to an invalid bit pattern in the data byte. This message may also
indicate grounding problems.

25: WRITE ERROR (write-verify error)
This message is generated if the controller detects a mismatch between the writ-
ten data and the data in the DOS memory.

26: WRITE PROTECT ON
This message is generated when the controller has been requested to write a data
block while the write protect switch is depressed. Typically, this is caused by us-
ing a diskette with a write a protect tab over the notch.

27: READ ERROR (checksum error in header)
The controller has detected an error in the header of the requested data block.
The block has not been read into the DOS memory. This message may also in-
dicate grounding problems.

28: WRITE ERROR (long data block)
The controller attempts to detect the sync mark of the next header after writing a
data block. If the sync mark does not appear within a pre-determined time, the
error message is generated. The error is caused by a bad diskette format (the
data extends into the next block), or by hardware failure.

53

29:

30:

31

32:

33:

34:

39:

50:

51:

52:

DISK ID MISMATCH

This message is generated when the controller has been requested to access a
diskette which has not been initialized. The message can also occur if a diskette
has a bad header.

SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command channel. Typical-
ly, this is caused by an illegal number of file names, or patterns are illegally used.
For example, two file names may appear on the left side of the COPY com-
mand.

SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in the first
position.

SYNTAX ERROR (invalid command)
The command sent is longer than 58 characters.

SYNTAX ERROR (invalid file name)
Pattern matching is invalidly used in the OPEN or SAVE command.

SYNTAX ERROR (no file given)
the file name was left out of a command or the DOS does not recognize it as
such. Typically, a colon (:) has been left out of the command.

SYNTAX ERROR (invalid command)
This error may result if the command sent to command channel (secondary ad-
dress 15) is unrecognized by the DOS.

RECORD NOT PRESENT

Result of disk reading past the last record through INPUT#, or GET# com-
mands. This message will also occur after positioning to a record beyond end of
file in a relative file. If the intent is to expand the file by adding the new record
(with a PRINT# command), the error message may be ignored. INPUT or GET
should not be attempted after this error is detected without first repositioning.

OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information is cut off. Since the
carriage return is sent as a record terminator is counted in the record size. This
message will occur if the total characters in the record (including the final car-
riage return) exceeds the defined size.

FILE TOO LARGE
Record position within a relative file indicates that disk overflow will result.

WRITE FILE OPEN

This message is generated when a write file that has not been closed is being
opened for reading.

54

61:

62:

63:

65:

66:

67:

70:

71:

72:

FILE NOT OPEN

This message is generated when a file is being accessed that has not been opened
in the DOS. Sometimes, in this case, a message is not generated; the request is
simply ignored.

FILE NOT FOUND
The requested file does not exist on the indicated drive.

FILE EXISTS
The file name of the file being created already exists on the diskette.

FILE TYPE MISMATCH
The file type does not match the file type in the directory entry for the requested
file.

NO BLOCK

This message occurs in conjunction with the B-A command. It indicates that the
block to be allocated has been previously allocated. The parameters indicate the
track and sector available with the next highest number. If the parameters are
zero (0), then all blocks higher in number are in use.

ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or block which does not exist in the
format being used. This may indicate a problem reading the pointer to the next
block.

ILLEGAL SYSTEM T OR S
This special error message indicates an illegal system track or block.

NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A maximum of
five sequential files may be opened at one time to the DOS. Direct access chan-
nels may have six opened files.

DIRECTORY ERROR

The BAM does not match the internal count. There is a problem in the BAM
allocation or the BAM has been overwritten in DOS memory. To correct this
problem, reinitialize the diskette to restore the BAM in memory. Some active
files may be terminated by the corrective action. NOTE: BAM = Block
Availability Map

DISK FULL

Either the blocks on the diskette are used or the directory is at its entry limit.
DISK FULL is sent when two blocks are available on the 1541 to allow the cur-
rent file to be closed.

55

73:

74:

DOS MISMATCH (73, CBM DOS V2.6 1541)

DOS 1 and 2 are read compatible but not write compatible. Disks may be inter-
changeably read with either DOS, but a disk formatted on one version cannot be
written upon with the other version because the format is different. This error is
displayed whenever an attempt is made to write upon a disk which has been for-
matted in a non-compatible format. (A utility routine is available to assist in
converting from one format to another.) This message may also appear after
power up.

DRIVE NOT READY

An attempt has been made to access the 1541 Single Drive Floppy Disk without
any diskettes present in either drive.

56

APPENDIX C: Demonstration Disk Programs

1

4 0
S5 P
18
zZ0
2 r:|
4a

DIR

FEMZ-&8.19
FINT D" GOTO 1 6A0E
NFENL . 3.0, "39"
GET#1 .AY.EBY
GET#1.R%,B¥
GET#1.R%.B%
Cc=2

IF ASCZ"™" THEN C=RSC(AS)

IF B$<2"" THEH C=C+ASCC{RS)#255
FRINT"S"MIDF STRS$CCH. 27 . TRE 3 "8,
GET#1.B$ IF ST<>8 THEN 1888

IF BS<3CHR¥C34) THEN S0

RET#1 .25 IF B§IOCHRSC3IAHTHEN FRINTES. GOTO11@
GET#1.E¥% IF E$=CHR$(32) THEH 120
PRINT TAB(18>. C¥=""

C$=C$+B5 HETH#1.B$ IF BS<-"" THEN 142
PRINT"S"LEFTS$(C¥,3)

GET T#:IF Ts$<>"" THEN GOSUE 2028

IF ST=8 THEH 20
B PRINT" BLOCKS FREE®
& CLOSEL1:-GOTD 148088

a4 IF T#="0" THEW CLOSE1 END
A GET T$ IF T$="" THEHN Z00O
Z8 RETURN

2@ REM DISK COMMAND

B C$="" PRINT"3",
1 GETES: IFBF="" THEN44ll

4a12 FRINTBS, IF Bs=CHR$(13, THEH 4020

4217 C$=C$+RY GOTO 4211

4823 FRINT#Z.CF

@A FRINT"E".

S@10 GETH2.AF PRINTARS. IF AISOCHREC1306G0TOSOL0

sez
163
1aa

A PRINT"®E"
@@ PRINT "D-DIRECTORY"
1@ FRINT ">-DISk COMMAND"

12@26 FRINT "0-C0UI1T PROGRAM"
12838 PRINT "$-DISK STATUS *
1@lan GETAS IFA$=""THEN10108
1azea IF A$="D" THEM 12

1830@ IF As="." OR A¥="1" OF AF="1" THEN 4A2d
1331@ IF A$="0" THEN END

@326 IF A$="S" THEN Sa0a

1A533 GOTO 16100

57

2.

129
1a1
192
185
110
120
130
140
152
150
170
180
190
280
21e
220
23e
240
2378
260
270
288
298
302
31a

VIEW BAM

FEM #4Manasesssnsssessvasssnmnensnys

REM » VIEW BAM FOR VIC & 64 DISK #

REM #ww MRS
QFEN15.8.15

FRINT#1S, "18" HUS="N A N/A N/A NAR NZRM Z4=1
OFEHZ.8.2."#"

RE R UL UUC GG CIEI LW 1R

nE=" [1] 18
DEF FHSYZ) = ZT(S-IHTCS/83#8) AMD (SBCINTCS/8)))>
PRINT#1S."U1:-",2;8,18.@

PRINT#1S. "B=-P"; 21

PRINT"2" .

Y=22 ¥=1 -GOSUB4ZE
FORI=BTO2: PRINT \PRINT"TY'RIGHTSSTRSCT0+" ", 33 HNEKT
GETHZ.AS

GETHZ . RS

GETHZ.AS

TS=0

FORT=1TD17 GOSUE4352

¥Y=22 #=T+4 GOSUES32 GOSUBSSR HEXT
FOR1=1T0202@: HEXT -PRINT"O"

¥Y=22 ¥=1 GOSUB4ZE

FORI=BTO2@ :PRINT PRINT“TY'RIGHTE STRE I »+" * .33, "HEXT
FORT=13T0O3S

GOSUR4SE

¥W=22 W=T-13 GOSUBR43R GOSUBRT4@ NHEKT

FORI=1TO180a3: HEXT

PRINT " TIsIaIeaN "

FRINTH#IS. "B-P":2;144

HE&="" FORI=1TOZE GETHZ . AF HE=HE+AF HNEXT

PRINT" "N$" "TS-17,"BLOCKS FREE"

FORI=1TO4822 HEXT

PRINT"D"

THFUT " sslsmBRNOTHER DISKFETTE HIRE' A
TFAF=""v"THEHRUM

IFR$<S Y THENEND

PRINTLEFTS/YE. YILEFTE 43000 N .

FETURH

GETH2,SCS SC=RSCIRIGHTS ' CHRICA)I+SCE. 110

TS=TS+5C

GETHZ.A$ IFA$=""THENAS=CHR (@)

SB(OI=ASCIAS)

GETH#Z .A$ TFAF=""THEHRF=CHFRE @

SBEA13=RASC{AT)

GET#2 AT TFAT=""THENASI=CHRT @

SE/Z>=ASCAS)

FETURH

FRINT"MI*RIGHTECSTRESCTY 10 . "ICT)"

REM PRINTT" St "Sep(@)" “SEC1)" "SB(2) =CHR¥73)
IFT>24ANDS=18THEN FRINTMIDE (HUIE . 74 . 1 o GOTORES
FORS=ATO2A

TFTS18THENG2A

TFTHSAANNS=1 P THEH FRINTMIDECHUS 24 .10, GOTOSER
TFTS24ANDS=1STHER FRINTHMIDECHIIS . 2410 . - GNTNSRB
IFT>24ANNS=1 ATHENFRINTMIDSHUE . 24,10 GOTOEED

TFT 1 TANDS=28THEHRF INTMIDS CHUS .24, 101 T4=T4+1 GOTOERR
PRINT 2"

IF FHS S v=it THEN FRINT"+ GOTRESR

FRINT "®B4" . REMPTIAHTE STRE 2. 10 T4 Lo GOTO7Z
PRINT" oM ;

HEXT

FETLIFI

58

3. DISPLAY T&S

1000 FPEMBRS 44 bR sds a4 a0t b bttt ivsss
114 REM$ DISPLAY ANY TRACK ¥ SECTOR
12 PEM#® OH THE DISK TO THE SCREEN #
133 RPEM# OF THE FRINTEF *
140 FEMHesbastsssbbsdetrtnttnctbrdrsss
158 FRINT"Inwl o
162 PRINT"DISFLAY BLOCK CONTENTS"
165 FRINT

170 FPEMSA4EEA444F 4 4SS S 000N s

188 FEM#% ZET PROGRAM CONSTANT +
130 FEMISESIEEPERP ettt bobrtbtbbotoss
206 SPg=" " HLE=CHRICA) HAF="0123456789RBCDEF "
218 FS$="" FOR1=64 T0 S5 FSS=FSF+"A"+CHRSC 1)+ 8 NEXT I
22@ SS$=" " FOR I=192 TO 223 S5¥=SSF+"A"+CHRSC(I)+"W" :HEXT 1
DIM RA$C15),HBCZ)
Dg="a"
PRINT" EECEECHAIBUABSEEDF MEIFERS THTER"
GETIIS IF JIs="" THEHNZS4
IF 17%="S"THENPRINT" NRECREENS"
. IF 11§="F"THENFRIHT" NgFRINTERE”
OFEHIS. 3, 15, "1"+D4 GOSUEB &350
OFEH4 ., 4

OPEH 2.8.2,"#" GOSUB £5

REMEsSd bt did s dd aa s d s s s bvesy

REM® LOAD TRACK AND SECTOR *

REM# INTQ DISK BUFFER Ed

FEMASHRS AR AR ROt SRR PRI NTIR e oS
INPUT"WBITRACK. ., SECTOR".T.S

IF T=a 0OF T>35 THEH PRINT#15,"1"D$ CLOSE2 CLOSE4:CLOSE1S:PRINT"END":END
IF J7%="5" THEW PRINT"ERBITRACK"T" SECTOR"S"M"
IF 178="P" THEH PRIHTH#4 FRINTH#4. "TRACK"T" SECTOR"S:PRINT#4
FRINT®#1S, "Ul: 2, "D$:T,:5:G0SUBESA

FEMSSER R EANFE SRS a b udd b ny

FEM# READ BYTE @ OF DISK BUFFER ¥
Ll e T PR R LR L 2

PRINT#1S, "B-P:2.,1"

PRINT#15. "M~R"CHRE(BICHRF(S

420 GETE'S.A$CA) IFATAY=""THENRF(AI=HLS¥

428 IF JIs="S"THEN43R

420 IF JII§="P"THEH4£3

G331 REMSSMSREREEERP eSS4 o b b HE b g

432 REM#% READ & CRT DISPLAY *

433 REM#® REST OF THE DISK BUFFER *

G4 REMASSS MR R AR b SRR

435 K=1 HBC(1))=ASCCAFALD

433 FOP I1=@ TO &3:IF J=32 THEN GOSUB 718:1F Z$="N"THEN J=88:00T0 458
448 FOR I=¢ TO 3

442 GET#2.A$C1) IF A$CI>="" THEN R$CI »=HL*¥

444 IF ¥=1 AND I<2 THEHN NB(Z)=RSC(A$CI>>

44F MEXT I K=

4438 AF="" Bs="" HN=J#4 GOSUR 798 AS=AF+" "

45@ FOR I=8 TO 3:H=ASCCA$C 135 GOSUER 738

452 CH=A$< 1> GOSUB 850 BS=BS+C¥

454 HEXT [:IF 1]$="S" THEMN FRIMTRSES

458 MEXT J:'GOTOS71

3
3
3
)
3

20
4@
41
e
£
7a
3@
i

e]

£
b
o

59

4€2
482

FEMOSMASN RN A b b A ua b AR a RN

REM# READ & PRINTER DISFLAY *

REMESHUSS A d s s ot an s sk e e
1°'NB(1)=RSCCAS(BL >

FOF J=@ TO 15

FOR I=K TO 15

> GETH2.A$71) IF AErI »="" THEMN ASC] i =NLS

IF ¥=1 AND 142 THEH NEBC2)=ASC(ASCI>)

NEXT 1 k=8

RE="" Bf=" " N=J#16 GOSUE 770 A¥=As+" "
FOR I=@ TO 15:M=RSCCA$<1>, 'COSUE 790 IF Z%="N"THEW J=4@:060TO 571
Ce$=R$C] 5 GOSLIE RSA:RE=ERs+C$

NEXT 1

IF 114="F" THEM FRTHT#4 .A%¥EBES

HEXT J:GOTOST1

FEMES AT 0 e s dr a e s s e

REM& NEXT TRACK AND SECTOR »
FEMEASNER NS AR RS S S EER A SRR
FPRINT"HEXT TRACK AMD SECTOR"MEB<1> MBCZ> "W"
PRINT"DO YOU WANT NEXT TRACK AND SECTOR'

GET Z% IF Zs="" THENS90

IP Z#="%¥" THEN T=HEBC(1) S=MB(2) GOTO332
IF Zf="N" THEM 329

BOTO 5398
PEN&‘****1******&#‘***‘*#5!*****U

REM# SUBROUTINES
REH*‘“‘H***i******l!ﬁh#h&‘!*’*l?

REM¥ ERROR ROUTIHE ¥
FEMBES Ut d bbb bbbt s ot ansnmsbsnny
THPUTH1S,EN.EMS$.ET.ES: IF EN=@ THEN PETURHN
PRINT"@DISK ERRORM"EH.EMS.ET.ES

ENDI

3 REMERSRARREFRAER SRR AT N SRR

REM#& SCREEN CONTINUE MESSAGE »
R R e e]
PRINT " EBRERICONT THUE €'Y H "

GETZS$:IF Zf="" THEHN 750

IF Z#="H" THEW RETUREN

IF Z$<5"y" THEN 752

PRINT"IITRACK" T " SECTOR"S "T1":'RETURH
PEMESdndd v s 4o eSS rn s s ey

REM#® DISK BYTE TO HEX PRINT -
REMAEUSMABAER NS b F b nssvrdsttones
RI=TNT/HATESY AS=AT+MIDF(HAS . AL+ .1
F2=TNT/H=1F%R1) AS=RT+MIDFHTF . AZ+1 .1
AT=R3+SPY RETURH

FEMSS 4404 sddbbtussssssssnbbsbsny

REM# DISK BYTE TO ASC DISPLAY ¥

FEM® CHRAFACTER *
FEMESAMES S A EREE s 44+ F 4004t d iy

IF RSCOTEH422 THEH =" " RETLIFN

IF ASCOAUELI188 OF ASCOCEN>199 THEN RETURH
CE=MIDE SSE . ACASTICE=1275.3) RETIRN

4. CHECK DISK

1 REM CHECK DISH —-- VER 1.4
2 DN=8:REM FLOFFY DEVICE HUMBER

= DIMT(1087 :DIMS(188> REM BAD TRACK. SECTOR ARRAY
PRINT " 7TeT2) i

18 PRINT" CHECK DISK FROGRAM"
12 PRINT"
20 Dg="g"
30 OPEH1S.DH, 1S

35 PRINTH#1S."V'D¥

45 HY=RHD¢TI3%255

=@ A$="" FORI=1TO255 AF=AF+CHRFCZSTANDCI+NLI > (HERT
@ GOSUBS@@

7@ OPENZ.DN,2,"#"

8@ PRINT:PRINTH2.AS,

85 T=1:5=0

92 PRINT#1S."B-A:"D$:T:S

183 INPUT#15,EM,EM$.ET.ES

112 IFEN=BTHEM13a

115 IFET=BTHEM20@:'REM EHD

128 PRINTH#1S,"B-A "D$ ET:ES T=ET'S=ES

136 PRINTH#1S."U2:2,"D:T:S

134 HB=HB+1:PRIMT" CHECKED BLOCKS"HB

135 PRINT" TRACK IEEEI T SECTOR IEEEI"S" T
148 INFUT#15 EN,EM$.ES.ET

15@ IF EN=@THEMES

168 TeIy=T: S Tr=5: I=74+1

165 PRINT"MEEAD BLOCK: IEI".T:3""

172 GOTOSS

2P@ PRIMT#15,"1"D#

216 GOSURSAA

212 CLNSE2

215 IFJ=ATHENPRIMT"¥IBBRHO BAD ELOCKS!" END

217 OPEH2.DM,2,"4"

218 PRINT"MMEBAD BLOCKS","TRACK"."SECTOR"

220 FORI=ATOJI-1

238 PRINT#15,"B-R:":Df.TC10.SCID

248 PRIMT, .TAI3,35C1s

258 NEXT

268 FRINT"®"J"BAD BELOCKS HAYE EBEEN ALLOCATED"

278 CLOSEZ2:EHD

283 JHPUT#15.EM,EM$.ET.ES

31@ IF EN=8@ THEM RETURH

528 PRINT"YNERROR #"EN,EM$ET;ES""

930 FRINTH#15,"1"D$

]

61

5. PERFORMANCE TEST

1828 REM PERFORMAHCE TEST 2.8

181a -

1020 REM VIC-28 AND COMMODORE &4

:g3g REM SINGLE FLOPPY DISK DRIVE
It =

1858 OPEN 1.8, 15 0PEN15.8.1%

1868 LT=35

1972 LT$=STR$<LT>

1Aash HT=34

1836 FRINT"IN

1133 PRINT" FERFORMANCE TEST™
111a FRINT"
PRINT
PEIHT" THEEFRT SrFATCOHY
PRTHNT
FRINT" DISKETTE IN DRIVE"
FRINT
FRINT"® FRESS @ETURNE
PRINT
FRINT" WHEH RERLDYN"

FOF I=8 TO S8 GET RA$ HEAXT
GET Af IF ASCECHRSC12: THEN 1218

TI$="0AA300"
TT=18

PRINT#1."H®:TEST DISK,20"
Ci$=" DISK HEW COMMAND "+CHRE(13)
C2f="W WAIT ABOUT S8 SECONDS"
CCE=C1$+C2%:GASUB 18542

IF TIZHTTHEH137@

FRINT"MSYSTEM IS"

PRINT"® NOT RESPONDING"
3 PRINT® CORRECTL'Y TO COMMANDS”
GONSUR 1824

FRINT“¥DRIVE PRSS"

FRINT" MECHANICAL TESTW"
TT=2
OPEN 2.8.2,"B:TEST FILE.S,W"
CC$="0PEN WRITE FILE" GOSUR 1848
CH=2:CC$="WRITE DRATR" GOSUR 1238
CC¥="CLOSE "+CC#% GOSUR 1848
OPEN 2.8,2."B:TEST FILE.S.R"
CC#="0FEN RERD FILE" ‘GOSUE 1248
CH=2:GOSUB 1992
FPRINT#1,"SB:TEST FILE"
CC#="SCRATCH FILEM":TT=1 ‘GOSUE 1848
1508
1518 TT=21

1528 OPEH 4.8.4,"4#"

1538 HHX=C1+RNDCTI D#293+NNKOARND2SS PRINT#H#1 ., "B-FP" i 4 NNZ
1548 HHS="":FOR I=1 TO 255 HHE=HH$+CHRECT D THEXT

1558 PRINT# 4.HNE!

1568 FRINT# 1."U2:";4:8:L7.8

1578 CC3$="WRITE TRACK"+LT#:GOSUB 1848

1580 FPRINT#1,"U2:";4:0:1:8

159@ CC$="WRITE TRACK 1" ‘GOSUR 1840
1402 PRINT#1."U1:": 4. A:LT:8

1618 CCH="FERD TRACK"+LTS¥ ‘GOSUR 1840
1528 PRINT#1."U1:";4:8.1:@

1630 CC#="READ TRACK 1" 'GOSUER 1840
164@ CLOSE 4

1658

1658

62

SR

PRINT"W UNIT HAS PASSED"
PRINT" PERFORMANCE TEST!"
PRINT"® FLILL DISKETTE FROM"
PRINT"W DRIVE BEFORE TURNING"
PRINT" POWER OFF."

END

FPRINT" FCONTIHUE <YA/HO?"S
FOR I=9 TO SO:GET AS NEXT
GET A%¥:IF R$="" THEN 1770
FRINT A$"W"

IF A¥="H" THEHW END

1F As="%" THEH RETLURH

GOTO 176A

PRINT CC#

INPUTH 1,EH.EM$,.ET.ES
PRIMNTTREC 12" "EN;EM$,ETES: ""
1F EN<2 THEH RETURN

A PRINT"W UHIT IS FAILING

PRINT"W PERFORMANCE TEST"
TM$=TI$ GOSUE 1750 TIS=TME:-RETLRN

A PRINT"WRITING DATA"

FOR 1=1007 TO 2200 PRINTH#CH. I1:HEXT
GOSUB185@
CLOSE CHIRETURN

A PRTNT"READING DATA"
' GETAS

FOF I[=12288 TO z0a2a
THPLITH CH..J
1F J¢>1 THEN PRINT"SRERD ERROR:®" GOSUB

A HEMT

ANSIHE 1850
FINSF CH RETURN

63

APPENDIX D: DISK FORMATS

NOTLE
Not to scale

POINTERS TO LINK N
TOGETHER ALL BLOCKS N
WITHIN A FILE

0%

1D

4
TRACK | BLOCK {'I_Ii.il');- GAP 1 SYNC 7 L E'N. Ii'l".i'ES CHECK- GAP
| S5UM b OF DATA SUM -

BYTE O p#—
BYTE | ¢

1540/1541 Format: Expanded View of a Single Sector

BLOCK DISTRIBUTION BY TRACK

Track number Block Range Total
1to 17 0to20 21
18 to 24 Oto 18 19
25 to 30 0to 17 18
31to 35 0to 16 17

1540/1541 BAM FORMAT

Track 18, Sector 0.

BYTE |CONTENTS DEFINITION

0,1 18,01 Track and block of first directory block.

2 65 ASCII character A indicating 4040 format.

3 0 Null flag for future DOS use.

4—143 Bit map of available blocks for tracks 1—35.

available block
block not available
(each bit represents one block)

-
O -
nn

65

1540/1541 DIRECTORY HEADER

Track 18, Sector 0.

BYTE CONTENTS DEFINITION

144—161 Disk name padded with shifted spaces.

162—163 Disk ID.

164 160 Shifted space.

165—166 50,65 ASCII representation for 2A which is DOS version
and format type.

166—167 160 Shifted spaces.

177—255 0 Nulls, not used.

Note: ASCII characters may appear in locations 180 thru 191 on some diskettes.

SEQUENTIAL FORMAT
BYTE DEFINITION
0—1 Track and block of next sequential data block.
2256 265 bytes of data with carriage return as record terminators.

PROGRAM FILE FORMAT

BYTE | DEFINITION

0,1 Track and block of next block in program file.

2—256 265 bytes of program info stored in CBM memory format (with key
words tokenized). End of file is marked by three zero bytes.

DIRECTORY FORMAT

Track 18, Block 1 for1540/1541

BYTE DEFINITION
0—1 Track and block of next directory block.
231 *File entry 1

34—63 *File entry 2

66—95 *File entry 3

98—127 *File entry 4

130—159 | *File entry 5

162—191 | *File entry 6

194—123 | *File entry 7

226—255 | *File entry 8

*STRUCTURE OF SINGLE DIRECTORY ENTRY

BYTE CONTENTS DEFINITION
0 128 + type |File type OR’ed with $80 to indicate properly closed
file.
TYPES: 0 = DELeted
1 = SEQential
2 = PROGram
3 = USER
4 = RELative
1—2 Track and block of 1st data block.
3—18 File name padded with shifted spaces.
19—20 Relative file only: track and block for first side sector
block.
21 Relative file only: Record size.
2225 Unused.
26—27 Track and block of replacement file when OPEN@ is
in effect.
28—29 Number of blocks in file: low byte, high byte.

67

RELATIVE FILE FORMAT

DATA BLOCK

BYTE DEFINITION

0,1 Track and block of next data block.

2—256 254 bytes of data. Empty records contain FF (all binary ones) in the
first byte followed by 00 (binary all zeros) to the end of the record.
Partially filled records are padded with nulls (00).

SIDE SECTOR BLOCK

BYTE DEFINITION
0—1 Track and block of next side sector block.
2 Side sector number (0-5)
3 Record length
4—5 Track and block of first side sector (number 0)
6—7 Track and block of second side sector (number 1)
8—9 Track and block of third side sector (number 2)

10—11 Track and block of fourth side sector (number 3)

12—13 Track and block of fifth side sector (number 4)

14—15 Track and block of sixth side sector (number 5)

16—256 Track and block pointers to 120 data blocks

68

INDEX

A
Assembly Language, 50

B

BLOCK-ALLOCATE, 30-31, 51

Block Availability Map (BAM), 9-10, 25, 28, 30-31, 64-68
BLOCK-EXECUTE, 45, 51

BLOCK-FREE, 31, 51

BLOCK-READ, 28-29, 31-32, 34-35, 51

Blocks, 3, 34-35, 64-68

BLOCK-WRITE, 30, 32, 34-35, 51

Buffer, 3, 33

BUFFER-POINTER, 33-34, 51

C
CLOSE, 19
COPY, 16, 51

D

Data Channel, 29

Demonstration Disk Programs, 57-63

Device Number, 20, 48-49

Directory, 9-10, 24-27, 66-67

Disk Controller, 45-47

Disk Operating System (DOS), 10-11, 13, 25-28, 31, 33, 53-56
DOS Support Program, 13, 18

Drive Speeds, 7

DUPLICATE, 18, 51

E

End-of-file (EOF), 21
Error Channel, 18, 43-45
Error Messages, 52-56

F
FORMAT (see NEW)

G
GET#, 23

I

INITIALIZE, 17, 46, 51
INPUTH, 18, 21-22, 44
L

LOAD, 1, 8-15, 19

69

M

Mailing List Program, 39-40
MEMORY-EXECUTE, 46, 51
MEMORY-READ, 45, 51
MEMORY-WRITE, 46, 51

N
NEW, 15, 51

0
Open, 14-15, 20

P

Pattern Matching, 11
POSITION, 38-43, 51

PRINT#, 14-15, 21

Program Files (PRG), 20, 26, 56

R

Random Files, 3, 28-33

Relative Files (REL), 1, 3, 5, 20, 33-44, 68
RENAME, 16, 51

S

SAVE, 1, 12, 17

SCRATCH, 17, 51

Sectors, 3, 64-68

Sequential Files (SEQ), 1, 3, 5, 20-23, 26-27, 31-32, 44, 66
Serial Bus Interface, 2, 6-7

Side Sector, 36-37

Specifications, 2-3

E
Tracks, 5, 28, 33, 64-68

U
USER, 47, 51
User Files (USR), 20, 26, 34-35

v
VALIDATE, 17, 51
VERIFY, 13, 51

w

Wedge, 7
Wild Cards, 11

70

COMMODORE SALES CENTERS

Commodore Business Machines, Inc.
1200 Wilson Drive
West Chester, PA 19380, US A,

Commodore Business Machines Limited
3370 Pharmacy Avenug, Agincourt
Ontario, M1W 2K4, Canada

Commodore Business Machines (UK) Ltd.
1, Hunters Road, Weldon
Corby, Northants, NN17 1QX, England

Commodore Bueromaschinen GmbH
PO BOX 710126, Lyonerstrasse 38
6000 Franktult 71, West Germany

Commodore ltaliana S.P.A.
Via Fratelli Gracchi 48
20092 Cinisello Balsamo, Milano, Italy

Commodore Business Machines Pty Ltd.
5 Orion Road
Lane Cove, NSW 2066, Australia

Commodore Computer B.V.
Kabelweg 88
1014 BC AMSTERDAM, Netherlands

Commodore AG(Scheweiz)
Aeschenvorstadt 57
Ch-4010 Basel, Switzerland

Commodore Computer NV-SA
Europalaan 74
1940 ST-STEVENS-WOLUWE, Belgium

Commodore Data AS
Bjerreve) 67
Horsers, Denmark

DISK DRIVES
MODEL SFD 1001
1 Megabyte double sided, floppy disk drive.
Uses double density, double sided diskettes.
|IEEE interface.
MODEL 2031LP
Media compatible with 1541 and 4040 diskettes. '
170 K of memory per single side disk. 2
Rugged and stylish housing.
|IEEE interface.

(=1={]\\}g gl = =$=]
MODEL MPS-80
High guality dot matrix printing.
80 column printing.
Prints 50 characters per second. B
Serial port interface. Liir A
MODEL MCS-801 / b
Seven color, dot matrix printing. (i
Up to BO columns printed per page.
Prints 38 characters per second.
Perfect for everything from personal letters to important business reports.
Serial port interface.
MODEL 1526
80 column, dot matrix printing.
Prints BO characters per second.
Durability at an affordable price.
Serial Port interface.

—

PRINTER /PLOTTER ;
MODEL 1520 7 s
Four color, printer/plotter for all graphic needs.
Print bar graphs. . .create pie charts. ..plot time graphs.
High quslity printing in a variety of styles and sizes.
Great for graphic artists.
RMOIDEMS
VICMODEM o -
Timely financial information, news and reference libraries are as near as your phone.
An affordable introduction to the growing world of phone/computer services. A
Communicate with a wide variety of computer users who already own a modem.
AUTOMODEM :
The convenience of automatic ansering and dialing.
The resource power of telecomputing services.
Turn your phone into a telecomputing information network.

(= commodore

COMPUTER

P/N 1540031-02 (5 Printed in Japan

